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1. Intreduction

In Ithis tatk, T would like to give some exomples of four-dimensional quantum sofi.
ton solutions, For simplicify, lef us first consider only relativistic Boson fields with non-
Yinear couplings {assuming them h: be renommalizable in the usual sense). We define a closs-
ical seliton solution to be cne that |

1. has o finite and nonzers rest metss,

and 2. is confined in o finite region in space at all time,
In quosttum mechunic;, the cerresponding quantum soliton solutien then 1} also has a finite
and nonzero mass (expressed in terms of the usval renormol ized guantities), which reduces
asymplotically to the classical exprassion when the appropriately defined nonlinear coupling
constant g s sufficiently small, and 2) has o spotinl extension thot gh.res rise fo *'sofr'; farm
factors (i.e., goes to zers of large momentum-tronsfer), Because of the uncertainty principle,
the quantum soliton solution cannct be confined in space at uli time. [Acmrding ko our
definition, neither the usual free meson solution nor the hydrogen atom is o soliton, since
classically the former is cleorly unconfined and the latter, being unstable, emits a rudiurign.

field that also s unconfined. ] Our definition differs from that used in seme mathematical

literature in which tha term soliton is restricted only to some extremely specializad nonlinaar
solitary wave solutions whose shape ond velocity remoin unchonged even after o head-on col-
lision; such o norrew definition is quite useless in porticle physics since even two glectrons,

after a heod-on collision, hove to radiate.

In the four-dimensionol space, if besides scalar fields there is also the non-Abelian
gauge spin-1 field, scfitons may be formed by imposing special boundary conditions on the
gavge field at infinity, as in the ¥'Hooft magnetic monopole selution, As we shall ses,

there is an oltemnative mechonism to generote soliten solutions without ony special boundary




|

condition at infinity. Llet us cssume that the system has some local current conservation law
N - : a_ ,.a & . a .

{EJF,"’B::P} =0 . Consider the sector Q@ = f i r£0. Since @ contains both the

field variables and their time derivatives, classically the lowest energy state is, in general,

time—dependent, With an appropriate intaraction, this lowest energy state may be a soli=

ton, as will be illustrated by the following simple example,

II. An Example

We assume the system fo consist of only spin;ﬂ.fields: a complex field ¢ ond o Her-

mition field X . The interaction Logrongion density £ is

t 2 -
L = ,%E; ;.1’; -3 .a._ - {m+g.x]2 @Tcp- 92‘”’(91{} {I}_

where xep ={r, it) ond @T is the Hermition n:unju.guf& of ¢. Becawse of rennrmqliiul:ilily,
Y is assumed to be a 4th-order polynomial in X . Furthermore, we assume V to have an

-

absolute minimum ot X =0 and o local minimum of X =-m/y . Thus, ¥V may be written as

Vigx} = %f-?“—}z _?_iiﬂ_ [+ + am(m+ 3 gx)] @)
where i and o are constants, When X~ 0, g 2V(gX}—~}u2X?; hence, p may be
regarded as i'.he X=meason moss, We nota that V'(gX) SdV{gX}/d{gX) is zero at X =;U ;
/g ond ~3m(1 +a)/g. Thus, 0Sa€ 1 in order that X =~ m(} +)/g be o local
maximum of ¥ and X = 0 be its absolute minimum. Let A be the magnitude of V[‘;g.}(]

2 2

ot its local minimum, gX ==m, measured in units of p'm

: AEV(em)/ (pm)’

= |:_6|fl +a) ]_ln. Becouss a is between 0 and 1, one has 0S8 AL 1]1- . The current

N s = T o) a:p ‘eFims th I local H
density ]p i [q: el q;] satisfies the usyal lecal conservation

low, Consequently, the chorge Q = =i f Jy £ is a constant of motion.
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For simplicity, we discuss only the radially symmetrical solution. For the classical

itk

solution, it is convenient to introduce rp{?, b = g'lp{r) @ ond X [T, H) = 9'1 B(r)

where p and 8 are both real functions, depending enly on r = |T| . Therefore, p and

8 sarisfy

:z j (@ L) s+ < m+6)p = 0 3)
and

1 d 2 o8 2 ) =

- E_{r ) - 20°(m+8)~ V(@) = 0 (@)
where

Vi) = (L) oim+0) (m+ 22 ) )
m +a *

=
The chorge Q isrelated to w and p through Q =Et{u,f92) JI; rngdr . The total

energy of the system is given by
_ 2 *2
E = (4vg") _£ & dr {6)

whare 2 s 2
£ o= (By 4 x®) L mief v . @

The radial equations {3) and {#) con be derived by keeping G Fixed and setting the
variational derivatives SE /Sp{r) = 8E/88(r) = 0 .

We establish the following two propertios for the classical sclution:
Theorem 1. The minimum of E when X =0 is E:in= Qm ; the correspending ¢ for
QA0 is not confined within a finite volume, EThe superscript O in Egin SBrves as
reminder of the condition X =0. ]
Proof. ‘When X =0, one has clearly 8 =0, ond therefore £ 2 {m2+ uE} p2 ; this leads
to E2 m21+ 1 {GZKI) where | = {41;."92}_.\‘33 2 p2 dr . By vorying with respect to |,
wa derive o lower bound E:i“ 2 Qm . An upper bound of Eﬂin can be obtained by

/R

assuming o trial function pl{t) =comstant X ¢ ° . \We cbhain, after minimizing the energy

with respect to the multiplicative constant in p{r)
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am € € qEier?’ @)

By letting R— o0, we establish Theoram 1, which is the exprassion for the usval unconfined
selution. [Rigomusly speaking, if the entire system is contained wilhin;n a finite volume
with a periadic boundary condition, then the state Eﬂirﬁ Qm exists. On the other hand,
if the volume of the system is infinite, then in order that Q is well defined, we must assyme
p 1o be square-integrable. Therefore, clussicolly the state Eﬂin; QO m does not exist. The
value Qm is only the limit-point of, but not included in, the set E(p), which is evaluated
according to {8) over all square=integroble p, provided 8 =0 . ]

ThEanm 2. When G is greater than a critical volue Q . there emerges o soliton snluhnn

with an energy lower than Gm . For smell g, G (32“ H) & if ﬁ}éﬂ and
3
b T
Q_ = it A=0,
< ?g_im

Praof. (i) Let us consider first the case A Z 0. We assume o trial function for (T} -

e f SR
p{l’] = r—- sinwr or I = | {?}
0 for r 2 R

5 -
where yR=n and Py = [ngﬂurz} . The tral function for B(r) isasumed toba - m
for r€R, m{r=R«A)/A for R+AZr 2R and 0 for r2R+A. An upper bound of

the lowest energy value Emin can then be derived, By using (&) and {7}, we find

2 .
nQ 2nm 2 3 4 3 _.2 4 3.

+ _]'b.,h(a2+ RA + ;}?} # N3k« 3rr D]

(10)

This inequality holds for arbitrary values of A and R. The optimal value of A can be

easily seen to be D{p-1} . For R largeond A £0, the ﬁéhthund side of {10) becomes
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R*IIQ +5 {41rR3 rrl2 pzﬂfgzj + 0 [Hzpmzfgz} . Toking its minimum, which occurs ot

-1

RE (Zpm) {gzﬁfﬁ}i , we find

A

: Emin

K
4 11(2:#'") ﬂi{l%+ D{Rzpmzfgz} (17}

| By comparing this upper bound with Qim, one establishes Theorem 2 for 4 20 .

(i) For A=0 and R large, by applying a similor argument to {10}, one derives

E

min < 6 = (4’" A\ Q* + orn?dy . 2

Actually, when A =0 and R is large, a better upper bound con ba obtainad by
assuming o different trial function for B(r) . We ossume 9(Y) =-m [‘I + ep{r- R]J ‘
but keeping p(r) the some, still given by {#). The upper b:mnd becomes
Emin S R'] T+ % [2-rrR2rn2|.|fgz} + D{Rmzfgz} . By taking its minimum value, which

&

3°Q )

eccurs at R = —— we find
dm*p !

< 3 (4"' F‘) at s D[‘Rmifg * | (13)
1/6

This improved upper bound is lower than the previous bound (12) by o factor {g )
By directly comparing (13) with G m, we complete the proof of Theorem 2. .

It is not difficulr to show that when @ is sufficiently large, both the upper baunds
(11) and (13) give respectively the correct asymplotic expressions of € . for the cases
AFO and & =0. We note that even when 92 is small, Qc may still be ~ Q(1},
provided that the ratio {p/m} is also small,

The quantization of this soliton solution con be carried out by following the general
canenical procedure developed in collaboration with N, Christ, We sxpand the quaﬁh;m

fiald operators:



Y
b.

o) = o7 'p(r-T)e” + L q 0 4 (F-Tre" ,
' n .
and - (M)

X(T,1) = g 8 -Z)+ L q ) ¥ (F-1)
n

where p(r}, 8{r) are the classical solutions and *Fn{_r'}_, 1*;(?) are gfl ¢.no, Functions
that sqtisfyﬂ-ﬂeﬂafn set of orthonormal relations, [ The details will be discusted in the ralk
by N, Christ, :l The result is that E , £ and the .q“’s describe a-complete set of general=
ized coordinate voridbles, all independent, The conjugase momentum-of Z s the total mo-
mentum P of the system, and the conjugate momentum of z is the charge operator G .
Becauserthe Schroedinger wave funclion is periodic in .z -with a.petied =2x, the :hu.rge

. Q is quantized. .Wheﬁ g is smoll, to '{J{g*z} the guantum soliton mass is given by the

same clossi cal expression {11) or {13).

111, Abnomal MNuclear State
The generalization of the above saliton mechanism to include-Femmicns leads I,
_among cthers, the abnormal nuclear state. The details will be omitted in this written report,

-gince it-has olready been well discussed in a series of papers written .in collaboration with

G. C.Wick and M. Margulies.

IV, -Remarks
Besides the abnormal nuclear state, “solitons involving o few Fermions can alsu;be
constructed quite simply, e.g., by first forming a soliten solution out of Bosons, and then
assuming an odditional arrrucﬁv_e inferaction which binds the Fermions to the Boson-soliton
the composite is a new soliton solution. When the non-linear coupling g is small, systema-
tic quontym expansions can be carried out for such soliton selutions, I:Ex-::epr for thé weak

strength of g, these examples resemble the bag model considered by Bardesn, Chunm;-ritz,



[l

Drell and Yon, ond other related modals of M, Creutz and of P, Vinciarelli. ]

We note that even when all elementory interactions ore characterized by a weak
couvpling g, since the Boson Field strength in the soliton solution is ~ D{g-l} . the binding
force between the additional Fermion and the Boson-soliten remains strong, ~ o). For
the sama reasen, the forces between solitons {with or without Fermions) can be very strong,
~ 0{9-2} . Because of the inherently "soft" fonn factors associated with such strong forees,
at small distancaz only the elementary weak interaction remains. Consaquently, there is no
ultraviclet divergence connected with such strong forces between solitons. In this sense,
these solitons resemble the observed hadrons; their strong forces are "soft”, but their waak

interactions are "hard” (i.e., point-like).




