DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
TOPICAL REPORT

PERFORMANCE OF A THERMIONIC CONVERTER
WITH A NOMINAL SINGLE-CRYSTAL
<110> TUNGSTEN EMITTER
AND A NIOBIUM COLLECTOR

LEGAL NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights;
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employees of such contractor, to the extent that such employee or contractor of the Commission, or employees of such contractor, prepares, disseminates, or otherwise provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

D. Lieb, A. Donaker and F. Rufeh

December, 1969

Prepared for

U. S. Atomic Energy Commission
Contract No. AT(30-1)-3874

Thermo Electron Corporation
85 First Avenue
Waltham, Massachusetts 02154

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Availability Notice: To be as follows:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II CONVERTER CONFIGURATION</td>
<td>1</td>
</tr>
<tr>
<td>III VACUUM WORK FUNCTION</td>
<td>3</td>
</tr>
<tr>
<td>IV PERFORMANCE MEASUREMENTS</td>
<td>4</td>
</tr>
<tr>
<td>V COLLECTOR WORK FUNCTION</td>
<td>5</td>
</tr>
<tr>
<td>VI CONCLUSIONS</td>
<td>7</td>
</tr>
<tr>
<td>VII REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>

APPENDIX A - CESIUM TEMPERATURE FAMILIES FOR SEVERAL_EMITTER_TEMPERATURES_AND_INTERELECTRODE_SPACINGS A-1

APPENDIX B - TEST CONVERTER B-1

APPENDIX C - TYPICAL_RAW_DATA_FROM_COLLECTOR_WORK_FUNCTION_MEASUREMENTS C-1
I. INTRODUCTION

The performance of single-crystal <110> tungsten emitter surfaces is important to thermionics, since such a surface can be expected to define an upper limit for the performance obtainable from a tungsten emitter surface. However, exact <110> oriented material is unavailable in a size suitable for thermionic measurements, and nominally <110> oriented material must be substituted. This type of data is of interest for theoretical studies, because of the uniformity of the surface, and for practical purposes, for evaluating the performance of surfaces produced by techniques such as chloride vapor-deposition and etching. Since collector material influences converter performance, and since many hardware converters have been constructed of niobium, the characteristics of the <110> emitter opposite a niobium collector are of considerable practical interest.

II. CONVERTER CONSTRUCTION

The emitter was prepared from a slice of a nominal <110> oriented single-crystal tungsten bar, made by the Linde Division of Union Carbide. The orientation of the <110> planes of the various grains was within 4° of the surface. The surfaces of the disc were ground on a surface grinder, and then on SiC abrasive paper to No. 600 mesh; they were next abraded on a glass plate with an aqueous slurry of five-micron Al₂O₃ to produce a damaged, randomly-oriented matte surface. The disc was then vacuum-fired for 3 hours at 2400°C. Figure 1 shows a representative photomicrograph of the surface. Appendix B describes the test converter.
The surface treatment results in a large number of exact (110) plateaus with the intervening areas having a slightly undulating appearance. Between 70 to 80 percent of the surface has exactly (110) orientation, as compared to an electropolished surface which has deviations of 4 to 5 degrees from the (110) direction. The heat-treated surface was chosen because of the high degree of exact (110) orientation.

The active area of the collector and guard was formed by brazing slices from a niobium rod to the molybdenum substructures. This arrangement takes advantage of the high thermal conductivity of molybdenum while allowing a variety of collector materials to be incorporated into test converters. As the final machining operation, the surface was faced to a 32 microinch finish. A schematic of the converter is shown in Figure 2. Note that the niobium emitter shield also acts as a getter; this feature is particularly important when the collector body is not niobium.

The electrode surface areas are 2 cm² for the collector and 3 cm² for the emitter. The guard ring extends approximately 60 mils beyond the edges of the projected emitter area. Spacing is adjusted and measured by three micrometer screws fastened to the emitter and guard support structures. These micrometers are shown in Figure 2. Spacing can be read to a precision of about 0.5 mil, with a minimum value of between 0.25 and 0.5 mil. Emitter temperature is determined by optical pyrometry on a hohlraum in the back surface of the emitter. Temperature readings are corrected to surface values using the bombardment power input to give the heat flux. The accuracy of the measurement is ±10°K. Thermocouples close to the respective surface are provided for collector and guard temperature measurement.
Reference 6 describes the temperature measurement and the required corrections.

The collector and guard structures were vacuum-fired before final assembly. Particular care was taken throughout outgassing to maintain the pump pressure below 5×10^{-7} torr. (The converter pressure is actually higher than this, because of the conductivity of the exhaust systems.) If the pressure exceeds this value considerably during some stage of the outgassing, oxides might be formed on the internal surfaces and release oxygen during the subsequent thermionic operation of the converter.

To avoid introducing impurities with cesium, a metal capsule containing predistilled cesium was used; this capsule was prepared by refluxing the cesium while pumping through a cold trap. Figure 3 shows the arrangement for the preparation of the capsule. With this system, the converter was not exposed to any additional contaminants during cesiation.

III. VACUUM WORK FUNCTION

The bare work function of the emitter was measured in a vacuum emission apparatus before the emitter was installed in the converter. The value obtained was 5.14 eV, as compared to the expected values of 5.4 for (110) tungsten and 4.7 for polycrystalline material. After outgassing, the work function was again measured, and similar results were obtained. In neither measurement was a strong decrease in work function observed as the emitter temperature was increased, indicating that oxygen effects were minimal. Further testing in the converter over the collector temperature range of 580 K to 1000 K showed that the work
function was independent of collector temperature; this indicated
the absence of oxides that could influence subsequent cesiated
emission.

IV. PERFORMANCE MEASUREMENTS

Before proceeding with the performance measurements, the
cesiated converter was again examined for oxygen effects. Figure 4
shows a typical curve from such a test. The saturation current of
the J-V curve is observed while the collector temperature is varied.
The curves shifted on the voltage axis as the collector work changed,
but no significant variations in saturation current were observed. At
low cesium pressure and emitter temperature, this is a very sensitive
test, since as little as 10^{-8} torr of oxygen can be expected to change
the cesiated work function considerably.

Families of volt-ampere characteristics were obtained by
changing the cesium pressure while the other converter parameters
were held constant. The data cover the emitter temperature range
of 1600 to 2000°K and the interelectrode spacing range of 0.5 to
40 mils. Typical cesium families for the interelectrode spacing
of 10 mils are shown in Figures 5 through 9 and the data for other
interelectrode spacings are shown in Appendix A. The emitter
temperature indicated represents the temperature at the emitting
surface, and the collector temperatures were chosen to be in the
vicinity of the optimum values. The output voltage is measured
from a voltage tap at the cold end of the emitter sleeve and requires
a correction of $1.5 \text{ mV} \text{ per amp/cm}^2$ for conversion to electrode
voltage. In order to facilitate the use of these data for analysis
and correlations of converter parameters, the cesium pressures (P)
and the interelectrode spacings (d) in these data are chosen to provide the Pd products of . . . , 5, 10, 20, 40, . . . mil-torr. A table for conversion from cesium reservoir temperature to cesium pressure is shown in Table 1, and the envelopes of the cesium families are summarized in Figures 10 through 14. Each curve in these figures represents the optimized performance with respect to cesium pressure and collector temperature. The fully optimized performance is shown in Figure 15.

In reference 3, data are reported on the thermionic performance of a group of chloride tungsten-niobium converters. The converter with the highest performance (C2-5 in reference 3) is chosen for comparison with the data in the present paper. The cesium optimized performances of the two converters at an interelectrode spacing of 8 mils and emitter temperatures of 1700 and 1900 °K are shown in Figure 16. The "single-crystal" emitter shows a higher performance at both emitter temperatures. Therefore, it appears that further increases in performance can be achieved by improving the vapor deposition techniques.

V. COLLECTOR WORK FUNCTION

The work function of the niobium collector in the present converter was measured by back emission technique. Acceptable data, which could only be obtained for a narrow range of operating conditions, are compared with work function values from a molybdenum collector4 in Figure 17. Two sets of data were obtained in the same type of converter with similar procedures for construction, outgassing, and cesiating. Both converters were equipped with
<table>
<thead>
<tr>
<th>CESIUM TEMPERATURE °C</th>
<th>CESIUM TEMPERATURE °K</th>
<th>CESIUM PRESSURE Torr</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>436</td>
<td>0.016</td>
</tr>
<tr>
<td>171</td>
<td>444</td>
<td>0.022</td>
</tr>
<tr>
<td>179</td>
<td>452</td>
<td>0.031</td>
</tr>
<tr>
<td>187</td>
<td>460</td>
<td>0.044</td>
</tr>
<tr>
<td>196</td>
<td>469</td>
<td>0.063</td>
</tr>
<tr>
<td>204</td>
<td>477</td>
<td>0.088</td>
</tr>
<tr>
<td>214</td>
<td>487</td>
<td>0.13</td>
</tr>
<tr>
<td>223</td>
<td>496</td>
<td>0.178</td>
</tr>
<tr>
<td>234</td>
<td>507</td>
<td>0.25</td>
</tr>
<tr>
<td>244</td>
<td>517</td>
<td>0.35</td>
</tr>
<tr>
<td>255</td>
<td>528</td>
<td>0.50</td>
</tr>
<tr>
<td>266</td>
<td>539</td>
<td>0.71</td>
</tr>
<tr>
<td>278</td>
<td>551</td>
<td>1.0</td>
</tr>
<tr>
<td>291</td>
<td>564</td>
<td>1.4</td>
</tr>
<tr>
<td>304</td>
<td>577</td>
<td>2.0</td>
</tr>
<tr>
<td>318</td>
<td>591</td>
<td>2.8</td>
</tr>
<tr>
<td>332</td>
<td>605</td>
<td>4.0</td>
</tr>
<tr>
<td>347</td>
<td>620</td>
<td>5.7</td>
</tr>
<tr>
<td>363</td>
<td>636</td>
<td>8.0</td>
</tr>
<tr>
<td>380</td>
<td>653</td>
<td>11.0</td>
</tr>
<tr>
<td>398</td>
<td>671</td>
<td>16.0</td>
</tr>
<tr>
<td>416</td>
<td>689</td>
<td>23.0</td>
</tr>
</tbody>
</table>
niobium getters surrounding the interelectrode space. It is interesting to notice that the work function of the niobium collector is approximately the same as the work function of this particular molybdenum collector. Molybdenum work function data from a third converter which was not equipped with niobium getters are lower by 0.1 eV. It is possible that the lower collector work function values are caused by oxygen contamination.

Some typical raw data (I-V curves) for the niobium collector converter have been included in Appendix C. These curves are presented to show the character of the data in the various regions of the collector work function measurements.

VI. CONCLUSIONS

The performance of a variable-spacing converter with a specially-prepared (110) tungsten emitter and a niobium collector was recorded for the emitter temperature range of 1600 to 2000°C and an interelectrode spacing range of 0.5 to 40 mils. These data, though not from an exact (110) emitter, still show a higher output power than data from a chloride tungsten emitter. It appears that further increases in performance can be obtained by improving vapor deposition techniques. The work function of this niobium collector is in agreement with data from a molybdenum collector surrounded by niobium getters, and is higher by 0.1 eV than similar data from a molybdenum collector without niobium getters.
VII. REFERENCES

Figure 1. Photomicrograph of Representative Area of Emitter W25 Before Operation in Converter.
Figure 2 Schematic Diagram of a Research Thermionic Converter.
Figure 3. Apparatus for Refluxing Cesium and Preparing Metal Capsules.
Figure 4. Typical Collector Family of I-V Characteristics.
Figure 5. Variable Cesium Temperature Family at $T_e = 1600^\circ$K.

Run 42087

$T_e = 1600^\circ$K

$T_c = 973^\circ$K

$T_b = \text{var}^\circ$K

$D = 10$ mils
Figure 6. Variable Cesium Temperature Family at $T_T = 1700\,^\circ K$.

Run 42082

$T_T = 1700\,^\circ K$

$T_C = 1023\,^\circ K$

$T_\text{var} = \text{var }^\circ K$

$d = 10 \text{ mils}$
Figure 7. Variable Cesium Temperature Family at $T_e = 1800^\circ$K.
Figure 8. Variable Cesium Temperature Family at $T_e = 1900^\circ$K.
Figure 9. Variable Cesium Temperature Family at $T_e = 2000^\circ K$.
Figure 10. Cesium Optimized Performance for Several Interelectrode Spacings at $T_E = 1600^\circ K$.

$T_E = 1600^\circ K$

$T_C = 975^\circ K$

$d = 5$mils
Figure 11. Cesium Optimized Performance for Several Interelectrode Spacings at $T_e = 1700^\circ K$.

$d = 2\frac{1}{2}$ mils

$T_e = 1700^\circ K$

$T_c = 1025^\circ K$
Figure 12. Cesium Optimized Performance for Several Interelectrode Spacings at $T_f = 1800^\circ K$.

$d = 2\frac{1}{2}$-mils

$T_f = 1800^\circ K$

$T_c = 1025^\circ K$
Figure 13. Cesium Optimized Performance for Several Interelectrode Spacings at $T_e = 1900^\circ K$.

$T_E = 1900^\circ K$

$T_C = 975^\circ K$

$d = 2\frac{1}{2}$ mils
Figure 14. Cesium Optimized Performance for Several Interelectrode Spacings at $T_e = 2000^\circ K$.

$\theta_E = 2000^\circ K$

$T_o = 750^\circ K$

$d = \frac{1}{4}$ mils
Figure 15. Fully Optimized Performance at Several Emitter Temperatures.
Figure 16. Comparison of Cesium Optimized Envelopes of the Present Emitter with a Chloride Tungsten Emitter at the Interelectrode Spacing of 8 mils.
Figure 17. Work Function of the Niobium Collector.
APPENDIX A

CESIUM TEMPERATURE FAMILIES
FOR VARIOUS EMITTER TEMPERATURES
AND INTELELECTRODE SPACINGS
Figure A-1.

Run 42088

\(T_f = 1600^\circ K \)

\(T_c = 973^\circ K \)

\(T_s = \text{var}^\circ K \)

\(d = 5 \text{ mils} \)
Run 42089

\(T_s = 1600^\circ K \)

\(T_C = 973^\circ K \)

\(T_s = \text{var}^\circ K \)

\(d = 20 \text{ mils} \)

Figure A-2.
Run 42090

$T_f = 1600^\circ K$

$T_c = 973^\circ K$

$T_s = \text{var}^\circ K$

$d = 40 \text{ mils}$

Figure A-3.
Figure A-4.

Run 42083

$T_x = 1700^\circ K$

$T_e = 1023^\circ K$

$T_b = \text{var}^\circ K$

$d = 2-1/2$ mils
Figure A-5.

Run 42084

$T_f = 1700 \degree K$

$T_c = 1023 \degree K$

$T_R = \text{var} \degree K$

$d = 5 \text{ mils}$
Run 42085

$T_e = 1700^\circ K$

$T_c = 1023^\circ K$

$T_s = \text{var}^\circ K$

$d = 20 \text{ mls}$

Figure A-6.

A-6
Run 42086

$T_e = 1700^\circ K$

$T_c = 1023^\circ K$

$T_r = \text{var} ^\circ K$

$d = 40 \text{ mils}$
Figure A-8.

A-8
Figure A-9.

Run 42073

Ta = 620°K
Tf = 1800°K
Te = 1023°K
Ta = var °K
d = 5 mils

OUTPUT VOLTAGE, Volts

CURRENT DENSITY, Amp/cm²
Figure A-10

Run 42074

\[T_f = 1800^\circ K \]
\[T_c = 1023^\circ K \]
\[T_s = \text{var}^\circ K \]
\[d = 20 \text{ mils} \]
Figure A-11.

Run 42075

\[T_e = 1800^\circ K \]
\[T_c = 1023^\circ K \]
\[T_a = \text{var }^\circ K \]
\[d = 40 \text{ mils} \]
Figure A-12.

Run 42059

\(T_s = 636^\circ K \)

\(T_r = 1900^\circ K \)

\(T_c = 923^\circ K \)

\(T_a = \text{var}^\circ K \)

\(d = 2-1/2 \text{ mils} \)
Run 42060

\[T_e = 1900^\circ K \]
\[T_c = 923^\circ K \]
\[T_r = \text{var}^\circ K \]
\[d = 5 \text{ mils} \]
Run 42062

$T_e = 1900^\circ K$

$T_c = 923^\circ K$

$T_a = \text{var}^\circ K$

$d = 20\text{ mils}$

Figure A-14.
Figure A-15.

Run 42063

$T_r = 1900 \degree K$

$T_c = 923 \degree K$

$T_s = \text{var.} \degree K$

$d = 40 \text{ mils}$
Figure A-16.

A-16
Figure A-17:

Run 42049

\[T_f = 2000^\circ K \]
\[T_c = 750^\circ K \]
\[T_h = \text{var}^\circ K \]
\[d = 5 \text{ mils} \]
Figure A-18.
Run 42052

\[T_f = 2000^\circ K \]
\[T_c = 1023^\circ K \]
\[T_h = \text{var}^\circ K \]
\[d = 40 \text{ mils} \]
APPENDIX B
TEST CONVERTER
The test converter is a variable-parameter research-type device. It utilizes an active collector guard ring and a planar geometry. The parameters whose values can be varied and accurately controlled include the emitter temperature, the interelectrode spacing, and the collector and reservoir temperatures. The active collector guard ring renders the conversion process free from any radial geometric dependence, and precisely defines the active area of the device. The converter together with its supporting spacing mechanism and heaters is shown in a schematic drawing in Figure B-1 and in a photograph in Figure B-2. The converter itself is shown in Figure B-3.

The emitter is mounted above the collector assembly and has a sleeve extending away from the collector. This arrangement greatly reduces stray effects due to sleeve emission. A niobium shield surrounding the sleeve further reduces the stray emission currents, while at the same time it serves as a getter and provides thermal protection for the spacing bellows. The emitter is heated by electron bombardment from a filament mounted inside the emitter sleeve, while a tantalum shield on the electron gun keeps the sleeve from being bombarded. A hohlraum in the rear face of the emitter is used for temperature measurement. Several additional holes are provided for thermocouple or photocell temperature measurement and control.

The collector-guard assembly is fabricated from molybdenum but provides for different electrode materials through the use of brazed-in plates in the active converter region. A sapphire spacing ring determines the vertical distance between the guard and collector electrode surfaces. A value of 1 - 1.5 mil is established during machining. The radial alignment is maintained by a series of sapphire balls retained in a groove.
just below the collector face. The radial spacing is about 4 mils. A pair of thermocouple holes in the guard is used for temperature control. In the collector, there are three sets of holes which provide additional heat flux measurement capabilities. The active area of the collector is 2 cm2, while that of the emitter is 3 cm2. A collector guard assembly is shown in Figure B-4.

The flexible nickel bellows is partially welded together before being brazed to the emitter and collector subassemblies. The final diode closure is made by electron beam welding the emitter section bellows flange to that of the collector section. There is sufficient flexibility to allow spacing excursions from 0 to 100 mil. The collector and guard heater-coolers are maintained in good thermal contact with the collector and guard structures by spring-loading on the tapered mating surfaces. The design allows the electrode temperatures to be controlled with both high and low current static loading.

Cesium pressure in the converter is controlled from a liquid reservoir connected to the active region by a tube on the mounting plate for the emitter sleeve. The reservoir is electrically heated and water cooled to give a fast response when the temperature must be changed. The heater-cooler is arranged to maintain the temperature gradients in the liquid to less than 1°C.

Inter electrode spacing is adjusted by varying the distance between the emitter ring and the guard support plate. The spring loading on the heater-coolers also serves to maintain solid contact between the rigidly mounted guard locating plate and the guard surface. Three micrometers, mounted on the water-cooled emitter support plate, are extended to the guard locating plate through three ceramic...
rods. The micrometer control shafts are brought through the top plate of the vacuum bell jar to allow spacing adjustment during converter operation. A gear box on the outside of the bell jar provides either separate or combined control of the micrometers. Spacing changes may be read directly from the micrometers and a zero reference is established by momentarily shorting the converter. The electrodes can be set and maintained parallel within 0.3 mils at the emitter edge, and the spacing mechanism has a precision of 0.2 mils. Minimum spacing is typically 0.2 - 0.5 mil but tends to increase each time the device is shorted and material is pulled from the collector. Usually a minimum is determined for each emitter temperature during initial testing and this value is used for all further experiments.
Figure B-1. Research Variable Parameter Converter.
Figure B-2. Variable Parameter Converter, Ready for Outgassing.
Figure B-3. Variable Parameter Converter Without Tubulation.
Figure B-4. Collector Guard Subassembly.
APPENDIX C

TYPICAL RAW DATA FROM COLLECTOR WORK FUNCTION MEASUREMENTS
CURRENT DENSITY amps/cm²

OUTPUT VOLTAGE, volts

Run 42382

T_E = 1500 °K
T_C = 400 °C
T_K = 229 °C
Run 42280

$T_E = 1500^\circ K$

$T_C = 810^\circ K$

$T_R = 541^\circ K$

$d = 1 1/2$ miles
Run 42313

$T_E = 1500^\circ K$
$T_C = 810^\circ K$
$T_R = 598^\circ K$

d = 1 1/2 miles
Run 42287

$T_E = 1500^\circ K$

$T_C = 855^\circ K$

$T_R = 437^\circ K$

$d = 1 1/2$ miles

Diagram

- **CURRENT DENSITY amp/cm^2**
 - 0
 - 100
 - 200
 - -100
 - -200

- **OUTPUT VOLTAGE, volts**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
6-0

CURRENT DENSITY amps/cm²

H

H

<

IT'

a

\[H = H \]

\[w = n \]

\[H < o \]

I

\[w n M \]

\[a ^- j ^0 v j 1 ^a \]

\[v O \]

\[00 \]

\[u i o \]

\[00 \]

\[u i o \]

\[3x3 \]

70-TR-1-3

Run 42292

\[T_E = 1500 \text{°K} \]

\[T_C = 855 \text{°K} \]

\[T_R = 498 \text{°K} \]

\[d = 1 1/2 \text{ mils} \]

OUTPUT VOLTAGE, volts

CURRENT DENSITY amps/cm²
Run 42294

\(T_E = 1500 \text{K} \)

\(T_C = 855 \text{K} \)

\(T_R = 537 \text{K} \)

\(d = 1 \frac{1}{2} \text{ mils} \)
Run 42324

$T_E = 1500^\circ K$

$T_C = 900^\circ K$

$T_R = 456^\circ K$

$d = 1 1/2$ mils
CURRENT DENSITY (amps/cm²)

OUTPUT VOLTAGE, volts

Run 42303

\(T_E = 1500^\circ K \)
\(T_C = 900^\circ K \)
\(T_R = 510^\circ K \)
\(d = 1\ 1/2\ miles \)
Run 42301

$T_E = 1500^\circ K$

$T_C = 900^\circ K$

$T_R = 545^\circ K$

$d = 1 1/2$ mils

Current Density amps/cm^2

Output Voltage, volts

5×10