Irradiation Specimen and Capsule Fabrication

1. Uranium carbide and uranium nitride development rigs were relocated.

2. Difficulties were experienced with new uranium carbide powder preparation rigs and were minimized by using atmospheric end point rather than zero pressure end point and by blending batches. Seven batches of uranium carbide were prepared in the rigs.

3. Ten percent enriched uranium carbide pellets were fabricated to specification. Evaluation showed slightly hyperstoichiometric composition, 4.86-4.88% carbon, 760-950 ppm oxygen, 770-810 ppm nitrogen, 94-95% of theoretical density, uniform grain size, and good visual appearance. A few large pores were present in the structure.

4. Cb-1 Zr alloy cladding for RW26-500 and RW26-600 series of in-pile capsules was received from vendor after deposition of tungsten on ID. Inspection revealed that six of seven lengths were properly coated except that tungsten thickness was 2.5 to 3.0 mils vs specified 4.5 to 5.5 mils. Vendor was informed to take

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
necessary process changes. Additional order of twelve lengths received were
same tungsten thickness. Five lengths showed oxidation and will be replaced
by vendor. Additional Cb-1 Zr alloy tubing for replacement was received from
vendor, inspected and shipped to coating vendor.

5. Weld porosity problem in tungsten coated tubing was revealed by radiography
and is under study. Rejection rate is 35%.

6. Fuel specimens were fabricated using above pellets and tungsten-coated Cb-1 Zr
alloy tubing. The first specimen container was assembled, filled with lithium,
welded, thermocycled, inspected and released to the Shop for assembly into
capsule FW26-500.

7. Difficulty was experienced in brazing capsule heater assemblies. Braze does
not flow between bulkhead and heaters and thermocouples to form adequate
fillets on the underside of the bulkheads. Also, some chromel/alumel thermo­
couple wires were melted during brazing. Revisions to the brazing process were
made with improved results but no acceptable heater assemblies were completed.
Capsule assembly is awaiting solution of this problem.

8. Preparation of uranium nitride powders for specimens for eight capsules
(FW26-600 series) was started.

9. Cb-1 Zr alloy tubing with codrawn tantalum liner on ID for inpile capsule
specimens is scheduled for delivery 2/15/64.

10. FWC-11 alloy tubing is scheduled for 2/15/64 delivery from vendor.
To: Messrs. L. M. Raring & G. U. Parks

January 3, 1964

Contract AT(30-1)-2789
CNLAM-5449

Irradiation Testing

11. The following capsules are on test:

<table>
<thead>
<tr>
<th>Capsule</th>
<th>Reactor</th>
<th>Fuel</th>
<th>Barrier</th>
<th>Design Temp (°F)</th>
<th>Design Power Density (kw/cc)</th>
<th>Scheduled Irradiation (hours)</th>
<th>Completed Irradiation (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW26-154</td>
<td>MTR</td>
<td>UC1.08</td>
<td>Ta</td>
<td>2200</td>
<td>1.5</td>
<td>3000</td>
<td>2700</td>
</tr>
<tr>
<td>PW28-11</td>
<td>ETR</td>
<td>50 v/o UO2-BeO None</td>
<td>2000</td>
<td>.5</td>
<td>3000</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Capsule PW28-10 completed one ETR cycle at approximately 2100°F. Heater failure resulted in 1775°F operation during the second cycle after which it was returned for examination.

12. Posttest examination of capsules were started or continued for following capsules:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PW26-241</td>
<td>UN</td>
<td>W</td>
<td>1100 2125 2150</td>
<td>T</td>
<td>15.3</td>
<td>4.9</td>
<td>0.20</td>
<td>7.56</td>
<td>2.46</td>
<td>2.03</td>
<td>5.8</td>
</tr>
<tr>
<td>PW26-241</td>
<td>UN</td>
<td>W</td>
<td>1100 2225 2250</td>
<td>M</td>
<td>13.7</td>
<td>2.5</td>
<td>0.37</td>
<td>7.26</td>
<td>2.36</td>
<td>1.95</td>
<td>4.0</td>
</tr>
<tr>
<td>PW26-241</td>
<td>UN</td>
<td>W</td>
<td>1100 2100 2125</td>
<td>B</td>
<td>13.6</td>
<td>4.9</td>
<td>M11</td>
<td>7.28</td>
<td>2.34</td>
<td>1.93</td>
<td>3.9</td>
</tr>
<tr>
<td>PW26-174</td>
<td>UC1.08</td>
<td>None</td>
<td>2600 - -</td>
<td>T</td>
<td>15.4</td>
<td>7.4</td>
<td>0.6</td>
<td>12.0</td>
<td>3.7</td>
<td>1.29</td>
<td>5.9</td>
</tr>
<tr>
<td>PW26-174</td>
<td>UC1.08</td>
<td>None</td>
<td>2600 2200 2275</td>
<td>M</td>
<td>88.9</td>
<td>21.6</td>
<td>7.4</td>
<td>12.8</td>
<td>4.0</td>
<td>1.39</td>
<td>91.2</td>
</tr>
<tr>
<td>PW26-174</td>
<td>UC1.08</td>
<td>None</td>
<td>2600 2175 2250</td>
<td>B</td>
<td>24.9</td>
<td>16.5</td>
<td>2.1</td>
<td>15.6</td>
<td>4.6</td>
<td>1.69</td>
<td>14.2</td>
</tr>
<tr>
<td>PW26-160</td>
<td>UC1.08</td>
<td>Ta</td>
<td>2370 2150 2225</td>
<td>T</td>
<td>11.8</td>
<td>10</td>
<td>2.7</td>
<td>11.3</td>
<td>3.37</td>
<td>1.18</td>
<td>12.5</td>
</tr>
<tr>
<td>PW26-160</td>
<td>UC1.08</td>
<td>Ta</td>
<td>2370 2200 2275</td>
<td>M</td>
<td>19.0</td>
<td>13</td>
<td>3.1</td>
<td>10.8</td>
<td>3.23</td>
<td>1.13</td>
<td>32.8</td>
</tr>
<tr>
<td>PW26-160</td>
<td>UC1.08</td>
<td>Ta</td>
<td>2370 2175 2250</td>
<td>B</td>
<td>12.6</td>
<td>11</td>
<td>2.7</td>
<td>11.6</td>
<td>3.46</td>
<td>1.21</td>
<td>16.4</td>
</tr>
<tr>
<td>PW26-240</td>
<td>UN</td>
<td>W</td>
<td>3000 2075 2125</td>
<td>T</td>
<td>38.2</td>
<td>5.8</td>
<td>0.95</td>
<td>13.1</td>
<td>5.4</td>
<td>1.6</td>
<td>17.2</td>
</tr>
<tr>
<td>PW26-240</td>
<td>UN</td>
<td>W</td>
<td>3000 2200 2250</td>
<td>M</td>
<td>63.7</td>
<td>8.0</td>
<td>1.8</td>
<td>14.5</td>
<td>6.0</td>
<td>1.8</td>
<td>32.3</td>
</tr>
<tr>
<td>PW26-240</td>
<td>UN</td>
<td>W</td>
<td>3000 2125 2175</td>
<td>B</td>
<td>41.8</td>
<td>7.8</td>
<td>0.88</td>
<td>12.0</td>
<td>4.9</td>
<td>1.5</td>
<td>21.9</td>
</tr>
</tbody>
</table>
To: Messrs. L. M. Raring & G. U. Parks

Contract AT(30-1)-2789
CNLM-5449
January 3, 1964

---

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PW26-192</td>
<td>UC,94</td>
<td>W</td>
<td>3120</td>
<td>2025</td>
<td>T</td>
<td>80.6</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PW26-192</td>
<td>UC,94</td>
<td>W</td>
<td>3120</td>
<td>2175</td>
<td>M</td>
<td>1.9</td>
<td>14.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PW26-181</td>
<td>UC,94</td>
<td>W</td>
<td>3120</td>
<td>2075</td>
<td>B</td>
<td>90.9</td>
<td>11.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Following observations were noted:

PW26-240 All claddings ductile, but tungsten barriers brittle. Cladding shows brittle ID phase to 5 mils. Fuel shows slight metallic phase. Pellets grew axially 2 to 7 mils.

PW26-192 Middle specimen failed. Bottom specimen bulged at top end of top pellet and probably leaked, ref. low gas pressure. Failure attributed to incomplete protection by tungsten. Top and bottom specimen cladding brittle, showed grain growth and grain boundary separation. Depth of incompatibility reactions were 17, 25 and 20 mils for top, middle and bottom specimens, respectively. Extensive reaction with end spacers was also observed.

PW26-181 Middle specimen showed alloyed or melted area on OD adjacent to top of fuel stack. Positive test for lithium was observed in top specimen, indicating leak.
Compatibility

13. Eight compatibility specimens of UC vs W-lined or Ta-lined Cb-1 Zr alloy tubing and W disk and cup barrier protection at end plugs were tested for 200 hours at 2400°F followed by 48 hours at 2800°F. Six specimens examined to date showed no indication of incompatibility nor fuel particles behind barriers.

14. Sound and defected compatibility specimens of uranium carbide vs tantalum-lined and unlined Cb-1 Zr alloy cladding tested in 2200°F lithium for 7500 hours were examined. Sound, tantalum-lined specimens showed no carbide or uranium penetration into cladding, nor any evidence of swelling. Unlined, sound specimens showed carbide penetration through full wall thickness but no uranium penetration in contrast to previously reported 6000 hour test which showed uranium penetration. Defected, unlined specimens showed uranium diffusion through full wall thickness. Defected, tantalum-lined specimens showed same results as sound specimens, probably due to lack of defect through tantalum liner.

15. Examination was continued on a 5000 hour, uranium carbide vs tungsten foil lined Cb-1 Zr alloy cladding that was intentionally defected and immersed in 2200°F lithium. Fuel contained metallic uranium and evidence of uranium alloying was observed through the full wall thickness of the Cb-1 Zr alloy (25 mils). In previously reported tests similar specimens showed 9 to 13 mils penetration of uranium alloying after 2500 hours and no uranium alloying after 1000 hours.
16. Compatibility specimens of uranium nitride vs tungsten foil lined Cb-1 Zr alloy cladding were tested for 3000 hours in 2200°F lithium. Both sound and defected specimens showed fuel pellets intact by preliminary radiographic inspection technique. Unlined specimens showed spotty discoloration on OD not observed in tungsten-lined specimens.

17. No fuel-refractory metal interactions were observed in an 8000 hour test at 2200°F of uranium carbide vs tungsten foil lined Cb-1 Zr alloy. However, a 0.4 mil reaction zone between the tungsten and Cb-1 Zr alloy was observed.