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SYiieTRLeS AdUiG TH: STAUNGLY-IWToRACTING PARTACLLS
Introduction

The spectrum7-3 of the str§ngly~interacting particles exhibits
many fgscinating regularities. ({Sse figurés 1 and 2,) These regulari=
ties éampwisep first, the mgltiplet structure associated with isotopic
spin, and secondly, the apparent clustering togsther of these mualtiplets
into supermultiplets. This article is concerned with attempts to undsr-
stand how these regularities reflect the interaotions among the particles.

From the time of the neutron's discovery, its mass haé been known
to be nearly equal to that of the proton. It was natural to suppose that
this near 1§entity of mass was associéted with a similarity of internal
structure., This idea was foyhalized through the introduction by Heisenbergk
of the concept of isotopic spin, which was just a mathematical way to state
that there was one fundamental structure, called the nucleon, over which
two diffe:ent net amouﬁts‘of elactrical charge could be distributed with-
out greatly distorting it. The name of this concept isla reminder thab

the mathematical treatment is similar to that of the spin of the electron.

But even without going into mathematical details; it can be seen that it




Ly

‘48 implicit in this idea that the neutron and proton should participate

in similar ways in the struecture of nucléi and in nuclear reac@ions,'and
thié has been fdPnd to be true, when due account is taken of elsctromag-
netic forces., As the internal structurss of the proton and neutron have
beeg examined mo?e closely, the additional particles which have been
found have aléo shown the iso#opic spin symmetry, so that now the idea
of isotopic spin is usually taken for granted and even used as a tool in
tﬁe identification of new particles, For a further d;scussion of isotopic
spin, we refer the reader to textbooks or to the survey by wick5;

The usefulness of the isotopic spin concept leads naturally to
the suggestion that the particles within a supermultiplet might also have 4
similar structures, and that their interactions might be describable by
é mathematical formalism snﬁilar to that used for isétopic spino of
course, any such higher symmetrybwould necéssarily be much less accurate

than isotopic spin symmetry. However, the alternative tc assuming that

some symmetry exists is to assume that the way in which the spectrum

arises from the dynamical interactions is so complicated that it cannot

be comprehended in any simplified manner, It is clear that we would be




forced to lock for a rough system of classification and a convenient
stafting point for the dgscription of irregularities, even if we antici-
péied that the resuli would ba to rule out such symmetry schemes,

In other brauches of physics in which phenomenoclogical symmetries
arise, it is convenient to distinguish three aspects of the mathematical
theory of the regularities. For example, we miéht think of the regular,
orderad structure of a crystal lattice. The first step is to fina out
what kind of mathematical construet is appropriate to the desexription of
such a regularity. The description of cfystal symmetrise is provided,
as is well known, through a branch 6f group theory dealing with the
erystallographic groups®. The second step is to decide which group pere
tains to a given substance and to derive the further implications cf the
symmetry. To explore the infiuence of the symmetry upcen the many physical
properties of a crystalline material, one needs‘to develop certain mathe=
matical tools. The basic mathamatical problém is that of working oﬁt rela-
tions among the representations of a given group, The final and most
fundamental aspect of the study of crystalline symmeiry is the sluecidation

of the way the regular structure arises from the internal interacticns.



The theory of particle symmetries will naturally also exhibit these three
aspects,

Uur aim is to describe particle symmetries on an entirely pheno-
menological level, so it is necessary to keep in mind the nature of the
empirical information available about the stronglyainteracti?g particlss.
This éonsi;ts of the properties of the isolated particles, their cross
sections for production and scattering, and their interactions with the
electromagnetic and weak c;rrentao e must likewise keep in mind that
the theoretical machinery available for analysis of strong interactions
is provided by the dispersion relations aﬁong S-matrix elements. These
| considerations détermine the form taken by the mathematical development
in the last three sections of this article., DBefore proceeding with th;s
development, however, we digress in the next section into the problem of
trying to understand why a study of the regulafities should lead to the

consideration of campact Lie groups.



Particle Symmetry Groups |

Isotopic spin and.the higher symmetry are properties of the strong
interactions. In contrast, charge Q@ and hypercharge Y, as well as parity
and charge conjugaticn, are concepts which apply also to electromagnetism.
When we restrict our attention.to the strong intera;tions, the additively
conserved quantities Q and Y that distinguish the~different members of a
supermultiplet are "given concepts" wﬁich provide the framework around
which the symmetry groups are constructed, For notational succinctness,
we shall consider here 2 independent qx;ant\m numbers H ¢’ where 2 e §
corresponds to charge-multiplets, '2 = 2 to the case of current intersst,
and X _>2 to the possibility that in the future other conserved quanti-
ties may be found, some of which could arise within the strong interactions
and not be conserved as well as ., Independence of the Hcr means that
they commute with each other and are also linearily independent; for ex-

ample, the component of isotopic spin Iz =g = 1/2 Y is not independent

of & or ¥, but could replace one of %them,
Eicenvalue lattices.~ We shall make extensive use of a gecmetri-

cal picturs of a supemultiplet in which each particle is represented by
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a point on a lattice 4n £ dim:ansions; ?:he coordinates of the point aré
given by the eigenvalues of the Hc,é,, For axample, t;he latticg for the
neutron-proton doublet consists of jugt two points, The lattice for the

baryon octu_plét is shown in Fige 3. In technical treatments of Lie groups,

these eigenvalue lattices are derived concepts and are usually called.

' "weight diagrams". In the present physical context the lattices are

;.ctually more fundamental than the groups.

The particles which are placed on the same lattice have the sams spin
and parity and neariy the same mass, and are supﬁosed to have a similar
internal struc‘lture » in a sense that will be defined more explicitly later.
There is a standard way to describe the internal symmetries of a quantum
mechanical system defined by a set of states, which we follow, We intro-
duce ur;itaxy operators U which transform a given state I a > | into a

"similar" one U | a) = | a_ ) o Along with any such operators, we

v
include their products and their inverses , 80 that the entire collection

forns a group.

‘Iré.ns.i‘omation of the states according %o

A ®) = exp (4 ’e’“‘/-{a_) (swmed with range £) §



-
{
with aruiirary rsal f is a paupe iransformation that merely expressas
the fact that the 1 ¢ 3F€ additively conserved and independent, Uy hy-
pothesis, tliere are other less trivial transformations of the states which
describe their supposed cimilardty. If U is one of these; the product
-1 o ¥ i - orm
VTAE)L = A (§’) is another operator which transforms states into
similar images, Lither A'( ?) is & new continuocus transformation, or,

{(can be written as A= Al ?"/}sz |

1f A" has the form (1), we {ind by considering infinitesimal §  that

N

UTH U = (35 2 87) K,

This dmpiies that U can be written as a product L'» = Ru, where R comr=
responds to a linear transformation of the lattice coordinates and u is
2 unitary transformation of the states at each lattice pesition among
themselvas, vith a suitable chelce of coordinates, i1 can be pictured
as a reflection or rotation of the lattice into itself, Operators U
which cdo not have this sinmple peometrical interpretation necessarily gen-
erate .additioml continuous transformations; the transformations (1) ara
then embedded in a Lie proup with additional parameiers,

A simple illustration is given by the neutron and proton., There




are only two conceivablie symmetry proups: ‘"charge synmetry", whi;h con=
?ains~a single discrete opération which interchan;es the two nucleéns,
and isotopic spin sym.etry (b’Uz)o Tiie arbitrary linear superpositions
of neutron and proton siates which are gencrated Ly bbe have, of course,
no physical significance except as they help to describe the way tﬁe
nucleons resemble sach other.

Continﬁous groups are the primary candidates for particle synmue-
tries, Disérete syr: etries involve fewer relations awong the structures
of the particles, and =0 are less interestiny and useful. loreover,
since they are necessarily related to symmetries of the lattices, the
problen of superposing them upon a continuoﬁs syrmetry can be conveniently
postponédo

Propertics of Lie proups.- We will now outline a few of the pen-

. eral properties of Lie [roups, as they refer to operations on a given

lattice. Further information, including the steps omitted {rom deriva-

7-13 It will not be necessary

tions, can be found in the cited literature
to follow all of the details in order to comprehend the later material.

Generators Ga of infinitesimal transformations are defined by



(sw.omed with range M) 3

a
Ulep)m ]+i¢§ Ga
for suall € . 'The nutuslly corvmting operators H & (assumed to be
conplete) form £ of theuve Ga’ and it is natural to anticipate that the
resaining (4 - £) G's can be interpreted as displacemeht operators on
the lattice, Uince we rmst be able to express the infinitesinal trans;
foruation V(€1 ) VHET) UE) L (EF)  in the fom (3),

there must exist a coumutator relation:
[Ga ’ Gb] I:za.b Gc b

which defines a '"lie algebra', The Fabc so defined are called struc-

ture constants, They satisfy the Jacobi identity

be P‘ae ca " be ab “ce

vie shall now show how to relate the values of the F abc to the
geometrical structure of the eigenvalue lattices, Ve construct operators

. _ . a
I;.a(ﬁ“) =K, (o) Ga which satisfy

[HO,, EG(O‘)J = 1, o Bl 6
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The .K:'(G‘) are eigenvectors of the matrix Fg bc o Considering two

operators, we have

[He,[Hg, Eto)) s [Hy [Hc, EuteD)]
=V e [ He, Fo ()]

which implies that .[HLE*(G"JJQC fc,_(cr) ; the E_ are

therefore actually independent of G~ and
[HG” ’ Eo.} = ra.,,q- I“a. 8

is real and F‘a.* = K

bince the Hc_have Teal elgenvalues; r a

a, 0

corresponds to «r

ay0 ° The 'E.t“ are therefore step operators or dis-

placement operators on the lattice; along the directions of the £=-

dinensional vectors i r  which are called "roots"; in the state 1.35.7.
L

defined by E_ | a,> = L (a) | a > , the eigenvalues of the lig

are increased by r_ from those in | a ) o .Ihe coefficient Ea(a)

,
introduced here is the numerical value of the element of the matrix Ed. o

i@ assume that it is possible to ;0 from each point on the eigen-

value lattice to any other by repeated application of step operators. If
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this were not true, the structure of the unconnectable states could not
be said to be related, anq they would have been wrongly included in the
sane supermultiplet. This requirement implies (in fact, by definition)
that the lattiice .corresponds to an irreducible representation of a semi-
simple £roup.

It can be seen from the geometrical interpretation that if there

jsaroot r = r + r , then
Wy T owa W
E_ s LpJ = N E 9
(the Nap are certain coefficients), and olherwise E.» EB j = 03

moreover, [Ea N Eaaj &= 5“6- Hc’ . It is possible to prove two

remarkable additional theorenis about the roots :“a ¢ ° The first is
‘ ’

that, except for the H pe thenselves, which all correspond to the root

r = 0 , there is only one siep operator h:a for each distinct root

L ]

oo The second is that it is possible, by Judicious choice of the H o
~ W

and of the normalization factors in the EQ s to find a canonical basis

in which .Sat - Q6 ° limitations of space preclude inclusion of
&

proofs here (for further information, see Dynkin's survey7) s but one of
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thé points in the argument is worthy of special meniion.
For any one of the E , we can obtain s¢6-3 Ce. r&,u’
with Cu =% 1, just by setting up in the lattice a sultable coordirnate
system. The lattice has a finite number of points, so H = :\t'u.9 > H o~

is bounded, Supposing the maxina of X Ho. to occur for the states l x > s

ve have "‘+G] il) =0 , and hence C (;‘:%iia!i> = <i! E,

E_, ] bt D 2 0 from which C_> O follows,

For any @, the three operators L:,g and ‘Hc; satisfy the same
cemnntaldon rules as do the isotopic spin step operators I " and the
operator I, (apart from an irrelevant positive nuuerical factor). It
is thorefore possible to identify among the lattice points SL-2 multipleta
extendirny along any lattice ciirection Ni e ° This gives a very severe
limitation on the eijenvalue lattices wlidch can possibly 'eaci.st; in par-
ticular, the lattice must have reflection symmetry in each of the (2 -1}
dixensional planes Ho. = 0, It is also implicit in the above remarks that
the group.is compact.

It is helpful to think less abstractly and picture the N operators

Ga as a vector, The vector formed by the three isotoplc spin operators
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a5 a three-dimensional representation in terms of rotations of ordinary

spatial vectors, The "vector" representation of the Ga in a general

c

algebra is the representation by the N x N matrices (Ga)bc w Fab s

which satisfies (4) as a consequence of (5)e This is called the ad.foint
or regular representation by different authors, If this representation
is irreduciule, the group is sald to bLe simple. The ei:renvalue lattice
for the adjoint representation, vhich consists of £ coincident poinis
at the origin, and one point at the end of each root vector, is called
the rooi diagram, It has the se;ond role of showing graphically the dis-
placements induced by fhe step operators,

To define a length for the vector G = we introduce a métric

d, ¢

tensor Cap = Facv de and its inverse 5ab . It then follows from (5)

that G2 = gab Ga Gb (the Casimir operator) is invariant under all trans-

d

e n 4 o . Y —3 ¥
formations of the group, It alsc follows that Fabc Bed Fab is

totally antisymietric. In the canonical basis of the iie alyebra we have

, £ o (e2)f2
S WD I {La , E_a} 10

A total of £ invariant operators can Ls constructed, but G2 is the only
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one whizh 1o cuadratic,

dolations Lelween supermultiolets.- 4 piven set of purticles,

stch as the baryon octuplet, can be associated with nany different Lie
groups, depending; on how many extra conserved quantities and how many
step operators are introduced. As long as one looks only at the baryons,
these proups are equally valid, and equally useless. The idea of similar
structure obtains physical content throwsh the interactions, LYor example,
the elght pseudoscalar mesons occur in the intermal structure of baryons,
and when the laryens are transforied, these virtual mesons automatically |
undexrgo certain transformations, too. e nust require that free and
virtual csons transform in the sane way, in order toc Le able to say that
the biryons have similar cvirictures, 4 liore precise statomept of this
requircuent is obtai:ned as a ratherutical condition upon Se~natrix elements.,
The simplest transition matrix to consider is the amplitude
{oe | T a ) for decay of an unstable particle a into two daughters

b-and ¢o If a 1is stable, this amplitude is the coupling constant re-

ferriny, to the virtual decay. 1Inis anplitude is nonvanishing only if

nc,l ay = Ho| bep = {lic(b)-rilr(c)} ]bc> i1
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The Jdecyy proclcet of a is the state | 3> = 2 be Fve ) Lve | T a> 0
A trassiomed state | aU> =L | a ) decays into | aAU> =
2 e De [ T]a U Y o The ueparated particles in the state
| oc > must transformas U | be) = | bv cu> o Thie is coupati-

A A
bie with lau)=bla> conly if

<

bvcvl T}av)la Loc|T]|a) 12

If L reflects the lattice, this ecuation relates directly the
anplitides associated with corresponding lattice points. For infinites-

irmal transformations, (i2) leads to

b (b )b elTla) + b (c)be|T]a)

12

=i (a) (e | 1]a, >
The (bc | | a) which are obtained as solutions of (11-13) are
proportional (by definition!) to ;eneralized Clebsch-Gordan coefficients
{for the group,

The degree to which the coupling constants saticfy (12) and (13)

iz a reasure of the degree to which a syrmetry 1ay be said to exist,
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Similar relalions ray bLe ouvtuined for peneral S-matrix elenents, These
aaditional relations are less useful for the approximate hijher sywmetry
than for isotopic spin. The reason is that cross sections tend to be
larye vhen pesipheral and resonant contributions enhance them, and they
are therefore strong ly affected by ninematical coiﬁcidencese Fortunately,
this dominance by individual states also nmakes it sasier to infer the
coupling constaqts frum measured cross sections,

Conjectured symnetries.=- lany yroups whose representations might
) concgivably accenmodate the observed supernultiiplets have been proposed
as the basis of syurietry schemes. Since information about resonant states
is accumilated very slowly; a certain amount of conjecture about uﬁobserved
supermultiplet components has been unavoidables As nore data have been
ckbtained, many schemes_which_once seemed guite promising have haq to be
discarded, In particular, the Lukata model, ;lobal sngmtry, and schemes
based on 02 and 62 are no lon;er popular. For a discussion of these

models and for references to the original literature, the surveys vy

Dehrends, Dreitlein, Fronsdal and Lee‘B, Ne‘emap9’17, larjanne15, and

D'Lspagnat16 may be consulted,
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So far, no serious difiiculties, and soume striking successes,
?,!18-20
have arlsen in the Gell-liann-~ile'eman ;51;3 modsl, the "eirhtfold vay",
which accomnodates naturally the octuplets and the decuplet apparent in

the vpecirum, ‘lhe supersmultiplets possible in this model are descrihed

in the next section,




5U, Symsetry
_‘;hg_;.g_qj alrebra.- kecall that SU2 is the rroup which consists
of the 2 x 2 wnitury matrices which have a unit determinant, Sirdilarly,
to pet bba we take the 3 x 3 unitary unioodular matrices, The Iie algebra
is formaed by the eliht independent traceless Hermdtian ratrices. The

canonical form of the eight generators is given by the followdng 3 x 3

ratrices:
0 00 000
N =—=(000 =20 0
t,"\rg(ooo E, \IZ(?OO Es7Ve(3 94
O 00/ )
- (14)
F-u :Eﬁl

/

0 <
/ lo v /=""'(a/0
nezr(ene) HE(5505

Vie have interchanged the E_M fron a more usual notation”‘ in order to

obtain more symmetrical formulas, The explicit cammmtation relations

obtained from Eq. (14) are
- '/2

fEmEp]:"G eot(st-Y
[E“) E_§]'-’ 3“./2 )‘/,( g,,(s (vo Suw\w\a)’;ou) (15)

[He €13 %E, [H EJ=O




19

H

213

L . |
T Y > Huxs:”"ﬁ}i’/?'ﬂ'//‘?. (16)

The connection with the phyolcal operators Iz » Y, and Q 4s nmade ae follows:
/
Iz:ﬁﬁ;i y:ZH' /Q:‘Z.Hz (17)

The eifenvalue lattice for ithe elghte-dimensionsl adjoint repre-
sent.ition {thc root Jiagram) has been shown in Fig, 3. fGhree equivalent
sets of orthogonal coordinutes in the lattice are jrovided by (H, Ha')o
These coordinite systeis are related through refle;:tiona in the lines
Hc, = 0 and thelr products, the 1500 rotationsza-z? The three diffcmt
ways that LU, 1s contuined in SU3 (vhich are known colloquially as
I-spin, U=spdn, and V-apin33 ) are likevise transformed into cach oiher
by these leyl reflections, /An explicit element of SU3 which accomplishes

the reflection in H, = 0, for exanmple, is the rotation through 1e0°

{
about the y(I)eaxis,

The traceless 3x3 matrices 2 a  are complete, and therefore

satisfy an anticorywutation relution




; (18)
. 3 _ e C
'g/\a,/\gj.jal:./(f +Dok "\in

. Rad

which al.o serves to <efine the symmetrical cuantity Da b < o 'lhe

commutator of }d with {18) given the relation

- e c o~ ~ G e '
l“ ) e Vo (19)
ad Dbc. 14 ’-Ca *ay Dcci O
from which it follows that o a L] abccbcc behaves as a vector in

SU~transforaations, in the sense that

3
—
[60;Nb]: = 1o Nc. | (20)

These two SUB-vectorﬂ, Ga and Na, both play imnortant roles in the

rathesatical siructure of the thoory.

Ireducitle representations of _ﬁ_i},a‘_Be tUonsider a seneral repree
gentation, and inagire each state to be plotteQ on A:m elpenvalue lattice,
The root dia;ram (Figure 3) shows that the possible sites lie on a hexd-
gonal lattice on which the values of Y and Q differ by intecers, The
problem is to deternine which sites are occupled, and the rmltiplicity
of occupation, UWe shall sketch here a gecmetrical solution to this
pwblan.;w 23435 The nethod is a mtural extension of that used in the

theory of angular momentum,
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If the representation contuins a finite number of states, thare
will be a mumber in vhich the hypercharge Y takes a maximm value Ym’
and among these one state l!m » Q> intwhich Q is largest, _Ne
assumo (without losing genarality, as will hecome evident) that this
state is uniquo, This state is characterized by the fact that
EB \xm'%> < B ‘!m.’qxn> = B, \xm’qtn> = 0, Other
states ( Y . Q - n> may be generated by using the step operator
E_, n times. Let us suppose that ) is the greatest number of
steps that can be taken along the uppar boundary of the lattice; that is,
that E, | ¥ ,Q - )) = 0, These \ +1 states*c' an J-spin
miltiplet with I = A/2. In a similar way, a Uespdn miltiplet consist=
ing of states I'Imok,Qm>,k=o, 1, cees b 18 obtained by otepping
in the direction 12;3 with the operutor E-3 :

Let us suppose that E, lIm-k » & > = 0, which wo oy to
be trus for k = o, Since E, E 4 ]!m.k, Q, > =E_q E, } e Q)

¥o then have B, | Y k-1, Q ) = 0, so the mambers of this U-spin rulti-

1

plet are also components of I-spin rmitiplets with I = Te ( A+ k)2
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The same argument applies to E.,;z l!mek, Qm > o 1f we use E»Z E.S -

5-3 Ea,, + 6'1/ 2 E‘ and the preceding result, 7This shows that no lattice
points With ¢ = Qm + 1 can Le reached from the states l !m-k, Qm>
(at leasty in one step). Another set of states with I’5 = 1 is reneruted
by appiying the step operator Ez to the stute l‘Ym-u, an > o

We now mike use of the fact the e genvalue lattice rust be invarw
iant under the three Veyl reflections, It must therefore have the shape
of a hexagon whose altermate sides have the lengths A and u , PFurthere

more, the center of the hexagon must be at the point Ha - Ha*' =0, A

simple geometrical calculuation then gives

n-dhe 2, =20 Lu (21)
If either ) or i 318 zero, the hexagon is actusally an equilateral
triancle; if both vanish, it consists of only one point. All sites in
the interior of the haxagon are occupded by states, since the Loundary
states are nembers of X-spin multiplets,
In general, the interior sites of thg hexagon are multiply
occupied. To see this, consider the state E, 1 Y Q > » This can

casily be shown to be linsarily independent of the state




E.J E=-3 Im 9 % provided both and i are positive, To

obtsin an orthoronal state we may use, instead of 1;2, the operator

- . 3h
L2 n ‘{E B‘ "‘2 + R E-3 ; the carmutation relations show that

B, E, Ja) =0 4f E ) a) =0 The I-valuesof E, |Y,q7
and T, E_, 2Im, < > therefore are, respectively, -;-( ) -1) and

%( A+ 1). Repeated application of ;22 to the states | T -k, Cb)
generates new states with diminishing values of I, the process necessarily
terminating at a point demanded Ly the symmetry of the lattice,

To show that all of the states of an irreducible representation
can be written in the form (h:_.‘)n (1-32)‘5 (12“_3)k )Im ' > s WO
first replace these by the eculvalent Lut mn-ort.hogomi set
(L._‘)n (52)1’ (1',-_3)k l Yoo S } o It is tlen an easy matter to show
that the application of any step operator to a menber of this cet leads
to a linear combination of others of the set, by commuting this step
operator past the factors in the product, To label the states thres
quantum numbers are neededj these are naturally taken to te Y, I, and

o= Izo The multiplicity of the lattice sites is most easily pictured

by Tarjanne'a‘s schene of contour lines connecting the points of equal
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mltiplicity, According to the reflection symmetry, these contours must
be symmstrical hoxagons nested inside each other, the smallest actually
being an ecuilateral triangle ir;side of wvhich the multipliecity i;a constant.
This contour diagram is especially convenlent for determining the values
of I vhich occur for a given va.lue of ¥, and for counting the total munber
d( )\ ,u) of states in a representation ( )\ ,u), An elementary calculation

gi;res
dOum = £0r)paOas2) o

The Casimir operator can be evaluated by applylng the expression

elven in Eqo (10) to the state | Y, Q > 303637 g result ds

?GZ[A,/)=>62+/L¢2+3)\+3/4 (23)

Another quantity of interest is V= Aen (Mod 3)o According
to Eq. (215, the possible values of Y and Q are equal to 2)/3 +
(an integer), This number 2’ 1is evidently conserved {(Mod 3) in the
decomposition of product representations, It provides a distinction

betweon representations of SU3 eirdlar to that between the integrale and
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halfeintegral-spin representations of SUzo Only the 3/ & 0 representa~
tions occur in the Cell-Mann--lie*emn symmetry model.

lle have already plctured the adjoint representation (1,1) in
¥igo (3)o The elgenvalue lattices for (3,0) and (2,2) are shown in Fig. 4.

The values of d, (32 and 9/ are listed in Table I for some of the simpler

representations.
Table I
(X o) oy S 4 c?
‘ (©, 0) o 1 0
(1,1 0 g8 1
(3,0 0 10 2
(2 , 2) 0 27 8/3
1 U, 1) 0 3 4
(1,0) 1 3 /9
(0, 2 1 3 10/9
(2, 1) 1. 15 16/9
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All of the representations of sz are salf-conjugate, that is,
equivalent 4o the representation obtained vy taking the complex conjugate
of the representation matrices, This is not true of SUBQ The conjugate
infinitesiral matrices are U(eg’“)*-l- € tG T ;
A o i
in particular, a minus sign appears in front of the camuting diagonal
operators H‘ and H' ' , 80 the eigenvalue lattice of the conjugate repre-
sentation 1s obtained by reflecting the original lattice throuch the
P ~
oririn, This ives the rule ( A,u) = (4, Ao It is a peneral
princdpal of quantum mechanice that bras { a] amd kets )a) trans-
form contragradiemtly, {le have already used thia faet implieitly in
derdiving Eq. (13), ) In order that the transition amplitudes
{ogeeeby G |7 8y.008 ) and (%...,bn\ T ) 840008, C ) be related in
the mroper way throuch crossing symeetry, it is necessary that < ¢ 1
and 15 ) transform in the same way, and therefore if the particles
C belorng; to the representation ( ),u) » their antiparticles C must

belong to (u , A Jo In particular, bosons and thelr antiparticles can

belons to the same representation only 1f /\ S Lo

~,”




by,

%o pnould cowmont at this point that althowrn wn have used Lhea
slectric cunrge @ in distinguishing among particles aml in setiing up
eiganvalue lattices, we didn't really use any properties of © except that
it is conserved and its values differ by integers, We could add to Q a
rultapis of any other conserved quantity, such as the baryon number , and
use the combination as a lattice coordinate, Now, the coordinste we have
called % so far was chosen to make the eigenvalue lattices look especially
symnstrical ~ at the center of a lattice, Q = 0, It is a remarkable fact
that nature actuslly uses for electromagnetic interactions the Q defined
in this symmetrical way. In any continuous symmetry the charge would havs
to transform as the sum of a scalar and a vector component; tut in the

Cell=~Hann--Ne!' emsn model only the vector term sxists,
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B:lademha_rnBL6 s37 has shown that a selution of the cormutation

relations (15) is glven, for arkitrary ( A oh)s by the following matrices.

(I, m+, YIE I T my) =[(I-miI rne1) /6] 2

<i+é,W\+Lz, y'f-/)E_zIsty): <I+§)-wa-§_,yn[ EslI)’M;\/>

=18 f(Temel)Azenzon] [ A-m +3(TedYen] |
| 1)
x[)fz,u+3(I+iy«z)][E)\w“’?i’(r*%V)}z .

¢

< 'Ji,mff,y*lls-zllm)') s = <I‘{)-M°é) )'“153’-7:;“”‘: Y)

=/z"{[( L-wy/Tl2xs)] [~ XAeme3(T-4y)) |

x [A+2m =31 -Ly-D]

(2)
/
sL2arm e 3(T-4y40] T2

The unwritten matﬂx alemant.g véniaho Vhen }\ and B are nons=nepative

integers, this is the same finite-dimensional representation we'éon»

structed by ocur heurdstic argunent, and the rigor missing from our dis-

cussion is supplied by examination of this result. 7he phases in the
38

above formulas are the same ones used in the tables by Tarjanne” and by

deSwam.c”




We have already commented on how important

product representations are to the physical applications, There are

many very elsgant ways to determine the irreducible representaticns cone
tained in a direct product, that 13; to catalogue the nonevanishing solu~
tdons to Eq. (13)1%'4937  Instead of deseriving the general solution

to this problem, howevor, we shall use here t;he elemsntary method familiar
fron the theory of angular mementa, At the same time we can describe the
calculation of explicit ClebscheCordan coefficients,

The first step 1s to write down all the product states wWdth the
same values of the conserved quantities Y and Q ". In the first column
of table II we have shoun the miltiplicities of soms of the [¥, Q )
lattice eites in the representation ( A ,p) @ (1,1), assumdng N and p
are both positive, The state with the largest [Y, Q] , which are
[rmﬂ,omn ] » evidently belongs to the representation ( ) + 1,u + 1)
(refer to Eq, (21) ). If we apply E , to this state we obtain that
Mnear combination of the two [T +1, Omj states vhich also belongs
to (A+1, y+1), By contiming mu; the procedure described in the

last section, all components of this representation can be found.
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In effect, we eclve the Eq. (13) stepwdse, using the explicit forms of
| the representation matrices glven by (2,). The second column of table II

\ gives the miltiplieites of the [Y, Q ) edtesdn (A +1, u + 1),

Table 11

Multiplicities in (_/\ 4 ® (1,1)

site total (A4, k1) ()o1, wi2)  (A42, =1 2004 0)
T+, Qmﬂ 1 ) o 0 0
TH, Q 2 $ 1 0 0
T, QH 2 1 0 1 0
N 6 2 § 1 2.1

Now considgr the state at | [Ym +1, Qm] which is orthogonal
t‘.o. the component of ( A+ o0 t+1) Stam:xg from this st.ate; the
irreducible representution ( A = 1, i + 2) $5 construeted. o next cone
struct ( A+ 2, u = 1), and are then left with two linearily wepmdent
conbinations of states at EYm, qn] o Since every eigenvalus
lattice has a hexagonal shape, and since in all other remaining states

either Y or Q is smaller, both of these linear combinations must beleng



to ( A, #)o The Clebsch-Cordan coefficients for the reduction
( Ay u) @(1,1) = { A; u) are therefore not unique but contain a
free parameter, That is, there are two 1ndependent' sets of coefficlents.
The entire reduction can be obtained by continuing this process,
For triangular representations, the _reduction 18 sonmewhat different:

in partdcular, ( A, u) 1s only obtained once, as sketched in Table IIX.

Table II1

Multiplicities 4n ( )\ , 0) @ (1,1)

site total (AH, 1) (A=1, 2) {A,0)
T+, Qo+ 1 1 0 0
T, Q 2 1 1 o
Yo QH 1 1 0 )
Yo Q 4 2 1 1

The last terms in the fellowing epecial examples can be
identified by adding up the dimsnsions:

(LB (1,1) = (2,2) B (3,00 ® (0,3) & 2.(1,1) & (0,0)

(25)
(33‘”@(19‘) = (hs')@ (292) ® (390) & (‘9’)
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They are also required for consistency with the reductions (0,0) ® (1,1)
=(1,1) and (1,1) @ (1,1) 2D (3,0)c The gemeral rule is that if
A @B DnC, then It i C 2D neB ; this 18 a consequence of the fact
that in each case ono deals with the sams manifold of solutions to (13).
(The prastical applicanom of this rule are complicated by the need to
define carefully the phases of the states?*3? and the destrability of
a canonical notation for the independent solutions,>!)
The commtation rules {(4) and Eq. (20) have exactly the form that
(13) takes in the reduction ( A, u) @ (1,1) D (A, ¥). This shows
that the two vectors Ga and the comppnent. of Na which is orthogonal
to Ga provide the two sets of Clebsch-quan coefficients, Howvw,
Ha mst be proportional to Ga in a triangular l;epregantation, aince
there is then only one independent set of reduction coefficients, In the
sightfold representution, where Ga. is given by the structure constants
F,' s N is glven by the symmetrical quantities D, ®, Tus, in the
cox;plinc of pssudoscalar mesons to baryocns, there are two independent
‘ 18,19

terms, spoken of as WPt and "Fv tyrpe or as "gsymmetrical" and

"antisymmetrical®, These couplings are expressed in Table IV in terms of
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thg components of normalized statecs, We have used the short hand nota-
tion (8 ]) for a normalized I a% states of nucleon and plon, etc,
and denote by ¢ and s thecoefﬁcianeof,t.heammetﬂcalaManno
symnetsical couplings { ¢ = cos8, & = sind ), This table nay also e
used for other oct\.}plet‘a, Just by changing the names of the particles,
Note that the Dose statistics require that the coupling of vector mesons
tc pseudoscalar pairs use only the antisymmetrical coupling ( ¢ = 0).
Similar rules apply to othor Boson coupilng&

More complete tables of reduction coefficients have besn cale |
culated by many authors (References 15, 3&&2). Ve caution the reader

that these tables do not all use the same phase conventions. A computer

program for the mumerical evaluation of these coefficients has been

developed by Moshinsky and Brody = (private communicatdon).
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Table IV

Redustion coefficlents for (1,1) @ (1,1) D(,1)

o2 {5)77 [30M - () 3L B - (AK]

teo/2 [(NM+® ) + (ZK)-(AK)]

o2 3" [B=M+(=)-3LR)+(AK))

+8/2 [F(ZM)+(Z ) -(TEk)-(AK)]

1
€0 [BOB-{Z (Ty)- B (AM+ F (=x]

1
+6%s [~ (&) -2 + (28]
1 .. |
02 [oB- Jezm- EAD-(=n]
1

+ 220 [(n5) + (=K)



DIRECT EXPERIMENTAL TESTS

The most direct way to confromt the GellelMamn-Neteman model with
experiment is to see vhether the apparent supermultiplets do have the
content reyulred by the irrduelbie representations of 803o This gesms
to be true; octuplets, a decuplest, and occasional singlets appear in the
spectrun, with nasses that are well separated from tﬁose of other part-
dcles with the sume spin and parity (except in the case of the vector
| nesons), The spins and parities of ali nembers of sonme supermultiplets
ére not yet measured, so SU3 gives some obvious predictiocns, Ve shall
comment further upon the aseigm.jenta vhen we discuss empirical data,

nteractions, Colenan and Gleshm“# pointad out

the importance of electromagnetic phencmena for testing vhethcr the strue~
tures of particles in a supermultiplet are actunl],%,; related as suppesed,

A simple vay to derive their results is glven by a technique used
by Wick (ﬁiv&te commnication) to outain the Gell-b!anmsbklxbo mase formula,
about. vhich we will say more later. The electrical charge is proportional

to Q= .,.2}13 3 the form factors, and, in particular, the ancmalous magnstic
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moments induced by SUB-vinvariant strong interactions must also be

SU,=vectors pointing in the "Q direction", That is, they rust have the

3

{

form AQ + BN,., where NQ 19 the component of the awxdliary vector “l}v which

commtes with the thres U=-gpin penerators, Since NQ is quadratic in

the generators, it must bs expressible in the form

N, = ab (U+1)+bQ2 + o6 , (26)

-

In the triangular representations (O,A) W.(A 5 0), U= % A + ..'?: Q,

and 62 - A( A + 3)/9. Since these ropresentations possess only one

indeperdent vector, NQ must reduce to proportionality to Q, which suffices

to relate the coefficients in (26):

= } l 2 -
n, = a (@ +1-1a ¢® ] (27)
In the baryon octuplet, p, Z‘+, z -, and -5.‘ have U =% 9

: 0
andna.nd'_-_ohaveb-=1,but A\ and ¥ do not have a definite
U-spin., In an octuplet, because it is the adjoint representation, the
ralation between the I-spin and U-spin eigenstates is exactly the same as
the relation betwsen the H amd Ha" given after Eq, (15):
‘ . 1 0 1 3
ANy =Flu=1)-d1u-0),15°) =-F1v=1) G lv-0)

(28)




The relations among the moments of the metastable particles ares

WP =T, WZ ) =w(I)
{(29)

w(a) = 2u(A) = WE) = « [EH +uzH]
Attempte have been made to measure u{ A ), but the results are not yet
conclusive,

Since the electromagnetic contribution to the masses asre of second

order, they have the tensorial properties of (1,1) @ (1,1), but since
they are also U-scalars, (3,0) and (0,3) terms don't appear. The most

genersl form in an octuplet therefore has four termss
AMEM=a+bQ+cQ2+du(u+1) (30)

which leads to the relation
MUE™) -MIZH) = M(n)-M(P) +M(T7)-M(Z°) OO
The experimental values,
8.0 + 0.4 MeV V8. 6,9 + 1.4 MeV . (32)

are in reasonable agreement, A further discucsion of the electromagnetic

maes differsnces is contained in the last section of this articls.
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m&s&x Coupling Constants, = In the idealized situation in
which nass differences within a supermultiplet are ignored, the coupling
constants are proportional t.o Clobach-Gordzn coofficients, But some of
the ways in which coupling constints can be defined are more sensitive to
the mass differences than others, so judgment must be exercised in come
paring predicted gouplings with experiment, For example, the pseudoscalar
vertex ;2 U4y = K takes, on the mass shell, the value K=6; C_AHZ - pz.j% s
vhere &N is the difference in the baryon masses, u is the meson mass,
and 6‘p is the spin component along u;e direc_t.tqq 'of the meson momentwm,
If the pseudoscalar couplings are assunisd to be nearly ecual, the residues
of pion and kaon poles will differ by an order of magnitude,

then 4 M ) p, K is approximately equal to the momentum given
to the meson vhen the heavier baryon decays, and in any sh@le plcture of
this (P-wave) decay process, the amplitude would be expected to be pro-
portional to the momentum if the particles have a sufficiently small size.
We argue that since the difference in the residues reflects an expected

kinematical effect of the mass differences, the comparison with Sb'a

symeetry should be made in terms of the pseudoscalar couplings., Another
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| crgument is that wvhen the particles occur with large virtual mme;i‘:,a, their
mass differences should be unimportant. This would occur when they are
confined to a small region, as when they are bound togcther to form a
composite., These romarks espggeat that vertex functions, far: from the pass
. shell, should bz relatively insemsitive to mass difference, Ve adopt this
principle throughout this review, but a few comments are necessa.x{y about
the reconciliation of this reinciple vith pololory.

Consider, for cxanple, the plcn or kaon exchange terms in baryone

baryoh- secattering:
- o Q?
M) = Gy ¥ ) G dgud By 08 £y 6 65 ()

Qur assumption is that the form factors F, j(kz) ‘are ineensitive to the
mass differences for k’?' £ O. Near the meeon poles (kz = p.a) the kine-
matical effects give larre departures from 303 syrmetry, but we assume
that these poles and the nearby branch cuts combine in such a way as to
reduce the departures f‘or k2 < 0o Af the present time, the application
of these remarks-to the kaon couplings is somewhat academie ¢ Since no
sufficiently precise data are available for amalysis, Kaon photo pro-

duction data suggest that the kaon-nucleon couplings are too amall, but
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the relation of the cross sectioné to coupling constants is open to
cuestione

Some evidence about plon=hyperon coﬁplings can be oi;tained fmxn
the study of hypermueleus binding éna&gies;, Poceible asaigm}xents of
hypernuclei to Su3 representations have been conﬁ..’n.dered,,‘!‘6 but in this
case SU3 is a poor first approxduation; as a result of the large sizes of
hypernuclel and the universal fepulsive cores, bindin;; arises chiefly from
pdon exchangeo Dalit.zw and D&Swax'tl,“e conclude that the pion couplings

{pseudovector form) are: = 0.3 4+ 0.1~ and

£
ALT
£ = 0,1 + 0.2, compared with f = 0,285, (The errors

EsT MV

‘represent my attempt to estimate the uncertainties produced by neglect

of kaons, the vector octuplet, ani the baryon resonances.) Supplying the
appropriate conventional noriralization fuctors to the entries in Table V,
one obtuins from 8133 the relation 2f = I3 £ + £ o The

NN Ay IEW

compatibility of this relation with the hypermucleus information is hardly

striking, but if SU3 is assumed;, the numbers may be used to restrict thes

FoD mixing angle to (~1o°‘ < @ < 15%.
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Yector octuplet.- The covariant form of the coupling of vector

mesons (V) to pseudoscalar pairs (P) is

Af VLIPS, P -P)P] (1)

M

The decay rute is ['= ¥ Gk, where C 1s the Clebsch-Gordan coef-

ficlent obtained from Table V, and the kinematical factor is K= po/M 2 ,

p being the barycentric decay momentum, The covariant density of states

is a ?/ 5 p/l-iv2 ;s the additional factor p? again shows the effect

of the centrifugal barrier, The dat32 are presented in Table V .

Table V
Comparison of V-decays

Particle c P K A
S =2ir 2/3 100 HeV + 10% 75 MeV 2.0
B o+ 1/2 50 MeV + 108 28,5 MeV 365

cg»,x +K 1 3 MeV + 30% 105 MeV 2,0

for a unitary singlet, two=P decay is forbidden, We have assumed, in

makding the table, that ts is a pure member of the octuplet, so if

18,59-¢6/
Q- wmm, Yo( Cf ) is increased, and the discrepancy
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lieg wiﬁh,*; he grat.her than the K%, The data thus seem to indicate the
presence of..other admixtures as well, However, the widths are least
sufficiexitly._‘ alike to show tl;at these states have similar internal struc-
tures and shou.ld be considered together,

lexrzpri. deguplet, = The ( % + ) resonances are aseigned to the
repms‘ent.at_io;i (3,0). According to this aseignment, the Nﬂ(1238 MeV)
should be .éb\'x;ned ecually to the (NJ) and ( 2_K) channels, However, near
the nucleqn-;é.'ccham;e pole, the scattering amplitude ie purely (N i1); it
cannot be changed tuch at the position of the resonance, because the Chewe
Low plot_ doesn®t show an appreciable curvature, Similarly, the '1‘1*(13'85 MeV)
should be 25% (AT) amd 178 (I )17, the remainder consisting of ‘closed
channels, Taking account of phase space ami the p=wave momentum barriers,
the ratio oi‘ the kinematical fac@rs is fo@ to be K(¥ )7 )/K(AT) = 0,23,
whence SU, predicts R = [ (T [ (AT) = 0.16, which is inconsistent
with the me:.xsured value R £ 0,06,

It is glear that 8113 gymmetry works very badly in these states,

and that the observations cannot be explained without large admixtures

being invokeds,
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s 6 octu o= We describe gnder this heading a ée‘b

of resonances which 1ay actually not form an octuplets the (g ) Nt
(1512 HeV), the (2 =) A’ (1520 Hev), tne (2°?) 5 (1660 Mev), and

Sexam

an unobserved - ~

Cemi

, The parity of the & = has “een reparted
as («i-)"8 >  but it is possible that this determination has been affected
by interference with a background amplitude. The proposal has been made
(Sakurat,? Fartin,© rartin ani val1®') that the 1520 eV A ' is a unitary
singlet, and that the other resonances are elther part of an octuplet, or
are recally Jjust extraneous bumps in the.c;'oss section arising f@, perhaps,
the Peierls’>~ilauenbergePals”> mechanism.

'1'h§ ldnémt.ica.l factoxt governing the decay of a 43 /2 state 1s
i(-: pu + '/ [‘l + a2 pzj o wWth £ = 2; -t.he extra factor (1 + aZPZ)-n
has been introduced to allow for a finite radius of interaction. 5“;5 5 The .
ragivs is related to a, but only heuristically. Clashow and Rosenfeld”®
used n<=g a”! = 350 MeV, This ad hoc radius correction can be mean-
ingful only if it does not prpvide a large correction, The onl;r important
effect, of the parameter a 1is that it allows the total width of the A '

. ! I'4
to be adjusted to the N* and 2 widths, If ~\ is a singlet, its wddth




is i@epandem s out in that case the parameter a 4is not needed for
fitting the dats,

The factors 02(8) in Table VI are taken from Table IV, A singlet
decays with equél weirht into each purticle comiination, which determines
the coefficients 02(1). e may note that very small admixtures (about
108 in the amplitude) of either the octuplet or sinclet amplitude ﬁto .

'
the other would upset the a_reement with the measured widths of the A

(Taken fron Glashow ang Rosenteld®, & = 35°)
Particle  p(reV)  cXe) (1)) Mo T (wen)
Ne <> NIT 450 -700 67 80
TNk w0s 045 3 3
Ti'aAiT wy o135 N 11
T'>Ir 3 20 13 13
ASEE s @/e) 6w s

NI 27 405 (3/8) 8 (9) | 9
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The measured widths can be fit satisfactorily using 803 coeffi-
cients, but this must be considered as a provisional copﬁnnation until
the parity of the X ’ and the existence of the E'_ /" have been settled,
and until the dynarical structures vf these states have been elarified,

Q;vss secﬁon rggtmw.- It is difficult to find meaningful )
erosc section relations for two reasons: there are usually many imie-
pendent amplitudes that contribute to a given type of x-eact_.ion, and the
ﬁmdi;;.iona can Le upset by coincidence with resonances, lMeshkov, Snow,
and Yodh5'6 have suggested that the reactions P+ B => P+ B‘R nay bypass
these problems, According to Fq. (25), 1f ¢ 2 2, only the (3,0) and
(2,2) representations occur in comuon, so there must be a relation
between any four amplitudes. The rAelation between the amplitudes for
the rea.ctions’

a=K+p — ) g0

b _==T{++p -— N*(H) -0-‘]79
(++)

e::'n:.’-i-pﬁut +Vl
d “W’+*’P - !'t,(-?)*x‘i-

is found to bs

1702+ 31 2= 1312+ 30117 (35)
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They compare the cross sections measured at egual energies above the
threshold, after dividing out kinematical " factors, and find good agree-
ment. It tumns out that |T,|% ana |7,]? are nearly equal and large
eapeciaflj& about 1/3 eV above threshold, vhich implies that the (3,0)
and (2,2) amplitudes are nearly equal and not more than 30° differétxt
in phase,

For comparison, we may note that the V exchapge model gives
(using 803)’ T, =0 and "l‘b = 2 T o Hovever, we see fron Tahlg '
that the (@7 J1) coupling constant. micht really be too srall, so it
mdght be po:‘;sible to interpret tﬁe reaction as a peﬁ;ﬁc;x:za'l one if the

true § coupling. are used. The difficulty with the periphcral plcture

is that it is hard to see why rcaction d should be so weak.

DYNAMICAL CONSID:RITIONS ‘
! - 18,19
The mass formula. - The mass relations introduced by GelleMamnn
and generalized by Okub057 have two important aspects. They are a supple-

ment to the model, in which the regularities apparent umong the supers

miltiplet splittings are correlated, Secondly, the possibility of con=
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structing such a mass formula provides indirect confirmation for the general
approximate validity of SUB°

%o deseribe mass splittings within an isolated super multiplet
through their tensorial propex-'t.:iesé8 That is, vhen the particles a of
a supermultiplet ( A » #) are subjected to an Sua transformation, the mass .

is treated as a matrix Mab

transforming as the direct produet (u, A )
( A » B)o dth exact Sall3 symnetry, the masses would be exactly degenerate
(Ma o i 8 s ) and only the one=dimensional component™ (0,0) of the direct

product would be obtained, U4th bxoken eyimetry, we have a ounm of the form

=R &0+ T, atur, ) (36)

vhere x 18 a component of the represeni:ztion rClu, A ® (A ,.u), and
cxab(r) is the explicit Clebsch-Cordan coefficient. Some restrictions on
the coefficients A(x,r) afe given by Hermiticity and charge coiijugation
Qvari.ancoo lioreover, since { amd ¥ ara&conuewed, x must stand for a
Q=Y = 0 member of the representation, and if wo ignore the electromagnetic
splittings, it must be the unique component with I = 0,4uhich also restricts

(r) to be of the form ( }\'. Ay
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Since the Sematrix elenents involving the various particles are
connected by dispersion relations, a dissymuetry introduced into any
amplitude st induce dissyimetries in all the others as mllo The splite.
tings of the masses in all the supénmltiplew must therefore have the
same tensorial properties, provided the Splii.tim; is amall enough that
t;irst order perturbation theory can lte used, Similarily, the coupling
constant deviations, which &an be interpreted as representation admixtures,
must be avsociated with the same dissymmetry rcpresentations (r). The
rebresentations which can be mi.xed into a supermltiplet ( A s B) are thosg
contained in the product (A s W)@ (r)s

The Gelleliann-Okubo formula rises from the assumption that in

?2 . (36) cnly the (8) dissyumetry term is importint. Then we can rewrite

(36) as

Meﬁ+AI+BN2 (37)

The operator Ny is obtained from N, (Ece (27) ) by replacing Q by Y

and U by I, so we obtain a formula of the type

M(I,Y) = n+a¥f+Dd [ I(T+1) i-!?] (38)



T
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The bax'yon’ { %-i' ) octuplet and ( %4— ) decuplet satiasfy this relation
amazingly well. The squared masses of the pssudoscalar mesons also obey
the formmla, I!Hxing between ‘the singlet and the I = O nember of the -
ogtuplet (¢'- O mixing) could distort the formla for the vector mesonség‘(’1

The mass differences within I.spin multiplets can also be described
by Eqo (36) if the IZ?EO tensorial components are retained in the sum,
Capés63 and also Coleman and Glashouﬁh have remarked that the (8) tensor
conponents are also the most inporiunt terms in these additional splittings,
which are sup;osedly of e;ectrormmctic origin,' Coleman and Glashow point
out that this charactcrization 1s more exact if we tir:t separate out an
texternal® electromagnctic energy é; o This "external' mass may be intexre
preted as the céntribution of the electromagnetic field enerpy residing
outside the particle in queation{ plus the ener.y of recoil upon emission
of a virtual photon, computed for partiecles which recoil rigidly, that is,
arg nol virtually qxc%?eéi ‘This energy, by itself, would make the proton
heavier than thé né;;ron, the charged K's heavier than the neutra; ones,

The "eightfold rule" then applies more accurately te the remaining "internal"

part of the electromagnetic mass, as one ought to expect, .
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Since the ¢ = Y = O members of the (8) representation have only
the values I = 0, ‘I; the masses in a given mxlt.ip;l.et. mst be displaced in
proportion to Ii' » Other relations can be.obtained fron t}-xe ceneralized
mass fortula, written as follows:
M = H +AY + DNy +AQ+BWN + F (39)

For the pseudoscalar gesons, we a?:ain replace X by Mz, Coleman and
Glashow also show that the emplrical ratios A'/A and Bt/B in the baryon
octuplet, as well as B*/B in the” neson octuplet, are well az;plwamated by
the same universal value Rz’/SO, The mass-differences within every
supaermultiplet. are thereiore seemingly charact.efi’zed by a single 81‘3 vector
pointing in a certain direction.

The fact that the pseudoucalar me:l:ons satisfy a mass-squared
relation can be partially explained by the oyeervation that the Dethe-

65 This

Salpeter equation depends on the squared mass of the bound state,
is an incamplcte explanation, because the P mass is also one of the input
parameters in the B=5 equation; a P can be composed of three Pts, and

P's can be exchanged among the constituents, In order to not upset the

mass-squared relation, we must assume that only P%s having very high
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momenta eo-ntribute to the internal structures of themselves and other
particles, The reconciliation of a Quadratic relation for bosons with a
linear relation for bLaryons is therefore not obvious, but provides some
information awut the dynarmies,

The cenMonm relation in the decuplet needs further exame~
ination, We remember that in the dymardeal model of the %, continuum
states lying relatively low are :meortant, so that high;ar order perturbae
tions 1n the masses as well as configuration dxing should be especially
étmngo In fact, we have alrcady seen that tie enpirical Lranching ratios
suggest that the decuplet is very impure, Ve shall return to this point
later.

Cross: Oypmetry. « Further vinforma.tion atout the possible aﬁpera
multiplets is obtéined by 1aking use of the cm;sinc symetry of scattex\u‘
ing amplituded. In order to do this in a practical way, we have to intro-
duce dynarical models, in which it 1s assumed that the main properties of
-the force between two particles can Le found by considering the exchance,
one at a tine, of the lghter bound or resonant states in the crossed

channels,
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The obvious place to begin such a study is with the ( 2 +) (PB)

resonances, which in the Chsw=Low mdel66

s67 arise from the B exchange
force, In this model, the relative strength of the force in different
supcrmultiplets depends only on the nixdng angle € It turns 6ut that
.the forces are most attractive in the decuplet (3,0) for 25°.£ @ <60°,
while both this decuplet and a singlct of sirdlar energy could oceur for
°<e £2 0T the 1Y 3

<9 £25, e Y ahculdbea(z-f-)state,wsmuld
conclude that © la,vvin the second range; otherwise, the first rance is
selected, It is noteworthy that resonances in the (2,2) representation
could never lie lowest, althouch there is a weaker attraction in these
states,

Another vay to view the existence 91‘ the decuplet is ac follows.

From the uasses of the sour isotopic multiplcts, we obtain three equations
relating the eleven P=B coupling constant ratios, The non-existence of
other ( §+) rescnances gives in addition a large mmber of inequalities
anong the raties, These relations are, of course, all e?naietem, with SUB°

' Let us next turn to the vector octuplet, and see how the Chew-

Mamlelstam?’ bootstrap mechanism for the fomesons generalizes, Hereo

we can use a simple extension of familiar isospin tricks, If a V is exchanged
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between two Pfs, the coupling at each vertex is given by the Fabc’ so to
get the relative values of the forces in different representations (r),
v have to evaluatec the cuantity M(r) = 2,.,.“)° .20(8) for the case A and

B are both ootupletszz Using the fact that C(r) = G(A) + G(B), we hm}e
2 G (A) * G(B) = C%(r) - 6%(a) - G*(B) (19)
wm A

Putting in the values of G( A su) from Eq. (23) or Table I, we see that

1 is most nogative (the force is most attractive) in the states wdth small
mitiplicities, The strongest attraction (M = =1) is in the singlet state,
which is symmetrical in the two mesons and can be ideatified wdth the fo
and the Pameranchuk trajectory. Attraction also occurs for (r) = (8)

(ﬁ = o % ); the anueymetﬁc (8) can be identified with the vector mesons
thenselves ( and the symmetric (8) possibly wdth a scalar octuplet which
has not yet been fourd),

If we include also 2V states, interacting via V exchange and being
coupled to 2P states via P exchange, the vertices are still all given by
the Fabc’ 80 our conclusions about the relative values of the forces in
different supermultiplets are um:lfxa.ne;ed..?2 These graphs are allowed by

the Bronzanelow selection ru].ez3 in which P and W are assigned a quantum
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i

number A = =1, while V and vy (the photon) are assigned A = +1, Simdlar
graphs micht play an important role in a bootstrep model of the Pts,
The V bootstrap model is actually sufficiently restrictive to
determine the coupling constanta, If one io given the wdstenge of ico-
baric octuplets, and neglects other particles, one can obtain a sufficient
munber of ecuations to force the coupling constants to have the SU3 retioezl"'%
To account for the ( %-b-) baryons themselves, we may consider the
graphs shown in Fig, 5. Ve can have two models, according to whether
graph A7l or the craphs B'> are assumed to be the most important. Undoubtedly,
models A and B both contribute, as well as other graphs, but it is not easy
to decide on their relative importonce, because the vertices must be supplied
with form factors which will modify their strencth by unkmown amounts, The
algebra involved in calculating relative values of the forees is more
complicated than that which leads to Eq. (40), so we do not go through it
here. Accarding to :model A which is an extension of Chew's bootstrap model
of the m.lc.‘Leomsz7 the potential is most attractive in the ( -;'+) octuplet,

51555.78,79
and leads uniquely to @ = 33°.
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Nodel B also lcads to an octuplet, and to a slightly different
value of ® which can be calculated easily. 'Ihg VoB vertex has both F
and D terms, The F term alone gives, according to (40), the same potential
in both oectuplet components, bLut the D 4tém, being combined with an F at
the other end of the line, converts an antisymmetric cctuplat to a
gymmetric one, and vice versa, The selfeconsistent P=B coupling is them

determined by the equation

vW(F) V(D) cos® cos®

Voer (n3)
v(D) V(F) ein® ain®

to be &= &5°., The fact that in bpth extreme cases one obtains a value
of © which is compatible uwith empirical values in comforting, both for

S!.l3 and for the bootstrap idea.

Different predictions about the ( %-) states are ovtained from

5

models A and B, Martin and Vali 79

¥ and Carruthers’’ show that 4 plus B

doesn?t lead to a ( % -) octuplet, but can give a singlet, HModel B (being

81

essentially the Ball-Frazerw-Cook-I.ee model) can give an octuplet55 3

existence of an octuplet resonance could concelvably be "helped aleng® by
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the Pci\l%%:—g{&dsmo” If we suppose that octuplet ( %- ) resonances do |
exist, they might decay through the three-step processes drawn in Figure 6.
In mechanism A there is a (PB ) intermediate state, and in nechanism
B a (VB) inturmediary, leading to characteristic PBYB mixing angles €%,

"The combinations of coupl;m; constants are similar to those Aoccurrmg in
Fige 5o 1f we use the fact that when a matrix is multiplied into an approxi-
mation to its daminant eigenvector a bettér aporoximation results, ws obtain
from mechanism A along, |69 - 33°] £ |6 - 33°|, and from B alone,
|@* = 45°] < |® ~ 45°]. (Reasonable dynamical assumptions have been
made, 7The two mechanisms automatically interfere constructively in order
that they may both contribute attractive forces leading to the _,ead.stence
of the resonance,) These estimates of @' acree reasonably well with the
one used in Table VI, Ve have, therefore, a somswhat paradoxieal situa-
.tion, in which we are not yet sure either theoretically or experimentally .

g vhether this octuplet exists, but if it do@ exist; the decays are reason-

ably well understood!
The fact that 303 symmetry can be incorporated naturally into

eimple dynamical models provides additional indirect confirmation of its

approximate validity, especiallyas it leads to additional resirictd.ons




e

56

on the arbitrary parameters in the coupling constants. In contrast; it
may be noted that some of the other symmetry schemes proposed in the past
are inconsistent wdth these dynamical models,

Dacuplet g%urﬁaﬁ.ag.- The ( %-f ) resonances are coupled to
(BP) continuum states vhose thresholds have peen so widely scparated by
the mass differences that thesé perturbations can be expected to have very
lar:e effects, A detailed study of the dependence of resonance pole
positions upon the mass cifferences can be very involved and coni\.mﬁ.t’ng?z"87
Fortunately, this cuestion is circumvented if one works directly with the
partial wave dispersion relations s which aut.oma.tieal],v maintain the correct
anaiyuc structure of the scattering matrix and also allow a simple treate

88

ment of the forces which generate the resonances, = The scattering

1

anplitude is then written in the foom F= D" N, and for a narrow 880NaNCE,

the position is ;iven by the energy at which the matyix
‘ -1 !
RD (D) =1 =T P (N0 @raw (w - ) (42)

has a vanishing elgenvalue, and the reduced widths are given by the cor-

responding eigenvector @

p=m'p (w0 Praw w7y (13)
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In accordance vith the mq:ectat.iqn that virtual particles are less
influenced by mass differences, it ia natural, in preliminary treaticents,
to assume that N sauaﬁag 503 aymetry and to examins the influence of
the masses as exerted through S’ ?5’89’90 It has also been usual to take
N to Le proportional to the one Laryon exchange potential, Admixtures of
corponents of the (2,2) representatien into the decuplet are then especially
| (

large, for two reasons: thcre is a moderate attraction in these states
(about 1/2 of that in the (3\,0)‘ states), and the nass differences arong
the baryons and among the wuesons contributc constructively to the matrix

elements between these states,

The Y= 0, T = 1 states are

L |
Ve =62 [ af)+(zD - (0] +3 [ - (zq)]

0% _ -2 1/2 (M)
Wea=5 2 [ 0B+ (=0]+G2)  [(am)+(xy)]

1/2 |
Note that in a linesar combination of the form § u4(3,0) + (5/6) / r\P(Z,z)
the anplitudes of the two most massive components, (=.K) and (Z %),
are both reduced when r > 0. In fact, for r = 1, they are simultaneously

eliminated, If the Y..t is such a linear combination, the hranching ratio is

[ (ZM)/C (AT) = 0416 (1 + 2)™2 (45)
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which is compatible with the experimental data if r » 3/5, For a éimple‘
estimate of r; we sug-est that € might be characterizéd by r & .1’,
and then N § @, or § itself, by rX 5 . This value 1s sufficiently close
to the tolerable range that it is reasonable to belisve that moot of the
needed reduction in the branching ratio does oceur ﬁmmh this simple
mechaniam, Similar arjuments apylied to the NU lead to compatibility wdth
the Chewslow formula, An importunt problem vhich remains is that of trying
to infer the extent to which the martix N must be shifted from t/he 5153_
symetric form, Unfortunately, this would recuire vcry refined calculations.

To express Zc, (42) in a form vhich admits a simple physical

interpretation, let us write

' S Negut @9 (wt =E) ' =¥ € - 5)! (46)
where V and E represent appropriate averages of .(e-N) and w's The
enercy i is then deterained as an eigenvalue of 'the zatrix E + V, Reason-
able physical assumptions about Eand V then leud to a nearly linear rela-
tion between Y and E; even though the adiixtures in the elgenvectors are

80 large that perturbation theory doesnftt applyo% In fact, Varnock and

Walif? by integrating (41) numerically with an SUB-ayxmetric N, find a
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nore exact linearity than sny approximate discussion wuld lead one to
hoge for. In consecuence, the agreement between t.he..Q -mass and that
predicted by the mass formula, while hardly a vindication of first order
perturbation theory? is nonethelese a considorable triumph for the decper

interpretation of the eightfold way.




Outlook.~ Our confidence in the validity of the eightfold way
arises prinarily from the gross appearence of the mse.al séect.rum, and also
from indireot evidence about coupling constants gleaned through dynamical
arrunents, The direct evﬁence on eou\plinc conotunte has shown mmnw
that the physieal st:tes suffer iares adrdxtures, Ve have mentioned in
the Introdustion that a powerful moti..ve for investigating syrnetry schemes
is that our dynanical nocels are ctill too crude to enable us to progress
without th. sinplification which a symmetry provides, \le see now that the
complenentary aituation also holds: we cannot weish the evidence for a
syrmetry schame vithout naking some use of admittedly crude dynamienl
calculations,

A more intimate connection betwsen the symmetry groups and dynami-
cal theory occurs in some recent developments, One clas;s of m;ch theoz-:l.ga
may be described as %elementary particle models" becm;a'e they" t;ave in
eamon the idea that the particles so far observed are all com:positea of

more fundamental objects, A motivation suggested for this idea is the

possibility of utilieing all of the representations of SUB’ including the
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sjmplest one, which is three-dimensional. Among suci theorles we have

65
M thne Glrsey-Lee~lauenbery; model, and the 1wdels pro=-

Schwinger's model,
posed by Gell-Hann,”? Zweig,”> and Hara,’® |

The bootstrap eoncebt transcends older approaches to the fusion
of ideas about dynamics and syrmetry by segking a physical mechaniam for
the origin of the symmetry as well as for thg particular way the sMetw

74-76,79%%
Th

is broken, e so=called "spontaneous breakdowvn" theories

are a variant vhich share the aim of deriviny from dynamical arpuments

the nature of the departures from symmetry, but start fraa a postulated
5,796,797

underlyin;; exact syrmetry,
The eleamentary-particle and bootstrap approaches can both explain
a curious fact about the mass deviations - that they are characterized

by an SU,-vector which has the same direction in all supernultiplets.

3
In an elementary particleAmodel, one could say that this vector described
the mass deviations of an elementary triplet. In a bootstrap model; a
characteristic vector emerges which is a property not of any specific
supermultiplet, tut of the entire complex of particles; that is to say it

64, 78
is a property of the bootstrap mechaniam, Both of these approaches
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also make definite additional predictions. An elementary-particle model
of course supposes that the elementary particles will eventually be found,
The bootstrap picture does not preclude the existence of new kinds of
particles, ut it does imply that the ratios of masses can bs calculated
without additional assumptions or parameters bLedng 1nt_roduced..7

While it is still too early to assert that dynamical calculations
have determined the ori, in of particle symmetries, it is clear that they
have provided an essential part of the evidence fér the validity of SUB,
and we may safely anticipate that similar Wﬂcal arguments will be
equally important in helping to ascess super-symlgtry schemes which include
Sb‘3 as a s_.ubgrov.xp° e close by drawding ati‘ention to some of these schemes.
In the BronzaneLow 3 scheme, SU3 is augmented by a discrete cymmetry.

Some suggested continuous super-symmetries are the SU L nodels of Tarjamme

and Teplite’’ and of Hara’®, and Schwinger's su, & SU, model?},
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CAPTIONS FOR FICURES

Flgure 1. Strongly-interacting boson states, The states which are well
established and have a clear interpretation in the eightfold
way are denoted by a horizontal line., The spin and parity are
also noted, The states which are not so well established, or
vhose assigneent is still in doubt, are dencted by an X, See
references 13 and 2i-27,

Frure 2, Strongly-interactin baryon states. The notation is the same
as in Fig. 1.

Figure 3.  Left, the cigenvalue lattice of the 3=% () varyon
octuplet, Right, the root diacran for SUB°

Figure 4.  IHgenvalue lattices for the remresentations (3,0) = (10)
and (2,2) = (27).

Figure 5. Dynamical models for the % (+) baryons. These craphs represent
the virtual dissoclation of a baryon into its constituents, which
subsecuently interact by exchanging a particle. Solid lines
denote the % (+) baryens; the double line, the % (+) baryon
resonancesy the dotted lines, the pseudoscular mesons; and the

' wavy lines, vector mesons,
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