NREL Pyrheliometer Comparison: September 16 to 27, 2013 (NPC-2013)

PDF Version Also Available for Download.

Description

Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for the development and deployment of solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations traceable to an international standard is the first step in producing research-quality solar irradiance measurements. As with all measurement systems, absolute cavity radiometers and other types of pyrheliometers are subject to performance changes over ... continued below

Physical Description

49 pp.

Creation Information

Reda, I.; Dooraghi, M. & Habte, A. November 1, 2013.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for the development and deployment of solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations traceable to an international standard is the first step in producing research-quality solar irradiance measurements. As with all measurement systems, absolute cavity radiometers and other types of pyrheliometers are subject to performance changes over time. NREL has developed and maintained a group of absolute cavity radiometers with direct calibration traceability to the World Radiometric Reference (WRR). These reference instruments are used by NREL to calibrate pyrheliometers and pyranometers using the ISO 17025 accredited Broadband Outdoor Radiometer Calibration (BORCAL) process (Reda et al. 2008). NPCs are held annually at the Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Open to all pyrheliometer owners/operators, e.g. NREL, NASA, NIST, NOAA, USA industry and academia, USA-DOE and other national laboratories, and national and international organizations. Each NPC provides an opportunity to determine the unique World Radiometric Reference (WRR) transfer factor (WRR-TF) for each participating pyrheliometer. By adjusting all subsequent pyrheliometer measurements by the appropriate WRR-TF, the solar irradiance data are traceable to the International System of Units through WRR.

Physical Description

49 pp.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NREL/TP-3B10-60749
  • Grant Number: AC36-08GO28308
  • DOI: 10.2172/1111204 | External Link
  • Office of Scientific & Technical Information Report Number: 1111204
  • Archival Resource Key: ark:/67531/metadc871653

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2013

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Sept. 22, 2016, 11:09 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Reda, I.; Dooraghi, M. & Habte, A. NREL Pyrheliometer Comparison: September 16 to 27, 2013 (NPC-2013), report, November 1, 2013; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc871653/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.