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A PHENOMENOLOGICAL RELATIONSHIP
FOR PREDICTING THE SURFACE AREAS
OF THERMAL PLUMES IN LAKES

by

J. G. Asbury and A, A, Frigo

ABSTRACT

A phenomenological relationéhip for surface areas
within isotherms has been developed for thermal plumes in
large lakes. The relationship, based upon the field data of
other investigators, represents a useful rule of thumb for
predicting surface areas of buoyant thermal plumes.

1. INTRODUCTION

The problem of predicting the dispersive behavior of heated efflu-
ents in natural water bodies has received the attention of many investigators
in recent years. From a practical point of view, a certain degree of success
has been achieved with regard to describing the certain types of discharges.
For example, the behavior of heated effluents in uniform river-type cross-
flows, can be reasonably well predicted. That this has been achieved with-
out the emergenceof a universally accepted theory of plume dynamics indicates
the large role phenomenology currently plays in plume analysis.

The state of the art for predicting lake plumes is less satisfactory,
even from a phenomenological point of view. Although the dynamics govern-
ing the zone of flow establishment are presumably the same for lake and
river discharges, the dynamics in the region of established flow are quite
different. The lake situation is considerably more complicated, due to much
larger dynamic variations in the structure of the receiving body of water.
Variations in the direction and magnitude of near-shore currents and in the
ambient diffusivity greatly complicate the problem of modeling the disper-
sive processes.

One of the simplest methods of parameterizing plume dispersion is
in terms of surface areas within isotherms. In the present study we have
adopted a completely phenomenological approach in attempting to find a
relationship that could be used to predict plume surface areas. The ap-
proach was based upon two considerations: 1) The behavior of lake plumes
beyond the zone of flow establishment is governed by lake processes for
which adequate models do not exist, and 2) there does exist a published
set of lake-plume temperature measurements which can be examined for
relationships among the plurne variables.



2. STUDY PHILOSOPHY

Edinger and Polk, in an analysis of thermal-plume dispersion,
derived a functional relationship for plume surface areas contained within
excess temperature contours.! The authors assumed Fickian-type diffusion
and considered conservative and nonconservative two-dimensional disper-
sion and conservative three-dimensional dispersion. For the simplest
case--conservative, two-dimensional dispersion--they found a relationship
of the form A/An = f(e/eo), where f(@/eo) is a function of the fractional ex-
cess temperature 6/6;, and A/A  is the nondimensional plume area contained
within the isotherm at excess temperature 6. For a two-dimensional, con-
servative plume, the scaling area A, was found equal to 4/T!3/z . Q3/Du2d3,
where Q is the volumetric discharge flow rate, D is the ambient diffusivity,
u is the ambient velocity, and d is the plume depth, assumed constant.

After numerically integrating f(e/eo), the authors graphed the relationship
9/90 versus A/An on log-log paper.

Perhaps more important than giving exact analytical solutions, the
work of Edinger and Polk provides an elegant method of data display which
can be used to group and compare data. In particular, it suggested to us
that an empirical relation for plume spreading might be discovered by re-
ducing existing field data and presenting it on plots of 9/90 versus A/An.
The parameterization of A, could be adjusted to provide the best agreement.
among existing lake plume data. Such an empirical, "plume-area" approach
would greatly simplify some of the problems normally enconntered in de-
veloping predictive formulas for thermal plumes and at the same time
would consider one of the most important features of the thermal plume,
namely, the areal extent of its surface water,

The parameterization of A, will be limited by the type, quality, and

quantity of the existing lake plume data. The data are discussed in the next
two sections.

3. SURVEY OF THE DATA

We identified scven useful sets of published. lake plume data during
the course of a literature survey. The sources of data are listed in Table I.

TARILE I. Lake Plume Data

Number
ul Plumes

Site Analyzed Source-
Waukegan, LLake Michigan 5 Ref. 2
Big Rock, Lake Michigan 1 Ref. 3
Milliken, Cayuga Lake 3 Ref. 4
Waukegan, Lake Michigan 1 Ref. 5
Michigan City, Lake Michigan 2 Ref. 5
Allen S. King, Lake St. Croix 9 Ref. 6
Douglas Point, Lake Huron 2 Ref. 7




With one exception, Table I lists all the lake plume data which we
could identify and which we judged to be useful for the type of analysis out-
lined in Section 2. The one exception is the rather extensive temperature
data collected at Waukegan by Biotest Laboratories under contract with
Commonwealth Edison Company. The sole reason for not including the
Biotest data, which were readily available to us, was our inclination to not
overly emphasize the Waukegan site in the analysis.

Several sources of data are not included in Table I because they
failed to satisfy the "usefulness" criteria eventually imposed on the data
base. (See below.) There are doubtless other sources of published data,
which would have satisfied these criteria, but which simply did not come
to our attention.

The ’cy‘pe and quality of the plume data referenced in Table I vary
considerably; however, a few generalizations about the data are possible.
(The individual measurements are summarized more carefully in Section 4.)

A "typical" plume measurement consisted of temperature readings
collected over a preestablished spatial grid. Additional data usually in-
cluded intake and outfall temperatures as well as the volumetric discharge
flow rate. Where discharge flow rates were not reported, we were able to
obtain these through personal communication, either with the investigator
or with the utility personnel.

Ambient-current measurements were not always performed and
reported. In general, the paucity of current data prevented a more exten-
sive analysis and comparison of data from the various sites.

Constant-temperature contours (isotherms) were usually constructed
from the raw data by the investigators. The isotherm plots presented the
opportunity for determining plume area within isotherms. Most of the
studies listed in Table I included temperature measurements at several
depths. There is, however, the problem of assigning a unique value to
plume depth which is characteristic of a given plume. For this reason,

a comparison of plumes on the basis of depth is very difficult.

Two conclusions can be drawn from a survey of the data:

(1) The analysis is limited, essentially, by the quality of the weakest
data sets. The scaling area, Ay, can be easily related only to the volumetric
discharge flow rate. Lack of data or the difficulty of assigning plume-wide
values to other variables prevents the parameterization of Ap in terms of
other variables such as ambient velocity, ambient diffusivity, and plume
depth. The most straightforward parameterization of A,, therefore, is of
the form A, = Q?, where the exponent a is to be determined.



(2) Not all the data of Refs. 2-7 are "useful" for the kind of analysis
outlined in Section 2. The plume measurements from any given report are
not of equal quality. Temperature data for some plumes are very sparse.
In other cases, a strong temperature gradient, usually due to upwelling,
makes it impossible to assign a unique value to the temperature of the am-
bient lake water. We therefore found it necessary to establish a set of
criteria, which could be used to define an acceptable ("useful”) plume

~measurement. An acceptable measurement included:

(a) Sufficient temperature data to permit the drawing of at
least three closed isotherms.

(b) Mecasurements of the intake and outfall temperatures.
(c) Measurement of the volumetric discharge flow rate,

(d) Measurement of the ambient lake temperature, with no
indication of large thermal gradients in the ambient
lake water.

4. SOURCES OF DATA

Plume data from six publications were used. The data were collected
at six different sites.. (At Waukegan, data were gathered by two authors.)
. The following is a brief description of the individual measurements. Numer-
ical values of plume variables which were used in the analyses are given in
the appendix., For more complete descriptions of the individual measure-
ments, see the original publications.

(1) Romberg 9’53;1,2 conducted 17 surveys of thermal plumes near the
outfall of Commonwealth Edison's fossil-fuel power plant at Waukegan,
Illinois, during the summer of 1970. Data collected included surface and
subsurface temperatures in the plume, as well as in the ambient lake and
in the discharge canal. Plant operating data, inclnding generating load and
discharge flow rate, were reported for each survey. Meteorological data
and current data were collected during most of the measurements. Diffu-
sivities were not measured. The investigators constructed constant-
temperature contours for 16 of the surveys.

~ We took areas within isotherms directly from Ref. 2. Of the
16 plumes, only five satisfied the "usefulness™ criteria of Section 3.
Eight plumes were rejected due to the presence of upwelling, which made
it impossible to assigh a unique value to the ambient lake temperature.

(2) As part of a study of biological effects of heated discharges,
Krezoski® surveyed the plume at Consumer Power Company's Big Rock
Point Nuclear Plant near Charlevoix, Michigan. Isotherms were drawn



for the plume measured on June 18, 1968. We obtained the discharge flow
rate through personal communication with Mr. C. Axtell of Consumer
Power Company.

(3) Sundaram et al.* conducted an extensive investigation.of the
physical effects of thermal discharges on Cayuga Lake. This work in-
cluded a study of the thermal plume from the Milliken Generating Station.
Six isotherm maps, which were developed from infrared overflight data,
are presented in Ref. 4. We did not examine three of these plumes because
they did not include at least three closed isotherms. The discharge flow
rates were furnished to us by Mr. S. A, Lyon of New York State Electric
and Gas Corporation.

Reference 4 contains considerable plume, lake, and meteoro-
logical data which were not used in the present study.

(4) Ayers et al.® surveyed plumes at the Michigan City Generating
Station on June 26 and 28, 1969, and at the Waukegan Generating Station on
June 30, 1969. These surveys were made in support of biochemical in-
vestigations in the vicinity of the two outfalls. Subsurface as well as surface
temperature contours were developed for two of the three surveys. We used
the areas within surface isotherms from all three surveys.

Intake and outfall temperatures were reported by Ayers et al.
for all three plumes.

(5) Fitchf’ conducted 10 temperature surveys in Lake St. Croix near
Northern States Power Company's Allen S. King Generating Plant. The
measurements, performed during the summers of 1969 and 1970, were made
using the Minnesota State coordinate grid system.

Intake, outfall, and ambient lake temper.itures were measured
at the beginning and end of each survey.

We obtained details concerning the measurement technique and
the presentation of the data through personal communication with Mr.D. Bohn
and Mr. J. Bechthold of Northern States Power Company. We learned that
some of the temperature data were corrected in order to account for ob-
served changes-in the ambient water temperature during the measurements.
This change in ambient water temperature no doubt also accounts for the
difference between outfall temperatures which were reported for the be-
ginnings and ends of some of the surveys. To eliminate this ambiguity, we
set the discharge temperature T equal to Tzg + I°F, where T,pg, the tem-
perature of the plume water 200 ft from the outfall along the plume axis,
was determined from the isotherm plots. This simple algorithm for outfall
tempcrature is based upon the ohserved rates of temperature decay in the
near-field region of the Allen S. King Plant and should be accurate to £0.5°F.
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Using a planimeter, we measured areas:within isotherms
for the nine isotherm plots that satisfied the criteria given in Section 3.
Areas for the three surveys conducted during 1969 were measured from
large engineering drawings supplied by Northern States Power Company.

(6)- Csanady et al.” performed rather detailed measurements of
several shore-parallel plumes at the Douglas Point Nuclear Power Plant
on Liake Huron during August 1970. Sufficient vertical temperature data
and current data were collected during these studies so that the authors
were able to determine plume heat fluxes across vertical transects.

Of the four horizontal isotherm plats presented in Ref. 7,
two (those for August 24 and 25) include three or more closed isotherms.
Although these isotherms refer to a depth of 1.5 ft, we considered them

- tu be representative of the surtace-temperature distributions. That this

is a good approximation can be seen from an inspection of Table IV of
Ret. 7.

5. ANALYSIS

All the plume data identified in Section 4 as useful were accompanied
by - isotherm plots of the individual plumes. Data reduction, therefore, es-
sentially consisted of planimeter measurements of areas within isotherms
for those cases for which the areas were not reported by .the field
investigators.

The data were displayed on log-log paper with 9/90 plotted against
A/Qa. The most consistent grouping of the buoyant-plume data occcurred
for a = 1, that is, on a plot of the form 8/60 versus A/Q. Figure 1 shows
the data so displayed. (The data key for Fig. 1 is shown in Table II.) The
curve drawn through the buoyant-plume data.is an eyeball fit to these data.
The "sinking"-plume curve may not be representative, since it is based
oir data from only two plume measurements.
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TABLE II. Data Key for Fi

Surface Area (A)

Discharge Flow Rate Q)

g !

Waukegan® (7/14/70, 12:30-13:37)
Waukegan® (7/14/70, 14:50-16:10)
Waukegan® (8/12/70, 12:00-13:57)
Waukegan® (8/12/70, 16:22-17:53)
Waukegan® (8/13/70, 12:12-13;26)
Big Rock Point?® (6/18/68)
Milliken* (9/17/68)

Milliken* (12/10/68)

Milliken* (1/8/69)

Michigan City® (6/26/69)
Michigan City® (6/28/69)
Waukegan® (6/30/69)

mommo 0w >

—

£ o«

g

F<E 80D woO 2

Allen S. King® (8/20/69)
Allen S. King® (9/4/69)

Allen S. King® (7/30/69)
Allen S. King® (6/5/70)

Allen S. King® (6/12/70)
Allen S. King® (6/29/70)
Allen S. King® (7/9/70)

Allen S. King® (7/17/70)
“Allen S. King® (8/13/70)
Douglas Point’ (8/24/70)
Douglas Point’ (8/25/70)

6. DISCUSSION

When considered against the various causes of scatter, the cluster-

11

ing of the buoyant-plume data about the central curve in Fig. 1 is remarkable.
Sources of scatter among the data points include:

(1) Large plume-to-plume variation in ambient diffusivity, ambient
velocity, and plume depth. Although the magnitude of the scaling area should
be strongly dependent upon them, these variables have not been included in
the parameterization of A,.
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(2) Inaccurate plume areas, especially in the far-field region, where
ambient "noise" and plume meandering can produce significant errors in the
mapping of thermal plumes. Nearly synoptic, infrared measurements of
the type performed by Sundaram et al. should be less susceptible to this
type of error.

(3) Different outfall geometries. Although all the outfalls are of
the channel type, orifice dimensions and bottom topographies differ con-

- siderably. For example, at Waukegan the mouth of the outfall is approxi-
mately 6 ft deep by 60 ft wide and the bottom slope is at most 1:100, whereas

at the Milliken Station the outfall mouth is approximately 10 ft square and
the bottom slope is about 1:10.

(4) The parameterization A, ~ Q may not be optimum. There may
exisl a more Suitable parameterization, which would lead to a more con-
sistent grouping of the data.

All the data shown on Fig. 1 refer to channel outfall geometries.
Other outfall geometries, such as submerged diffuser systems, could pro-
duce temperature decays that are inconsistent with those in Fig. 1. It may
turn out, however, that the main difference between channel outfalls and
other systems is the point at which the curve shown in Fig. 1 is initially
intercepted. Consider, for example, a system that uses rapid, subsurface
dilution and produces a maximum surface temperature of, say, 6/90 = 0.7.
Since the. initial temperature reduction is achieved simply by dilution, thc
initial surface area within the 8/8, = 0.7 isotherm may bc consistent wilh
that predicted by Fig. 1. The subsequent temperature decay may also follow
the curve in Fig. 1.

7. SUMMARY OF RESULTS

Figure 1 summarizes the results of the investigation. All the
buoyant-plume data are seen to be reasonably well fit by the curvc drawn
through the data points. The curve thus represents a phenomenological fit
relating fractional excess temperature to the quotient of plume surface area
and volumetric discharge flow rate.

The plume data shown in Fig. 1 refer to channel outfall geometries.
The fit, therefore, may not be applicable to other outfall geometries, par-
ticularly in the region where 6/90 is large. Allowing for this restriction,
we believe that the curve represents a useful rule of thumb for prcdicting
surface areas of buoyant thermal plumes.
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APPENDIX

Plume Areas

Power }Slant: Waukegan

Body of water: Lake Michigan
Investigators: Romberg et _ag.z

Date: 7/14/70 (12:00-13:57) ,
Discharge flow rate: Q = 1871 ft3/sec
Outfall temperature: Tp = 22.3°C
Ambient temperature: Tp = 17.0°C
8 = Tp - Ta = 5.3°C

Power plant: Waukegan

Body of water: Lake Michigan
Investigators: Romberg et al.?

Date: 7/14/70 (14:50-16:10)
Discharge flow rate: Q = 1871 ft*/sec
Outfall temperature: Tp = 24.4°C ‘
Ambient temperature: Ty = 16.7°C
8 = Tp - TA = 7.7°C

Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at
8, °C Temp, 9/60 Excess Temp, ft

4.0 0.755 5.488 x 10*
3.0 0.566 3.841 x 10°
2.0 0.377 3.293 x 10°
1.0 0.189 5.488 x 10°

Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at
8, °C Temp, 9/80 Excess Temp, ft?

5.3 0:688 1.722 x 10°
4.3 0.558 4.950 x 10°
3.3 0.429 1.431 x 10°
2.3 0.299 3.615 x 10°

Power plant: Waukegan

Body of water: Lake Michigan
Investigators: Romberg et al.?

Date: 8/12/70 (12:00-13:57)
Discharge flow rate: Q = 1730 ft3/sec
Qutfall temperature: Tp = 30.5°C
Ambient temperature: Tp = 23.0°C
By = TD - TA = 7.5°C :

Power plant: Waukegan

Body of water: Lake Michigan
Investigators: Romberg et a_l.Z

Date: 8/12/70 (16:22-17:53)
Discharge flow rate: Q = 1730 ft3/sec
QOutfall temperature: Tp = 30.6°C
Ambient temperature: Tp = 23.5°C
8, = Tp - Ta = 7.1°C :

Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at
8, °C Temp, 9/90 Excess Temp, ft

Exce’ss Fractional Total Plume Area, A,
within Isotherm at
Excess Temp, ft?

Temp, Excess
8, °C Temp,e/eo

5.0 0.667 8.070 x 10*
4.0 0.533 3.497 x 10°
3.0 0.400 3.309 x 10°
2.0 0.267 1.945 x 107
1.0 0.133 2.690 x 107

‘4.5 0.634 2.798 x 10°
3.5 0.493 8.393 x 10°
2.5 0.352 7.833 x 10%
1.5 0.211 2.462 x 107
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Power plant: Waukegan Power plant: Big Rock Point

Body of water: Lake Michigan Body of water: Lake Michigan
Investigators: Romberg et al.? Investigator: Krezoski?
Date: 8/13/70 (12:12-13:26) Date: 6/18/68
Discharge flow rate: Q = 1624 ft3/sec Discharge flow rate: Q =111.4 ft3/sec
Outfall temperature: Tp = 29.4°C Outfall temperature: Tp = 18.0°C
Ambient temperature: Tp = 23.0°C Ambient temperature: Tp = 10.0°C
8 = Tp - Tp = 6.4°C 6o = Tp - Tp = 8.0°C
Excess Fractional Total Plume Area, A, Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Excess within Isotherm at
8, °C Temp, 6/60 Excess Temp, ft 8, °C Temp, 8/60 Excess Temp, ft?
5.0 0.781 5.810 x 10* 8.0 1.000 2.150 x 10*
4.0 0.625 1.743 x 10° 7.0 0.875 6.780 x 10*
3.0 0.469 1.917 x 108 6.0 0.750 1.552 x 10°
2.0 0.313 9.180 x 10° 5.0 0.625 3.398 x 10°
10 0.156 2.908 x 107 4.0 0.500 5.707 x 10°
3.0 0.375 8.153 x 10°
2.0 0.250 1.347 ¥ 10°
1.3 0.163 1.901 x 10°
1.0 0.125 2.181 x 10°
Power plant: Milliken Power plant: Millii(en
Body of water: Cayuga Lake Body of water: Cayuga Lake
Investigators: Sundaram et a_l.4 Investigators: Sundaram et a_l.4
Date: 9/17/68 Date: 12/10/68
Nischargo flow rate. Q = 254 ft’/’éec Discharge flow rate: Q = 377 ft3,/sen
Outfall temperature. TPy = 3.UC Outfall temperature: I'p = 14.5°C
Ambient lemperature: Tp = 19.0°C Ambient temperature: Ta = 4.0°C
8 = Tp - Tp = 12.0°C 8 = Tp - Ta = 10.5°C
Excess Fractional Total Plume Area, A, Excess Fractional Total Plime Ares, A,
Tomp; Lacvess Wwithin lsotherm at Temp, Excess within Icothcrm at
0, °C Temp, H/’BO Excess temp, £t 8,°C Temp, G/GU Excess Temp, ft?
5.0 0.417 6.2 x 10* 7.0 0.667 4.923 x 103
4.0 0.333 2.72 x 10° 6.0 0.571 9.846 x 10°
3.0 0.250 7.22 x 10° 5,0 0.476 1.477 x 10%
2.0 0.167 3.292 x 10° 4.0 0.381 2.462 x 10*
1.0 0.083 7.422 x 106 3.0 0.286 2.954 x 10*
2.0 0.190 6.892 x 10*

1.0 0.095 1.772 x 10°




Milliken
Cayuga Lake

Power plant:
Body of water:
Investigators:

Date: 1/8/69

Discharge flow rate: Q = 377 ft’/sec
Tp = 15.5°C
Ta = 2.5°C

Outfall temperature:
Ambient temperature:
8o = Tp - Ta = 13.0°C

Sundaram et a_l.4

Power plant: Michigan City

Body of water: Lake Michigan
Investigators: Ayers et a_l.5

Date: 6/26/69

Discharge flow rate: Q = 537 ft3/sec
Outfall temperature: Tp = 21.1°C
Ambient temperature: Ta = 16.9°C
8 = Tp - Ty = 4.2°C

Excess Fractional Total Plume Area, A, Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Excess within Isotherm at
8, °C Temp, 9/90 Excess Temp, ft° 8, °C Temp, 9/60 Excess Temp, ft

5.5 0.423 9.846 x 10’ 4.1 0.976 2.222 x 10*
5.0 0.385 2.462 x 10* 3.1 0.738 1111 x 10°
4.0 0.308 ' 3.446 x 10* 2.1 0.500 2.889 x 10°
3.0 0.231 5.908 x 10* 1.1 0.262 1.133 x 10°
2.0 0.154 8.862 x 10* 0.1 0.024 3.133 x 10%
1.5 0.115 1.280 x 10°
1.0 0.077 2.658 x 10°
Power plant: Michigan City Power plant: Waukegan
Body of water: Lake Michigan Body of water: Lake Michigan
Investigators: Ayers et al.’ Investigators: Ayers et al.’
Date: 6/28/69 Date: 6/30/69
Discharge flow rate: Q = 178 ft*/sec Discharge flow rate: Q = 1872 it’/sec
Outfall temperature: Tp = 25.2°C Outfall temperature: Tp = 16.6°C
Ambient temperature: Tp = 20.0°C Ambient temperature: Tp = 12.8°C
B = Tp - Tp = 5.2°C 8 = Tp - Ta = 3.8°C

Excess Fractional Total Plume Area, A, Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Excess within Isotherm at
8, °C Temp, e/eo Excess Temp, ft 8, °C Temp, 9/60 Excess Temp, ft

5.0 0.961 2.222 x 10* 3.2 . 0.842 1.39 x 10®
4.0 0.769 1.000 x 105 2.2 0.579 3.48 x 10°
3.0 0.576 2.444 x 10° 1.2 n.316 1.219 x 107

2.700 x 107

0

2 0.052
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Power plant: Allen S. King Power plant: Allen S. King

Body of water: Lake St. Croix Body of water: Lake St. Croix
Investigator: Fitch® Investigator: Fitch®
Date: 8/20/69 Date: 9/4/69
Discharge flow rate: Q = 660 ft’/sec Discharge flow rate: Q = 660 ft’/sec
Outfall temperature: Tp = 93.25°F Outfall temperature: Tp = 91.13°F
Ambient temperature: Tp = 79.1°F Ambient temperature: Tp = 78.2°F
8 = Tp - Ta = 14.15°F ' 8 = Tp - Tp = 12.9%°F
Excess Fractional Total Plume Area, A, Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Fxcess within Isotherm at
8, °F Temp, 6/80 Excess Temp, ft 8, °F Temp, 9/90 Excess Temp, ft
11.9 0.841 3.824 x 10* 11.8 0.913 1.708 x 10*
10.9 0.770 1.166 x 10° 10.8 0.835 4.175 x 10*
9.9 0.700 2.144 x 10° 9.8 0.758 7.400 x 10*
8.9 n.A?9 1.545 x 10° 4.8 h A8I 1,653 x 10°
7.9 0.558 5,624 5 10° 1.8 V.6U3 2.821 x 10°
6.9 0.488 7.041 x 10° 6.8 0.526 3.814 x 10°
4.9 0.346 2.339 x 10° 5.8 0.449 6.641 x 10°
3.9 0.276 3.669 x 108 4.8 0.371 9.437 x 10°
2.9 0.205 ‘41.'4’29)(106 2.8 0.217 2.108 x 10°
1.9 0.134 6.708 x 10° 1.8 0.139 3.574 x 10°
0.8 0.062 4,948 x 10°
Powor plant: Allen S. King : Power plant: Allen S. King
Body nf water; Lake 5t. Croix Body of water: Lake St. Croix
Investigatnr: Fitch® Investigator: Fitch®
Date: 7/30/69 Date: 6/5/70
Discharge flow rate: Q = 660 fta/sec Discharge flow rate: Q = 457 ft3/sec
Outfall temperature: Tp = 86.0°F Outfall temperature: Tp = 85.25°F
Ambient temperature: T, = 78.0°F Ambient temperature: T, - 70.0°F
8 = T,y - Ty - 8°F 8y = Tp - Ta = 15.25°F
Excess  Fractional Total Plume Area, A, Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Excess within Isotherm at
8, °F Temp, 6/6, Excess Temp, ft° 8, °F Temp, 9/90 Excess Temp. ft
6.0 0.750 3.715 x 10* 14.0 0.918 3.150 x 10*
5.0 0.625 1.825 x 10° 12.0 0.787 1.969 x 10°
4.0 0.500 5.500 x 10° 10.0 0.656 4.331 x.10°
3.0 0.375 2.784 x 10° 8.0 0.525 1.063 x 10°
' 5.0 0.328 4.071 x 10°
4.0 0.262 4.995 x 10°

2.0 0.131 6.433 x 10°




Power plant: “Allen S. King

Body of water: Lake St. Croix
Investigator: Fitch®

Date: 6/12/70

Discharge flow rate: Q = 638.6 ft’/sec
Outfall temperature: Tp = 91.35°F
Ambient temperature: Tp = 79.2°F

8 = Tp - Ta = 12.15°F
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Power plant: Allen S. King

Body of water: Lake St. Croix
Investigator: Fitch®

Date: 6/29/70

Discharge flow rate: Q = 627.1 ft*/sec
Outfall temperature; Tp = 93.0°F
Ambient temperature: Tp = 78.8°F

60 = TD - TA = 14.2°F

Excess Fractional Total Plume Area, A Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Excess within Isotherm at
8, °F Temp, 8/60 Excess Temp, ft? 6, °F Temp, 8/80 Excess Temp, it?
10.8 0.889 1.550 x 104 13.2 0.930 1.563 x 10*
8.8 0.724 2.946 x 10° 11.2 0.789 5.469 x 10*
6.8 0.560 5.969 x 10° 9.2 0.648 2.266 x 10°
4.8 0.395 1.047 x 10° 7.2 0.507 4.375 x 105
2.8 0.230 1.791 x 10°

Power plant: Allen S. King

Body of water: Lake St. Croix
Investigator: Fitch®

Date: 7/9/70

Discharge flow rate: Q = 614.8 ft’/sec
Outfall temperature: Tp = 93.1°F
Ambient temperature: Ty = 80.9°F

8 = Tp - Ty = 12.2°F

Power plant: Allen S. King

Body of water: Lake St. Croix
Investigator: Fitch®

Date: 7/17/70

Discharge flow rate: Q = 591.1 ft3/sec
Outfall temperature: Tp = 95.13°F
Ambient temperature: Tp = 81.1°F

90 = TD - TA = 14.03°F

Excess Fractional Total Plume Area, A, Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Excess within Isotherm at
6, °F Temp, 8/6, Excess lemp, ft’ 0, °r Tomp, 8/8, Excess Temp, ft?
11.1 0.910 1.504 x 10* 12.9 0.919 1.538 x 10*
9.1 0.746 1.053 x 10° 10.9 0.777 3.846 x 10*
7.1 0.582 2.857 x 105 8.9 0.634 1.000 x 10°
5.1 0.418 7.444 x 10° 6.9 0.492 2.462 x 10°
4.1 0.336 2.090 x 10° 4.9 0.349 1.700 « 108




Power plant: Allen S. King Power plant: Douglas Point

Body of water: Lake St. Croix Body of water: Lake Huron
Investigator: Fitch® Investigators: Csanady et a_l.7
Date: 8/13/70 Date: 8/24/70
Discharge flow rate: Q = 623.7 ft’/sec Discharge flow rate: Q = 397 {t’/sec
Outfall temperature: Tp = 91.25°F Outfall temperature: Tp = 28.3°C
Ambient temperature; Tp = 81.3°F Ambient temperature: Tp = 20.3°C
8 = Tp - Ta = 9.95°F G = Tp - Ta = 8.0°C
Excess  Fractional Total Plume Area, A, Excess Fractional Total Plume Area, A,
Temp, Excess within Isotherm at Temp, Excess within Isotherm at
0, °F Temp, 9/80 Excess Temp, ft? 8, °C Temp, 9/90 Excess Temp, 12
7.7 0.774 7.576 x 10* 5.0 0.625 2.013 x 10°
8.7 0.673 1.894 x 10° 1.0 0.300 9.515 x 10
4.7 0.472 5.152 x 10° 3.0 0.375 . 2.123 x 10°
2.7 0.271 2.598 x 10° 2.0 0.250 6.130 x 10
1.0 0.125 8.637 x 10°
0.5 0.063 1.350 x 107

Power plant: Nauglag Point

Body of water: T.ake Huron
Investigators: Csanady et al.”

Date: 8/25/70

Discharge flow rate: Q = 397 ft’/aec
Qutfall temperature: Tjy - 28.1°C
Ambicnt temperature, Ty = 20.1°C
8, = Tp - Ta = 8.0°C

Excess Fractional ' Total Plumc Area, A,
Temp, Excess within Isotherm at
g, °C Temp, 9/80 Excess Temp, ft*
3.0 0.375 1.200 x 10°
2.0 0.250 4.200 x 10°
1.0 0.125 2.060 x 10

0.5 0.063 1.824 x 107
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