National Computational Infrastructure for LatticeGauge Theory SciDAC-2 Closeout Report

PDF Version Also Available for Download.

Description

As part of the reliability project work, researchers from Vanderbilt University, Fermi National Laboratory and Illinois Institute of technology developed a real-time cluster fault-tolerant cluster monitoring framework. The goal for the scientific workflow project is to investigate and develop domain-specific workflow tools for LQCD to help effectively orchestrate, in parallel, computational campaigns consisting of many loosely-coupled batch processing jobs. Major requirements for an LQCD workflow system include: a system to manage input metadata, e.g. physics parameters such as masses, a system to manage and permit the reuse of templates describing workflows, a system to capture data provenance information, a systems ... continued below

Physical Description

135K

Creation Information

Bapty, Theodore & Dubey, Abhishek July 18, 2013.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

As part of the reliability project work, researchers from Vanderbilt University, Fermi National Laboratory and Illinois Institute of technology developed a real-time cluster fault-tolerant cluster monitoring framework. The goal for the scientific workflow project is to investigate and develop domain-specific workflow tools for LQCD to help effectively orchestrate, in parallel, computational campaigns consisting of many loosely-coupled batch processing jobs. Major requirements for an LQCD workflow system include: a system to manage input metadata, e.g. physics parameters such as masses, a system to manage and permit the reuse of templates describing workflows, a system to capture data provenance information, a systems to manage produced data, a means of monitoring workflow progress and status, a means of resuming or extending a stopped workflow, fault tolerance features to enhance the reliability of running workflows. In summary, these achievements are reported: • Implemented a software system to manage parameters. This includes a parameter set language based on a superset of the JSON data-interchange format, parsers in multiple languages (C++, Python, Ruby), and a web-based interface tool. It also includes a templating system that can produce input text for LQCD applications like MILC. • Implemented a monitoring sensor framework in software that is in production on the Fermilab USQCD facility. This includes equipment health, process accounting, MPI/QMP process tracking, and batch system (Torque) job monitoring. All sensor data are available from databases, and various query tools can be used to extract common data patterns and perform ad hoc searches. Common batch system queries such as job status are available in command line tools and are used in actual workflow-based production by a subset of Fermilab users. • Developed a formal state machine model for scientific workflow and reliability systems. This includes the use of Vanderbilt’s Generic Modeling Envirnment (GME) tool for code generation for the production of user APIs, code stubs, testing harnesses, and model correctness verification. It is used for creating wrappers around LQCD applications so that they can be integrated into existing workflow systems such as Kepler. • Implemented a database system for tracking the state of nodes and jobs managed by the Torque batch systems used at Fermilab. This robust system and various canned queuries are used for many tasks, including monitoring the health of the clusters, managing allocated projects, producing accounting reports, and troubleshooting nodes and jobs.

Physical Description

135K

Subjects

STI Subject Categories

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE F 241.3
  • Grant Number: FC02-06ER41447
  • DOI: 10.2172/1105905 | External Link
  • Office of Scientific & Technical Information Report Number: 1105905
  • Archival Resource Key: ark:/67531/metadc871646

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 18, 2013

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Dec. 6, 2016, 1:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bapty, Theodore & Dubey, Abhishek. National Computational Infrastructure for LatticeGauge Theory SciDAC-2 Closeout Report, report, July 18, 2013; United States. (digital.library.unt.edu/ark:/67531/metadc871646/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.