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Abstract 

The purpose of this paper is to compare simple and efficient pairwise 

force fields for silica glass and assess their applicability for use in large 

scale molecular dynamic (MD) simulations of laser damage mitigation.  

Pairwise potentials obtained by fitting quantum mechanical results, 

such as the BKS and CHIK potentials exhibit many of the properties of 

the liquid such as densification. However while this and other liquid 

properties of the MD simulation are qualitatively correct they are 

observed at temperatures much higher than observed experimentally.  

Softer potentials are constructed that do give liquid properties at 

experimental temperatures.  However in all cases the activation energies 

for diffusion are lower than the activation energies for viscosity.    

 

I.  INTRODUCTION 

In the National Ignition Facility at Lawrence Livermore National Laboratory surface damage to silica 

optics caused by the high intensities of lasers used to induce fusion is currently being mitigated by pulsed 

CO2 laser treatments.  The mitigating laser pulses can raise a small silica damage site to temperatures of 

2000 - 5000 K in 10
-9

 to 10
-12

 s.  This causes the damaged site to „heal‟ or at least change its optical 
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properties so that light traveling through does not cause further damage. Evaporation and ablation can 

also be induced depending on the power and temporal shape of the pulses.  The effects of these laser 

mitigation pulses are being modeled with finite-element tools
1
. However fundamental properties of silica, 

such as, heat capacities, thermal conductivities, thermal expansion, etc. during the very rapid heating and 

cooling of silica to very high temperatures are frequently unknown and cannot be obtained independently 

experimentally. MD simulations performed with simple potentials that faithfully reproduce experimental 

data under less severe conditions could be a practical tool for obtaining these properties and even 

simulating the mitigation experiment
2
. Conversely the laser experimental results can probe the silica glass 

and liquid under conditions not previously accessible. 

Our initial objective was to simulate the laser mitigation using MD and the force fields developed 

by van Beest, Kramer and van Santen (BKS)
3
 who fit self-consistent-field (SCF) Hartree-Fock 

calculations on small silica molecules. The BKS potential has impressively been shown to reproduce at 

least the features of the complicated phase diagram of SiO2 including qualitatively the regions of stability 

of the liquid, stishovite, coesite and -quartz phases.
4
  On the other hand a BKS MD model of -

crystobalite homogenously melts at ~5000 
o
K in the MD (NPT) heating versus the experimental 

thermodynamic melting temperature ~2000 
o
K and boiling point ~ 3000 

o
K.  The periodic boundary 

constraints of the MD simulation, its rapid heating rate and the absence of any nucleating site are no 

doubt responsible for failure of the structure to melt at a lower temperature.  However, Saiko-Voivod, et 

al.
4 

estimate a thermodynamic melting point for -quartz by finding the point where the free energy is 

equal to that of the liquid at near atmospheric temperature to be ~ 3700 K .  Further altough the 

                                                           
1
 M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M Guss, and J. J. Adams, 

Proc. of SPIE 7504, 750410 (2009); T. D. Bennett and Lei Li, J. Appl. Physics, 89, 942-950 (2001); J. Appl. 

Physics, 95, 5476-5482 (2004). 
2
 As an example of a large scale silica MD simulation see - A. Kubota, M. –J. Caturla, S.A. Payne, T. Diaz de la 

Rubia and J. F. Latkowski, J. Nuc. Mat. 307, 891-894 (2002). 
3
 B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phys. Rev. Lett. 64, 1955 (1990). 

4
 I. Saiko-Voivod, F. Sciortino, T. Grande and P. H. Poole, Phys. Rev. E 70, 061507 (2004). 
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equilibrium BKS silica liquid shows a density maximum similar the real liquid silica
5
 and other liquids 

having a random tetrahedral network, this maximum occurs at ~4700 
o
K versus the experimental vitreous 

silica density increase at 1820 
o
K

 6
.  Hence it seems prudent to assess the behavior of vitreous silica 

simulations versus experiment with different simple force fields before constructing large scale MD 

ensembles that purport to model the behavior of real silica optic damage sites under laser mitigation.   

Because of its importance in many fields from geophysical science to photonics and its role as the 

archetypical strong glass former
7
 there have been many MD simulations of silica with different force 

fields.  They fall roughly into three groups:  The first simulations of silica by Woodcock, Cheeseman and 

Angell (WCA)
8
 used a simple Born-Mayer (BM) potential with ionic charges of +4 for Si and -2 for 

oxygen. These authors showed that even with the crude ionic potential the basic structure of silica glass as 

a random network of corner connected silica tetrahedral is achieved in the MD simulation.  The WCA 

potential was re-parameterized and the charges reduced by one of authors
9
 and Mitra et al. used the 

Pauling form for the two-body potential
10

.   Later three-body terms were added and parameterized to 

reduce the spread in the OSiO bond angles and more importantly to adjust the tetrahedral corner sharing 

SiOSi bond angles so that these angles agree even more closely with the experimental values deduced 

from the neutron scattering peaks
11

 
12

 
13

.  The more recent group of force fields including BKS have been 

based on fits to quantum mechanical calculations. Carre et al.
14

 re-parameterized the BKS potential 

(hereafter referred to as the CHIK potential) to fit the structures they obtained using density functional 

Car-Parrinello MD simulations.  Still other potentials based on ab-initio calculations have been 

                                                           
5
 R. Bruckner, J. Non-crys. Solids 5, 123-175 (1970). 

6
 K. Vollmayr, W. Kob and K. Binder, Phys. Rev. B 54 15808-15827 (1996). 

7
 C. A. Angell,  Science 267, 1924 (1995); K. Ito, C. T. Moynihan and C. A. Angell, Nature 398, 492 (1999). 

8
 L. V. Woodcock, C. A. Angell and P. J. Cheeseman, J. Chem. Phys., 65, 1565-1577 (1976). 

9
 T. F. Soules, J. Non-crys. Solids 123, 48-70 (1990). 

10
 S. K. Mitra, M. Amini, D. Fincham and R. W. Hockney, Phil. Mag. B, 48, 365-372 (1981). 

11
 B. P. Feuston and S. H. Garofalini, J. Chem. Phys. 89, 5818-5824 (1988). 

12
 P. Vashishta, R. K. Kalia and J. P. Rino, Phys. Rev. B 41, 12197-12209 (1990). 

13
 A. A. Hassanali, S. J. Singer, J. Phys. Chem. B, 111, 11181-11193 (2007). 

14
 A. Carre, J. Horbach, S. Ispas and W. Kobb, EPL, 82, 17001 (2008). 
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proposed
15

 
16

 including potentials that require the force field to be modified at each time step in the MD 

run
17

.  The Tagney and Scandolo (TS) 
17 

potential that evaluates the polarizability of ions at each time step 

based on the neighboring ion configuration has been shown to give very good agreement with infrared 

spectra. Paramore et al. 
18

 attempted to map the TS force fields
 
onto a new pairwise potential.  These 

potentials have been compared
19

.  Demicralp, et al. used a combination of a Morse potential and 

Coulombic interactions and allowed the Coulomb charges to vary based on a valence-averaged and 

electron affinity equation during the run
20

.  A potential almost identical to that used by Demicalb was 

used later by Takada, et al.
21

 with fixed charges to simulate silica glass.  Although non-linear effects 

requiring the force field to be updated at each time step must be important in the limit, for example, of 

vaporization of SiO2 into SiO and O2 molecules, in keeping the limited aim of this article to find simple 

practical potentials for large scale MD simulations of silica we focus on only simple pairwise force fields 

that are not adjusted during the MD run.  Our objective is limited to finding a practical and efficient 

perhaps empirical set of pair force field that is able to predict a specific set of properties over the 

temperature range and heating of the laser mitigation experiments. 

This paper is organized as follows:  After briefly describing the methods used, we graph four 

different simple two-body pair force fields chosen both for their simplicity and efficiency in MD runs and 

for covering a wide range of Si-O bond strengths. Then the results of NPT MD runs heating and cooling 

the canonical ensembles with each of the potentials are presented.  We estimate the thermodynamic 

melting temperature for simulated -crystobalite ensembles by equilibrating the liquid and solid in a 

separate set of simulations. Fictive temperatures during cooling are determined from the break in the 

slope of the enthalpy curves and the glass transition and heat capacity behavior is discussed in the final 

                                                           
15

 S. Tsuneyuki, M Tsukada, H. Aoki and Y. Matsui, Phys. Rev. Lett., 61, 869 (1988). 
16

 M. Benoit, S. Ispas, P. Jund and R. Jullien, Eur. Phys. J. B 13, 631-636 (2000). 
17

 P. Tangney and S. J. Scanolo, J. Chem. Phys. 117, 8898-8904 (2002). 
18

 S. Paramore, L. Cheng and B. J. Berne, J. Chem. Theory Comput. 4, 1698-1708 (2008). 
19

 D. Herzbach, K. Binder and M. H. Muser, J. Chem. Phys 123, 124711 (2005). 
20

 E. Demiralp, T. Cagin and W. A. Goddard III, Phys. Rev. Letters, 82, 1708 (1999). 
21

 A. Takada, P. Richet, C. R. A. Catlow and G. D. Price J. Non-crys. Solids, 345-346, 224-229 (2004). 
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section.  The density versus temperature and self diffusion coefficients are also presented for each force 

field.  The conclusion of this study is that the potentials so far designed to fit ab-initio calculations, such 

as, BKS give melting and glass forming temperatures that are too high. A simple softer pairwise potential 

can fit the experimental melting and cooling results for silica glass and liquid quite well.  However, all the 

potentials except those with extremely high melting temperatures and fictive temperatures give activation 

energies for self-diffusion that are too low by comparison with the activation energy for viscosity.   

 

II  METHOD 

 

A. MD Methods 

All the MD simulations reported here were carried out using LAMMPS, a MD software code for parallel 

processing computers developed at Scandia National Laboratory
22

.  All runs were made under NPH 

conditions
23

 with pressure maintained at ~1 atmosphere and with heat added or subtracted using the 

Langevin method
24

 with weak coupling to random thermal bath simulating an NPT canonical ensemble.  

In most of the simulations, we started with MD ensembles of 1000 Si atoms and 2000 O atoms initially at 

their positions in an idealized -cristobalite configuration and used the Verlet algorithm with a time step 

of 1 femtosecond for the MD runs.  

 Arguably the most difficult problem in setting up these MD simulations is how to treat the long-

range Coulomb forces.  LAMMPS has two built in options for long range Coulomb forces: a solution of 

the Ewald equation and a particle-particle particle mesh (PPPM) solver where the mesh is generated from 

a numerical solution of Poisson‟s equation.  However, both are computationally intensive and difficult to 

apply to surfaces.  After doing many of our calculations with both options, we adopted a screened 

potential proposed by one of the authors
9
 wherein the Coulomb force is replaced by the force field of a 

                                                           
22

 S. J. Plimpton,  J. Comp. Phys. 117, 1-19 (1995). 
23

 H.C. Anderson, J. Chem. Phys. 72, 2384 (1980). 
24

 T. Schneider and E. Stoll, Phys Rev B, 17, 1302 (1978). 
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charge at the center of a sphere containing uniform charge density of opposite sign.  The uniform charge 

density spheres will cancel in a random system
9
.  This can be checked by increasing the radius of the 

sphere.  Carre, et al.
25

 recently compared two other methods for screening the long range part of the BKS 

potential, the Wolf summation and Yakawara equation, and showed that with a screening distance of 

10.58 Å the dynamics and structure were essentially the same as that obtained using the full Ewald 

potential.  Using our simple screening, we obtained the same structures and dynamical properties as with 

the Ewald and PPPM solutions in LAMMPS when using a cutoff of 11.0 Å.  Even with this rather long 

range cutoff these calculations ran ~ 20 times faster than those using the Coulomb solvers included in 

LAMMPS, and with the cutoff used earlier
9 

of 5.5 Å  the calculations ran another factor of 20 times 

faster.  

  

B. Force Fields  

 The equations for the force fields investigated are shown in Table 1.  They include three 

previously published force fields
3 14 21 

and an empirical pairwise force field used by one of the authors
9
.  

The empirical potential can be scaled without significantly disturbing the calculated structure. We report 

results using a scaling factor of 0.65 in order to investigate a second soft field.  The BKS and CHIK 

equations include a 1/r
7
 term that must have another term added to prevent the force from diverging at 

small values of r
6
 
14

. 

 

 

 

 

 

 

                                                           
25

 A. Carre, L. Berthier, J. Horbach, S. Ispas and W. Kob, J. of Chem. Phys. 127 114512 (2007). 
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 qSi  rcutoff  Si-O O-O Si-Si 

   A(eV) B(Å
-1 

 ) C(Å
6 

 ) A(eV) B(Å
-1 

 ) C(Å
6 

 ) A(eV) B(Å
-1 

 ) C(Å
6 

 ) 

BKS 2.4 11.0 18004  4.473  133.5  1388.  2.76  175  0  0  0  

CHIK 1.910 11.0 27029  5.158  148.1  659.6  2.590  26.84  3150.1  2.852  626.8  

Soules* 2.28 5.5 608.55 3.448 0 466.6 3.448 0 0 0 0 

 

 

 

Table 1 Equations and parameters for the force fields compared in this work.  Soules* is from ref.  9, Eq. 9 

page 51
9 
 converted to present units and scaled by 0.65 with the Si-Si short range repulsion set equal to 0. 

 

The pairwise force field equations are graphed in Figure 1.  The maximum attractive SiO force 

fields span a wide range from what might be called the two strong attractive Si-O force fields (BKS and 

CHIK) to two soft force fields (Takada and the scaled Soules‟ empirical force field).  This is also 

reflected in the integral, the pair-wise potential energy curves.  The graphs also show differences in the 

curvature of the Si-O force field going from broad to narrow depending on whether an additional 

attractive term was added to the Coulomb.  On the figure are activation energies which are defined as the 

potential energy differences between the pairwise SiO potential energy evaluated at the equilibrium 

distance in the simulations, ~1.62 Å, and the potential energy at the inflection point or the maximum 

restoring force.  When a SiO bond is stretched to beyond this distance the SiOSi potential bifurcates and 

 qSi  rcutoff A(eV) B(Å
-1 

 ) C(Å ) A(eV) B(Å
-1 

 ) C(Å
 
 ) A(eV) B(Å

-1 
 ) C(Å

 
 ) 

Takada 1.3 11.0 1.996  2.652  1.628  0.0233  1.373  3.791  0.0077  2.045  3.760  

(2)                        ./1/))(exp())(exp(12 3322

cutoffjir rrreqqrCBrCBABF

(1)                                                                 ./1)/(/6)exp( 33227

cutoffjir rrreqqrCBrABF
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the oxygen atom midway between two silicon atoms will accelerate toward one or the other.  We view 

this energy as a measure of the bond breaking activation energy and it will be seen to roughly track 

properties, such as, the activation energy for diffusion discussed later.   
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Figure 1  Graphs of the radial force fields being compared.  The dashed lines indicate values at the nearest 

neighbor distances.  The numbers labeled E* are activation energies in eV/atom determined as difference in 

potential energies between the equilibrium positions and the point of inflection in the potential energy curves. 

 

The O-O force field generally has an additional repulsive term added to the Coulomb repulsion 

keeping the oxygen atoms well separated and maintaining the OSiO bond angle at the tetrahedral value, 
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109
o

.   From the graphs it is not clear why several of the authors have also included an attractive OO force 

field term since this is overwhelmed by the repulsion. 

The Si-Si force field is repulsive and in the BKS and modified Soules potential it is assumed to be 

entirely due to the Coulomb repulsion between the charges.  Deleting additional attractive and repulsive 

terms to the Si-Si force from other force fields has little effect on Si-Si force field especially at distances 

near the closest Si-Si distance, ~ 3.15 Å.  

 

III. RESULTS 

A. Melting  

Figure 2 compares the enthalpy versus temperature curves for each of the four force fields during heating 

of the MD canonical ensembles starting with the idealized -crytobalite structure for 3000atoms.. The 

heating rates are ~ 4000 
o
K/ns.  The small steps or kinks in the curves indicate a small heat of fusion in 

the enthalpy curves at the homogenous melting temperature.  The insert shows that, not surprisingly the 

temperature at which homogenous melting occurs depends on the heating rate. 
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Figure 2  Enthalpy versus temperature during heating of the MD ensembles for the four force fields.  Kinks 

in the curves indicate the homogenous melting temperatures when the MD heating is carried out at 

4000
o
K/ns.  Insert shows effect of heating rate on the melting temperature with BKS potential.  Tm is 

estimated thermodynamic melting temperatures of the MD ensembles using the methods discussed in the text. 

 

Because MD heating rates are always much faster than experimental heating rates (except 

perhaps in some of our laser heating experiments) and because there are no nucleation sites in the MD 

simulation thermodynamic melting temperatures were estimated using a different approach. An 

equilibrium between the crystal and liquid was established without introducing a surface area driving 

force or a critical size seed by splitting the MD ensemble representing -cristobalite in half with the 

atoms in the top half of the atoms labeled “crystal” and those in bottom labeled “glass”.  The glass layer 

atoms are heated to above the homogenous melting temperature while the crystal layer atoms were kept at 

a low temperature using the Langevin coupling.  Because of the periodic boundary conditions in the MD 

simulations this simulated a layered structure.  While this cannot be done in the laboratory it is easy to 
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achieve in the MD simulation.  NPT conditions were used with the pressure set at 1 atmosphere in each 

direction.  

In one set of MD experiments the Langevin terms were then turned off allowing the temperature 

of the glass and crystal atoms to equilibrate.  Depending on the choice of initial temperatures for both 

layers it was possible to get the crystalline ensemble to partially melt so that the crystalline and 

amorphous phases were in equilibrium. The equilibrium temperature was independent of the initial 

temperatures chosen so long as the system did not completely melt.  A cross section of the configuration 

of such an ensemble before and after being allowed to equilibrate is shown in Figure 3.  The difficulty in 

these experiments was being able to run long enough to make sure the entire system did not melt.  Runs 

up to 10 nanoseconds (10 million time steps) were used. 

 (a) (b) 

Figure 3  Cross section through a silica MD ensemble in which the atoms of the upper half are held at a 

temperature below the spontaneous melting temperature and the lower half is heated above the melting 

temperature.  Figure 3 (b) shows a snapshot after allowing the two layers come to an equilibrium 

temperature. The liquid crystal interface has moved into the crystal region indicating some melting of the 

crystal.  Because the oxygen atoms show more disorder only the silicon atoms are shown. 

 

A clearer estimate of the melting temperature is achieved by taking the ensemble after melting 

every other layer rescaling the velocities of all the atoms to a suitable temperature below the melting point 

and then raising the temperature of the entire ensemble of glass and crystal atoms slowly using velocity 

rescaling. This procedure is the same as was done for homogenous melting but the crystal layers are in 

direct thermal contact with an amorphous phase. Melting was still sometimes difficult to observe in our 
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usual 3000 atom cubic box during the heating.  The influence of the large area to volume ratio of glass 

surface layers appeared to induce melting at lower temperatures even though there should have been no 

surface area driving force. Whether melting temperatures can be influenced by having very thin (< 20 Å) 

alternate layers of glass/liquid and solid is not known. The phenomena observed may be closer to a 

reverse sintering than thermodynamic melting. 

A stable melting point independent of the simulation time was achieved by increasing the 

simulation cell thickness decreasing the fraction of surface atoms by a factor of 2 and 4 by constructing 

taller rectangular prisms for the simulation cells. Taller prisms cells with a distance between layers of 

glass and crystal in contact of 35.8 and 71.6 Å containing 720 and1440 silicon atoms respectively with 

the corresponding number of oxygen atoms were used.  Figure 4 shows an example using the CHIK force 

fields.  In order to increase the temperature as slow as possible in these runs the force fields were 

modified by setting the long range cutoff for the Coulomb potential at 5.5 Å.  The heating rate was 10-

100 
o
K/ns.   
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Figure 4   Simulated MD melting of an ensemble of -crystobalite (showing Si atoms as blue diamonds) in 

contact with a melted SiO2 glass (red diamonds) at the same temperature using the CHIK force field and a 

heating rate of 300 
o
K/ns.  The potential energy versus temperature of the system is the data with scatter.   

The smooth curve is the mean squared displacement (MSD) of the crystal atoms versus temperature.  Melting 

is determined by the break in the MSD curve, movement of front of disorder in the lattice and a change in 

slope of the potential energy. 

 

Melting is observed where the MD -crystobalite atoms near the interface start to become 

amorphous and the surface between the crystal and the amorphous regions starts to move.  The CHIK -

crystobalite ensemble is starting to melt while in equilibrium with the amorphous phase between 3000 

and 3100 K.  Another indicator of melting is a change in slope of the potential energy curve for all the 

atoms. Below the melting temperature, the increase in potential energy of the crystal is with temperature 

is small.  Just before melting begins the potential energy curve of the whole system becomes noisy and 

then the slope increases as more atoms go into the amorphous phase.  Also the mean squared 
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displacement of atoms in the crystal group after an initial increase due to vibration and a subsequent 

increase due to increasing diffusion in the crystalline solid begins to increase dramatically when the 

melting starts and ultimately catches up to the displacement of atoms in the glass/liquid. The theoretical 

curve for diffusion in the glass during a linear ramp when displaced to the melting temperature is a 

reasonable fit to the long time slope of this mean squared displacement curve.  These simulations were 

used to determine the melting temperatures for the different potentials indicated on Figure 2. 

The melting temperature determined in this way for BKS -cristobalite at 1 atmosphere is 3600 K 

in good agreement with Saika-Voivod, et al.
4
 who determined the melting points of BKS quartz and 

coesite at one atmosphere by calculating where the free energy of the crystal and glass are equal while the 

experimental melting temperature of -cristobalite is 1978 K.  The MD melting point determined as 

described above for the Takada force field is only ~ 10 % higher than experiment and the melting point 

for the scaled Soules potential is actually less than the experimental melting point.   

  

B. Cooling and Fictive Temperatures 

Figure 4 shows the enthalpy versus temperature curves during cooling at a rate of 1000 
o
K/ns  The fictive 

temperatures indicated on the figure are the temperatures at which a linear extrapolation of the solid 

properties, in this case the enthalpy intersects an extrapolation of the liquid curve.  In experiments and in 

simulations the fictive temperatures decrease with a decrease in the cooling rate.  The shift to lower 

temperatures of the fictive temperature with decreasing MD cooling rates in silica simulations was first 

shown by Soules
9
 for a simple empirical potential and discussed in detail by Vollmayr, et al.

6
 for the case 

of the BKS silica potential and so will not be presented here.   
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Figure 5 Enthalpy versus temperature during cooling of MD silica glass runs under NPH conditions at 1000 
o
K/ns.  Tf , the fictive temperatures, are the temperatures at which the liquid configuration is arrested on the 

time scale of the cooling indicated by the intersection of extrapolations of the solid and liquid curves.   

 

Because of statistical noise in the enthalpy data heat capacity curves shown in Figure 6 were 

obtained by first fitting the low temperature data to a line.  The difference between the enthalpy data and 

the line at higher temperatures was fit to a low order polynomial and the sum was differentiated to give 

the curves. 
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Figure 6. Heat capacity, Cp, curves obtained by taking the derivative of the enthalpy curves in Figure 4 as 

discussed in the text.   
 

C. Density   

A very interesting property of silica and some other random tetrahedral network glasses that should be 

reproduced in a practical MD model is the small thermal expansion of silica glass over much of its solid 

glass temperature range and the density maximum in the liquid
26

.  Both phenomena are easily understood 

qualitatively from a sketch (see Figure 7) illustrating corner sharing randomly connected silica tetrahedra 

that form rings with predominantly six tetrahedra per ring.  The rings are the ribs of an open fused cage-

like structure.  Vibrations of the oxygen atoms perpendicular to the Si-O-Si bonds connecting tetrahedral 

are readily thermally excited and will rock the tetrahedral making up the cage ribs but will not increase 

                                                           
26

 R. Bruckner, J. Non-Cryst. Solids 5, 123-175  (1970). 
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the volume.  When the vibrations are strong enough or when tetrahedra actually break away from ribs in 

the liquid, the specific volume will collapse slightly to higher density amorphous structures. 

  

   

Figure 7  Sketch illustrating the ring structure of vitreous silica with corner connected tetrahedral.  The 

figure shows the low energy rocking modes of oxygen atoms perpendicular to the axis between silicon atoms.  

 

Figure 8 shows how the density varies as MD runs are cooled using each of the force fields 

investigated.  The experimental density at room temperature is 2.2 g/cm
3 

.   
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Figure 8   Density during MD cooling for each of the force fields tested.  The numbers in the legend are 

volumetric thermal contraction coefficients per degree K in the solid temperature range (300-1500 
o
K).   

 

All force fields except the BKS give very close to the experimental density at room temperature.  

Vollmayr, et al truncated and shifted the short range terms in the BKS potential to correct the room 

temperature density
6
.  Also while all the force fields result in a small thermal expansion in the solid glass 

temperature range the volume thermal expansion coefficients are still significantly larger than the 

experimental value ~ 1.6x10
-6

  
o
K

-1
.  Takada et al. argue that their potential also gives a very small 0.1 % 

increase in density near 1700
 o

K 
21  

but the thermal expansion of this force field is relatively large and the 

density maximum was not convincing in our simulations.  On the other hand the other force fields show a 

distinctive increase in density, greater than has been observed experimentally.  We believe that this 

increase requires an attraction between the silicon atoms and the next nearest neighbor oxygen atoms 
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encouraging the structure to collapse when vibrations disrupt the corner sharing tetrahedral rings.  This 

next nearest neighbor distance as shown below is ~ 4.0 Å.  The Takada force field shows very little Si-O 

attraction at this distance while the other force fields investigated probably have too strong a longer range 

Si-O attraction at ~ 4 Å. 

D. Pair radial distribution functions (rdf’s)  

There are many similarities between the structures calculated from all these force fields in spite of the 

very different strengths of the pairwise potentials.  All of them give the same overall structure for vitreous 

silica, namely, silica tetrahedral with a Si-O distance of ~1.61 Å linked at corners and in rings of 

predominately 6 members forming the ribs of an overall fused cage-like structure.  This shows that these 

features are mainly a function of relative atomic sizes.   
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Figure 9   The pair radial distribution functions at room temperature from MD cooling simulations.  Also 

shown are the cumulative number of neighboring atoms as a function of distance.  
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There are some significant differences.  For example the first Si-O peak in our empirical potential is 

significantly broader than either experiment or the first peak of the other models. The BKS model shows 

higher coordination numbers at next nearest neighbor distances which is consistent with the higher 

density obtained with this potential.  More detailed structural analyses of the MD rdf‟s are given by the 

respective authors.  Suffice it to say that if you a modeler you are amazed at how close the calculated 

rdf‟s are to the x-ray diffraction
27

 and the neutron diffraction correlation functions
28

 even though in the 

case of the more empirical potentials the parameters were chosen to insure that at least the most probable 

nearest neighbor Si-O and O-O distances are correct.  On the other hand the experimentalist is often 

noticing differences
29

 for example in bond angles, such as the Si-O-Si bond angle that is deduced from 

experiment to be peak around 140 degrees while most of the simulations give a value of ~ 150 degrees.  

Certainly effects, such as, repulsion by non-bonding electron pairs on the bridging oxygen atoms that 

would reduce this angle are real and are not included in these simple radial pairwise force fields. They can 

be included in three-body potentials but at the expense of adding additional adjustable parameters or 

mapping out a force field in a many dimensional space. 

 

E. Self-diffusion coefficients 

Diffusion constants are easy to obtain from atomic mean squared displacements in MD 

simulations. The mean square displacement of atoms from some initial position quickly rises and plateaus 

displaying vibration motion and then continues to rise linearly and the slope of this long time graph 

measures the diffusion constant, dtxtxdD iii /))0()(()6/1( 2
.  Figure 8(b) shows that for all the 

potentials investigated the self-diffusion of silicon atoms tracks the self-diffusion of the oxygen atoms 

although in the case of our empirical potential for which the Si-O bonding is much broader the oxygen 

                                                           
27

 R. L. Mozzi and B. E. Warren, J. Appl. Cryst. 2, 164 (1969). 
28

 D. I. Grimley, A. C. Wright and R. N. Sinclair, J. Non-Cryst. Solids 119, 49 (1990). 
29

 A. C. Wright, J. Non-Crys. Solids 159, 264-268 (1993). 
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atoms diffuse about twice as fast as the silicon atoms.  The self diffusion coefficients fall in two groups 

one corresponding to the “strong” potentials and the others the weak potentials. Activation energies are 

roughly twice the activation energy estimates from Si-O potentials in Figure 1 suggesting that self 

diffusion of either Si or O atoms requires the breaking of two bonds.  
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Figure 10  The figure on the left is a sample of the mean square displacements of atoms at different 

temperatures, in this case Si atoms using the BKS potential.  The MD ensemble was cooled to each 

temperature indicated in the curves and then run for 100 psec.  The graphs on the right are diffusion 

constants obtained from the long time slopes of the mean square displacements. 

 

The diffusion coefficients for the BKS potential shown in Figure 8(b) are in agreement with those 

determined by Shell, et al.
30

 and Saika-Voivod et al.
31

  .  Also like the results of Saiko-Voivod, et al. our 

diffusion results for all the potentials when plotted as lg (D) versus 1/T show a curvature at high 

temperatures, D < 10
-5

, becoming Arrhenius at lower temperatures, D > 10
-6

 . Saiko-Voivod et al. account 

for this curvature in the case of the BKS force fields by using the Adam-Gibbs expression for the 

relaxation, )/exp(/ 0 CTSATD .  They plotted  CTSTD /1  versus)/lg(  using SC evaluated from 

their MD data (see Eq. 6 below). 

Finally Bulk moduli for each force field was determined by compressing the MD simulated silica 

glasses at 293 K.  Only small reductions in volume were made to avoid any coordination change.  All 

force fields except the soft potential from Takada
21

 give Bulk moduli that are too high by ~ 30-40%. 

Model Bulk modulus (GPa) 

BKS 58.7 

CHIK 54.3 

Takada 43.5 

Soules 55.8 

Experiment ~39 

 

Table 2.  Bulk moduli, )/)(/1( TVVB , obtained by reducing slightly in steps the volume of the MD 

simulation box at room temperature. 

 

IV. DISCUSSION 
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A. Fictive Temperatures 

The high fictive temperatures shown in Figure 5 are not surprising.  Using the phenomenological 

non-linear Tool-Narayanaswamy
32

 equations to calculate the fictive temperature with reasonable values 

for the parameters (actually we used values selected by the authors rather than those of Brunning, et al.
33

 

that were obtained by fitting actual relaxation data but at much slower cooling rates), one predicts fictive 

temperatures of >2600 K at a cooling rate of 1000 
o
K/ns

34
.  The equation for the fictive temperature is 

given by: 

  

.(3)                                                                                    .

    .0.1~       ;7.0~        ;73~/          /)1(//1/exp~

];)/(exp[

;'),,'(

000 fsls

frefref

T

T

ff

TTTTTT

xkKRHTxTxTRH

tM

dTtTTMTT

o

Where  ref   is the structural relaxation time measured at a reference temperature refT . Relaxation curves 

have been measured by monitoring the D2 Raman peak intensity in a furnace
35

.  x is a parameter that 

weights the fictive temperature effect on the activation energy and  is the Kohlrausch-Williams-Watts 

stretched exponential decay parameter.  P(T) is the value of a property that depends on the structural 

properties of the glass. The last equation assumes that the derivatives of the property in the liquid l and 

solid state s are constant over the temperature range of interest.  If they are not then this latter equation 

must be replaced by an integral over the temperature range. 

However, Vollmayr, et al.
6
 convincingly show that these equations must be at least modified to 

describe the very high temperatures and the very rapid cooling rates of MD simulations. Following 
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33
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Stillinger and Weber
36

, steepest descent quenching of MD runs show the properties of the inherent 

mechanically stable structures of the potential energy landscape without kinetic energy effects. The 

densities of the inherent structures selected at different temperatures vary when the temperature from 

which the quench is made is between 4840 
o
K and 3200 

o
K.  However, the densities of inherent structures 

quenched from temperatures > 4840 
o
K are the same as if they had been quenched from 4840 

o
K.  It was 

not possible to fall out of equilibrium with the liquid and into a different mechanically stable solid 

structure corresponding to temperatures greater than 4840 
o
K due to the limited range of mechanically 

stable energy minima.  This would be equivalent to in the phenomenological Eqs. (3), above 4840 
o
K, 

always making the relaxation function instantaneous or in another interpretation assuming that at 

temperatures above 4840 
o
K the derivative of the property in the equilibrium liquid loses its configuration 

contributions. The latter interpretation is supported by the shape of the heat capacity curves shown in 

Figure 6.  Configuration contributions to the heat capacity decline past the peak in heat capacity curve. 

Configuration contributions to the heat capacity can be frozen in only from temperatures near the peak in 

the heat capacity curve down to lower temperatures.  However this fictive temperature range is dependent 

on the choice of the potential.  Useful potentials should be chosen so that different inherent structures are 

selected in the range of say ~1300 – 2300 
o
K , a range over which changes in density

37
 and other fictive 

temperature dependent properties, such as, the Raman bands have been measured
38

.   

 

B.  Statistical Mechanical Model of Liquid MD Silica  

 The equilibrium liquid/glass graphs of energy and heat capacity (Figures 5 and 6) can be 

understood assuming that the liquid samples a 3N dimensional potential energy hyper-surface where N is 
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the number of atoms with many minima corresponding to mechanically stable amorphous structures
36

.  In 

the classical limit,  

(4)                                                                                                   ),()()( TeTETEH(T) ISanhharm

 

where nkTTEharm 3)( is the classical mechanical contribution from harmonic vibration about the 

inherent structure minima and )(TEanh is the anharmonic contribution to the vibration energy.  Assuming 

vibration contributions about any of the inherent structure minima are similar and based on the fact that a 

the enthalpy follows the DuLong and Petit line very well to high temperatures for our purposes we 

neglect the anharmonic contributions, whence 

 

(5)                                                                               ,)/)((3)/)(( PISP TTenkTTH(T)C

 

The configurational contribution to the entropy is 

(6)                                                                                   '.)'/)'()('/1()()(

0

0 dTTTeTTSTS P

T

T

ISCC

where 0T is a temperature at which  )(TSC  is a constant.   

 In a previous publication
9
 a statistical mechanical model was suggested for the contributions to 

the energy and heat capacity from populating local amorphous minima.  This model assumes that a 

topological lattice can be constructed and that populations of local defect minima on this lattice are 

responsible for the inherent structures.  The configuration part of the partition function can then be written 

 

(7)                                                                                                      . )/exp(  )(

n

i

iiC kTgT
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n is the number of sites that may contain defects.   i is the minimum potential energy of the ith local 

defect and ig is its degeneracy.  The partition function in this model is similar to the expression for the 

partition function contributions for electronic states on a lattice, the difference being that the electronic 

excited states on each atom or molecule are replaced by defect states on SiO2 lattice units in the glass. 

Using Eq. 7 yields a simple expression for the inherent structural contribution to the energy and heat 

capacity. 

 (8)                                                                   (8)                           /     where,
)exp(

)exp(
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Figure 11 shows a graph illustrating the behavior of the heat capacity using Eq. 8 with some 

representative values for local potential energy minima.  The overall behavior is similar to the heat 

capacity curves in Figure 5.  To fit the MD heat capacity curves would require inherent structural minima 

at ~ 0.7-1eV for the soft force fields while the strong force fields require minima at ~ 1.3 eV .  These are 

in the range of the energy required to break Si-O bonds shown in Figure 1 (a).  As indicated in the 

previous publications
9
 
6
, the defects corresponding to these minima are three and five coordinated silicon 

atoms and non-bridging oxygen atoms.  If the definition of a „fragile‟ glass is that there is a significant 

increase in heat capacity of the liquid relative to the solid glass then the MD glasses are fragile glasses at 

the higher temperatures.  For the soft force fields there is an increase in heat capacity relative to the solid 

of ~ 10 % at 1800 K in agreement with experiment
5
.  Experimentally the glass transition occurs below the 

region of increase in heat capacity and by this definition the glass is behaving as a „strong‟ glass.   
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Figure 11  Heat capacity curves generated using Eq. 8 and numbers in the legend that indicating degeneracy 

and energy in eV of levels.  For example the green curve was generated with two local defect energies: one 

with a degeneracy of 5 at 0.01 eV and the second a degeneracy of 75 at 1.0 eV. 

 

Assuming that topological changes in the ring structure are independent, another partition 

function with the same form as Eq. 8 might be constructed with low energy transitions. representing 

different topological ring structures in the glass and this partition function would multiply.  However, 

although transitions involving the breaking and reforming of the ring structure have a high activation 

energy giving rise to a high activation energy for viscosity there is little net change in energy after the 

transition and hence these topological reconstructions responsible for glass flow contribute little to the 

heat capacity.   
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Below the fictive temperature the term eIS(T) becomes a constant eIS(Tf) where Tf is the fictive 

temperature and as indicated the heat capacity of the MD simulations becomes ~3 n k.  

 

 C. Self-diffusion coefficients 

The activation energies for self-diffusion for all four potentials investigated here are much less 

the activation energy for 1/viscosity for silica, namely, ~73 kK  (see Figure 10). There is some 

experimental diffusion data for oxygen self-diffusion in vitreous silica that supports a lower activation 

energy
39

 
40

.   This suggests that the Stokes-Einstein relation does not apply to these tetrahedral network 

glasses. Further the activation energies for diffusion are correlated with the melting temperatures so that if 

a very strong potential force field is used which does give activation for self-diffusion in the range of the 

activation energy for viscosity
41

  then the predicted melting temperatures and densification temperatures 

will become even much higher.  An effort to decouple the activation energy for diffusion from melting 

temperatures by devising force fields for which the activation energy for bond breaking shown in Fig. 1 

was increased while maintaining a reasonable cohesive enthalpy between 20 and 30 eV
42

 were not 

successful. 

 

V.  CONCLUDING REMARKS 

While the strong potentials based on ab-initio calculations in particular the BKS and CHIK potentials 

yield many of the properties of the liquid they do so at too high temperatures.  The softer force fields 

proposed by Takada et al. and Demicralp, et al. fit the experimental melting point of -crytobalite and 

elastic constants of silica glass but fail to fit the low thermal expansion of solid silica glass and 
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densification.  It is possible that a perhaps empirical hybrid force field could fit liquid experimental 

properties at temperatures that are close to those measured and fit the properties of the solid.   

Our results also suggest that a „strong‟ glass former defined as one with little change in heat 

capacity at the glass transition is one in which hopping from one minima to another results in no 

significant change in potential energy, for example topological changes in the silica ring network by 

exchanging corner sharing tetrahedral connections.  On the other hand at higher temperatures even for 

these strong glasses high potential energy defect minima come into play and populating these defect states 

does require the expenditure of energy and hence a structural contribution to the enthalpy and heat 

capacity.    

Important practical results of this study include the fact that relatively short range empirical 

potentials that are very efficient in MD simulations can be used and appear to be just as accurate as those 

having longer range Coulombic forces in reproducing certain experimental results.   

In a future publication we will refine the pairwise potentials in order to find a single set that 

faithfully reproduces the experimental properties of liquid and solid vitreous silica and can be used to aid 

in our understanding of the properties silica under conditions of laser mitigation. Laser mitigation 

experiments will allow us to explore very fast heating and cooling rates and determine whether fragile 

liquid behavior can be observed in real silica glass as well as other information including the maximum 

fictive temperature possible. 
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FIGURE CAPTIONS 

Figure 1  Graphs of the radial force fields being compared in this paper.  The dashed lines indicate values 

at the nearest neighbor distances.  The numbers labeled E* are activation energies in eV/atom determined 

as difference in potential energies between the equilibrium positions and the point of inflection in the 

potential energy curves. 

 

Figure 2  Enthalpy versus temperature during heating of the MD ensembles for the four force fields.  

Kinks in the curves indicate the homogenous melting temperatures when the MD heating is carried out at 

~ 4000 
o
K/ns.  Insert shows effect of heating rate on the melting temperature with BKS potential.  Tm are 

estimated thermodynamic melting temperatures of the MD ensembles using the methods discussed in the 

text. 

 

Figure 3  Cross section through a silica MD ensemble in which the atoms of the upper half are held at a 

temperature below the spontaneous melting temperature and the lower half is heated above the melting 

temperature.  Figure 3 (b) shows a snapshot after allowing the two layers come to an equilibrium 

temperature. The liquid crystal interface has moved into the crystal region indicating some melting of the 

crystal.  Because the oxygen atoms show more disorder only the silicon atoms are shown. 

 

Figure 4   Simulated MD melting of an ensemble of -crystobalite (showing Si atoms as blue diamonds) 

in contact with a melted SiO2 glass (red diamonds) at the same temperature using the CHIK force field 

and a heating rate of 300 
o
K/ns.  The potential energy versus temperature of the system is the data with 

scatter.   The smooth curve is the mean squared displacement (MSD) of the crystal atoms versus 

temperature.  Melting is determined by the break in the MSD curve, movement of front of disorder in the 

lattice and a change in slope of the potential energy. 
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Figure 5   Enthalpy versus temperature during cooling of MD silica glass runs under NPH conditions at 

1000 
o
K/ns.  Tf , the fictive temperatures, are the temperatures at which the liquid configuration is arrested 

on the time scale of the cooling indicated by the intersection of extrapolations of the solid and liquid 

curves.   

 

Figure 6   Heat capacity, Cp, curves obtained by taking the derivative of the enthalpy curves in Figure 4 as 

discussed in the text.   

Figure 7  Sketch illustrating the ring structure of vitreous silica with corner connected tetrahedral.  The 

figure shows the low energy rocking modes of oxygen atoms perpendicular to the axis between silicon 

atoms. 

 

Figure 8   Density during MD cooling for each of the force fields tested.  The numbers in the legend are 

volumetric thermal contraction coefficients per degree K in the solid temperature range (300-1500 
o
K).   

 

Figure 9   The pair radial distribution functions at room temperature from MD cooling simulations.  Also 

shown are the cumulative number of neighboring atoms as a function of distance.  

 

Figure 10  The figure on the left is a sample of the mean square displacements of atoms at different 

temperatures, in this case Si atoms using the BKS potential.  The MD ensemble was cooled to each 

temperature indicated in the curves and then run for 100 psec.  The graphs on the right are diffusion 

constants obtained from the long time slopes of the mean square displacements. 

 

Figure 11  Heat capacity curves generated using Eq. 8 and numbers in the legend that indicating 

degeneracy and energy in eV of levels.  For example the green curve was generated with two local defect 

energies: one with a degeneracy of 5 at 0.01 eV and the second a degeneracy of 75 at 1.0 eV. 

 


