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LOW-ENERGY PION-PHOTON- INTERACTION: The (2n; 27)‘VERTEX

Bipin R. Desai

Iawrence Radiation Iaboratory
‘University of California
Berkeley, California

April 20, . 1961
ABSTRACT

‘In the (2x, 2y ) problem, the :Mandelstam représentation is
written for the two indépendent gauge-invariant amplitudes. On the
basis of unitarity limitations on the~asymptotié behavior of these
amplitudes, only a j = 1 subtraction.in.the o + m -7+ « ‘channel
and a j.= O subtraction.in the .7 + y - n'+ n channel are allowed.

No over-all subtraction constants are required and the Thomson limit

is automatically maintained. Only%t?: effect of 2n intermediate states
is considered. The odd~-j xnxt contribution involves the amplitude for
the process ¥+ m = 2n analyzedﬂby Wong and éhown to be propoftional
to a psuedo-elementary constant. A. Even with a xnnt P resénance, the
correction .is negiigible. (< 1%) if we use the value of A estimated

by ang on the basis of ~ﬁo decay and confirmed'by Ball in_connection
with photopion production .on nucleons. A,moderatély_importanf»contribution
comes from the - S-wave interaction. For the pion-pion coupling constant_
A of order‘-0.20-(see-bélow), this effect is '~ 10% in 7+ >y + =
scattering. For ‘Y4 ¥y -+ 7%, the correction.for the I =0 .state

at threshold is positive and ~ iOO%"of the Born approximation. However,
as the energy is increased, the correction-qﬁickly changes sign.

The =it S-wave phase shifts needed in the above caiculations

are obtained by using crossing symmetry relations given by Chew and
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Mandelstam. For a xn P-resonance positipn ~ QOp?_ (p. being the pion

mass), we find that A in the interval (-0.20, -0.15) is in good
agreement -with the S-wave enhancement observed by AbashianAet al. in
p + d .collisions. The S-wave interaction is found to be much stronger

in the I = 0. state than in the I =2 state.
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I. INTRODUCTION

In the (2m,2y) problem, both strong and electromagnetic
interactions are.involved. In principle, one can calculate electromagnetic
interactions on the basis of perturbation theory. Our .purpose here is
to understand the effects of strong pion interacpiOns-on the (2%,27)
vertex.l

Attempts -have been made in recent-years ﬁo understand strong
pion interactions at low energies by using the Mandelstam representsﬁoion.2;’5
In particular, a P-wave pion-pion resonance has been conjectured in
connectionvwith-the,nueleon electfomagnetic struc’oure.)+ If such'a .
resonance exists, ene might expect its‘effects-to be appreciable in
Compton scattering on pions (e.g., Y4+ x>y +-n). One may recall-in
this connection Compton scattering-en protons (e.g,,‘y + p=>y+ p),
where the 3-3 resonance causes a large increase in the cross eection
above the value given by the Klein-Nishina type formuia;5 Pion-pien
.forces may alse be manifested in the final-state interactions of pion
pairs produced by photons (e.g. v+ ¥y > %t + n). Such. final-state

interactions, if they.are substantial, may be observed experimente}ly
by producing e pion pair from a high-energy photon in the Coulomb field
of 'a nucleus. | | |

-Further, an understanding of the (%n,27)_vertex is a

prerequisite for a-theory of nucleon-photon scattering and in fact for
most probleﬁs where aAveftex connecting strongly interacting particles
‘with two photons-is involved. . For example, in the,calculation.of the

electromagnetic mass of charged piong one needs the -pion.Compton

scattering amplitude for virtual photons. The .information .obtained



B

here may, therefore, be helpful in. understanding the mass diffefence
between charged and neutral pions. .

We -shall investigate . the (2ﬁ,27)'problem within the-framéwork
.of double=dispersion relations- proposed by M’andelstam,2 ‘We do not
think it pertiﬁent,to.go into the-principleSrénd conjectures underiying
the Mandelstam representation, since we have nothing~new:t9'cqntribute
‘to these general questions; which have been the subject-pf so many
papers. Following the effective-range approximation given by'Chew.and -
Mandelstam we agsume the behavior of the amplitudes to be dominated by

5

. nearby  singularities.”. Moreover, . the contribution of intermediate .states
“containing -one: or more photons will be neglected since, even-though ﬁhey
correspond to near singularities, poWerS»higherAthan -é2 are involved.

-In the néxt seétion,awe shall gb inte.the kinematics of the
problem and show that because of Lorentz and gauge.invarianceuohlyjtwo
invariant. amplitudes are -involved. .The Mandelstam representation for
these amplitudes is then written.in Section-:III, and the question.of
subtractions discussed. In Section:IV, the helicity amplitudes - of

Jacob and Wick are introduced.6 :In.Section.V, we consider Compton

scattering, ¥ + Tyt T and. discuss fhe»effectnof the -wx interactions.

- . In-Section . VI, pion-pair production, .y + ¥ = it + =, is considered and the

effect of-final;state nnt S-wave interactions-discussed. . In the Appendix
we -give the-calculations needed to-obtain wn:S phase shifts.
One. of our main results is negative and.veryﬁsurprising, in
.view -of the large -enhancement of nucleon Compten scattering by the
5-

33 resonance. We find.that,the effect. .of the 2n. P resonance on-pion.

Compton»scattering is negligibly -small. .The important matrix.element
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here is that for ¥+ & > x + % and has been estimated by Wong on the
basis of the no “1lifetime, ﬁhere this émplitude'also ﬁlays a,role.7
Woné's_estimate{ confirmed,in.order-of'magnitude'by Ball in connection
‘with photopion produétion from.nucledns,8 is smaller by about a~factor
of 10 :.than one mightlnaively guess, -Since this matrix eiement appears
squared iﬁ;tﬁe Comptgn amplitude; the 2x resonance ﬁurns out gb make
a contribution only_of the'ordeerf ;%. In Section V, we shall discﬁss
‘~the7proﬁable-regson for the smallness of Wong's amplitude. We do not
here cbnéider~a 3% bound state of reéoﬁance,'which,may play a large
role in pion.Compton scatteriné. |

-.In the y+ 7 - nt+ %« qhannei only.eVen-angular-momentum states
'are-involved because of charge-conjugation invariance. By a~reasoﬁable
Achoice-of - nix S-phase shifts, we find in Séction-IV that the contribution
of the final-state iﬁferaction is large. For the I =0 state, where
.the interaction is étrongest, the contribution at low. energies is found
to be positive corresponding to attraction and is of the order -of 100%
.of theiBorh°é@pliﬁude.at threshold. .As the -energy is increased, however,
it quickly chaﬁges sigﬁ. Such a,ciréumstancefcorreéponds tO‘th? fact
-that the.pibns are produéed with aalargerrelativé separationu(ﬁ one pion
Compton wave 1ength) and have, thefefore, a fairly smali probability

- of interacting with-each other.
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IT. KINEMATICS AND INVARIANCEiCONSIDERATIONS

Figuré 1 describes the (2x,2y) vertex under consideration,
where fhe wéVy lines indicate photons and solid lines indicate.pions.
A Fdr theAsake pf symmetry, we shali take all the lines as incoming. ILet
Pl’ pé. be the four moﬁeﬁta of the pioné and «, B "the corresponding -
charge ﬁuikes;”while ’kl, k2 ' are the four -momenta of the photons and
el, e, the.correépondingipolarizatibn vectors.'.We then define the

three Lorentz invariants s, s, and t as follows:

s = (kl + pl)2 = (k * p2)2, ‘ , (2.1a)
s = (k) + p2)2 =k, pi)g | (2.1b)
b= (k) + 1:2)2 = (py '+ 152)2 . o (2.1c)

From energy-momentum conservation, we have

Notice that S, E; and.t’ are the squares of the energies -of the
following three reactions in the barycentric system:
ky + P; > -k, <p, | (y + =iy ) < o« (2.2a)
ky + D, ~ =k, -p) | (7 + =7+ =) (2.2v)

k) +k, ~ =P, -P, (y +y>a+mn) . (2.2¢)
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The. .S matrix is defined-as

1/2 '4 . .. N
£i £i B(ky + B+ Ky + 2p)Tpy

18, = B.i-1 (21\:) (l6u)kl b, k2

where f and i indicate -final and initial states, respectively, and
the w's indicate the'energies.of the different particles. For the
given charge 'indices a@ and B we have for-the T matrix

Top = (Bgp  B5583) T+ By B3 T

vhere T° and T  .denote the T .matrices corresponding to charged and

A neﬁtrél pions, respectively. Henceforthvwe'shéil suppress théfcharged

and neutral indices. We shall concentrate our ‘attention mainly. on

‘the .charged case -and only comment on any alterations needed in.the

heutral éasé. |
"We.may’further'write

_ n
T= QEM'T v’

. where pr -is a tensor of second rank which .can be expressed in the

most general form as:

=axtx B A RENCE S R B R TR A

+Fk“l%L +Gk_L“A + HA uA+Ik“A +ng,

~

Y is the conventional metric tensor.l The

where A.= Py = Py and g
-amplitudes A-.... J are:functions of the invariants s, EQ and t.

; . v
Gauge :invariance requires that {(a) 'k2u7T“y = 0 and (b) .TH k,, =
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‘With the above conditions and the reqpiremént of Zero phofon mass,

k124= 0 =-k22,-we-obtain

k2 kl 5 el) A(s, s,t)

kg*k

+ (~e re, K 'A+ 2L Ae nx ev-A‘ei.ke

1% RO TR R T

x B(S_:E; t).

Crossing symmetry reqhires‘

A(s,5,t)-= A(S,57%), and 'B(s,5,t) = - B(5,s,t).

- €

o'k e

(2.3)

'(2.1;)

~A)

.The foregoing results have bean . obtained independently -by. Gourdin and

Martin.9
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The Mandelstam representation for A and *B <can be written

" for charged pions as

' 2 -2
Als,5e) = £ 4
R Y3 “l-s
1. % @ O‘i(s'.’t') 1 1
+ T3 [ as' [ at' = : - -+ - )
L4 L i<t s'-s s'-s
® @ ® _ oy (s',s")
v [ e [ oas 2
7 (s'-s)(s'-s)
" (3.1)
2 2
B(s, 5, t) = SEe . e
) 1l-s 1l-s
1 00 © ﬁl(s'ztf) 1 N
+ = [ ast [ ag ~ ‘ -—)
n t'-t s'-s s'-s
® B.(s',s")
+ 3= st [ a5 2~
7 L (s'-s)(s'-s)
(3.2)

‘Here: al’ Oé, ﬁl’ and 52 -are the double spectral functions. Notice
‘that the crossing condition (2.4) is explicitly contained in

Egs. (3.1) ar_ld-(5.2)} for ,0‘2(?:;) = oze(g,ns) and’ 62(5,;) = -Bg(g,s).
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The poles at> s =1 and s =1 correspond to single-pion intermediate
stetes in reactions (2.2a and b) respectively. ‘Thejlower limits on the
above integrals correspond to the fact that the least massive intermediate
states in the three chanﬂels given.in reactions (2.2a, b, and c) are the
two-pion states. For ‘neutral pions, the:only difference‘is that the
poles.are absent. - Subtractions ere perheps necessary in the above
dispersions reletione and. we shall discuss-them later on.

The region in which the double specfral functions ai, a2’

S:t)

Bl’ and 62 are nonzero are given as follows: For both al(

and .Bl(é’t) the region is defined by the curves

} 2 _
b= —(—n)y-hégztl . N (3.38)

and
_ M(s-1) - -
t .= =5 - A _ : (3.3p)
For aé(s,g) and Be(s,g),‘the curves are
(s-3)(5-16) - 81 = 0 - (3.5a)
and -
(s-16)(s-4) - 81 = o. (3.4p)

Notice that there are no anomalous thresholds involved.

.By a preper,choice of‘amblitudes, the pele terms correspond
'in the Y+ t = 7+ nt channel to the Thomson amplitude, which A and
B should apﬁroach in the zero-energy limit. Hence on the basis of
zero-energy-limituthedrems; subtrectibns"arefunnecessery. We thus differ

9

from the observations of Gourdin and Martin, © who use a different set of
amplitudes ahdAare.uhceffeih, thefefore,'abouf the number of.pbssible
subtractions. We may go farther and discuss possible subtractions

on the basis of wunitarity limitations
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on .the asymptotic behavior of the A and B amplitudes. Such an
analysis was first'cérried out by Froissart in. the case -of scalar
particleslo and was applied by Singh and Udgaonkar to the piqn-ngéleon
.problem.ll We give below the results for thé A and B amplitudés
‘which are derived in Sections Vb and VIb.

For the 7+ > 9 4+ = channel as s -approaches infinity,

we have
|A|,$ s,-|B|.s constant

for;fixéd' t(i.e.. for cos @ = 1), . . (3.5a)
al <5, |8l 55 |

for fixed s(i.e. for cos . -1), and o - (3.5b)
lalg s, |3 g s/*

for any other -value of cos.6, o _ (3.5¢)

where © -is the scattering angle.in this channel. For the

'7-¥-7 - © + 1 channel as .t approaches infinity, we have
Al s ¢ [Bl st

for fixed s or s (ise. for cos § =+ 1) and (3.6a)

al s 67, 8] g ¢ /H

for any other value of cos §, .o (3.6b)

where -¢ is this scattering angle in the channel. Since

Y+ Y >+ Kt iis anAinelastic channel, ﬁe‘may;assume that the A

and B amplitudes do ﬁot attain their maximum values given by expression
(3;6a)1in the forward or backward direction. For cos. P = + 1 we ..

then have
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oAl <, Bl gett, o T (3.6e)

where ¢ 1is any small positive number.

"Fram the above asymptotic conditions, we observe that no
arbitrary over-all subtraction constants are allowed in the A and
B amplitudeé since their presence violates conditions (3.5c) and (3.6b).

Thus we do not anticipate'that any new paremeters will appear in our

problem., One subtraction in t,Acorfesponding to J 1 in the

Y+ -7+ x channel, is allowed for both A ana_ E amplitudess
However, fufther subtractions briné in poﬁers'of4 t lgfger ihgn or
equal to unity and are incompatible with the‘asymptofic behavior of
expression. (5f60).'.Ohé«subtractipnviﬁ;:s‘(and,.g) is gllowed.

for the  A . amplitude, cérresponding toA“J = 0 for the

7+ 7 =+ + % channel, but subtractions for 'j >,0; whére J is even;
érevincompatible with expreésion (3.5&)‘§inCe'they bring in powers of

s (or s) .largér than or equal to two. For the B émplitudeé the

first subtraction involves (s - E) and is incompatible with relation

(3.5a).
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IV. HELICITY AMPLITUDES

In the present problem, we shall use the helicity amplitudes
given by. Jacob and Wick.6 Thus'we have a simpler connection between
unitarity and analyticity than Wheﬁ the conveﬁtionai'electric- and
magnetic-multipole amplitudes are empioyed."

In a two-body,collision;:we-denote:the_helicities of the initial
particles by Ka and Ab and of the final particles by xc and . Kd R

respectively. The corresponding scattering amplitude is given by

g . (8) =
xc’xd’Ka’kb

=]

205+ E) Oagyg IP®I) 4 () (1.1)
J - ' A . .

while the differential cross section is

do _ | o ()

do |2
aQ

g, (e)
Mot Ngr Mg Ny

Here ‘we have A = %a.-~Kb and W = Lé - Xdi J

‘momentum, p, E, and 6 -are the barycentric momentum, energy, and

is the total angular

écattefipg-angle,.respgctively;- (Xcklej(E)IhaAb)"is the cqrresponding

T matfix;~and ‘dxuj(e) is the function gi&en by Jacob and Wick.6
' In the (2x,2y) problem, the pions have zero spin, and

.thgrefore zero helicity while the photons have helicity +1 or -1

dépending on whether they are right or left circularly polarized.
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V. COMPTON SCATTERING CHANNEL

In the bérycentric system, .we can write

1
- - 2 . ’ . .
and 'kl°k2'= - kX~ cos 8, where ‘® 1s the scattering angle and we define
s = (k Vi +‘1)2 s ' ‘ ' ' (5.1a)
2 o - S
t = -2k (1 - cos @), (5.1p)
and ‘ - o
5 = (=k + Vie + 1)2 - 2k% (1 + cos -6). : (5.1c)

Here .s 1is the square of the barycentric energy,. and t the square
of the corresponding momentum.transfer.' The differential cross section
is

p (5.2)

where T 1is the T matrix defined in Eq. (2.3).

A, Helicity Amplitudes

Here we have A_ = O = A and therefore A_ = N, A_
3, d a c

with the A and’ p values being + 1. If we denote the helicity

=u,

_amplitude by fux(e), we have

-

A @ -x B G 50 Tal(e) 4, () (5.3)

and

d 2 - ' |
AR R ON e N (5.1)

k=05 X)), k, = (-k k)5 P = Wi+ 1, - X&), p, = (Vi + 1, -k, );

»

)
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If we denote AN and -p indices by‘ +, -we have

THJ(S) = T__J(S)J
and

':T-+j (s).

$+_J(§)

Using Eq. (5.2) with appropriate values for the polarization vectors

e., and e, .and comparing it with Eq. (5.4), we obtain

1 2
a(s, 1) = Blamtl _ ZE = e (o) -~ (5.5)
S=S. ss-1 s-1

‘and

b(s,s,t) = %I [A(s,E,t').+*5-'3 B(s,s,t)] .= Snk s £, (8)

S-S -t S=-
(5.5b)
.Where |
B 1 J J .

SEORS 35 MRS BRSO (o) (5.62)

and -
1 oo} 1 j ) ;

£, . (e)A == JZ=1 (3+5) T, (s) d, (8).. (5.6b) |

Thus we have _
- B(s,s,t) _ lns j dy 1‘j ()
a(s,s,t) = =82 < £ (es+1) T, 7 (s) =57
' S=5 s=1 ss5-1
(5.7a)
and
b(s,5t) = [Als,5,8) + Bt (s, 5]
S-S
| a, _,°(e)

_ s 5o, 3oy -1 '
= o Pl () S (5.70)
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The da°(6) functions are given by Jacob and Wick as

. 2
P’j(cos-e),--P’j_l(cps e) +-jAPj_(c05»§)

J
a (0) = (5.8a)
e J(a+1)
and |
! 1 . _ 2 _
Siay _ng(cos o) + P j-l(cos 8) - J Pj'(cos 9)
4,,.1°(8) = ;
7 3(3+1)
: : (5.8b)

where the primes indicate derivatives With réspect-to cos 8. “In

Egs. (5.7a and b) we have ss -.1 and t. in .the denominators, and

therefore we .can use A
d e P". cos 8) = P", (cos 8) + P', (cos.@
21O B s o) B (cos @) 4 s (e0s o)
1+ cos © ) , i(j+1 .
S ) J(J ) (5.93.)
and
j / 1" ) PN . 2P _
dl,-l (e) _ P j_l(cos e) f,P j(cos Q).+ q qu(cos o) -
1 - cos @ ' - : 3(3+ 1)
: ' (5.90)
B. Asymptotic Behavior
Unitarity demands thﬁt
J ‘ . -
|:T++ (s) | <| (5.10a)
and
K COR IR (5.10b)

Further, the Legendre functions and their derivatives satisfy the follow-

ing relations:
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3, =3, 1>'j‘(1)‘=#‘g—‘“—l—l (5.11a)

For -cos ® =<1, we use the relation

1Pj(féqs-6) = (--‘l)‘j Pj (cos. 8).

For 'cos‘e-#-i'l, we have for large values of

P, (cos.8) 2o(®) (5.12a)
P, (cos..8).= -~ .12a
N | |
Plj.(cose) =‘\/JT—hl (e), ' <(5.,12'b)'
and . : .
P"(cos ©) = 33 hy (8). ~ ~ (5.12¢)

where ho(e), hl(e), and hE(e) are functions of 6 only.
| For the a and b amplitudes given in Egs. (5.7a and b), if
we keep - t vfixed and let s .approach infinity, then, since

‘cos. © -approaches 1, we have from Eys. (5.9), (5.10), and (5.11)

1 ! 1.0, 2 _1 2 1
lal 5% 2Qr5)~ 5 dyyy =7 (B 25 (53)
S . S S
and
e o 1 oo ly 21 . b o L
bl g = =3+35)38 ~>5 3, =5 B ~s (5.15b)

where R is the interaction radius in the sense of Froissart's analysislo
a¥id  is . essentially. . a . constant. Similarly, if we keep s fixed
‘and let s -approach infinity, then, since cos -‘® approaches -1,

we have



|a|
and

||
For .cos

|a|
_and

b

- .20-

< constant (5.1ka)

< constant, (5.1lp)

84 +1 and s - o, we have from Egs. (5.12a, b, and c)

S % ez) B2 o/t - (5.158)
s sl d et (5.15b)

J

From these asymptotic conditions for the a and b amplitudes, we

have for - the A and B amplitudes as s approaches infinity

|l

< s, |Bl <. constant 7 , (5.16a)

for t fixed, .i.e.,. cos 8 =1,

|4]

|a]

< s BlLg s - (5.160)
for ‘s fiiced,'i.é.',‘ cos 6 = -1, and
< Mg ¢ M (5.160)

for cos © ;é 4 1.
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C. Fixed Momentum-Transfer Dispersion Relations

In EQs.‘(5.7a and b) we notice that since B 1is gn odd . function
of s - E} no new singularities-are introduced in thé a and b
amplitudes. Moreover{pweihave :di,lj () = 0 and ‘djl,-l (0) = 0,
corresponding - to the vahishingvof the forward helicity~flip and
backward nonhelicify-fiip amplitudes. However, these-zeroés~are
absent in.the a and b amplitudes because of the ﬁresence of the
factors s5 - 1 and t in the denominators in (5.7a and b). The a
.and b amplitudes have the further property that each is expressed in
terms of a given type of helicity amplitude. .

We iahEll now proceed to write dispersion relations for the
a and b amplitudes rather than the A and B amplitudes because .of
.their simple properties given above. We shall not, however, use the
Mandelstam representation in its. full generality, but.oniy the part
of it obtained by keeping t (the square.of the momentum transfer)
‘fixed., In order to derive maximum benefit from the Mandelstam
representation, ‘ise., in order to use information about the singularities
of the scattering amplitude in'all:variables, we write down‘partial-
wave dispersion relations, :If‘we-do so in the Compton séattering
‘channel, the total amplitude for 7y + ¥y = ®w:+ % 1is éxplicitly
involved, corresponding to the cut .t Z. L4, For theAfixéd momentum-
transferndispersion'relations, howeﬁer, beéause.of créssing symmetry,
only the absorptive part.of the ¥ + w7 + '« amplitude is involved
except for the J =0 amplitude.for-the Y+ ¥ =>4+ channel.
By -making pr&per‘subtractions (see Section Vb and VIb), we then have,

for fixed ¢,
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Hnee @

a(s,t) = —ZE—— 4 2 [ asa (sh,8) (S— + =)
(1-s)(1-s) b e sf-s sf-s
(5.17a)
and
hneE - 0
b(s,t) = ————"+ h C_~ (%)
(1-s)(1-8) :
(0 0]
+ x [ as' p.(s',t) A
7 1 ' s A
3'=3 3 =5 l_pq_
_s' + p_2 + q_2 +-2p_q_
s'+ p "+ 49 -2p_q_

(5.17p)
where C+o(t) is the correction term coming from the j =0, ¥ + 7 = 1 + =
amplitude continued to negative t values (see Section VIc) and is
allowed in b .but not in a. by the asymptotic conditions (5.13%a and b).
The correction terms Q+O’C(t) andA Q+o’n(t) for the charged and
neutral case respectively are connected through the relation (6.10)
'to the correction.terﬁs Q+O’I(t) given.in Eq. (6.16). ;In Egs.

(5.17a and b) we define al(s,t), bl(s,t), p, and q_ by

al(s,t) =Tm a(s, t)

_ .00 . a4, .9 (e) : :
Jhms S oy e 1) o (s) i (5.182)
s=1 et —
'J=l ss =-1
b, (s,t) = In b(s,t)
a, -9 (o)

@ s
s (24 1) M, (s) HE— ~ (5.180)
J:

1 t
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Using the unitarity of the S matrix we can expresé Im a and
Im b in terms of a sum of the absolute Squares-qf'the amplitudes for
Y + t > n, where n -stands for the possible intermediate states. In
this preliminary‘éalculation, motivated by the success of the
 analogoué approach for.-7p scattering,5 we neglect the contribufion
of all but the 2= intermediate.staﬁes. If a Bn. resonahce.or'bound
state exists, its contribution may be nonneligible. However, because
of insufficient infofmation aboﬁt such a state, we do not consider it in
the present discussién. ~In the above approxiﬁation,,then, a knowledgé'
of the 7y + = 2x émplitude is sufficient . to give :Im ; and TIm b,
This amplitude has recehtly,been studied by H. 3. Wong on the baéis of
'the.Mandelstam representa_tion.7 Only a single invariant amplitude is
involved, and-only odd angular momenta need be considered. We -denote
the heliecity amplitudes (7n|Tj(E)Jnﬁ) for-a given angular momentum
j and energy ‘E in the ¥ + n = 2x reaction by .R}j(s), where +

indicate the photon spin parallel;or~antiparallel to the photon's

‘direction. of mdtion.6 From unitarity,vwe thenAobtain

. . 5
Im TtJ(s) =+ '% IR (s)|°

where
B I(s) = - B s) = R(e). | - (5.19)

7
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The RJ(s) amplitudes are connected as follows to the amplitudes

Mj(s) given by Wong:

R(s)|? = —2— [__i_ﬁs_”_]3/23(a+l i 2

(6)4\“)2 : (2J+l)
| (5.20)
~Thus from Egs. (5.18a and b) we obtain
. al(syt) 5 - —'——'-“""—2' ——2-»-)4' ]1/2 Z ‘
(32y)° - aa
(1) L 4y lJ- (8) , :
LIy (8)|F E—o (5.21a)
23+l ‘ "1+ cos © 4
and
. . -
—L 5i8/2 L
(6) . .
3(g+1) |M ( J2 st 77 dy -1 ; (5.215)
25+1 1 - cos © '

In Egs. (5.21a) and (5.51b) we retain only the j =1 term and
substitute:thé“cdrresponding a, éﬁd bl in the dispersion integrals
(5.17a and b). This seems to be a good approximation, since energies
under consideration are low. Fufthérmore,‘because'of the assumed P
wave nn resonance, the amplitude for J = 1 1is expected to be
.largér than the higher waves. A similar.approximation has been made
in proton Compton scattering, 7 + p— 7 + p.5 Here only.the np

intermediate state is retained, -and by neglecting all bat the contribution
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of the resonance in the J 5/2 and T = 5/2 state (T being the
»isotof)ic spin), . the results obtained are in good agreement with
Aexperiments.s - Reintroducing the charged and neutral ..superscripts

¢ and n, we have then the'following relations:®

ac.(s,‘t.) = ')-I-T(GE' — - A
(1-s)(1-3)  30an° ™
xf d'[is—'i—]l/z |M1(')|2 5' '1— .
(5.22a)
b(s, ) = = h“eg il C+°"°(t) —
' (i-s)(1-5) | 3(3e¢n)° "
.x f:gSF [s’(s’-h)Bj_l/g 'Ml(s")|2' .
1 1 1  €'*PF*4q242pq
x [ —=— + — - — In (- = '2 L ')J
. §'-8. s's=s 2p_q_ | S8t 4+ p -+ g -2p.9_
(5.22p)
&™(s,) = - f a S—S—'—”lll/e
52/—)
x Iy(e: E P 22— ) . (5.23e)

s'-s s'=-s
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(s, t) = o OP) ¢ —E L
) - 3(efn)?
X {'dsr [S‘(S‘;):L)B]l/elMi(,S")le. (A A

s'-s s'-s

(5.23b)

The Ml(s) amplitude has been obtained by Wong using partial-
wave dispersion relations.7 Keeping only the contribution of the
2n J =1 intermediatéjstate; we bbserVe that:the phase of Ml(s) is
given by the phase of tﬁe TR PAwave. By replacing the left cut involved
in the partial-wave dispersion relations by a single pole at a, Wong

gave the Ml(s) amplitude
(1+a) Dl(l) :

Ml(S). - A (7a) D, (5) ’ " N (5.26)
-wﬁgre‘-ﬁl is éjpséudéelemenﬁary constant propofﬁional to the residue of
'Ithe~left—cut pole, and Dl(s) is the denominator function of the P-wave
it system which. is ngcessary to give- Ml(s) the required phase. The
position a is given.b&'the behévior of thé. f-'ﬁévé, and is larger for
higher values of the P-wave resonance energy. The constant A is estimated
by Wong on the basis of the- 7 ~:life‘c,im..e, where it plays a J:'ole.'Z ' For
a n° lifetime of ~h x-io;l6 sec, he’esfimates A to be ;e. With
the Frazer-Fulco value for the P wave s resonance position
Sp X 10 and width T = 0.4 Wohg found a ~ 5.7. When these estimates
~9f A and a are inserted into the dispersion integrals in Egs. (5.22a

and b) for charged pions,'we find by an exact calculation. tlmt their

contribution is- < l% . Near
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‘S':_;SﬁZMWE of course expect:’ the imggipary~partslo£= a.and b .to be

jmportant. For any. s value,. We have from Eq. (5.26)

Ia(s)i=*imjé¢(é,€)3= Im an(s;f)'

< - —5
L 3(52‘/1'_[) sta. 1 (5.27&) »
and
Ib(s) = Im‘bc(s,t) =:Im4bn‘(s,t)
S lta 12 3 1/2: 1),
= (: )T [s(s=4)"] | =—.|° .
. 2 + . D
30?2 s 18 (5.270)

The ratios [Ia(s)/Bf(s)]g and. [Ib(s)/Bf(s)]2 " are given.in Table I,
where Bf(s)‘ is the minimum value of the Born term in Egs. (5.22a and b)
'A attained.in the. forward direction. We<observeithat\the3abov¢ ;atios:are_
not greater than ~1%  near the resonance -energy. sRi: 10, We have,

so far discussed the resonance -contribution only for ‘Sp

- for a higher ‘sp value . ~ 20 (see the Appendix), the situation will

~ 10, but

‘not qualitatively change.
‘The biggest. correction.to the Born amplitude seems to_come
frem: the Q+o’c(t) term and.is roughly of the order '~ 10% if we
take ,A:=‘-~O.20‘(see.Section Vic). The ratios of the differential. cross
section de/dQ to (dc/dﬂ)B is giveén in Table II for .6 = 90 deg and
8 = 180 deg, where (do/dQ)B is the differential cross section.obtained

by keeping only the Born term. For ©'= 0 deg, the b -amplitude.is
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 Table I. Values of (Ié(s)/Bf(s))e and (Ib(S)/Bf(SJ)e_

for s. =10 and T = 0.k,

R

s @) (1, (s)/3.(s))2
5 | ‘ 2 x1070 6 x 10’8
10 5 %107 . 5 x 107

15 4 x 1077 ‘ . 9x107

20 10~ 0k x 107




: R ae® doB .
Table II. Values of ( z==—/—= ) at © = 90 and 180 deg.
i , v agTan

s '9.'=-9O deg. o = 180 deg

5 -7 .1.06 0.93.

10 - 1.10 0.89

15 1.12 0.88 .
20 ‘ 1.13 0.87

25 T 0.86
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A ébéenﬁ, anduhenee<£h; cbﬁtribﬁtioﬁ to 'dc/dQ’.éohés entiréiy;from the
Born’teym;u For the 'neutral case, ~of course, the contribution of -
Q+o’n(t) is the only important one. .If the correction term.for the
I=2 j=0,7+7y=>5x+1x amplitude 1s neglected (see Section VIc
and the Appendix) we have from Eq. (6.10)

-, On - 0, c
c, 7 (t)~ ¢ 7 (¢).

The above results are in gfeat contrast to the results in proton
Compton scattering where, as described earlier, the 3;5 resonance in the
intermediate pion-nucleon system increases substantially the cross

5

section coming from the Bbrn term. The reason for the negligible
contribution. of the = resonance is, of course, the smallness of the
Yo+ T 2ﬁA amplitude as is seen from the factor 1/5(32¢;)2 in front
of the integrals in.5.2éa,b. The normalization..of the constant A
introduced by Wong iéeridently migleadihg, since A :‘ e 'suggeéts

a sﬁbstantial magnitude for the .7y + .- 2x amplitude. Numerical
factors should be absorbed in A so as to make it‘appear'small compared
to e. The reason A should be small is probably associated with the
.minimal character of the electromagnétic interactions which appear in
7Y+ > 2x. This amplitude is essentially the vertex joining a

single photon to three pioné. Now from minimality we know that a
bhotén line can couple directly only with a charged pair, and then

the couﬁligg constant is e, the elementary charge. 1In the case under
' consideration, therefore, we need a.two-particle intermediate state.

A two-pion -intermediate state or in fact, any state containing an even

number -of pions is,'however, forbidden because G-conjugation does not
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allow an even number of pions to go into an odd number. Thus particles
heavier than pions (e.g. kaons or nucleonrantinucleon pairs) must be
created in intermgdiate staﬁes. The constant A :shoﬁldzﬁhen be of

the order e/M (where M 1is the nucieon.ér kaon maésj'éndﬁtherefore
be-sma'li° In Compton scattering, the contribution.of the 23 imtermediate

state is proportional to A2 and thus to l/Mz.
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'VI.  PION<PATR -PRODUCTION CHANNEL

In the barycentric system we can write, K = (g, Ja),

k, = (& a), p, = (-o P), and p, = (-q, -p), where

t = bo® = B(EH1), - -~ (6.1a)

s = -q? - p2 + 2qp -cos @, | . "(6.ib)
and _

s = -q? - p2 - 2gqp.cos B . , (6.1c)

;Here ¢ is the scattering angle, t -is the square of the barycentric
energy and s, the square of the momentum transfer. The differential

cross section is

d_°_£‘|
q

A (6.2)

A. Helicity -Amplitudes

_ If %a, Kb are the helicities of the photons and Kc, Xd
those qf the pions, we have xc =0 ;—)a,'and A= xé - xb. 'If we

denote the helicity amplitudes by FXO(¢)’ we have

P =2 = (3+35) .0 a5 ) (6.3)
A | .
and
Lo r @ 7. (6.4)

 If by M++‘J(t) we denote .Mmf](t) with A =1 and A =1
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(i.e N =0) and Ay -1 and A, = .-1 (1 e.. A = 2), respectively,

then we have

N&+j(t) = M__%(t)

and

v, () = w0 ()

As in Section Va by comparing Egs. (6.1) and (6.3) for appropriate

polarization vectors, we . have

a(s,5t) = bnyfep = (23+1) M_Y(t) 2,0 F!
.a S,S,t) 'n "y .j=2( j+1) +_“(‘). O
zldj<¢)
= lx Z (2J+l) h J(t) ——’-——2— (6.5a)
j=2 1 - cos” @ :
| _ a.
b(,58) = bl T (251) w,3(6) o0
§=0 ot
o0
= kb = (251) n, J(t 4, OJ(¢) (6.5b) -
3=0

where

n 3 (s) =»%,/”:t_l«+)3 w, (s): (6.60)

and,
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h+j(t)‘= % ,%:H M-++j(t)." - (6-6b)

.In terms of a and b we have

1

h_j(t) = %; [ d cos ¢ d j(¢) a(t, co§'¢) _
' -1 -
and
; 1 b ; b
h (t) = o '{1;d cos @ @O’O (@) b(t, cos B)
where

& 0 ) = (- cos™B) ay ()
The 'dj(¢) fuﬁpfions are
1(cos §) .- 3(3-1). B, (cos #)

d2;04(¢) _ J-  - - A — (6.7)
Y= 1) 55+ D+ 2)

and

3, #) = 7, (cos B), | (6.8)

where primes indicate derivatives;with-respect to cos ¢{ -In Eq.
(6.4), we have, (1. - cos® @) in the denominator,_aﬁd we find

4, o) (B)  (cos §)

1 - cos? 8 ] VRJ -1 530G+ 1)+ 2)
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B. Asymptotic Behavior

"The general procedure for establishing asymptotic behavior is
the same as in Section Vb. Relations (5.11) and (5.12) together with
the unitarity limitations

M, (e < | (6.9) -

and

(6.90)

A

; -
,_© (%)
then give us for t - @
la|‘$ constant, : |b|.$-constant

for fixed s(or s), i.e. cos P =+ 1 and

BIPE A NP
for an; other valﬁe of COS‘¢ .
Equivalently, we have

Al <t Bl st -
for COS‘¢ =+ 1 and

Al < t-:1/l+ , 18] < t-:t/h

for cos B £+ 1 .

C. Partial-Wave Dispersion Relations

Knowing the singularities in the amplitudes. a and b, we can
write down partial-wave dispersion relations. for. h_J(t) and h}J(t);
" The branch cuts in a and b are;.of course, the same as those in A

and B. There is a branch cut t > 4 for the amplitudes h;J(t),
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‘Table III. Values of %%@%tLRdﬁx%ﬂ,mm mggoh)

for X\ = -0.20, in units of €2,

t m%q%ﬂ "%QQOW) . mQQQQ)
4.0 0.289 0.395 | 0
4.5 0,237 0.0k42 | 0.208
5.0 0.20% -0.026 | 0.178
6,0 . 0.146 © -0.059 0.093
7;0 0,109 -0.056 - . 0.056
8.0 . 0,086 -0.051. - 0,037

12.0 0,05 -0.032 | 0.010

.16.0 0,027 -0,022 0,002 -




~37~

Table V. Velues of hy, ”2(t), Reg;”7(t), and e, %5 (s)

-for - N = -0.20, in units.of. e?

'0,2(

v ",

t) Rec, % () e, » % (¢)

4,0  0.00k 0.027 0
us 6.168 0.016 0.017
5.0 0.143 0,009 0.018°
6.0 0.103 0.002 0.015
7.0 0.077 -0.,001 "0.012
8.0 10,061 -0.003 0.011
12.0 0,032 -0.004. -0,006"

16.0 - 10,019 40,005 0,00k .
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Corre»sponding to the 'cuh s > 4 as well. as Eg 4 in A and B,

there will also be a cut t < -9/l . We shall project out the Born tem
Vand wrlte it exp11c1tly as’ hB+ (t) Before we:write down‘perfiel-
wave dlsper51on relatlons, however, we introduce amplltudes h;j’I
corresponding to a definite isotopic spin _I of the final'twotpion
state. From charge conjugation or, equivalently, from:crossing
Asymmetry, we notice that only even angular momentum states are allowed
and, therefore, only states with "I =0 and I = " need be con51dered,A
For the I =0 and- I =2 states, we designefe the amplitudes by the'

superscripts O and 2, respectively. An elementary calculation

then gives their relations with the charged-neutral amplitudes as
n 9 0%%¢) =1 _[2h YE(£) + n J’.n,(,t,)] (6.10a)
+ 3 + e

and

h+‘j’2(t) =/%—[ I8t - h;fj"n(t)] , (6.100)

wheref h+J’c(£) and h+J’ (t) . are the charged and neutral amplitudes,

respectively, Similar relations hold for h_‘j(t) ~amplitudes. We

then have
. ) , Imh 31 (t*)
+ B+. , 4 t' -t
1 ° I
+ = [ at! , ‘ (6.11)
L t' -t

Where
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H
]

v

i

. J.’I(t) - & fl a ¢5'~j(¢)-~ ee
hB- 4.¥/__ . . cos 2:0 | ————

3 -1l ’ (1-5)(1-5)
: 6.12a) -
.and
hB+qu(t = f d cos § do OJ(¢) " — .
\/' (126)(145)" -
(6.12p)

"From Egs. (6.6) and (6.9), we have Ih_j(t)le%g"‘and (Q;J(t)L'S %
in the physical region. Hence, in the-aboveAfZiations, no subtraction:
vconstantS‘afe-neéded. The integral along the left cut corresponds

to the correction to the Borh term for thé crossed channel

Y + - ¥+ %t . .As we have already seen, the correctién is probably

" small and we shall neglect it iﬁ.this preliminary calculation.

| For  the integrals in Eq. (6.11) involving positive  t -values

 greater than  four, we .shall. use unltarlty.. In the-approximation.of

including only two-plon intermediate states, we have
. . . Cxs o
b P T(e) = BTy T (o) it (6.13)
+ +

Wheré
: id

i I t oo I
A t) = e B, 6.14
(&) =JEm sin & (6.14)

o

is-the pion-pion scattering amplifude defined by Chew .and Mandelstam
.for angular momentum j .and isotopic spin I; -BJI being the
corresponding phase shift.3

At low.energies, we shall neglect the integrals in Eq. (6.11)

" along the :right hand cut for “j >'2, since the pion-pion.amplitude
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for D and higher waves is expected to be small. We than have

h'_/j,I(t) -= hB-JJI(t)

since always Jj.>2;

lj)I - J.)I
for §->2;
and . ‘ '
o, I *0,I
.0, T 0, I 1 © o m ) AT ()
= : =" ! .
h 7 7(t) = by (t)-fﬁ {dt ‘/t, T

(6.15)

Thus we consider the =t interaction correction only to the Jj.=0

state (i.e” S .state). Following Chew and Mandelstam, we writé5
N, (v)
a2y = e,
D, (&)

where NOI(t) and - DOI(t) are the numerator and denominator functions

in the xw S amplitudes. From a modification.of the form given by

8,12

Omnes, we have

'1 Patr  [fprek o, I I
- [ = = (e )N (k)
Dol(t) , TTeE At by, 0

(6.16)

O’I(t),+ %

0, '
h+ VI(t) = h'.B+

= 0y, O e) + ¢, (),

where Q+O’I(t) is the rescattering correction term due to the s

interaction.
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In the Appendix using crossing symmetry, we. have obtained
values for the S "amplipudgs in-tergs of the pion-pion coupling
" constant M. At present A ~- -0.,20- -seems.a reasonable. estimate.
(see ﬁhé7Appendi£);» For this. A value, ﬁe have calculated the

correction 'Q;O’I(f) to the Born term hB+O’I(

t). " This corréétion,

of course cbmes-from the final-state mx interaction in the S wave.
From TablééblII and IV, we find that for-the I =20 éééﬁe the correction
is large at low energies corresponding to strong attraétion, but for
higher‘enefgies-it guickly changes sign, Such a circuﬁétance»éan be
understood-aé‘follows: 'If-we.take.éﬁe Born term hB+o(t) to be

approximately & pole at t = - tB’ then its slope is @'tﬁ-z . Since

/2

_.the distance, the faster is the decrease of 'hB+O(t) in the integral

‘the distanée at which the pairs aré pfoduced is '~TtB‘l » the larger
in Eq. (6.16). We have here a case in which the pions are produced at
a relatively large<distanc¢---about a pion Compton wave length---and,
therefore,. hB+ (t) decreases relatively rapidly giving rise to a
'sign change, in the principal part of the integral in Eq. (6.16). At
higher -energies this negative contribution is -~ 70% of the Born
term. The ratios (q+1(t)/oB+I(t)) of the total cross sections for

a given I spin with and without the correction terms are given‘in
Table V. Such interactions as discussed above may perhaps be detected
by rather accurate experiments-on pion-pair production by a photon

15

" .in the Coulomb .field of a nucleus.
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Table V. .-Valﬁes" of (o.Jro('t)/qB,ro(t.)’) and - (o+2(t)/63+2(t'))

for ‘A = -0.20.

t 6+Q(t)/ovB+o(tl)A . ,of(t)_/fo(t))

.0 5.60 . | | 1.29
 1+;'5 "2.15 | o 1o
5.0 - - ”41.“51; : | '_,1.16-
6.0 e 10s
7.0 o 0.54 R " 0.99
8.0 oo  0.94
B0 0.22 | . 0.83"

16.0 - <o.é1 - _ 0.77
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APPENDIX

Evidence for a P-wave = resonance has recently been found by
Ardérson. et al. in an experiment on: peripheral = p -cbllisions;l

the resonance position and width are in rough accord with predictions

based on nucleon electromagnetic structureu15, It now becomes poésible

to make certéin assertiohs about the S-wave Aphasé shifts on'the
basis of the crossing relations developed by Chew and Mandelstam.j’}
17

that the anomalous peak in

b

Receptly<it has been suggested by Truong
the double-pion production in p + d collisions--p + d - He +5ﬁ+ + 7 --
observed by Abashian et al.;8 may perhaps be due to the large enhancement
brought about by thg interaction of the stave.piéns,in %he' I=0.
étate; I being the isotopic épin.’ In'this'connection therefore, it is,
of interest to see whether'we can obtain from our solutioné large - |
I =0 S-wave amplitudes.

Crossing symmetry gives relations between the derivatiyes of
the 5~ and P-wave amplitudes at the symmeﬁry point, which are exact

3,16 At this

if we considér all higher partial waves to be small,
symmétry point, Where vV = VO = - 2/5 (v ‘being the séuare‘of the '
c.m. momentum of a pion), the two . S .amplitudeé are éiven in terms
of the pion-pion coupling constant, A, and the first derivatives of
the S amplitudés are given by the value of thé P amplitude; In
addition, there is a single relation connecting the second derivatives
~of the S waves to the first P;wave derivative. A two-parameter
form fér the PA resonance has been given by Frazer and Fulco, ﬁhe

parameters being ‘v, and T which are related to the position and the

R

L ' : L : S
width of the resonance. To fit the experiment of reference 14, we need -
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VR =3,5 and T = 0.5, Such a two-parameter form should be sufflclent,

we believe, to glve a rough flrst approx1mat10n to the P amplitude

and its first derivative at :VO if the contribution from the left cut.

is no larger than estimited by Chew &nd Mendelstam, O’ 19 The above
:crossing relations then largely determine the S-wave amplitudes at
low energles in. terms of the three parameters N VR’ and T,

The crossing relations at vO ar 16 20

T
‘aO =3 a2 = 5N\ (Al)
a'o = -@2a'2 = 6al (a2)
and’
a" __5_ a" =~ 12 a'., (A5)
0o"2%27~" v

where aol and a, are the S amplitudes at Yo

'spin - 0 and- 2, respeétively, and caq’ is the P amplitude. The

.for the isotopic

primes indicate derivatives at vo'. A correction.for the. D “waves
has already béen made in the sec¢ond-derivative relation.(A3) given
above.

" If we indicate by - Ay (v) the S amplitude at:-an energy v

“for a given:iSbtopic spin I (= 0 .or 2), we can write it in the

fémiliar*fbrmBL
I .. .
, (v) '
PRIl o

where NOI (v) and D 1 (v) are the numerator and~the denominator

0

functions,.respectiyely. In the approx1matlon in whlch the left-hand

cut is replaced by a pole, Chew .and Mandelstam obtalned the formulas: 16



NbI (v) = ar + (v - vo) wFI — VO B; (45)
: C ST
and
Dyt () =1 - (v - vg) [K (v, =vp)ap+ (g + o) Klagy, -v)B),
(a6)

where wSI gives the position of the pole, BI is propoftional to

the residue, and K is a known function defined in reference 3.

The corresponding one-pole approximation for All(v)/v --
the P resonance (I = 1) at an energy v-;waé written in the two-
parameter resonance form‘by Frazer and Fulco as

AT )

1
v

- L 175 » o

vg - v [1 - Ta(v)] 1T ( %II )

where a(v) is a known function. Given Vv and T, we obviously can

R
calculate the values of a, and a', needed in Egs. (A2) and (a3)
above. For example, we find .a, = 0.074 and a'y = 0.014 for

14,21

' =3.5 and T = 0.3. We have five conditions embodied in the

YR
crossing relations. (1), (2), and (3) and six parameters to determine

in our S-wave effective-range formulas: 8y 8o Bgy Pgos BO,

BQ.A To achieve a sixth condition, we notice from the above relations

and

that for an a, value such as the one given above, the potential for

the I =0 state has a long~-range repulsion and a"short-range attraction.

So long as the inner attraction is strong, we find that the interaction

is not sensitive to the‘fahge of the outer repulsion. We shall, therefore,

f;x‘a Erlorl the Yalue of wSO whlch is proportional ﬁo the range of
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~the repulsive potential. A reasonablé.esﬁimate of
Wgy (2al/a'l) - v, -is-given by.the approximate. crossing conditions

of;Chew.and,Mandelstamw%é- Using. this estimate, we obtain Wgy ™ 11

1 and a’l values given above. For the I = 2. state,

the outer potential.is attractive and we may gxpect:thé interaqtion to

for-the a

be sensitive to the range. We shall,.therefore, use relation (3)

to determine W *

e no: solutions exist for ~w82

The curves for ' a. [V-/v+l]l/?:~ cot SOI, where SOI

S-wave phase shift for a given isotopic spin I are given ih

It turns out:that for the above values of =

a's and W -when we have N\ > + 0.03.

1
is the

Figs. 2 and 3 for various values of AN with &y = 0.07&, a'l = 0.0lh,“

and wSO = 11. We find that the interaction in.the I = O .state

isAattractive.and,much,stronger-than in the I =2 state for both

22

positive and negative values of A. In general, we observe that the -

results we obtain here are quite différent from the ones in the

23,24

S-dominant case.

Knowing the results of ‘double-pion production.in p + d collisions,

3

p'+Ad-—> He” + T+ 1, we:-can.obtain additional information about the
I=0 S Aamﬁiitude.l7’18 " The enhancement~faétors -|D60(O)/Doo(v)|?--l
normalized to unity at Vv -= O--for the I = O state for -different
values of AN are given in Tabie V together with the corresponding

25
s0°

(-0.15, -0.20) corresponding to the scattering length in the interval

scattering lengths a Tt is found that for A in the interval
(2,3), the enhancement factor together with the usual phase space
gives a good fit to the experimental data after‘the I = 1l component
of thé 2n system is subtracted ouﬁ.26 We may further add that in

this region of A values, our asSumption‘of‘considering the
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intefaction to be insensitive to wSO' is particularly good, §ince
we now have a rather strong inner attraction.
On the basis of thevT-decay SPectrum,27 some authors’haﬁe obsef&ed
that'the I =2 state should be ﬁore attractive than the i =0
28,17

state, - a result which is impoSsible to obtain within the present
framework. The discrépancy may perhaps lie in the assumptions usually
made in the T-decay analysis: (a) considering the. three-body problem

in terms of simple two-body forces, and (b) considering only the

symmetric I = 1 final state.



Table VI. Values of |DOO(O)/DOO(V)

40

|2

and for different A, 8q0 values

for I =20

A = =0,20

j >\. = -10015.

v A = =0.10 A= +0.01
agq = 2.81. ag, = 1:96 agq = 1.52 agy = 0.55
0 1 | 1 . 1 1
. 0.1 | o;u91 0.659 | 0.822 1.088
0.2 | 0.337 0.503 o.7oﬁ ;;166'
0.3 0.262 0.413 0.619 1.229
ok 0217 0.354 0.554 1.273
0.5, 018 0.311 0.502 1.298
6.6 - 0.167 A5;280 0.461 1.302
0.7 0.149 0.255 0.125 1.288
0.8 0.138 0.235 0.396 1,257
0.9 30,125 | Ao.2i9 0.370 1.214
1.0 o.126 :o.éos 0.348 1.164
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FIGURE LEGENDS

The  (2n, 2y) vertex.

Product of the cotangent of SOO and -5\ [V/V+1Jl/2 for the

A values -0.20, -0.15, =0.10, and +0.01 with Woq = 11. .
1/2

Product of the cotangent of 802 and -2An [v/v+1) for

the (A, o values (-0.20, 2.2), (-0.15, 2.3), (-0.10,

S )
2.7), and (+0.01, 6.5).
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