Interaction of $sup 238$PuO$sub 2$ heat sources with terrestrial and aquatic environments

PDF Version Also Available for Download.

Description

Radioisotope thermoelectric generators used in space missions are designed with a great factor of safety to ensure that they will withstand reentry from orbit and impact with the earth, and safely contain the nuclear fuel until it is recovered. Existing designs, utilizing $sup 238$PuO$sub 2$ fuel, have proved more than adequately safe. More data about the interaction of this material with terrestrial and aquatic environments is continually being sought to predict the behavior of these heat sources in the extremely unlikely contact of these materials with the land or ocean. Terrestrial environments are simulated with large environmental chambers that permit ... continued below

Physical Description

Pages: 28

Creation Information

Patterson, J.H.; Nelson, G.B.; Matlack, G.M. & Waterbury, G.R. January 1, 1975.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Radioisotope thermoelectric generators used in space missions are designed with a great factor of safety to ensure that they will withstand reentry from orbit and impact with the earth, and safely contain the nuclear fuel until it is recovered. Existing designs, utilizing $sup 238$PuO$sub 2$ fuel, have proved more than adequately safe. More data about the interaction of this material with terrestrial and aquatic environments is continually being sought to predict the behavior of these heat sources in the extremely unlikely contact of these materials with the land or ocean. Terrestrial environments are simulated with large environmental chambers that permit control of temperature, humidity, and rainfall using different kinds of soils. Rain falling on thermally hot chunks of $sup 238$PuO$sub 2$ causes the spallation of the surface of the fuel into extremely fine particles, as small as 50 nm, that are later transported downward through the soil. Some of the plutonia particles become agglomerated with soil particles. Plutonium transport is more significant during winter than during summer because evaporation losses from the soil are less in winter. Aquatic environments are simulated with large aquaria that provide temperature and aeration control. Earlier fuel designs that employed a plutonia-molybdenum cermet showed plutonium release rates of about 10 $mu$Ci/m$sup 2$ - s, referred to the total surface area of the cermet. Present advanced fuels, employing pure plutonium oxide, show release rates of about 20 nCi/m$sup 2$ - s in seawater and about 150 nCi/m$sup 2$ - s in freshwater. The temperature of these more advanced heat sources does not seem to affect the release rate in seawater. (auth)

Physical Description

Pages: 28

Notes

Dep. NTIS

Source

  • IAEA international symposium on transuranium nuclides in the environment, San Francisco, California, USA, 17 Nov 1975

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR--75-2037
  • Report No.: CONF-751105--8
  • Report No.: SM--199/100
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 4164632
  • Archival Resource Key: ark:/67531/metadc871909

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Sept. 20, 2016, 7:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Patterson, J.H.; Nelson, G.B.; Matlack, G.M. & Waterbury, G.R. Interaction of $sup 238$PuO$sub 2$ heat sources with terrestrial and aquatic environments, article, January 1, 1975; New Mexico. (digital.library.unt.edu/ark:/67531/metadc871909/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.