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I. Introduction 

In this talk, I would l ike to give some examples of four-dimensional quantum so l i -

ton solutions. For simplici ty, let us first consider only relat iv ist ic Boson fields with non­

linear couplings (assuming them to be renormalizable in the usual sense). We define a class­

ical soliton solution to be one that 

1. has a f in i te and nonzero rest mass, 

and 2. is confined in a f in i te region in space at al l t ime. 

In quantum mechanics, the corresponding quantum soliton solution then 1) also has a f in i te 

and nonzero mass (expressed in terms of the usual renormalized quantities), which reduces 

asymptotically to the classical expression when the appropriately defined nonlinear coupling 

constant g is suff ic ient ly small, and 2) has a spatial extension that gives rise to "soft" form 

factors ( i . e . , goes to zero at large momentum-transfer). Because of the uncertainty pr inciple, 

the quantum soliton solution cannot be confined in space at al l t ime. [^According to our 

def in i t ion, neither the usual free meson solution nor the hydrogen atom is a soliton, since 

classically the former is clearly unconfined and the latter, being unstable, emits a radiation 

f ie ld that also is unconfined. J Our def in i t ion differs from that used in some mathematical 

l iterature in which the term soliton is restricted only to some extremely specialized nonlinear 

solitary wave solutions whose shape and veloci ty remain unchanged even after a head-on c o l ­

l ision; such a narrow def in i t ion is quite useless in part ic le physics since even two electrons, 

after a head-on col l is ion, have to radiate. 

In the four-dimensional space, i f besides scalar fields there is also the non-Abelian 

gauge spin-1 f ie ld , solitons may be formed by imposing special boundary conditions on the 

gauge f ie ld at in f in i ty , as in the t 'Hooft magnetic monopole solution. As we shall see, 

there is an alternative mechanism to generate soliton solutions without any special boundary 
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condition at in f in i ty . Let us assume that the system has some local current conservation law 

(3 j / 3 x ) ' = 0 . Consider the sector Q = / L d r / 0 . Since Q contains both the 

f ie ld variables and their time derivatives, classically the lowest energy state is>. in general, 

t ime­dependent. With an appropriate interaction, this lowest energy state may be a so l i ­

ton, as wi l l be i l lustrated by the fol lowing simple example. 

I I . An Example 

We assume the system to consist of only spin­0 f ields: a complex f ie ld (j> and a Her­

mit ian f ie ld X . The interaction Lagrangian density £ is 

_ 3<|> 3<J> i 
3x 3x 

M M 

2 

( IT) "
 (m + gX )2 ♦ * * ­ g

"
2 v(gx) (1) 

where x> = ( r , i t ) and <f> is the Hermitian conjugate of <j> . Because of renormalizabil i ty, 

V is assumed to be a 4th­order polynomial in X . Furthermore, we assume V to have an 

absolute minimum at X = 0 and a local minimum at X = ­ m/g . Thus, V may be writ ten as 

2
 2

y? ? 
V ( g X ) = * ( ■ £ ­ ) f r V [ ( m + g X ) + am(m + § g X ) ] (2) 

­2 2 2 

where p. and a are constants. When X ­* 0 , g V ( g X ) ­ » 5 p X ; hence, u. maybe 

regarded as the X­meson mass. We note that V
1 (gX) = d V ( g X ) / d ( g X ) is zero at X = 0 , 

­ m / g and ­ ^ m ( l + a ) / g . Thus, 0 = a = 1 in order that X = ­ ^ m( 1 + a ) / g be a local 

maximum of V and X = 0 be its absolute minimum. Let A be the magnitude of V ( g X ) 
2 2 _ 2 

at its local minimum, gX = ­ m , measured in units of p m : A = V ( ­ m ) / ( p m ) 
= [ 6 ( 1 + a) J a . Because a is between 0 and 1 , one has 0 = A =i ­r^­ . The current 

density i = ­ i [ r =—*­ ­ —­—<t> I satisfies the usual local conservation 
1 V

 L V 3x 3x
 Y

J 
u u 

_ 3 
law. Consequently, the charge Q = ­ i / j ­ . d r is a constant of motion. 
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For simpl ici ty, we discuss only the radial ly symmetrical solution. For the classical 

solution, i t is convenient to introduce <j>(r,t) = g p(r) e and X ( r , t ) = g 9(r) 

where p and 8 are both real functions, depending only on r = | r | . Therefore, p and 

0 satisfy 

"r2~ "dr~ K' ~37" 
±- - 1 - (r2 *L) +U

2p - (m+0)2p = 0 (3) 

and 

-j- -£- ( r2 4 r ) - 2p2(m + 6 ) - V'(0) = 0 (4) 

w here 
M 2 28 

V ' ( 8 ) = (£-) e ( m + 8 ) ( m + - J ^ _ ) . (5) 

2 °° 2 2 
The charge Q is related to u> and p through Q =8Tr(u /g ) f r p dr . The total 

0 
energy of the system is given by 

E = (4Vg2) 7 r 2 £ d r (6) 
0 

where 2 9 

$ = ( £ ) + * ( * ) + " V + (m+9) 2p 2+ V(8) # (7) 

The radial equations (3) and (4) can be derived by keeping Q f ixed and setting the 

variat ional derivatives 6E/8p(r) = 6E/68(r) = 0 . 

We establish the fol lowing two properties for the classical solution: 

Theorem 1. The minimum of E when X = 0 is E . = Q m ; the corresponding d> for m m r a T 

Q / 0 is not confined wi th in a f in i te volume. |The superscript 0 in E . serves as a 
t- r mm 

reminder of the condit ion X = 0 . ] 

9 9 9 
Proof. When X = 0 , one has clearly 8 = 0 , and therefore £ e (m + u ) p ; this leads 

2 2 2 °° 2 2 
to E k m I + ^ ( Q / I ) where I = (4ir /g ) / r p d r . By varying wi th respect to I , 

0 
we derive a lower bound E . e Q m , An upper bound of E . can be obtained by 

mm r r mm 
- r /R 

assuming a tr ial function p(r) = constant X e . We obtain, after minimizing the energy 

with respect to the mul t ip l icat ive constant in p(r) 



.0 < _ , 2 „ -2 v2 
Q m < E . = Q ( m +R ) . (8) 

mm v v ' 

By let t ing R-«- co , we establish Theorem 1, which is the expression for the usual unconfined 

solution. ^Rigorously speaking, i f the entire system is contained wi th in a f in i te volume 

wi th a periodic boundary condit ion, then the state E . = Q m exists. On the other hand, r ' ' mm 

i f the volume of the system is in f in i te , then in order that Q is wel l defined, we must assume 

p to be square-integrable. Therefore, classically the state E . = Q m does not exist. The 

value Q m is only the l imi t -po int of, but not included in , the set E(p) , which is evaluated 

according to (6) over al l square-integrable p , provided 6 = 0 . J 

Theorem 2. When Q is greater than a cr i t ica l value Q , there emerges a soliton solution 

wi th an energy lower than Q m . For small g , Q = ( - ) A i f A / 0 and 
3 c \9mg / 

Q s f l i i if A = 0 . 
C 2g2m 

Proof, (i) Let us consider first the case A / 0 . We assume a tr ial function for p ( r ) : 

. . , — sin u r for r = R 

P ( 0 = < r (9) 

0 for r ^ R 

1 
2 2 2 -* 

where uR = i and p . = ( Q g /4TT ) . The tr ia l function for 0 ( r ) is assumed to be - m 
f o r r i R , m ( r - R - X ) / X for R + X = r = R and 0 for r = R + X . An upper bound of 

the lowest energy value E . can then be derived. By using (6) and (7), we find 

E. < 19. +fJL^i [ 2 M
2 A ( R 3

+ | R 2 X + 1 R X 2
+ 4 - X 3 ) 

mm R on2 L ^ \ 5 5 35 ' 3g ' 

1 2 2 2 2 - 1 2 2 ~\ 
+ ' p X(RZ + RX + j XZ) + X ' ( 3 R Z + 3 R X + X * ) ] 

00) 

This inequali ty holds for arbitrary values of X and R. The optimal value of X can be 

easily seen to be Q ( p " ) . For R large and A / ^ 0 , the righthand side of (10) becomes 



, -1 ~ . i , . „3 2 2 A / 2 , . ^ , „ 2 . 2 , 2 . R TTQ + 3 (4TTR m p A / g ) + O (R pm / g ) . Taking its minimum, which occurs at 
1 o 1 

R ~ ( 2 p m ) ' 2 ( g Q / A ) 3 , we find 

I 
\2 1 

E . i % ^ ( ^ - ) A i Q 3 + 0 ( R 2 p m 2 / g 2 ) . (11) 
mm J \ g J 

By comparing this upper bound with Q m , one establishes Theorem 2 for A / 0 . 

(i i) For A = 0 and R large, by applying a similar argument to (10), one derives 

Actual ly , when A = 0 and R is large, a better upper bound can be obtained by 

assuming a different t r ia l function for 0 ( r ) . We assume 0 ( r ) = - m f l + e^ J , 

but keeping p ( r ) the same, st i l l given by (9). The upper bound becomes 

< . - l - « . 1 ( 2 , . ? _ 2 . , _ 2 4 . „ , . _ 2 , . 2 . 

2„vi 
E . = R TTQ + i (2TTR m p /g ) + Q(Rm / g ) . By taking its minimum value, which 

occurs at R M ) , w e find 
\ 4 m 2 u / 

1 
2 3 

E . < 3n / 4 m p X Q 3 + 0 ( R m 2/2 ^ 

V3g y ^ 1 / 6 

This improved upper bound is lower than the previous bound (12) by a factor (y-) 

By direct ly comparing (13) wi th Q m , we complete the proof of Theorem 2. , 

It is not d i f f icu l t to show that when Q is suff iciently large, both the upper bounds 

(11) and (13) give respectively the correct asymptotic expressions of E . for the cases 
2 

A / 0 and A = 0 . We note that even when g is small, Q may st i l l be ~ O ( l ) , 

provided that the ratio ( p / m ) is also small. 

The quantization of this soliton solution can be carried out by fol lowing the general 

canonical procedure developed in collaboration wi th N . Christ. We expand the quantum 

f ie ld operators: 



<t>KO = g ~W­Z) .e
i z + E­ qnW ♦(7­­Z) e?Z . , 

n n n 

and (14) 

X(?,t) = g"
1
9(7­Z) + E q (t) ^ ( 7 ­ Z ) 

n 

where p ( r ) , 8 ( r ) are the classical solutions and $ ( r ) , 'P ( r ) are all c. no. functions 

that satisfy a certain set of orthonormal relations. £The details wi l l be discussed in the talk 

by N. Christ. "^ The result is that Z , z and the q 's describe a.complete set of general­

ized coordinate variables, al l independent. The conjugate momentum of Z is the total mo­

mentum P of the system, and the conjugate momentum of z is the ;charge operator Q . 

Because'the Schroedinger wave function is periodic in z with a.period =<2IT , the charge 
­ 2 

Q is quantized. When g is small, to Q.(g" ) the quantum soliton mass is given by the 

same classical expression (11) or (13). 

I I I . Abnormal Nuclear State 

The generalization of the abov.e soliton mechanism to include
v
Fermions leads to, 

'.among others, the abnormal nuclear state. The details wi l l be omitted in this writ ten report, 

since i t has already been well discussed in a series of papers writ ten in collaboration with 

G . C . W i c k and M.Margul ies. 

TV. • Remarks 

Besides the abnormal nuclear state, soli tons involving a few Fermions can also be 

constructed quite simply, e . g . , by first forming a soliton solution out of Bosons, and then 

assuming an additional attract ive interaction which binds the Fermions to the Boson­soli ton; 

the composite is a new soliton solution. When the non­l inear coupling g is small, systema­

t ic quantum expansions can be carried out for such soliton solutions. [^Except for the weak 

strength of g , these examples resemble the bag model considered by Bardeen, Chanowitz, 
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Drell and Yan, and other related models of M . Creutz and of P. V inc ia re l l i . J 

We note that even when al l elementary interactions are characterized by a weak 

coupling g , since the Boson f ie ld strength in the soliton solution is ~ 0 ( g ) , the binding 

force between the addit ional Fermion and the Boson-soliton remains strong, ~ O ( l ) . For 

the same reason, the forces between solitons (with or without Fermions) can be very strong, 

- 2 ~ 0 ( g ) . Because of the inherently "soft" form factors associated wi th such strong forces, 

at small distances only the elementary weak interaction remains. Consequently, there is no 

ul traviolet divergence connected wi th such strong forces between solitons. In this sense, 

these solitons resemble the observed hadrons; their strong forces are "soft" , but their weak 

interactions are "hard" ( i . e . , po in t - l i ke) . 


