MEASUREMENT OF THE TEMPERATURE

DEPENDENCE OF k_∞ FOR A

$^{233}\text{UO}_2 - \text{ThO}_2$ HTGR LATTICE

by

E. P. Lippincott

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Table of Contents

List of Tables .. iii
List of Figures .. iv

I. Introduction ... 1

II. Principle of the Measurement 3

III. Description of Fuel 7
 A. Fuel Blocks .. 7
 B. Loading of Fuel Blocks 11
 C. Description of Central Cell Blocks 13
 D. Special Samples 15

IV. PCTR Experiment 17
 A. Spectrum-matching Measurements 17
 B. Reactivity Measurements 20
 C. Measurement of Absorptions in the Central Cell ... 23

V. HTLFR Experiment 31
 A. Test Lattice Description 31
 B. Pre-experiment Calculations and Spectrum-matching Measurements 34
 C. Room Temperature Measurements 37
 D. Pressure and Temperature Coefficients of Reactivity . 42
 E. Reactivity Measurements versus Temperature 46

VI. Data Analysis and Results 54
TABLE OF CONTENTS, continued

A. Corrections to Reactivity Data 54

B. Corrections to the Measured Cell
 Absorptions .. 57

C. Mismatch Corrections 58

D. Evaluation of Experimental k_∞ 59

E. Evaluation of η_{233} 61

F. Poison Blocks ... 62

G. Worth of ^{235}U Block 68

VII. Theoretical Calculation of k_∞ and
 Comparison with Experiment $^{\infty}$ 70

VIII. Conclusions ... 75

References: ..

Appendix A: Analysis of Epithermal Copper
 Absorptions .. 77

Appendix B: The Nitrogen Correction 83
LIST OF TABLES

TABLE I:	Thoria Particle Size Distribution	10
TABLE II:	Composition of PCTR Central Cell	14
TABLE III:	Composition of HTLTR Central Cell	15
TABLE IV:	Composition of Poison Blocks	16
TABLE V:	Relative Reactivity Worths in the PCTR	21
TABLE VI:	Evaluation of Cell and Copper Absorptions	29
TABLE VII:	Room Temperature Reactivity Measurements in HTLTR	40
TABLE VIII:	HTLTR Temperature Coefficient of Reactivity	45
TABLE IX:	Reactivity Worths Measured as a Function of Temperature (μ₂ Corrected)	47
TABLE X:	Reactivity Worths Normalized to Thermal Absorber Worth	53
TABLE XI:	Evaluation of Experimental kₘ	60
TABLE XII:	Theoretical Parameters and kₘ	71
TABLE XIII:	Six Group Energy Boundaries	80
TABLE XIV:	Epithermal Copper Correction Term	82
TABLE XV:	Correction Terms for Nitrogen Correction	85
TABLE XVI:	Constants Used in Evaluation of the Nitrogen Correction	88
TABLE XVII:	Evaluation of Nitrogen Content	92
ABSTRACT

The second in a series of experiments using the High Temperature Lattice Test Reactor has been completed and provides information on the temperature dependence of k_{∞} for a $^{233}UO_2 - ^{232}ThO_2 - C$ fuel mixture. The infinite medium multiplication factor, was found to decrease by 0.0322 ± 0.0015 from $20^\circ C$ to $1000^\circ C$. This result provides direct information necessary in the design of the control system and in the safety analysis for advanced High-Temperature Gas-Cooled reactors.
The temperature dependence of the infinite medium neutron multiplication factor, k_∞, for a Th_2O_2-$^{233}\text{U}_2$ Lattice has been measured in the High Temperature Lattice Test Reactor (HTLTR). These measurements were carried out as part of a program to measure nuclear parameters in lattices typical of high-temperature gas-cooled reactors (HTGR).

The Th_2O_2-$^{233}\text{U}_2$ Lattice was constructed of graphite blocks 24-inches long containing fuel channels on a 0.75-inch square pitch. Each fuel channel was 0.470-inches in diameter and was loaded with a mixture of Th_2O_2 powder, graphite powder, and Th_2O_2-$^{233}\text{U}_2$ microspheres coated with pyrocarbon. Each fuel channel was sealed with a 1/2-inch end cap on each end. The average carbon-to-thorium atom ratio is about 205 and the carbon to ^{233}U ratio is 11,000.

Room temperature measurements of k_∞ in the Physical Constants Test Reactor (PCTR) have been described previously.\(^{(1)}\) As in the PCTR experiment, the measurements in the HTLTR were made using the unpoisoned technique.\(^{(2)}\) In this technique the reactivity worth of a small sample of the lattice (central cell) at the center of the reactor is normalized to the worth of a normal reflector (copper) and k_∞ is evaluated using the two energy group equation:\(^{(3)}\)
\[k_\infty = 1 - \left[\frac{\Delta \rho_{\text{cell}}}{\Delta \rho_{\text{Cu}}} \right] \frac{\langle \Sigma P \rangle_{\text{Cu}}}{\langle \Sigma P \rangle_{\text{cell}}} \frac{1}{2} \left[1 + \frac{\langle \phi^+ \Sigma \phi \rangle_{\text{Cu}}}{\langle \phi^+ \Sigma \phi \rangle_{\text{cell}}} \right] \]
\[
\frac{(1+\tau \beta^2)(1+L_1 \beta^2)(1-p)L^2 B^2}{1+(1-p)L^2 B^2} + \frac{\tau \beta^2 (1+L_1 \beta^2) \left[\tau \beta^2 - \eta f_1 (1-p) \right]}{1 + \tau \beta^2 - \eta f_1 (1-p)}
\]

The \(k_\infty \) defined in this expression is for fluxes in the fundamental mode (a bare critical system), and a small correction is necessary if the flux ratio at the reactor center differs from the fundamental mode value. The two correction terms dependent on the buckling are calculated using a buckling consistent with the experimental value of \(k_\infty - 1 \). The PCTR absorption measurements were used and corrections for changes in central cell neutron absorption relative to the absorption in the normalizing copper absorber were calculated as a function of temperature.

The values of \(k_\infty \) derived from the measured reactivity data at each temperature are presented in Table I, together with the experimental error. Presented also are calculated values of \(k_\infty \) using the computer codes GRANIT \(^{(h)}\), a modification of THERMOS \(^{(5)}\) which includes particle size effects in the fuel, for the thermal region and EGGNIT \(^{(6)}\) for the epithermal region. Several improvements in these codes since the earlier report \(^{(1)}\) have resulted in slightly modified values of \(k_\infty \).
<table>
<thead>
<tr>
<th>TEMPERATURE °C</th>
<th>MEASURED k_∞</th>
<th>CALCULATED k_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.0587±.0014</td>
<td>1.0507</td>
</tr>
<tr>
<td>150</td>
<td>1.0471±.0017</td>
<td>1.0370</td>
</tr>
<tr>
<td>300</td>
<td>1.0367±.0014</td>
<td>1.0256</td>
</tr>
<tr>
<td>500</td>
<td>1.0297±.0011</td>
<td>1.0156</td>
</tr>
<tr>
<td>750</td>
<td>1.0245±.0011</td>
<td>1.0081</td>
</tr>
<tr>
<td>1000</td>
<td>1.0237±.0012</td>
<td>1.0034</td>
</tr>
</tbody>
</table>
A comparison of the calculated and experimental results indicates that the calculated k_∞ is consistently smaller than the experimental value, about 0.008 at room temperature. This difference is larger than the experimental error, but may be due largely to uncertainties in the exact fuel loading (mainly in the 233U particles) which would affect the theoretical value. However, fuel loading uncertainties have little effect on the temperature variation of k_∞. The measured change in k_∞ from 20°C to 1000°C is 0.035 ± 0.002 compared to the calculated change of 0.047. The source of this significant discrepancy has not yet been identified.
REFERENCES

