OAK RIDGE NATIONAL LABORATORY
Operated by
UNION CARBIDE NUCLEAR COMPANY
Division of Union Carbide Corporation
UCC
Post Office Box X Oak Ridgo, Tennessee

DATE:
April 26, 1961
subject: Neutron Losses to Pa^{233} in the Aqueous Homogeneous Breeder Reactor

TO: Listed Distribution
FROM: J. W. Miller and L. G. Alexander

ABSIRACT

Neutron losses to Pa^{233} in the blanket of the AHBR were computed and compared for two cases: (1) concentration of Pa^{233} is maintained uniform by continuous mixing, (2) batches of fertile material are shifted periodically from high- to low-flux regions of blanket. It was found that, if the fertile material is cycled through three radial positions in three days, the loss of neutrons to Pa^{233} is no more than one per cent greater than if it is mixed continuously.

NOTICE

> This document contains information of a preliminary nature and was propared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent branch, Legal and Information Control Department.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Time Dependent Differential Equations, - The time dependent differential equation for the concentration of Pa at radius r and time t is given by Eq. 1 .
$\frac{d N_{13}(r, t)}{d t}=\int_{u} \sigma_{02}(u) \phi(r, u) N_{02} d u-\int_{u}\left[\lambda+\sigma_{13}(u) \phi(r, u)\right] N_{13}(r, t) d u$
where:

$$
\begin{aligned}
\mathrm{N}_{13}(\mathrm{r}, \mathrm{t})= & \text { the atomic concentration of } \mathrm{Pa}^{233} \text { at radius } \mathrm{r} \text { and time } \mathrm{t}, \\
& \text { atoms } / \mathrm{cm}^{3}, \\
\sigma_{02}(u)= & \text { the microscopic capture cross-section of thorium at } \\
& \text { lethargy } u, \mathrm{~cm}^{2}, \\
\phi(r, u)= & \text { the neutron flux at radius } r \text { per unit lethargy } u, \\
& \text { neutron-cm } / \mathrm{cm}^{3} \text {-sec-unit lethargy, } \\
= & \text { the concentration of thorium in the blanket, atoms } / \mathrm{cm}^{3}, \\
\mathrm{~N}_{02}= & \text { the decay constant for } \mathrm{Pa}^{233, ~ \mathrm{sec}^{-1},} \\
\lambda & \text { the microscopic absorption cross-section of } \mathrm{Pa}^{233} \text { at } \\
\sigma_{13}(\mathrm{u})= & \text { lethargy, } u \mathrm{~cm}^{2} .
\end{aligned}
$$

The relative neutron flux ($\mathrm{n}-\mathrm{cm} / \mathrm{cm}^{3}$-neutron born) as a function of position and lethargy may be obtained by solving the group diffusion equations, and the absolute flux is readily obtained when the power is specified. The integration of the product of cross-section and flux over lethargy may then be immediately performed. This integration will henceforth be denoted as

$$
\overline{\sigma \phi(r)}=\int_{u=0}^{\infty} \sigma(u) \phi(r, u) d u
$$

Losses for Batchwise Mixing. - The initial condition for the blanket is that at the beginning of a cycle the concentration of Pa^{233}. in a given ring is uniform and equal to the mean concentration of the same batch in the preceding ring at the end of the previous cycle, see Table I.

Introduction

The thermal breeder reactor evaluation program, TBREP has evaluated several thermal breeder reactor concepts, one of which was an aqueous homogeneous breeder reactor (AHBR) having a thorium oxide pellet blanket (Fig. 1) processed batchwise. ${ }^{1}$

The blanket is divided into 20 sectors containing ThO_{2} pellets. The pellets in each sector are shifted daily from one blanket ring to the next. The nuclear calculations for this blanket were performed using the IBM-704 program ERC-5, ${ }^{2}$ which assumes that the Pa^{233} contained in the blanket is distributed uniformly, corresponding to a blanket continuously mixed. Actually, since the neutron flux falls off rapidly, the mean Pa^{233} content is higher in the inner blanket ring than in the other two rings. The purpose of this report is to compute the ratio of neutron losses to Pa^{233} in a blanket mixed periodically to the neutron losses to Pa^{233} when the blanket is continuously mixed.

ORNL-LR-Dwg. 58810

Fig. 1 Aqueous Homogeneous Breeder Reactor Blanket

The shifting within each blanket sector occurs in the sequence 1, 2, 3, 1....

Table I. Formulae for Initial Concentration
of Pa in Specified Region

Region	1	2	3
Initial Pa con-centration	$L \int_{r_{3}}^{r_{3}+\Delta r_{3}} \frac{N_{13}\left(r, t_{R}\right) 2 \pi r d r}{v_{3}}$	$\mathrm{L} \int_{r_{1}}^{r_{1}+\Delta r_{1}} \frac{\mathrm{~N}_{13}\left(r, t_{R}\right) 2 \pi r d r}{V_{1}}$	$L \int_{r_{2}}^{r_{2}+\Delta r_{2}} \frac{N_{13}\left(r, t_{R}\right) 2 \pi r d r}{V_{2}}$

where: t_{R} is the residence time in each ring, V is the volume of a ring, Δr is thickness of a given ring, and L is the length of the reactor.

Using these initial conditions, Eq. 1 may now be integrated.

$$
\left.\left.\begin{array}{rl}
N_{13}(r, t)= & \frac{\sigma_{02} \phi(r) N_{02}}{\lambda+\sigma_{13} \phi(r)}
\end{array}\right]-e^{-\left[\lambda+\overline{\left.\sigma_{13} \phi(r)\right]} t\right.}\right]+,
$$

During the residence time, t_{R}, the losses to Pa^{233} will be

$$
\begin{equation*}
C=L \int_{t=0}^{t=t_{R}} \int_{r_{1}}^{r_{3}+\Delta r_{3}}{ }_{13}(r, t) \overline{\sigma_{13} \phi(r)} 2 \pi r d r d t . \tag{3}
\end{equation*}
$$

Losses for Continuous Mixing
For continuous mixing, $\mathrm{N}_{13}(\mathrm{r}, \mathrm{t})$ is independent of r and the equation of continuity then becomes

$$
\begin{equation*}
\frac{d N_{13}^{*}}{d t}\left(v_{1}+V_{2}+V_{3}\right)=\int_{r_{1}}^{r_{3}+\Delta r_{3}} \sigma_{02} \phi(r) N_{02} 2 \pi r L d r-\int_{r_{1}}^{r_{3}+\Delta r_{3}}\left(\lambda+\sigma_{13} \phi(r) N_{13}^{*} 2 \pi r L d r .\right. \tag{4}
\end{equation*}
$$

Where the star refers to the fact that $\mathrm{N}_{13}{ }_{*}^{\text {is }}$ uniform throughout the blanket. Since $\mathrm{N}_{13_{*}}^{*}$ is constant at equilibrium, $d N_{13}^{*} / \mathrm{dt}=0$, and equation 4 can be solved for N_{13}.

$$
N_{13}^{*}=\frac{\int_{r_{1}}^{r_{3}+\Delta r_{3}} N_{02} \frac{{ }_{02} \phi(r)}{\sigma_{0}} 2 \pi r \operatorname{Ldr}}{\int_{r_{1}}^{r_{3}+\Delta r_{3}}\left(\lambda+\sigma_{13} \phi(r)\right.} 2 \pi r L d r \quad,
$$

During time period, t_{R}, the losses to Pa^{233} for the case of continuous mixing becomes:

$$
\begin{equation*}
C^{*}=N_{13}^{*} \int_{t=0}^{t_{R}} \int_{r_{1}}^{r_{3}+\Delta r_{3}} \sigma_{13} \phi(r) 2 \pi L r d r d t \tag{6}
\end{equation*}
$$

The quantity $\frac{C-C^{*}}{C^{*}}$ is the fractional increase of neutron losses to $P a^{233}$ at finite residence times relative to the loss incurred with rapid continuous mixing. This fractional increase in neutron losses has been computed numerically using the IBM-704 program PLSB-1. The results are plotted in Fig. 2 as a function of residence time in the blanket with the reactor operating at a power level of 910 Mwt .

From Fig. 2 it can be seen that the neutron losses to Pa^{233} can be held to about 1% of the losses calculated by ERC-5 by shifting the thorium in the blanket from one ring to the next every third day.

${ }^{10^{-1}}$

9.

-
$+$

1. L. G. Alexander, et al, Preliminary Report on Thermal Breeder Reactor Evaluation, ORNL-CF-60-7-1 (July 1, 1960).
2. L. G. Alexander, ERC-5 Program for Computing the Equilibrium States of Two-Region, Thorium Breeder Reactors, ORNL-CF-60-10-87 (Oct. 20, 1960).
3. L. G. Alexander
4. L. L. Bennett
5. R. B. Briggs
6. W. D. Burch
7. D. O. Campbell
8. R. S. Carlsmith
9. W. L. Carter
10. R. H. Chaptnan
11. R. A. Charpie
12. R. D. Cheverton
13. R. C. Claiborne
14. J. G. Delene
15. W. K. Ergen
16. D. E. Ferguson
17. T. B. Fowler
18. D. R. Gilfillan
19. W. H. Jordan
20. W. H. Jordan
21. P. R. Kasten
22. J. A. Lane
23. R. N. Lyon
24. H. G. MacPherson
25. J. W. Miller
26. E. A. Nephew
27. C. W. Nestor
28. A. M. Perry
29. P. H. Pitkanen
30. C. A. Preskitt
31. T. H. Row
32. F. P. Self, AEC-ORO
33. I. Spiewak
34. J. A. Swartout
35. M. Tobias
36. M. E. Tsagaris
37. R. VanWinkle
38. D. R. Vondy
39. D. W. Vroom
40. A. M. Weinberg
41. E. Gift

40-41. Document Reference Library
42-43. Laboratory Records
44. ORNL-Record Copy

45-60. TISE
61-62. Central Research Library

