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Abstract. Reliable calculations of the structure of heavy elements are crucial to address
fundamental science questions such as the origin of the elements in the universe. Applications
relevant for energy production, medicine or national security also rely on theoretical predictions
of basic properties of atomic nuclei. Heavy elements are best described within the nuclear
Density Functional Theory (DFT) and its various extensions. While relatively mature, DFT
has never been implemented in its full power, as it relies on a very large number (∼ 109−1012) of
expensive calculations (∼ day). The advent of leadership class computers, as well as dedicated
large-scale collaborative efforts like the SciDAC 2 UNEDF project, have dramatically changed
the field. This article gives an overview of the various computational challenges related to the
nuclear DFT, as well as some of the recent achievements.

1. Introduction

Nuclear physics pervades a number of scientific disciplines as well as societal applications.
Understanding the production of the elements in stellar interiors is key to reproduce the observed
isotopic abundances in the universe. It necessitates an accurate knowledge of the structure of
radioactive nuclides that are so short-lived that they will remain beyond reach of experimental
facilities for many years to come if not for ever. In the long-term, the safety and viability of
nuclear energy production sources will be enhanced by acquiring a very precise understanding
of the complex mechanisms of fission and fusion. The latter are also critical for stockpile
stewardship, which has broad implications for national security.

At the heart of these important issues lies the elusive structure of the atomic nucleus.
From a physics standpoint, it is a quantum many-body problem facing three major theoretical
challenges: (i) the interaction that binds neutrons and protons together in the nucleus is in
principle derived from Quantum Chromodynamics (QCD), but this derivation has not been
firmly established yet; (ii) the interaction between nucleons inside the nucleus is very different
from the one between isolated nucleons in the vacuum (in-medium interactions); (iii) the number



of constituents in the nucleus (∼1-300) almost always forbids both exact analytical solutions,
except for the lightest systems, as well as the use of statistical methods applicable to systems
with a very large number of particles. In spite of these formidable difficulties, there has been
significant progress over the past 50 years to address all these issues.

While there exist many excellent models for light nuclei, heavy elements can only be described
by what is variously known as the nuclear self-consistent mean-field theory or, more recently,
Density Functional Theory (DFT) [1]. Since its inception in the 1950ies, DFT has reached a
satisfactory level of maturity. However, until now, computational limitations did not allow to
implement the theory as originally designed, resulting in uncontrolled systematic errors, poor
precision, and dubious reliability in regions of exotic nuclei where experimental information is
scarce or non-existent. The fast development of leadership class computers has for the first time
lifted many of these limitations, and the solution to long-standing problems seems now possible
in the short term. After briefly introducing the underlying theoretical background, this article
discusses some of the computational challenges and methods used in nuclear DFT, highlights
some of the recent achievements, and discusses current open problems.

2. Theoretical Models of Heavy Nuclei

The central hypothesis of nuclear DFT is that the A nucleons (protons and neutrons) inside the
nucleus can be treated as independent quasi-particles moving in an average nuclear potential
well. The theory can be entirely formulated by introducing the so-called one-body density matrix
ρ(x, x′) and pairing tensor κ(x, x′), where x ≡ (r, σ) includes spatial as well as spin coordinates,
σ = ±1/2. Requiring that the total energy E of the nucleus is minimal under a variation of
both ρ and κ leads to the so-called Hartree-Fock-Bogoliubov (HFB) equations:

∫

dx′

(

h[ρ(x, x′)] − λ ∆[κ(x, x′)]
−∆∗[κ(x, x′)] −h∗[ρ(x, x′)] + λ

)(

Uµ(x′)
Vµ(x′)

)

= Eµ

(

Uµ(x)
Vµ(x)

)

, µ = 1, . . . ,+∞,

(1)
with λ a Lagrange parameter that must be introduced to conserve particle number, and:

ρ(x, x′) =
∑

µ

V ∗
µ (x)Vµ(x′),

κ(x, x′) =
∑

µ

V ∗
µ (x)Uµ(x′).

(2)

In Eq.(1), h[ρ] is a hermitian operator (mean-field) which is a functional of the density matrix,
and ∆[κ] is an anti-symmetric operator (pairing field) which is a functional of the pairing tensor.
The explicit dependence of the HFB matrix on the eigenfunctions (Uµ, Vµ) via the density matrix
and pairing tensor, or self-consistency, makes the eigenvalue problem highly non-linear.

In its most general form, the mean-field operator reads:

h = −
~

2

2m
∇

2 + Γ(x, x′) (3)

with ~ the Planck constant, m the mass of a nucleon, ∇ the gradient operator and Γ the so-
called Hartree-Fock potential. In phenomenological mean-field models, Γ is in fact parametrized
by some suitable mathematical function and does not depend on the density matrix. In the
traditional version of the self-consistent mean-field theory, Γ is instead computed from a local

two-body interaction, or effective pseudo-potential, V (x, x′) which depends on the spatial and
spin coordinates x and x′ of two nucleons and takes the general form:

Γ(x, x′) = δ(x − x′)

∫

dx1V (x, x1)ρ(x1, x1) − V (x, x′)ρ(x, x′). (4)



Standard two-body interactions have either zero-range, i.e., V (x, x′) ∼ δ(r−r
′) (Skyrme forces),

or finite-range, V (x, x′) ∼ V (r − r
′) (Gogny forces) which may further simplify the general

expression (4). They all contain a density-dependent term necessary to reproduce the saturation
of nuclear matter, but which makes them ill-behaved for extensions of the theory dealing with
large amplitude collective motion [2, 3]. Recent formulations of nuclear DFT do not consider
explicitly effective interactions and instead parametrize Γ(x, x′) directly as a functional of the
density matrix ρ(x, x′), or alternatively the local density ρ(x) and its spatial derivatives.

The success of the nuclear mean-field theory relies on the mechanism of spontaneous
symmetry breaking, whereby the solutions of the HFB equations (1) may break some of the
symmetries of the underlying effective interaction V (x, x′). This mechanism can be viewed as
a way to introduce correlations in what is otherwise an independent particle model. A simple
example is the breaking of rotational invariance of V (x, x′), which implies that the density
matrix and pairing tensor can have non-isotropic spatial distributions: in the mean-field theory,
nuclei can be deformed, and the energy of the nucleus therefore depends on the deformation.
However, this dependence is not known beforehand. In practice, one must introduce constraint
operators Q̂lm to probe the deformation energy surface. The problem is complicated by the fact
that the expectation value 〈Qlm〉 of the (local) constraint operator Q̂lm is itself a functional of
the density matrix,

〈Qlm〉 =

∫

dxQ̂lm(x)ρ(x, x). (5)

The HFB equations (1) with the constraints (5) represent a system of coupled, non-linear,
integro-differential equations, and are the cornerstone of the description of heavy elements in
a microscopic framework. In the following, we discuss the various methods used to solve these
equations, and the related mathematical and computational challenges.

3. Mathematical and Computational Challenges

From a computational perspective, nuclear DFT has two facets: (i) the HFB solver itself and
(ii) the management of a large number of quasi-independent, time-consuming, load-imbalanced
tasks. We discuss below each of these aspects.

3.1. HFB Solver

Solving the HFB Equations - There exist essentially two classes of methods to solve
the HFB equations. In the coordinate representation, the equations (1) are solved directly by
numerical integration for each eigenfunction µ. Boundary conditions for the wave-functions are
imposed on the domain of integration. While very precise, the feasibility and usability of this
approach is highly dependent on the symmetries of the wave-functions: in spherical symmetry,
the eigenfunctions are separable (Uµ(r), Vµ(r)) = (uµ(r), vµ(r))Ylm(θ, ϕ). The HFB equations
only depend on the radial coordinate r and numerical implementations can be very fast (typically
less than 1 minute per HFB calculation) [4]. In cylindrical symmetry, the wave-functions depend
explicitly on the two variables z and ρ, and special separation techniques (B-splines or similar)
must be employed. Codes with built-in parallel capabilities achieve good convergence for a
few dozens of cores/HFB calculation in a few hours [5]. Full 3D solvers in coordinate space
are in development: they will probably require a very large number of cores (>1000) to achieve
convergence in less than a day. At this scale, the benefits of using DFT (reformulate the problem
to replace the 3A coordinates of the nucleons by the only 3 coordinates of the density matrix)
are greatly reduced though.

The alternative approach consists of introducing a basis of the Hilbert space L2 of square-
integrable functions, and compute the matrix elements of all relevant operators in that basis.
The Harmonic Oscillator (HO) basis proves the most adapted to nuclear structure applications
as it involves very localized basis functions. By comparison, molecular physics applications



often employ the plane wave basis. The choice of the coordinate system is dictated by the
symmetries that one wants to impose, or relax, on the system. For example, fission studies
typically require many spatial symmetries to be broken, and the Cartesian HO basis becomes
the tool of choice. The HO basis is by definition an infinite countable basis of the one-particle
Hilbert space: numerical implementations require the truncation of the expansion up to a
maximum number of oscillator shells N . This introduces systematic truncation errors, as well
as an artificial dependence on the frequency ω0 of the HO. When studying very deformed nuclei,
it is recommended to choose an anisotropic 2D HO, with ω⊥ 6= ω‖. The final truncation error
then depends also on the deformation of the basis, i.e. the ratio q = ω‖/ω⊥. For any practical
calculation, the final HFB energy E should therefore be written E(N,ω0, q). High-precision
calculations require systematic and costly studies of this model space dependence, see Figs. 1-2
[6]. Recent attempts have therefore been made to apply multi-resolution methods based on
wavelet expansions to nuclear DFT, in order to combine the versatility of basis expansion with
arbitrary precision results [7].
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Figure 1. (color online) Conver-
gence of the energy for various de-
formed states in 240Pu as function of
the number of HO shells. The dashed
line gives the result of [5].
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Dense Linear Algebra - When expressed in a single-particle basis, the density ρ(x, x′)
becomes an actual matrix ρij defined as:

ρij =

∫∫

dxdx′φ∗
j (x

′)ρ(x, x′)φi(x). (6)

A general two-body interaction becomes a rank-4 tensor vabcd. The HF potential is obtained by
taking a tensor contraction:

Γac =
∑

bd

vabcdρdb, (7)

where the summation for each index extends over the size of the basis. Such tensor contractions
must be performed at every iteration and represent an important bottleneck in the calculation.
Indeed, for a heavy nucleus, the size of the HO basis for a precise calculation contains typically



N > 20 shells. In a Cartesian basis, this implies that each index a, b, c, d is in fact a set of
3 numbers, a → na ≡ (nx,a, ny,a, nz,a) with nx,a + ny,a + nz,a = N . A naive implementation
of Eq. (7) would therefore require a 12-nested loop to compute the entire matrix Γac. Most
problematic, in double precision arithmetic the size of the complex tensor vabcd would be of
the order of 80 TB after taking into account the anti-symmetry properties of vabcd. Current
implementations therefore do not store the matrix vabcd but compute it on-the-fly, adding to the
computational overhead, and store the matrix Γac instead (∼ 50 MB storage).

An alternative technique to compute Γac, which avoids handling directly the tensor vabcd and
is particularly efficient when the functional depends only on the local density matrix, relies on
the fact that the functional dependence of Γ on the density matrix ρ is known. The HF potential
for a local functional is simplified: Γ[ρ(x, x′)] → Γ[ρ(x)]. The matrix Γac can then be computed
by only one 3D integral:

Γac =

∫

dxφ∗
j (x)Γ[ρ(x)]φi(x). (8)

Such integrations can be performed exactly by quadrature formulas. The only time-consuming
part of this method is to obtain an expression of ρ(x) on the quadrature mesh, i.e.,
ρ(xkx

, yky
, zkz

). One must compute:

ρ(xkx
, yky

, zkz
) =

∑

mn

∑

µ

V ∗
mµVnµφ∗

n
(xkx

, yky
, zkz

)φm(xkx
, yky

, zkz
). (9)

This dense linear algebra requires at first sight 10-nested loops to build the entire representation
of ρ on the integration grid. Various numerical tricks can be used to reduce this number [8].
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Iterative Algorithms - The HFB equations are usually solved by iterations: starting at

iteration 0 with an initial guess for, e.g., the density matrix ρ
(0)
in and pairing tensor κ

(0)
in , one

constructs the HFB matrix M (0); diagonalizing it gives the eigenvectors at iteration 0, which are

used to compute an updated version of the density matrix ρ
(0)
out and pairing tensor κ

(0)
out; using

these updates as input to iteration 1, one constructs the new HFB matrix M (1), diagonalizes it,
etc., until convergence is met. Formally, this can be written as:

V
(m)
out = I(V

(m)
in ). (10)



The solution to the HFB equation satisfies: V = I(V ), or equivalently F (V ) = V − I(V ) = 0.
This is a form of the fixed point problem. Most DFT solvers iterate V either with a standard
linear mixing,

V
(m+1)
in = αV

(m)
out + (1 − α)V

(m)
in , (11)

or a more elaborate mixing like the modified Broyden mixing [9]. The final number of iterations
needed to reach convergence is extremely dependent on the type of calculation: ground-
state properties of a spherical nucleus may take as little as 30 iterations, while the scission
configuration in 240Pu may take as much as 5,000 iterations [10]. In addition, the iterative
method often fails to converge, especially with large ’exotic’ constraints. Since the time of
calculation is ultimately linearly proportional to the number of iterations, controlling the latter
and ensuring a high convergence rate is critical for DFT applications.

Figure 5. (color online) Hybrid MPI/OpenMP programming model for large-scale DFT
applications: the process grid is decomposed in MPI communicators made of a few nodes (1 -
16), handling a given HFB calculation, with OpenMP threading within nodes.

3.2. Large-scale Applications

In itself, one HFB calculation is almost always manageable on a standard computer. However,
realistic applications always require the computation of a very large number of different
configurations. The static description of nuclear fission is a good example: at least 4 deformation
degrees of freedom are necessary: elongation, triaxiality, mirror symmetry, neck size, just for
calculations at zero temperature and zero angular momentum. A typical estimate for the number
of points for each degree of freedom is 500 × 40 × 20 × 20 = 8.106 points. At each point, one
can estimate the error due to the truncation of the basis by repeating the same calculation with
several different combinations of basis parameters: assuming 10 points per basis parameter, this
adds a factor 1,000. The typical size of the problem is therefore of the order of 109 − 1012

independent calculations, each of them taking of the order of a few days on a single-core for
high precision results. This estimate applies to a single nucleus only...

Modern DFT solvers have therefore adopted a hybrid MPI/OpenMP programming model,
illustrated in Fig. 5. Since a large number of HFB calculations is needed for any realistic
problem, the process grid is decomposed in many small MPI communicators, each in charge of



handling one HFB task, and possibly spanning multiple nodes. To accelerate dense linear algebra
operations, OpenMP threading is used within a node. In many applications, only one MPI task
per node is devoted to a HFB calculation. With existing solvers, the number of files needed
to dump the output of the calculation grows as the number of HFB configurations handled:
navigating this large mass of data, and extracting the most relevant information pertaining to
the problem at hand can be tricky. Some effort has therefore been put into the development of
interfaces with advanced data mining software [11].

4. Recent Achievements

Collaborative efforts such as the SciDAC 2 UNEDF project have enabled ground-breaking
optimizations of nuclear DFT solvers [12], which in turn led to important discoveries in several
areas of the physics of heavy nuclei. We highlight below two examples of recent work.
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Optimization of Energy Functionals - The only input to nuclear DFT is the dozen or
so low-energy constants characterizing the energy functionals. These parameters need to be very
carefully adjusted to experimental data. In the past, this procedure was usually carried out for
very specific systems such as infinite nuclear matter or doubly-magic spherical nuclei, essentially
because calculations are fast for those cases. However, most realistic nuclei are significantly
different from such idealized systems, and it has been realized that many energy functionals
suffer from systematic biases. The availability of heavily optimized DFT solvers together with
leadership class computers has allowed to perform parameter optimization in realistic nuclei,
i.e. deformed nuclei with pairing. Moreover, statistical methods can now be applied at the
solution to investigate the sensitivity of the solution to the experimental data, as well as built-
in correlations between the parameters. Such modern methods have shed a new light on the
validity of current functionals and are now being applied to new generations functionals [13].

Description of the Fission Process - The successful description of the fission process
in the framework of DFT is a poster-child example of a large-scale computational problem
involving nuclear DFT which could have tremendous applications for society. Most of the recent



progress in the field has come from the computational side. In particular, the first systematic
self-consistent survey of fission pathways with several shape degrees of freedom has been carried
out in the region of the heaviest elements. Calculated lifetimes are in reasonable agreement with
experiment, see Fig. 8 [14]. In parallel, preliminary studies of compound nucleus fission have
shed a new light on the probability of formation for superheavy elements in fusion reactions, see
Fig 9 [15, 16].
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5. Moving Forward

Computing Excited States - Most of the examples presented in this article correspond
to the ground-state properties of nuclei. A significant challenge to DFT is its ability to also
describe excited states. In the version of DFT that derives from a two-body effective interaction,
indications are that a three-body force will have to be explicitly included. This would enable
to apply a well-established set of techniques such as projection and the generator coordinate
method which can provide excited spectra. However, these methods will require yet another leap
in the number of HFB points to be computed: for example, tensor contractions with a 3-body
force will increase from 12 to 18 the number of nested loops needed to compute the mean-field
Γac in Cartesian coordinates.

Advanced Data Management - Currently, all DFT solvers have a rather simple I/O
system, which essentially relies on native Fortran or C/C++ routines for disc access. Files are
written on a per-core basis: in large scale applications, the number of files becomes huge, its
management rather complex, and the scalability may degrade quickly as one hits the limits of
the operating system, see Fig 10. It seems therefore necessary to invest into more efficient I/O
systems, possibly interfaced with professional database management and data mining software.
Indeed, a specific feature of DFT is that it produces a lot of data points that needs to be analyzed
in many different ways.

Real-time Simulation Steering - Current large-scale simulations are intrinsically static:
given a set of input data shared among processes, each group of cores performs its task
until completion. However, entire regions of potential energy surfaces irrelevant for physics
applications cannot be detected until post-analysis is performed; calculations that failed could



be converged with, e.g., slightly different mixing parameters; model space dependence could be
efficiently studied by optimizaton over the basis parameters, rather than meshing the parameter
space. All these observations point to the need of dynamically steering the simulation based on
a set of preliminary results. However, such a program can only be viable if the time of one HFB
calculation can be reduced to at least less than 1 hour.
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Parallel Dense Linear Algebra Libraries - The reduction of the typical computation
time below the 1 hour barrier is not possible without the development of highly optimized parallel
dense linear algebra libraries. The current ScaLAPACK library provides a good starting point,
but many routines do not reach the same level of performance as the original LAPACK versions.
Currently, the gain is probably not sufficient for many practical application, see Fig. 11.

6. Conclusions

Nuclear DFT is the only theoretical framework that can be applied to all nuclei from the lightest
to the heaviest, including stellar environments. While relatively mature, the theory has only
recently started to benefit from the availability of leadership class computers and advances in
code development. Significant progress has been achieved, in particular in terms of parameter
optimization and specific applications such as fission or large-scale surveys [17]. It is reasonable
to anticipate that numerical uncertainties due to the truncation of the model space (HO basis)
and the collective space (number of deformations) could be virtually eliminated in the near
future, which would then open the door to high-precision nuclear simulations of importance to
science and society. Such a promise, though, can only be delivered by the joint effort of both
nuclear scientists and computer scientists. On the computational side, some of the key aspects
are the parallelization of dense linear algebra operations, the development of real-time simulation
steering tools, the implementation of scalable I/O models and data management tools.
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[13] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, and S. Wild,

Phys. Rev. C 82, 024313 (2010).
[14] A. Staszczak, A. Baran, J. Dobaczewski and W. Nazarewicz, Phys. Rev. C 80, 014309 (2009).
[15] J.C. Pei, W. Nazarewicz, J.A. Sheikh, A.K. Kerman, Phys. Rev. Lett. 102, 192501 (2009).
[16] J.A. Sheikh, W. Nazarewicz, J.C. Pei, Phys. Rev. C 80, 011302 (2009).
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