Analysis of radiation damage in fusion-simulation neutron spectra

PDF Version Also Available for Download.

Description

Various parameters which are relevant to an understanding of radiation effects in metals have been evaluated utilizing available neutron spectrum information for several existing sources, e.g., EBRII, HFIR, and LAMPF, as well as the hypothetical spectrum at a fusion reactor first wall, and measured Li(d,n) spectra. Recoil energy distributions were calculated for several metals including Al, Cu, and Nb. The recoil energy range was divided into groups, and the fraction of recoils occurring in each energy group was compared with the fraction of the damage energy contributed by that group. From this comparison it was possible to conclude that the ... continued below

Physical Description

20 p.

Creation Information

Parkin, D.M. & Goland, A.N. January 1, 1975.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Various parameters which are relevant to an understanding of radiation effects in metals have been evaluated utilizing available neutron spectrum information for several existing sources, e.g., EBRII, HFIR, and LAMPF, as well as the hypothetical spectrum at a fusion reactor first wall, and measured Li(d,n) spectra. Recoil energy distributions were calculated for several metals including Al, Cu, and Nb. The recoil energy range was divided into groups, and the fraction of recoils occurring in each energy group was compared with the fraction of the damage energy contributed by that group. From this comparison it was possible to conclude that the significant recoil range differs by about an order of magnitude between fission and fusion sources. The analysis further confirms that basic defect production characteristics depend upon the neutron spectrum, and that integral calculations of radiation-effect parameters do not provide a complete description of the dependence. This is equally true for comparisons between fusion-related spectra or fission-reactor spectra independently. Four recoil-dependent parameter functions which describe different aspects of radiation damage were used in the calculations. The relative effectiveness of neutron sources was found to depend upon the choice of parameter function. Fission-reactor spectra comparisons are relatively insensitive to the parameter functions used whereas spectra with an appreciable component of high-energy neutrons are much more sensitive. (auth)

Physical Description

20 p.

Notes

Dep. NTIS

Source

  • International conference on radiation effects and tritium technology for fusion reactors, Gatlinburg, Tennessee, USA, 1 Oct 1975

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--20531
  • Report No.: CONF-751026--21
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 4164277
  • Archival Resource Key: ark:/67531/metadc872166

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Oct. 12, 2017, 2:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Parkin, D.M. & Goland, A.N. Analysis of radiation damage in fusion-simulation neutron spectra, article, January 1, 1975; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc872166/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.