STRUCTURAL EFFECTS OF NIOTIUM ION BOMBARDMENT OF NIOTIUM FOILS - A PROGRESS REPORT*

P. B. Mohr, B. Myers and W. Brunner

September 16, 1970

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

*This work was performed under the auspices of the United States Atomic Energy Commission for submittal to the "Energy 70" IECEC Conference, September 21-25, 1970, Las Vegas, Nevada.
A number of investigators have pointed out that the structure of thermonuclear reactors will be subject to a considerable variety of possible forms of radiation bombardment. These radiation forms will originate both within the reacting plasma and the surrounding fertile or structural materials. Both long and short range forms of wave energy and charged and neutral particles can be anticipated. A schematic of some of these radiation forms and their means of production is shown in Figure 1.

We can conveniently divide these radiation forms first into two categories: those which tend to be affected by the magnetic field confining the plasma, i.e., the charged particles, and those which are not, i.e., the wave form energies and neutrals. The effect which the former will have on their surroundings is strongly dependent on the nature of the magnetic confinement: while the latter would tend to be independent of the mode of confinement. Both would, of course, be dependent on the nature of the fusion reaction or fuel cycle employed.

In a similar manner, we can characterize the charged particle radiation as tending to be short ranged and to be of concern principally with regard to possible surface interactions. Photon and neutron radiation on the other hand may be either short or long ranged. It is a further convenience therefore to make a further distinction as to whether the radiation interactions take place principally at the surfaces or possibly deep within the structural or fertile materials of the reactor. Reactions of either kind may give rise to secondary radiations although those which are of greatest interest to the engineer tend to be associated with neutron events involving displacements and transmutations. (Fig. 2)

Early thermonuclear reactor systems are expected to rely principally on the deuterium - tritium (D-T) reaction for which the order of million of the reaction energy is released in the form of energetic (14 MeV) neutrons. These energetic...
neutrons are likely to have appreciable range in the surrounding moderating materials and to undergo on the average a number of nuclear interactions during the process of decay and capture. In the previously cited work, the nature of these neutron interactions was given singular attention both because of their appropriateness to early fusion systems and their uniqueness with respect to the limits of our existing experience with fission systems.

In Reference 1, it was shown that existing theory could be applied to the prediction of the range and energy relationships for the interaction of fusion neutrons with various solids. The result of these calculations is summarized in Table I and in Figure 3. The significance of these predictions is that for the materials surrounding a reacting D-T plasma, the production rate of displaced atoms would greatly exceed that characteristic of a fission reactor of comparable power. That is, the neutrons of the environment surrounding a fusion reaction will be both more numerous and more energetic than those of a fission reactor. For the structure of a D-T reactor moderator with power density of some of watts per cm2, one can predict that the rate of neutron induced displacements will exceed that of a fission reactor by one to two orders of magnitude. This is a conclusion which may prove of considerable consequence both to the design and more especially the lifetime of fusion reactors.

Perhaps equally significant is the observation that the predicted values for combined neutron energy and dose are well beyond either our present experiences or ability to duplicate.

As a consequence of the referenced calculations it was proposed that one of the principal results of neutron interaction, namely production of lattice atom displacements, might at least in principal be simulated by self-ion bombardment of thin foils to produce direct excitation of secondary or target atoms. (Fig. 4) These excited secondary atoms would then be expected to produce displacement cascades of the same nature as those which have been observed to be created by neutron bombardment.

THE SIMULATION OF NEUTRON DAMAGE IN FOILS

We direct our attention at least initially toward those refractory metals which appear to be attractive candidates as fusion reactor structural materials. In this instance, we have singled out niobium for first attention since it is a tractable engineering material, has proven to be relatively compatible with most prospective heat transfer and fertile materials and is likely relatively resistant to damage by surface bombardments. The predicted range of the displacement cascade due to a 14 MeV incident neutron in niobium is of the order a few hundred to one thousand angstroms (\AA), depending on the orientation and degree of order of the target. This range effectively limits the maximum thickness of specimen which can be bombarded with reasonable uniformity of displacement at a single time. The first order remaining question therefore is whether foils of this order of thickness can be prepared, bombarded under representative service conditions and the results interpreted in terms of the behavior of bulk specimen under service conditions.
The technology for the production of thin metal foils has been investigated for some time and rapid advances are still being made. Since in this instance, we have addressed ourselves to the effects of bombardment on the engineering properties of the materials, we have chosen to attempt the fabrication of free standing foil creep test specimen. (Fig. 5a)

The mechanical properties of thin foils have been reported on by a number of investigators. In general, thin foils of ductile metals have shown short time strengths of the same order as the bulk material down to thicknesses of a few thousand angstroms. For thinner foils where a single grain spans the thickness the measured strengths appear to increase in a predictable fashion by about 50% for each factor of two reduction in thickness.

Our foils are deposited by condensation of the metal vapor upon a soluble (salt) substrate; roughly sectioned and floated free upon the surface of a water bath from which they are lifted using the actual test frame. (Fig. 5b) Electron microscopy and diffraction (Fig. 6) has shown the as-deposited structure to consist mainly of small disordered grains with fairly frequent tear like defects. Subsequent heating (annealing) results in rapid grain growth, increased orientation and "healing" of the previously observed defects. (Fig. 7)
Our intent is to subject stressed foils of niobium to niobium ion bombardment while at temperatures up to 1150 or 1450 K for ion doses ranging from 10^{13} to 10^{17} ions per cm2, which are equivalent to neutron doses of approximately 10^{15} and 10^{16} respectively. The accelerator chosen for this initial work is a direct current type with a nominal beam energy of 100 KV and current of a few microamps using a sputtered metal source. We have equipped the target region of this accelerator with fixtures suitable for supporting, manipulating and heating the installed specimen. A schematic of the installation was shown above in Figure 4 and some of the associated hardware in Figure 8. During the bombardments, X-rays produced by the bombardments will be monitored both as a means of impurity detection and hopefully as a means of continuous determination of foil thickness.

Fig. 7 ELECTRON MICROGRAPHS OF ANNEALED NIOMBIUM FOIL

Fig. 8a - Mounting 1000 Å Foil

Fig. 8b - 100 KeV Accelerator (upper)

Fig. 8c - Foil Target Apparatus (lower)
Exposed specimen will be measured optically for elongation and those component by means of transmission electron microscopy with both unboared and unstressed control specimen run thru the same temperature and atmosphere history. Aside from direct measurement of the foil elongation or rupture strength vs. dose and temperature, the principal recorded quantity will be the density of resolvable bombardment produced displacement structures. Of particular interest will be any evidence of equilbrium or saturation levels of defects with increasing temperature and dose.

SPUTTERING, TRAPPING AND IMPURITIES

There are some aspects in which self ion bombardment is unlikely to simulate fusion neutron irradiation. Some of the more significant would appear to be the following:

1. Sputtering of the foil by incident ions: The data available at this time would indicate that at low temperatures, the sputtering coefficient of niobium for niobium at the chosen bombardment energy is of the order 3 to 4 sputtered atom per incident ion. At this rate, the recession of the surface of the foil should proceed at a rate of roughly one angstrom for each 10^{14} ions cm^{-2} (4.0 MeV cm^{-2}). Such a rate of recession may preclude reaching the largest doses of interest (above say 10^{15} cm^{-2}) without simultaneous redeposition of new material. We presently consider the possibility of backside sputtering unlikely since incident angles are unlikely to be oriented with channeling directions and highly ordered structures are likely to be disordered early in the bombardment sequence.

2. The trapping coefficient of the foil for the incident ions is assumed to be unity. We believe this value is justified both because of the thermodynamic conditions required for escape are unlikely to occur and because the highest doses anticipated are below those for which this effect is likely to be activated.

3. Probably the greatest tendency for stabilization of radiation induced defect structures in both the neutron and ion bombarded materials will come from impurity atoms, especially gases born within the solid thru transmutation reactions or introduced thru entrainment by bombardment, diffusion or chemical reactions. In the case of the simulated irradiation thru ion bombardment the potential problem will be attached thru careful control of the chemistry of both the specimen and environment. In the case of the prototype neutron irradiation, the effect will depend not only on chemical impurity considerations but also on the tendency for production of mobile or reactive species thru transmutation reactions. Present estimates place the probability that the latter effect will be limiting at a relatively low level.

CLOSURE

We have chosen to address ourselves to the question of kinetic interactions of fusion neutrons with reactor materials because we feel that this is the area of radiation damage related to fusion damage in which the most valuable contribution can be made at this time. We base this first on the likelihood that the D-T reaction will be the first successfully exploited and on the relative uncertainty which questions of containment and high energy neutron capture reactions extend over other enumerable radiation problems. Finally, present estimates indicate that the kinetic damage problem is the most likely to be limiting in terms of engineering design and economic lifetime of early fusion reactors, while transmutation reactions are more likely to govern the efficiency and operating economy.

REFERENCES