PARAMETERS OF THE RF SYSTEM
FOR THE "WEAK-FOCUSING" LATTICES

H. HAHN

(BNL January 20, 1984)
RF REQUIREMENTS
(Parabolic Distribution)

Bunch half length \[= \sqrt{5\sigma_L} \]

Bunch phase half width \[\phi = \sqrt{5} \sigma_L h/R \]

Bunch half height \[\Delta E = \sqrt{5} \delta_E \]

Bunch area/amu \[S = 5\pi \sigma_L \delta_E \gamma \frac{E_o}{c} = \frac{\gamma E_o}{2h f_o} \Delta E \phi \]

In the small-amplitude approximation and stationary

\[\phi = \left(\frac{8\pi |\eta| h^3 f_o^2 A}{\gamma E_o e V} \right)^{1/4} \sqrt{S} \]

\[\Delta E = \frac{2h f_o}{\gamma E_o} \frac{S}{\phi} \]

Bucket half height required, stationary

\[\Delta_B = \frac{\Delta_E}{\sin \phi/2} \]

Bucket Area/amu required

\[A_B = \frac{4 \gamma E_o}{\pi h f_o} \Delta_B \]

Voltage required

\[V = \frac{\pi h |\eta| \gamma E_o A}{2e \Delta B} \]

\[V \approx 8\pi \frac{|\eta| h^3 f_o^2 A S^2}{e \gamma E_o} \frac{\Delta E}{\phi} \quad (\phi \ll \pi) \]
Parameter Variations with h_{rf}
(Equipartition)
$\gamma = 100, \text{ Au}$

<table>
<thead>
<tr>
<th>Lattice</th>
<th>N_B</th>
<th>h_{rf}</th>
<th>δE</th>
<th>S</th>
<th>L</th>
<th>Diamond</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\times 10^9$</td>
<td>$\times 57$</td>
<td>$\times 10^{-4}$</td>
<td>$\times 10^{26}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\alpha = 0 \text{ mrad}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$15/120^\circ$</td>
<td>1</td>
<td>12</td>
<td>11.3</td>
<td>3.8</td>
<td>10.5*</td>
<td>29</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>9.8</td>
<td>6.6</td>
<td>14.*</td>
<td>57</td>
<td>0.85</td>
</tr>
<tr>
<td>$12/90^\circ$</td>
<td>1</td>
<td>12</td>
<td>6.9</td>
<td>2.3</td>
<td>5.6</td>
<td>29</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>6.0</td>
<td>4.0</td>
<td>7.4</td>
<td>57</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>4.2</td>
<td>16.9</td>
<td>15.1*</td>
<td>343</td>
<td>0.066</td>
</tr>
<tr>
<td>$9/120^\circ$</td>
<td>1</td>
<td>6</td>
<td>5.9</td>
<td>4.0</td>
<td>8.4</td>
<td>57</td>
<td>0.95</td>
</tr>
</tbody>
</table>

$\alpha = 2 \text{ mrad}$

$15/120^\circ$	2	12	12.9	4.4	11.1	12	3.0
	2	6	11.3	7.6	6.7	14	1.1
	1	6	9.8	6.6	1.9	13	0.85
$12/90^\circ$	2	12	7.9	2.7	7.6	14	2.8
	2	6	6.9	4.6	4.8	18	1.1
	2	1	4.8	19.4	1.2	17	0.087
	1	6	6.0	4.0	1.4	16	0.81
$9/120^\circ$	2	6	6.7	4.6	5.1	17	1.2

* $\Delta v > 0.003$

BB
MOMENTUM SPREAD AT TRANSITION

The momentum spread at transition scales like

$$\delta_E \propto \left(\frac{h^2}{V_{tr}^2} \frac{V^2}{B} \cos^2 \phi_s \right)^{1/6}$$

with $V \sin \phi_s = 2\pi R \rho B$

Assuming the same rf system, the lattices with $\gamma_{tr} = 25$ require at transition about 15% more momentum aperture than one with $\gamma_{tr} = 38$.

An acceptable rf system for the $\gamma_{tr} = 25$ lattices is obtained by using (primed quantities):

$$h' = \frac{1}{2} h; \quad V' = \frac{1}{5} V; \quad B' = \frac{1}{4} B; \quad \phi'_s = \frac{5}{4} \phi_s$$

leading to

$$\delta'_E = 0.7 \delta_E$$

The resulting physical aperture requirement due to momentum spread is

$$(X_p^{\text{max}} = 1.57 \text{ m}, \quad X_p^{\text{max}} = 0.7 \text{ m})$$

$$\sigma'_H = 1.57 \sigma_H$$
SUGGESTED rf PARAMETERS

\[f_{\text{rf}} = 6 \times 57 \times f_o = 26.7 \text{ MHz} \]

\[V_{\text{max}} = 1 \text{ MV} \]

\[V_{\text{acceleration}} = 200 \text{ kV} \]

\[\text{Acceleration time} = 2 \text{ min.} \]

Questions:

- What is dynamics of intrabeam scattering at operating point.

- Parzen will calculate \(L = L(t) \)
 \[\sigma = \sigma_L(t) \]

- Slowest beam growth is expected, if full voltage is reached at the end of the acceleration cycle, since
 \[\tau^{-1}_E \propto \frac{N_B}{\varepsilon S \delta \varepsilon}; \quad \tau^{-1}_H \propto \frac{N_B}{\varepsilon^2 S} \]
CHOICE OF TRANSITION ENERGY

Due to intrabeam scattering the momentum spread of the bunch increases until
\(\Delta_E = \Delta_B \). If this limit is exceeded, the particles are lost.

At constant voltage

\[
\Delta_B^2 = \frac{1}{h \gamma |n| \Delta_E} = \frac{\gamma_{tr}}{h |\gamma/\gamma_{tr} - \gamma_{tr}/\gamma|}
\]

The bucket height requirements vary with energy according to

\[
\Delta_E = \frac{1}{\sqrt{\gamma}} \quad \text{(equipartition)}
\]

\[
\Delta_E(\gamma=12) > 1.4 \Delta_E(\gamma=100) \quad \text{(Parzen)}
\]

Equivalent performance over energy range, (i.e. \(L = \gamma \)) requires

\[
\gamma_{tr}^2 = \frac{(\Delta_1/\Delta_2)^2 \gamma_1 + \gamma_2}{\gamma_1 + (\Delta_1/\Delta_2)^2 \gamma_2}
\]

For \(\gamma_1=12 \) and \(\gamma_2=108 \) follows the optimized transition energy \((\Delta_1/\Delta_2 = 1.4) \):

\[
\gamma_{tr} = 36 \times 0.6 = 22
\]