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The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress
towards ignition of an inertially confined fusion experiment. These and other convergent ablator performance
parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such
a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are
unknown. To address this we have developed a regularization technique which allows the ablator density
profile, ρ(r) and effective backlighter profile, I0(y), at each time step to be uniquely determined subject to
the constraints that ρ(r) is localized in radius space and I0(y) is delocalized in object space. Moments of ρ(r)
then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining
ablator material. These results are combined in the spherical rocket model to determine the ablation pressure
and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of
implosions at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented
on experiments at the OMEGA laser facility [T. R. Boehly et al., Opt. Comm., 133, 495 (1997)].

I. INTRODUCTION

Inertial confinement fusion1 (ICF) aims to achieve
thermonuclear ignition by compressing and heating mat-
ter inside a spherically-converging rocket. At the Na-
tional Ignition Facility2 (NIF) the experimental approach
to ignition involves measuring and tuning several key
metrics each of which characterize different aspects of the
implosion.3 These metrics include the laser-to-x-ray con-
version efficiency, implosion symmetry, fuel adiabat, and
fuel velocity. High fuel velocities are required to deliver
compressive work to the hot spot faster than it is lost via
conduction or radiation and is one of the most impor-
tant figures-of-merit in ICF. Calculations show that the
ignition threshold scales as the inverse sixth power of the
velocity.4–6

Achieving a high fuel velocity involves a balance be-
tween two competing requirements:7 (1) Burning off most
of the ablator mass to maximize the fuel kinetic en-
ergy, and (2) Preserving sufficient ablator mass to keep
ablator-fuel interface instabilities and fuel pre-heat ef-
fects low. The maximum velocity desired is that which
can be achieved with sufficiently low mix and pre-heat
of the fuel. For typical indirectly-driven NIF ignition
targets, radiation-hydrodynamic simulations have estab-
lished that the optimal peak velocity is in the range 350-
380 µm/ns while the remaining mass of the ablator is
5-15% of the initial ablator mass. The precise values de-
pend sensitively upon the mix and transport models used
in the simulations as well as on specifics of the target and
laser drive.
For a given laser drive and target configuration,

whether or not the desired velocity and mass are achieved
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depends on the integrated details of the entire ablation
process including the flux and spectrum of x rays pro-
duced in the hohlraum, radiation transport to the ab-
lation surface, and the spectral opacities of the ablator
before and after blow-off, where conditions throughout
may or may not be in local thermodynamic equilibrium.
Since it is impossible to guarantee that all these processes
can be simulated to the accuracy necessary to achieve ig-
nition the most practical approach is to directly measure
both the velocity and mass of the ablator. These ob-
servables can then be experimentally tuned by adjusting
the initial thickness of the ablator and the power in the
peak of the drive to converge iteratively upon the de-
sired conditions.6,7 Nominally the velocity needs to be
measured to ∼ ±2% while the remaining mass needs to
be measured to ∼ ±1.5% of the initial mass. Up un-
til now, however, it has been challenging to measure the
capsule velocity and impossible to measure the ablator
mass.

Streaked or gated x-ray radiography has long been ap-
plied to ICF experiments8–10 but the wealth of informa-
tion encoded in this simple record (Fig. 1) has yet to
be fully extracted. In principle, the inverse Abel trans-
form of a radiograph through a spherically-symmetric
target can be used to extract the density profile, ρ(r),
of the capsule ablator. Knowing this 1-D field quantity
at various times (ρ(r, t)) then allows multiple 0-D or aver-
age ablator parameters to be calculated from radial mo-
ments of ρ(r, t), in particular the average radius, 〈R(t)〉,
mass M(t), areal density 〈ρR(t)〉, and average velocity
〈U(t)〉.11 All these 0-D quantities are valuable figures-
of-merit assessing the performance of an ICF implosion.
In fact, during much of the implosion 1-D capsule dy-
namics reduces12 to the simple case of a spherical rocket
whose only parameters are 〈R(t)〉, 〈U(t)〉, and M(t). A
single, streaked radiograph thus contains all the neces-
sary information to describe the global dynamics of the
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spherically-symmetric imploding rocket.
There are several reasons why, until now, this informa-

tion has yet to be fully extracted from ICF radiographs.
The intensity of laser-plasma produced area backlighters,
I0(r, t), varies both spatially and temporally, making it
difficult to measure the optical depth of the sample.13

This problem is compounded by x-ray attenuation in the
ablator blowoff, further modifying I0(r, t) spatially and
temporally. In addition, capsule radiographs are typi-
cally noisy - due to photon statistics, backgrounds, and
streak camera noise - presenting challenges for the ill-
conditioned inverse Abel transform.
Here we show that in the specific circumstances of an

ICF radiography experiment the problem of an unknown
I0(r, t) can be solved by applying two key constraints:
(1) A localized ablator density profile in radius space,
and (2) A delocalized, or smoothly varying, backlighter
intensity profile in object space. We solve the ill-posed
and ill-conditioned radiography problem containing an
unknown backlighter intensity and noisy data by using
a regularization approach that chooses from the ensem-
ble of possible ρ(r) profiles the solution that best obeys
these two physically plausible a priori constraints. These
constraints quantify what our eyes naturally do: sepa-
rate sharp variations caused by capsule absorption from
those caused by the slowly-varying backlighter and abla-
tor blow-off profile.
The layout of this paper starts with the definitions

of certain capsule parameters as moments of ρ(r) (Sec-
tion II) and summarizes the challenges in ICF radiogra-
phy of determining ρ(r) from the standard determinis-
tic inverse Abel transform approach (Section III). The
regularized Abel transform solution to these problems
is described in detail in Section IV along with its gen-
eralization to heterogeneous targets such as the graded-
doped ablator (Section V). Since the success of this tech-
nique hinges on the validity of various assumptions con-
siderable attention is given to justify these assumptions
in terms of intuitive physical descriptions, mathematical
proofs where possible, and, most critically, from testing
it against simulated data (Section VI). How the results
can be used to determine rocket model parameters is then
described in Section VII. Finally, the implementation
of this technique on OMEGA experiments in discussed
(Section VIII).

II. AVERAGE ABLATOR QUANTITIES AS MOMENTS

OF ρ(r)

Several important ablator quantities are defined in
terms of moments of ρ(r). In particular the areal density,
〈ρR〉, is given by the zeroth moment, the average radius,
〈R〉, by the ratio of the first and zeroth moments, and
the mass, M , by the second moment:

〈ρR〉 =

∫ a

ρ(r) dr (1)

FIG. 1. (Color online) Simulated x-ray streak image of a
NIF capsule14 implosion made by post-processing a radiation-
hydrodynamic simulation. Shown is the region where the
capsule achieves maximum velocity. This image, along with
blurred and noisy versions of it, are used to test for accuracy
and precision of the analysis technique.

〈R〉 =

∫ a
rρ(r) dr

〈ρR〉
(2)

M = 4π

∫ a

r2ρ(r) dr (3)

= 4π〈ρR〉〈R2〉 (4)

where 〈R2〉 =
∫ a

r2ρ(r) dr/〈ρR〉. Here the lower limit of
the integrals is the inner radius of the ablator (or r = 0
if there is no fuel) and the upper limit, a, is the position
of the ablation front.
Rather than using 〈R〉 as defined above it is often use-

ful to define the center of mass:

〈Rm〉 =

∫

rρ(r)r2 dr
∫

ρ(r)r2 dr
(5)

Simulations show that 〈Rm〉 ≃ 〈R〉 over most of the im-
plosion trajectory but that the time derivative of 〈Rm〉
is better behaved near stagnation.
The mass can more usefully be expressed as:

M = 4π〈ρR〉
(

〈R〉2 + 〈σ2〉
)

(6)

since the variance is 〈σ2〉 = 〈R2〉 − 〈R〉2. For the ac-
celeration phase of an implosion it is usually true that
〈σ2〉 ≪ 〈R〉2 in which case 〈ρR〉 and M are directly re-
lated, regardless of the shell thickness, for a fixed 〈R〉.
Since the goal of this measurement is to determine

M(t) and 〈R(t)〉 (and thus 〈U(t)〉 = d〈R〉/dt), details
of ρ(r) are important only insofar as they affect its first
three moments. Thus fine scale structure in ρ(r) is unim-
portant to the extent that it does not significantly affect
these moments. This relaxes the requirement on diagnos-
tic spatial resolution and is in part why the regularization
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approach described in Section IV using smoothed den-
sity profiles is successful. Determining ρ(r, t) accurately
is more challenging from an instrument requirement per-
spective than is determining its first few moments.

III. THE INVERSE ABEL TRANSFORM METHOD AND

ITS LIMITATIONS

For spherically-symmetric objects the inverse problem
of tomography reduces to finding solutions of the Abel
transform. In this section the well-known formulae of
absorption radiography and the Abel transform are sum-
marized and used to illustrate how the challenges of an
ICF experiment make this classic problem ill-posed. This
makes an explicit solution via the inverse Abel transform
impossible without additional information.
For standard absorption contrast radiography the ob-

served x-ray intensity, I(y), along a measured dimension,
y, where y = 0 corresponds to the center of the object
with spherical symmetry, is given by:

I(y)/I0(y) = exp[−τ(y)] (7)

where I0(y) is the initial x-ray intensity and τ(y) is the
optical depth along the line of sight.
The forward Abel transform relates this projected op-

tical depth to the product of the object’s opacity profile
at the backlighter photon energy, κν(r), and density pro-
file, ρ(r), where both are functions of radius:

τ(y) = 2

∫

∞

y

κν(r)ρ(r)r
√

r2 − y2
dr (8)

The inverse Abel transform is given by:

κν(r)ρ(r) = −
1

π

∫

∞

r

dτ(y)

dy

dy
√

y2 − r2
(9)

Thus a measurement of τ(y) allows ρ(r) to be determined
explicitly provided that κν(r) is known.
In a typical streaked radiography experiment of an

imploding capsule it is difficult to extract ρ(r) explic-
itly in this fashion because there are too many un-
knowns. Firstly, I0(y) in Eq. 7 is unknown. For area
backlighting13 the spatial and temporal variations in this
illumination profile cannot be ignored and are difficult to
measure independently. Also, for mid-Z doped capsules
there is sufficient opacity in the ablated plasma to further
alter the effective I0(y). Secondly, a radially inhomoge-
neous ablator means that κν(r) is unknown. NIF capsule
designs use a graded ablator dopant15 which causes the
unablated κν(r) in Eq. 9 to vary throughout the implo-
sion. An additional challenge is that implosion radio-
graphs are particularly noisy because of photon statis-
tics, backgrounds, and camera noise. Regardless of the
numerical technique used the inverse Abel transform am-
plifies noise.16

FIG. 2. (Color online) For a spherical shell the x-ray trans-
mission profile is determined largely by the first 3 moments of
density. To demonstrate this, transmission profiles are plotted
for three different density profiles which have the same 〈ρR〉,
〈R〉, and 〈σ2〉. Even though these density profiles have signifi-
cantly different peak values the differences in transmission are
small and confined to the region around the limb minimum
(∼100 µm in this case). Inside the capsule, transmission pro-
files are nearly identical as required by the Taylor expansion
given in Eq. 10 which is independent of higher moments.

IV. A REGULARIZATION APPROACH TO FINDING

ρ(r)

A. A priori constraints

Regularization is a technique used to solve ill-posed
or ill-conditioned problems by introducing additional in-
formation as constraints.17 These constraints reduce the
number of unknowns (useful for ill-posed problems) and
penalize complexity (useful for ill-conditioned problems).
Such a priori constraints, or Bayesian priors, are most
valuable when derived from specific knowledge of the
problem. The simplest example of regularization is least
squares curve-fitting.
Here, for the case of an implosion radiograph, the

choice of constraints attempts to capture how the eye in-
stinctively identifies the capsule limb, namely to search
for a unique, strongly-localized feature in an otherwise
smoothly-varying background. To quantify this distinc-
tion between spatial variations caused by capsule absorp-
tion and spatial variations caused by backlighter non-
uniformities the following a priori constraints on ρ(r)
and I0(y) are invoked:

A: That the capsule density profile has compact support.

Specifically ρ(r) = 0 for r < rmin and r > rmax

where rmin > 0 and rmax is less than the maximum
radius recorded in the radiograph. Note this is not
a thin shell approximation: the shell need not be
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thin, it just needs to be a shell. During the accel-
eration phase of the implosion this should be the
case. For simplicity ρ(r) should also be smooth,
i.e. the density profile is a bump function.

B: That the backlighter intensity profile varies over a

spatial scale that is larger than the shell thickness.

Experimentally this is satisfied by using a large
enough backlighter laser focal spot diameter or by
suitably overlapping smaller spots.

Importantly, these constraints also remove the effect of
unknown attenuation by ablator blow-off. Such absorp-
tion is significant in NIF capsules because of the large
amount of ablator mass removed, the presence of a mid-
Z dopant, and the fact that at high implosion velocities
material continues to converge immediately after abla-
tion. As long as the scale length of this ablated material
(> 200 µm) is larger than that of the limb (∼ 20 µm)
the above assumptions automatically include this addi-
tional x-ray attenuation as part of the spatial variation of
the backlighter. The ablated material is eliminated from
the accounting by deriving an effective I0(y) appropri-
ate for characterizing the unablated material only. Thus
the fundamental distinction made between the unablated
and ablated material is one of scale length.
The current incarnation of this regularization proce-

dure uses curve fits to constrain the form of ρ(r) and
I0(y). Functional forms for ρ(r) that have been tested
include a rectangular profile and Gaussian profiles with
various degrees of skew (see Fig. 2). For I0(y) polynomi-
als of order 2 to 6 have been tested. As will be described
below, the solution is quite insensitive to the choice of
these functional forms as long as they obey the two cri-
teria above. This suggests there exists a more generalized
mathematical approach to solving this problem than the
one reported here.

B. Analysis procedure

Having set these a priori constraints by choosing the
functional forms for ρ(r) and I0(y) the following iterative
procedure is used to find ρ(r) at a single time step:

1. Guess the three parameters which fully describe the
ρ(r) bump function. For a Gaussian these corre-
spond to the average position, the peak density,
and the width. No more than three parameters are
used to fully describe the bump function since this
is sufficient to define the first three moments of the
distribution (if a skewed Gaussian distribution is
used the skew is not allowed to vary).

2. For this ρ(r) determine the opacity profile, κν(r),
by converting from its value in Lagrangian coor-
dinates at t = 0. This step will be described in
Section VD.

3. Using this κν(r)ρ(r) profile perform the forward
Abel transform to determine the optical depth,
τ(y), of the object (Eq. 8). Here a 3-point numer-
ical forward Abel transform has been used, the in-
verse of which was found to be more accurate than
other numerical integration algorithms.16 Since the
Abel integral is linear it can be discretized into a
linear transformation matrix dependent only on the
grid spacing, not on κν(r)ρ(r). Calculated once in
an expensive step at the start of the problem this
matrix can then be efficiently used for all subse-
quent calculations during each iteration and at each
subsequent time step.

4. Convolve exp(−τ(y)) with the necessary instru-
ment broadening and then recover the ‘broadened’
τ(y). Being able to do this is another advantage to
performing the forward transform rather than its
inverse.

5. Combine this instrument broadened τ(y) with the
measured profile I(y) to determine the effective
backlighter profile using ln I0(y) = ln I(y) + τ(y)
(from a re-arrangement of Eq. 7).

6. Fit this effective backlighter distribution, I0(y), to
a smooth profile. Return to (1) and repeat this
loop to minimize the χ2 on this fit. The result is
the ρ(r) which is most consistent with a smoothly
varying background profile.

This procedure converges on ρ(r) usually in a few it-
erations. The input parameters for ρ(r) are then used
to start the iteration afresh for next time step. In this
way only one set of initial guesses need be provided to
analyze an entire streaked radiograph.18

A fundamental aspect of this analysis is that the two
a priori constraints are seemingly opposite to each other
and are applied on either side of the Abel transform. The
density profile is constrained to be a localized bump func-
tion in r-space while the backlighter profile is constrained
to be a de-localized, smooth function in y−space. This
notion of applying different constraints alternately in two
transformed spaces has parallels in the Gerchberg-Saxton
approach for analyzing coherent diffractive images where
constraints are applied to real and Fourier spaces.19

C. Justification for form of ρ(r)

Constraining ρ(r) to be of a particular functional form
may appear at first to be overly severe. Here justifica-
tions are given as to why higher order details of ρ(r) are
not very important when the final goal is only to find its
first few moments (see also Fig. 2).
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1. Taylor expansion of the optical depth in terms of

density moments

Inside a shell, where ρ(r) = 0, the Abel integral Eq. 8
can be Taylor expanded about r = 0 in terms of the first
few moments of ρ(r):

τ(y) ≃
2〈κνρR〉

√

1− (y/〈R〉)2

[

1 +
3

2

(y/〈R〉)2

(1 − (y/〈R〉)2)2
〈σ2〉

〈R〉2

]

(10)
The optical depth inside the shell is thus, to a good ap-

proximation, only a function of the first three moments,
and most sensitive to the first two. This is demonstrated
in Fig. 2 where the x-ray transmission is compared for
different density profiles with the same first three mo-
ments.
This means that ρ(r) can have any number of different

functional forms but to match the optical depth profile
inside the shell it is only the value of the first few mo-
ments that matters.

2. Moments of τ (y) and ρ(r)

Another way to appreciate how higher order details
in the ρ(r) profile are not essential to determining 〈ρR〉,
〈R〉, and M is to cast the moments of ρ(r) in terms of
moments of τ(y). With some effort it can be shown that:

τ(0) = 2
∫

∞

0 κνρ(r)dr = 2〈κνρR〉
∫

∞

0

τ(y)dy = π
∫

∞

0
κνρ(r)rdr= π〈κνρR〉〈R〉

∫

∞

0

τ(y)ydy = 2
∫

∞

0
κνρ(r)r

2dr= 〈κνM〉/2π

This demonstrates that in fitting τ(y) using an assumed
functional form of ρ(r) it is only important to capture
τ(0) and the zeroth and first moments of τ(y) if all that
is needed is the zeroth, first, and second moments of
ρ(r). Since there are many forms of ρ(r) that can match
these conditions the simplest reasonable form should be
selected. ρ(r) should be no more complicated than what
is necessary to fit these first moments of τ(y). Higher
order moments of ρ(r) do not matter.
Intriguingly, these identities show that Abel transfor-

mations are not required if all that is needed are mo-
ments of ρ(r). Since it is mostly integrals of τ(y) that
are needed this explains why ρ(r) moments can be deter-
mined even with quite noisy and blurred data. This is
a useful notion to keep in mind. In this study the Abel
transform is still needed, however, in order to (i) impose
the constraint of compact support on ρ(r) and to (ii) find
κν(r), as described next.

V. OPACITY OF THE UNABLATED MASS

In general a single radiography measurement on its
own has only enough information to determine the

density-opacity product, κν(r)ρ(r), as given in Eq. 9.
Finding ρ(r) itself requires additional information. This
is a particularly important issue for capsules with a
graded dopant profile15 where the remaining specific
opacity of the shell evolves as successive layers get ab-
lated.
Here we show how κν(r) can be determined directly

from the opacity profile in Lagrangian coordinates using
the assumption that mass is ablated from outer regions of
the capsule first. This analysis needs no further informa-
tion if the following approximations are valid: (i) The
backlighter x rays are quasi-monochromatic, (ii) Cold
opacities are applicable in the unablated region, and (iii)
Mixing of the layers is negligible. These are good starting
approximations and can be relaxed as more information
becomes available. For example we show how the pres-
ence of mix changes the results.

A. Validity of quasi-monochromaticity

The constraint on spectral bandwidth is relatively
modest and is set by Beer’s Law (Eq. 7). This equa-
tion is valid provided that τν − 〈τν〉 ≪ 1 where τν is the
optical depth for available photon energies and 〈τν〉 is the
spectrally-averaged optical depth. Under this constraint,

I(y)/I0(y) = exp[−〈τν(y)〉] = exp[−
∑

fντν(y)] (11)

where fν is the fraction of photons at a given en-
ergy. Thus a quasi-monochromatic spectrum can still be
treated as monochromatic provided a spectrally-weighted
opacity

∑

fνκν is used. X-ray He-α fluorescence spectra
generated by laser intensities of ∼ 1014 − 1015 W/cm2,
as are used in this study, have been well documented
previously20 and are sufficiently monochromatic for op-
tical depths of 1-2.

B. Validity of cold opacities

Use of cold opacities simplifies the analysis consider-
ably since this makes κν independent of temperature and
density. Opacity model calculations21 at photon energies
of 6-10 keV show that in local thermodynamic equilib-
rium cold opacities are valid in beryllium, carbon, cop-
per, and germanium for temperatures below 50 eV, 90
eV, 150 eV, and 300 eV respectively. These thresholds
increase with density. Since temperatures in the unab-
lated portions of the NIF capsule are expected to stay
below 60 eV during the acceleration phase cold opacities
are generally a good approximation.
Upon ablation opacities drop due to ionization of the

K-shell (in the case of beryllium and carbon) or the L-
shell (in the case of copper and germanium). This pro-
vides a natural distinction between the ablated and un-
ablated region since x-ray absorption occurs primarily
in the unablated material. While this is a convenient
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FIG. 3. (Color) Simulated x-ray intensity profile at various times (black) along with the best fit from the regularization analysis
(red) and the inferred unattenuated intensity (blue). In this particular analysis a skewed Gaussian was used for ρ(r) and a 4th
order polynomial for I0(y). No spatial or temporal blurring in the simulation or the analysis was used in this test.

feature for a diagnostic designed to detect only the un-
ablated shell it is actually the scale length of the limb, as
described in Section IVA, that distinguishes unablated
from ablated material.

C. Opacity of a multi-component ablator

The presence and distribution of different elements in
the ablator must be properly taken into account in any
opacity calculation since even trace amounts of a higher-
Z element can affect the average opacity. We show here
for completeness how we calculate the average opacity in
a multi-component ablator.
At any given position, r, inside the capsule the density

is given by the sum of the partial densities for each of the
elements. Thus,

ρ(r) =
∑

i

Ai

NA

ni(r) =

∑

i ni(r)

NA

∑

i

AiFi(r) (12)

where Fi(r) = ni(r)/
∑

i ni(r) is the atom fraction for
each element i at that radius, ni(r) is the atomic number

density, Ai is the mass number, and NA is Avogadro’s
Number.
If the initial density profile in the capsule is known

from metrology the quantity
∑

i ni(r)/NA can be de-
termined directly. Otherwise a reasonable estimate of
ρ(r) for different dopant levels can be obtained by as-
suming that

∑

i ni is constant throughout the ablator,
regardless of dopant concentration (i.e. the volume per
atom is constant). Then, given a known un-doped den-
sity, ρU , the density in a doped region is given by
ρD = ρU

∑

iAiFi/(
∑

i AiFi)U .
The opacity-density product relevant to radiography

measurements is then:
∑

i

κνi(r)ρi(r) =

∑

i ni(r)

NA

∑

i

κνiAiFi(r)

= ρ(r)

∑

i κνiAiFi(r)
∑

i AiFi(r)
(13)

allowing the average opacity at a given radius to be de-
fined as:

κν(r) =

∑

i κνiAiFi(r)
∑

i AiFi(r)
(14)
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Ultimately to proceed with the analysis it is necessary to
know ρ(r) and κν(r) for the initial target. This allows
the opacity profile in Lagrangian coordinates, κν(m), to
be calculated and used as described next.

D. Determining κν(r) by a transformation from

Lagrangian coordinates

The heterogeneous ablator complicates analysis of the
radiograph since the opacity profile κν(r) is constantly
changing as material is ablated. Determining κν(r) at
each time step can still be done however by recognizing
that the opacity profile for the unablated shell is time
invariant in Lagrangian coordinates. Each guess for ρ(r)
made in the iterative loop (Section IVB) provides the
necessary transformation between Eulerian radius-space
and Lagrangian mass-space. Then, given that κν(m) for
the unablated shell is known (see previous section) and
time-invariant, κν(r) can readily be calculated for the
assumed ρ(r). Any given ρ(r) is associated with a specific
κν(r) - the two are not independent. This is an advantage
of performing the forward Abel transform and iterating
about assumed forms of ρ(r) rather than attempting the
inverse calculation.
This technique is rigorous in that it assigns the ap-

propriate κν to each mass element in ρ(r). An approx-
imation that is computationally more efficient and has
essentially identical results is to assume that the opac-
ity of the remaining mass is constant across the entire
density profile and equal to the average opacity of the
unablated mass. This average opacity is given by

κν(M) =

∫ a

0
κν(m)dm
∫ a

0
dm

=

∫ a

0
κν(r)ρ(r)r

2dr
∫ a

0
ρ(r)r2dr

(15)

This approximation works because details of the opacity
distribution are higher order effects that have little effect
on the first few moments of κν(r)ρ(r) (see Section IVC).
The assumption of a time-invariant κν(m) relies on

cold opacities remaining valid for the unablated shell
(Section VB) and there being no mix to disrupt the
original Lagrangian profile. This latter assumption is
discussed next.

E. Effects of mix

The effect of fine-scale mix can be estimated by con-
volving the original κν(r) over a presumed mix width.
How this changes the inferred mass is determined by cal-
culating the quantity κν(M) given by Eq. 15. As shown
in Figure 4 the deviation of the resulting inferred mass
from the real mass depends on the amount of mass re-
maining. Specifically if the ablation front is positioned
near the innermost interface between the undoped and
doped layers the deviation is largest since the amount of
dopant in the remaining mass has changed significantly.

FIG. 4. (Color online) The presence of fine-scale mix will
cause the original14 opacity profile, κν(r) (solid line), to
change. In the top figure this original profile is convolved
over a 20 µm mix region (red dashed line). The resulting
deviation in the inferred mass is shown in the bottom figure,
where the abscissa corresponds to the remaining mass frac-
tion inside the ablation front. The amount of the deviation
depends on the relative opacities of the different layers and
the position of the ablation front.

If however the ablation front is in the middle of the doped
layer or in the undoped region there is minimal effect
since the mix hasn’t significantly shifted the total frac-
tion of dopant that exists on either side of the ablation
front. This conclusion is dependent upon the mix width
chosen. Note that this type of analysis, which assumes a
non-radial mixing scale smaller than the diagnostic reso-
lution, cannot address the type of mix where an individ-
ual finger or bubble dominates the limb profile.



8

FIG. 5. (Color) Comparison of simulated density profiles (black) with the density profiles inferred using the analysis assuming
a skewed Gaussian (red), a symmetric Gaussian (dashed green), and a skewed Gaussian where the x-ray streak had 20 µm of
spatial and 50 ps of temporal blurring (dotted blue). These density profiles are those for which the best fits were obtained in
Fig. 3. Although the inferred profiles, particularly that for the blurred image, appear to deviate from the actual profiles the
moments of ρ(r) are still captured accurately (see next Figure).

VI. TESTS ON SIMULATED DATA

To demonstrate the accuracy and precision of this
technique we show in detail the results from analyzing
the simulated radiograph of a NIF implosion shown in
Fig. 1. This radiograph, taken at the end of the ac-
celeration phase, was generated by forward Abel trans-
forming density profiles calculated using the radiation-
hydrodynamics code Hyades.22 The target - a 134 µm
thick graded-doped CH ablator14 with a 784 µm inner
radius - was driven by a shaped radiation source peaking
at 285 eV at 16.5 ns. A NIF implosion is a stringent test
of the regularization analysis because of the complicated
dopant profile, which has to be tracked self-consistently,
the large mass of capsule blow-off, which has to be dis-
criminated from the unablated mass, and the high im-
plosion velocity, which causes temporal blurring.
The x-ray intensity profiles using an 8.35 keV Cu He-α

backlighter are shown in Fig. 3 at four times along with
the regularized solutions. In red is the best fit, I(y), while
in blue is the inferred backlighter profile, I0(y). As dis-

cussed in Section IVA, I0(y) is the apparent backlighter
intensity after attenuation by the blow-off plasma. In
this example the initial backlighter profile is set to be 1.

The density profiles found from the analysis are shown
in Fig. 5 and compared to the actual density profiles
from the simulation. The actual ρ(r) (black) is com-
pared to the regularized profiles found by assuming a
skewed Gaussian (red), a symmetric Gaussian (green),
and a skewed Gaussian where the image had 20 µm of
spatial blurring and 50 ps of temporal blurring. Differ-
ences between the skewed and symmetric Gaussians are
relatively small but the ρ(r) inferred from the blurred
image has a low peak density and a large width, as one
would expect from a convolution process.

The resulting 〈R(t)〉, 〈U(t)〉, ρR(t), and M(t), shown
in Fig. 6, are almost always within several percent of
the exact value. This is true even for the blurred image
despite the spatial convolution width (20 µm) being con-
siderably larger than the 2σ thickness of the shell (∼5-10
µm) over much of the time. Thus blurring has little affect
on the extensive, integral properties of ρ(r) important to
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FIG. 6. (Color) Comparison of the simulated 〈R〉, 〈U〉, ρR, and M (black) with those inferred using the analysis assuming
a skewed Gaussian (red), a symmetric Gaussian (dashed green), and a skewed Gaussian where the x-ray streak had 20 µm
of spatial and 50 ps of temporal blurring (dotted blue). These illustrate how little instrumental blurring and the different
assumed density profiles affect the results. Note that for the blurred case, even though the spatial blurring is a factor of 2 or
more greater than the 2σ width of the density profile, agreement (for these average quantities) remains good. The velocity
aberration at 16.35 ns in the blurred case occurs at the boundary between doped and undoped CH.

this study (see Section IVC) but significantly affects how
accurately the intensive properties such as peak density
can be inferred.
Having established the accuracy of the technique under

its various assumptions, the precision of the technique
was tested by comparing an ensemble of synthetic static
radiographs with different levels of Poisson noise. Not
surprisingly the fractional random error in 〈R〉 and M

scales with 1/
√

(N) where N is the number of counts
per resolution element, as shown in Fig. 7. The fractional
random error in ρR is identical to that for M and is not
shown. The velocity, since it involves a differential, is
very sensitive to noise and for noisy data it is often more
practical to take the derivative of a fit to 〈R〉 versus t.

VII. ROCKET MODEL ANALYSIS

Global capsule dynamics simplifies to that of a spher-
ically imploding rocket for much of the implosion

history.1,12 In the simplest version of this model, valid
from the end of the shock compression phase to the pe-
riod around maximum velocity,12 the time dependence of
the rocket radius, velocity, and mass is determined purely
by the ablation pressure, pa, and the mass ablation rate,
ṁa:
The dynamics of the rocket are given by:

dM

dt
= −4πR2ṁa (16)

M
d2R

dt2
= −4πR2pa + fb (17)

Here fb = 8π
∫ R

0 prdr is the decelerating force caused by
internal pressure, p, in the ablator, fuel, and gas fill. For
most of the acceleration phase fb = 0, resulting in the
simple rocket model applied below.
Since data from the streaked radiograph yields 〈R(t)〉

and M(t) it is possible to extract both pa and ṁa from
the data, averaged over a finite time period. This can
be done either by directly taking derivatives of the data
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FIG. 7. (Color online) Illustrative scaling of the fractional
random error in 〈R〉 (diamonds, red) and M (asterisks, green)
versus the number of counts per resolution element (N). Each
point was derived from the analysis of a synthetic static ra-
diograph with counts based on Poisson statistics. Both 〈R〉
and M scale closely with 1/

√
N .

and using the above equations directly (which is difficult
when noise is present) or by fitting integrated forms of
these rocket equations to the data. The latter is a multi-
variate orthogonal distance regression23 problem requir-
ing fitting of a curve in the 3-dimensional phase space
defined by t, R, and M . Details of this type of analy-
sis will be described elsewhere. Results from the tech-
nique, applied to the R(t) and M(t) extracted in Fig. 6,
are shown in Fig. 8. The inferred pa and ṁa are very
close to the values obtained directly from the radiation-
hydrodynamics simulation. Late in time, fb can no longer
be neglected and the inferred pressure underestimates the
ablation pressure.

VIII. EXPERIMENTAL TEST

A. Experimental set-up

An experimental test of this technique was performed
at the OMEGA laser facility, a neodymium-doped phos-
phate glass system operating with frequency-tripled, 0.35
µm light.25 Indirectly-driven implosions were probed us-
ing area backlit x-ray streaked radiography with 5.2 keV
x rays from Vanadium He-α fluorescence. A schematic of
the experimental setup is shown in Fig. 9.
Copper-doped beryllium capsules with no gas fill were

used. The ablators had an inner radius of 215 µm and
were composed of an inner layer of 4 µm pure Be, a 26 µm
middle layer of beryllium doped with 3.0 atomic percent
of Cu, and an outer layer of either 6 or 21 µm thick
pure Be. Dopant concentrations were chosen so that the

FIG. 8. (Color online) Ablation pressure, pa, and mass ab-
lation rate, ṁa, for the simulated implosion shown in Fig. 6.
The values obtained by fitting the simple rocket model to
the experimental observables M(t) and R(t) are shown as red
diamonds and compare favorably with the values obtained di-
rectly from the hydrodynamic simulation (black line). Around
the time of peak velocity (16.5-17.0 ns) the contribution of
the capsule back pressure, fb (dashed line) reduces the accel-
erating force on the capsule causing an underestimate of the
ablation pressure based on the simple rocket model.

optical depths would be comparable to those expected
when backlighting NIF capsules using higher backlighter
energies.

Each capsule was held inside a hohlraum composed of
25 µm thick Au. Hohlraums were 1.6 mm in diameter
and 2.5 mm long with a 1.2 mm diameter laser entrance
hole (LEH) at each end. No hohlraum gas fill was used.
The axis of rotation of the hohlraum was aligned along
the P6-P7 axis of the OMEGA target chamber. For ra-
diography access two narrow slots were made on either
side of the hohlraum. The direction of the slots was par-
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FIG. 9. (Color online) Schematic (not to scale) of the
OMEGA experimental setup. The Vanadium foil is glued
on to the slot on the backlighter side of the hohlraum. A
matching slot on the opposite side of the hohlraum allows x
rays to propagate through the imaging slit to the x-ray streak
camera. The imaging slit is positioned to magnify the image
by a factor of 20.5.

FIG. 10. (Color online) Hohlraum radiation temperature
measured using the Dante soft x-ray spectrometer24 (solid
black line). The total laser power incident on the hohlraum
is shown as a blue dashed line.

allel to the hohlraum axis. The slot on the backlighter
side (H7) was 1000 µm long and 300 µm wide while that
on the streak camera side (H14) was 1000 µm long and
100 µm wide. The H7 slot was covered by a 5 µm thick
V backlighter foil while the H14 slot was covered with a
50 µm thick CH foil to prevent closure of the slot during
laser ablation of the hohlraum. Slots were offset in oppo-
site directions from hohlraum center to account for the
radiography axis (H7-H14) being 10.8◦ off-perpendicular
from the hohlraum axis. Calibration shots were taken on
hohlraums without capsules to measure the backlighter
spatial profile and, in conjunction with a grid on the H14
slot, to experimentally measure the magnification.

A total of 40 beams were used to heat the hohlraum.
The 20 beams illuminating each LEH were incident at
29◦ (5 beams), 42◦ (5 beams), and 59◦ (10 beams) to
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FIG. 11. (Color online) A sample x-ray streak image of an im-
ploding capsule from OMEGA showing the entire time history
of the implosion from shock compression to shell acceleration
to stagnation at 3.3 ns. The UV timing fiducials are visible
at early times.

the hohlraum axis. A shaped laser pulse approximately
2.7 ns in duration was used (see Fig. 10). Due to facility
constraints the same laser pulse shape was used for the
backlighter pulses. Maximum available energies of ∼ 320
J/beam were used on all shots.

Eight backlighter beams were used to illuminate the
central ∼800 µm field of view of the hohlraum slots.
Beams were tiled in space and staggered in time to op-
timize the x-ray emission brightness and uniformity in
both space and time. The beams were incident at 15◦,
25◦, 49◦, or 60◦ to the backlighter normal, with a pair
of beams at each angle. Both 60◦ beams were focused
to 150 µm spots at the backlighter center while one from
each of the other pairs was pointed to a 400 µm diameter
spot centered 150 µm to the left or right of backlighter
center. The 49◦, 25◦, and 15◦ beams began at -1, 0, and
+1 ns respectively while one of each of the 60◦ beams
was timed at 0 or +1 ns (here 0 ns represents the time
when the heater beams begin).

The primary diagnostic was the SSC-A x-ray streak
camera26 run with a Au photocathode. Images were
recorded on a 4096×4096 charge-coupled device using
2×2 binning. The streak camera slit was 500 µm wide
and positioned at 49.5 cm from target chamber center
(TCC). The 10 µm wide imaging slot was positioned at
2.82 cm from TCC with a final magnification of 20.5 and
a spatial resolution of ∼10 µm. The camera sweep speed
was set to capture a sweep window of ∼ 4 ns, giving
a time resolution of ∼50 ps. A UV timing comb was
used on each streak record to measure the sweep speed
and provide and absolute timing reference. The multi-
channel soft x-ray diagnostic Dante24 was run to capture
the time history of the hohlraum x-ray emission and thus
radiation temperature.
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FIG. 12. (Color) Streaked x-ray intensity profile from Fig. 11 at 4 times (black) along with the best fit from the regularization
analysis, I(y) (red), and the inferred backlighter intensity, I0(y) (blue). Note how I0(y) evolves in time due to changes in x-ray
emission from the backlighter foil and time-evolving attenuation by the ablator blow-off. Data were binned 10 pixels in time
and space to reduce noise.

B. Results

X-ray streaked radiographic images were obtained on
shots under similar drive conditions using targets with
either 36 µm or 51 µm thick ablators. A sample streak is
given in Fig. 11 for a capsule with a 36 µm thick ablator.
The measured hohlraum radiation temperature is shown
in Fig. 10 and reaches a peak of 200 eV.
Sample x-ray intensity profiles from this streak record

are shown in Fig. 12 for 4 different times. The best fit
intensity profile, I(y), found using the regularization pro-
cedure is shown in red with the inferred backlighter inten-
sity, I0(y), shown in blue. As described in Section IVA
the inferred shape of I0(y) captures the spatial variation
in the backlighter source as well as that caused by the
blow-off plasma. The spatial and temporal variation in
I0(y) is apparent in the various profiles.
The inferred 〈R(t)〉, 〈U(t)〉, 〈ρR(t)〉, and M(t) for this

36 µm thick ablator shot are shown in red in Fig. 13.
Data from a target with a 51 µm thick ablator is shown in
black. Each point without an error bar represents the re-
sult from the regularization analysis at a single time step.

Data with error bars give the statistical average of points
within successive time windows consisting of ∼15 data
points each. Also shown are the results from radiation-
hydrodynamic27 simulations. These calculations are in
reasonable agreement with the data over most of the time
history of the implosion. A fit of the rocket model to the
data around the time of peak radiation drive gives an ab-
lation pressure Pa = 79 Mbar and a mass ablation rate
ṁa = 4.3 × 106 g/cm2.s. This is comparable to that
expected from scaling laws at Tr=200 eV.1

IX. CONCLUSIONS

An x-ray streaked radiography technique to measure
the time-resolved radius, velocity, ρR, and mass of im-
ploding capsules has been developed as part of the effort
to achieve ignition at the NIF. ρ(r) is extracted from the
x-ray transmission profile at each time step with the in-
tegrated quantities - ρR, radius, and mass - then being
determined from the first three moments in ρ(r).
Regularization is used to address the ill-posed problem
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FIG. 13. (Color) Average ablator radius, velocity, ρR, and remaining mass fraction versus time for targets with either 36 µm
thick (red) or 51 µm thick ablators (black). Data are binned in time allowing statistical uncertainties to be determined from
errors in the coefficients of a local linear fit. Binned points (shown with errors bars) are connected by smoothing splines (solid
lines). Dashed lines show radiation-hydrodynamic27 simulations of the same spatially-averaged quantities.

of having an unknown backlighter emission profile and
unknown x-ray attenuation in the blow-off plasma. The
solution is found to be that which optimally satisfies the
a priori constraints that ρ(r) is localized in radius space
and I0(y), the effective backlighter profile, is smooth and
delocalized in object space. It is thus the scale length that
distinguishes shell absorption variations from backlighter
variations.

The Bayesian strategy of optimizing a solution sub-
ject to a priori constraints means that the technique is
only as accurate as the constraints chosen. Three ap-
proaches were taken to justifying and validating the tech-
nique and its constraints: (i) Mathematical proofs were
derived to show that higher moment details of ρ(r) are
not important, thus giving freedom to choose the func-
tional form of ρ(r). (ii) A rigorous analysis of a simulated
NIF radiograph demonstrated excellent fidelity in track-
ing the average radius, velocity, ρR, and mass even when
the spatial resolution was poorer than the ablator thick-
ness. (iii) A full experimental test of the technique at
the OMEGA laser system showed good agreement with
radiation-hydrodynamic simulations. Together these re-

sults demonstrate that the technique is ready for use on
upcoming experiments at the NIF.
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