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MULTIGROUP DIFFUSION THEORY FORMULATION OF 
THE CALCULATION OF THE MEAN SQUARE SLOWING 

DOWN DISTANCE IN AN INFINITE MEDIUM 

by 

B . J. Toppel 

ABSTRACT 

Simple express ions for the mean square distance 
from a point f ission source for slowing down past a given 
energy and for the mean square distance of neutrons that 
belong to a given energy group a r e derived within the f r a m e 
work of mul t igroup diffusion theory. The express ions may 
be applied to sys t ems having a r b i t r a r y group t ransfe r c r o s s 
sec t ions . 

I. INTRODUCTION 

Multigroup diffusion theory is one of the commonly used approx ima
tions to the exact t r an spo r t theory. In pa r t i cu la r , for complicated, ref lected 
r e a c t o r s having hydrogenous const i tuents , the mult igroup approach is a 
feasible one (par t icular ly with the aid of raodern digital computers) , whereas , 
for example , continuous slowing down theory is not applicable. The main 
difficulty encountered in uti l izing the mul t igroup diffusion theory is that of 
the select ion of the p roper group p a r a m e t e r s (c ross sect ions) . Owing to 
inadequacies in the bas ic exper imenta l information about c ro s s sections 
as well a s , for examples averaging techniques used, any mult igroup set of 
c ro s s sections is neces sa r i l y uncer ta in to a g rea te r or l e s s e r extent. It 
is des i rab le therefore as a check to use the der ived c ro s s sections to ca l 
culate ce r ta in macroscop ic quantit ies which a r e m.easurable exper imental ly . 

One such quantity is the m.ean square distance for slowing down of 
fast neu t rons . F o r the case of a point source of fast neu t rons , one-s ix th 
of this quantity is somet imes known as the "age" of the neu t rons . Owing 
to the re la t ionship of the "age" to the fast leakage from, the sys tem, it is 
impor tan t to compare the r e su l t calculated using the a s sumed mult igroup 
c ro s s sect ions with the exper imenta l ly m e a s u r e d quantity. 

The p r e sen t paper desc r ibes the calculation of the mean square 
slowing down dis tance for the case of mult igroup diffusion theory with a r b i 
t r a r y group t r ans fe r c r o s s sec t ions . 



II. THEORY 

Let Pgg ( E , r , r ' ) be the infinite medium, point fission source k e r 
nel which gives the slowing down density at energy E and position r due to 
a unit point fission source at position r ' . Then for a dis tr ibuted fission 
source S(r ' ) , the slowing down density Qj^d) at energy E and position r is 
given by 

Q (r) = / S(r_') P o o ( E , r , r ' ) d r ' (1) 

We shal l consider an infinite medium which is homogeneous and 
isot ropic . In this case , P ^ (E, r, r ' ) will depend spatial ly only upon the 
separat ion £ - r_'| = r . In addition, if the source sat isf ies the wave 
equation 

V^ S(r) + B^ S(r) = 0 , (2) 

one can show (Ref. l) that 

Q E ( I ) = S(r) Poo (E, B2) , (3) 

where Poo ( E , B^) is the th ree -d imens iona l Four ie r t r ans fo rm of Poo ( E , r ) . 
Denoting the ra t io of slowing down densi ty QgCr) to source S(r) by q^CB ), 

q^ (B2) H P „ ( E , B") = q^ (O) 7 B^ r5, + O-B* 
6 E 

(4) 

The quantity r is the mean square dis tance from a point source for slow-
ing down past energy E. '• 

Alternat ively, let KOQ(E, r ) be the infinite medium point fission 
source kerne l which gives the flux of neut rons per unit energy at energy E 
and position r_ due to a unit point fission source at position r_' (where again 
^ ~ Iz " £ ' ! ) • Then, denoting the ra t io of flux 0(E, r ) to source S(r) by 
^ ( E , B^) , where again S(r) sat isf ies Eq. (2), one can wri te (Ref. 2) 

0(E, B2) = K ^ ( E , B^) = 0(E,O) 1 „ 1 B2 r2(E) + O-B* - . 
6 

(5) 

The quantity r ( E ) is the mean square distance from a point source of neu-

*E-t rons which have the energy E. Also r ( E ) will be l a rge r than r . 

*See end of paper for footnotes. 



In the l imit of vanishingly smal l B , Eq. (4) may be writ ten as 

•"̂ E _ l im 1 
°6~ " B2-—0 B^ 

Similar ly , Eq. (5) may be wri t ten 

r^(E) ^ l im _J_ 
6 ~ B^—0 B^ 

Equations (6) and (7) may be used to evaluate neutron "age" by ob
taining q£(B^) or 0 ( E , B^) for var ious B^ and extrapolating (perhaps 
graphically) to the case of B = 0 . The difficulty with such a procedure is 
that as B approaches ze ro , it is difficult to re ta in enough significant 
figures so that round-off e r r o r s do not impair the accuracy of the 
calculation. 

In the p resen t paper , Eqs . (6) and (7) a r e evaluated in closed form 
using mult igroup diffusion theory so that the l imiting process is replaced 
by a single analytic express ion which can easily be evaluated on a desk 
calculator . 

We shall a s s u m e that the mult igroup diffusion theory equation for 
the group i flux, Ô  (r), due to the fission source S (r) can be written"* as 

i-1 
Di V' Oi(r) - (Zc. + Sremi) %(r) + ^ ^ X - ^ i "^xW + ^ i ^ W = 0 . (8) 

\=1 

In Eq. (8) and subsequently, the index on the flux and on the var ious 
c ros s sections r e fe r s to an energy group of finite width, the group c ross 
sections being appropr ia te ly averaged values. Thus if the group i has the 
energy l imits E ^ L ̂ ^"^ EiH' 

%(r) = L ^ ' ^ ^I>(E, r ) d E . (9) 
"~ ^•'^iL 

Similar ly , the ^i give the in tegral of the fission spect rum over the group i 
(the sum of al l the ^£ is norm.alized to unity). The removal c ros s section, 
^ r e m - ' ^^ given explicitly by 

N- i 
^ r e m i = I ^ i ^ i + x . (10) 

X-1 

1 -
q E j B ^ 

qE (0) 
(6) 

0(E,B^) 
0(E, 0) (7) 



where N is the number of groups. The Z Q . will include the fission c ro s s 
sect ion if the medium contains fissionable ma te r i a l . 

The fundamental mode solutionS of Eq. (8) is given by the group 
fluxes 0j_, where 

i - 1 

0i(B2) = 
^ 1 

Di B + Sj,^ + Zj^gj^i 
(11) 

III. MEAN SQUARE DISTANCE OF NEUTRONS SLOWING DOWN 
PAST ENERGY E J L 

In the f ramework of the mult igroup formal i sm stated above, we 
have for the slowing down density at the lower energy l imit E J L of 
group j6 

J 
qjL(B2) = Y [ ^ i - 2ei 0i(B^)-DiB^ 0i(B2)l . (12) 

i=l 

Equation (12) is not surpr i s ing , since the neutrons slowing down past 
energy E J L naust be just al l of the originating source neutrons less those 
which a r e captured and leak out for al l energies above E ^ L -

For the case B^ = 0, Eq. (12) reduces to 

j 
^JL(O) - Z [ l^i-^ci 0i(O)] (13) 

i s 

Equations (12) and (13) can be substi tuted into Eq. (6). The resu l t 

s^ r , 0i(B2) - 04 (0) 
3 I Di 0i (B )̂ + Zci -^-- ^ 
j L ^ l im i=l ^ 
6 B ^ - ^ 0 

B2 

i -1 
^ i - Z^i < î(o) 



F r o m the definition of the derivat ive (or by using L' Hopital 's rule) we 
have finally 

j 
•^ I [Oi 0i(O)+ Z 01(0)1 

I \h- 2 0i(O)] 
i=l L -• 

(14) 

where 
d 0i (B2) 

01(0) = 

F r o m Eq. (11), 

dB^ 
(15) 

B^ = 0 

i-1 
-Di 0i(O)+ Z ^-k~*i î(O) 

0!(O) = -^J^ . (16) 
^ci + ^ r e m i 

The forna of Eqs . (11) and (16) a r e very s imi la r ; the source t e r m |3i in 
Eq. (11) is replaced by the t e r m -Di0i(O) in Eq. (16). Hence, after ob
taining the 0i (O) using Eq. (11) with B^ = 0 (beginning with group 1 and 
proceeding to success ively lower groups as usual) , one can obtain the 
0i (0) computationally in the same manner . 

IV. MEAN SQUARE SLOWING DOWN DISTANCE OF NEUTRONS 
BELONGING TO GROUP j 

F r o m Eq. (7), we have 

^ (E) ^ ^ 0' (E, 0) 

^ 0(E,O) 

where 

(17) 

0 (E, 0) 
dB^ 

(18) 

B^ 
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Now we h a v e by def in i t ion 

a n d 

r E 
0j(O) = j g / ^ 0(E. 0) dE (19) 

f E j H 
0j(O) = j j , . ^ 0 ' ( E , 0 ) d E . (20) 

T h e n if we def ine the m e a n s q u a r e d i s t a n c e , f r o m the s o u r c e , of n e u t r o n s 
be long ing to the g r o u p j by 

r2(E) 0 ( E , 0) dE ^J"« Tz< 

r2(j) = - i i l - , (21) 
/EjH 

'EJL 
0(E, 0) dE 

7 we have finally 

6 0j (0) 
(22) 

The ordinary age theory approach is not able to cope with a situa
tion in which neutrons may lose a large amount of energy per collision. 
On the other hand, the solutions as given in Eqs. (14) or (22) with (11) and 
(16) may be applied to a system having arbitrary transfer cross sections. 
In particular, the present approach may be applied to the light elements 
where age theory is not applicable. 

V. NUMERICAL EXAMPLE 

In order to illustrate the method described above, the mean 
square slowing down lengths have been calculated for a 12-group repre
sentation above 0.4 ev of normal density HgO. The assumed macroscopic 
cross sections are given in Table I. All neutrons below group 12 belong 
to a single "thermal group." (The zeros in the transfer cross sections 
are due to the arbitrary decision to hold only four-decimal-point accuracy 
for those cross sections.) 
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'î
 
l
O
 
v
o
 
r
-

C
O

 
ro

 
O

 



10 

Table II gives the 0j and 0- calculated using Eqs . (11) and then (16). Equa
tions (14) and (22) with j = 12 ( E L = 0,4 ev) yield, respect ively , 
r^O.4 ev = 184.92 cm^ and r^(12) = 186.72 cm^. 

Table II 

CALCULATED VALUES FOR 0j AND 0j 

j 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

*j 

5.5395 

3.2182 

1.8914 

1.2413 

0.9251 

0.8040 

0.7464 

0.7358 

0,7359 

0.6032 

2,5780 

1.8779 

*j 

-172,9888 

- 78,3507 

- 47.4216 

- 32,3619 

- 24.6339 

- 21.7630 

- 20.5340 

- 20.5594 

- 20.8819 

- 17.3479 

- 77.3933 

- 58.4422 
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APPENDIX 

The slowing down density at energy EjL is , by definition, 

i=l X=l 
(Al) 

where the 0i(B^) a r e obtained using Eq. (11). qjL,(0) î ^ given by Eq. (Al) 
using <|̂ (0) which, in turn , is obtained from Eq. (11) for the case of zero B^. 
Eq. (Al) can be rewr i t t en as 

j r j - i 

q jL(B ' )= Z ^ r e m i " ^ ^ i - i + ?̂  
i=l L X=l 

0i(B^) (A2) 

and using Eq. (11), we have 

j r 

i=l _ 

i - 1 
h - \ , *i(B') - DiB^ 0i(B^) + V 2x-*i0;,(B^) 

' X = l 

S ' ^ i - i + X*i(B^) 
X = l 

(A3) 

Then, owing to the following not a l together obvious identity 

V X 2x_i0x(B^)= i Z ' ^ i ^ i + X *i(B^) 
i=l X=l i=l X = l 

we have finally the previous Eq. (12) 

qj^CB^) = X ^ i - ^ c i *i(B') - D i ^ ' ^i(B') 
i=l ^ 

(A4) 
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FOOTNOTES 

1. If Pog(E,Eg,r) is the infinite medium slowing down kerne l which gives 
the neut rons slowing down past energy E at r due to a unit point source 
of energy Eg at position r ' , where r = | £ - r ' | , then 

P ^ ( E , r ) = f ( E j P j E , E , , r ) d E , 
S ' 00^ ' S ^ - ^ / "-^"^S 

where f(Eg) is the fission spec t rum. If one does not admit energy up-
sca t te r ing , the in tegra l is ze ro for Eg < E, Explicitly, r^^ is given as 

47iT*P^(E ,E3 , r ) f (Eg)dr dE^ 

0 

4 'nT^P^(E,E^,r) f (Ejdr dE, 

^where the denominator is jus t qj,(0). 

2. Comments s i ini lar to those in footnote 1 apply now if the P ' s a r e rep laced 
by the K's , if r^E is rep laced by r2(E), and if qgCo) is replaced by 0(E,O), 
When E coincides with the source energy, the flux will include a compo
nent due to the virgin source neut rons . This component is responsib le 
for the so-ca l led f i rs t flight cor rec t ion . 

3. For example, in the common "age theory" expression, r ( E ) is l a rge r 
than r2g owing to the so-ca l l ed las t flight correct ion. Experimental ly , 
one normal ly m e a s u r e s r2(E). 

4. The subsequent development will be l imited to the case in which the 
neutron energy can only be degraded (or unchanged); that is , we shall 
not consider energy upscat te r ing . 

5. The source , slowing down density and al l of the group fluxes a r e taken 
to have the same spat ial dis t r ibut ion where 

* . ( l ) = 0. ° S(r) and V^S(r) + B^S(r) = 0 

6. Equation (iZ) is formally der ived in the Appendix. 

7. Equation (22) is the mul t igroup analogue of Marshak ' s ~ 0o /0o 
(Ref. 3); Hurwitz and Zweifel s tate it a lso as 

(see Ref. 4), Note that s ince r^(j) r e f e r s to a group of finite_width, for 
ve ry wide groups , r (j) could conceivably become less than r 4j__̂ . 


