SYNTHESIS AND FABRICATION OF REFRUCTORY URANIUM COMPOUNDS

1. Uranium Monocarbide (UC)

Several additional batches of uranium monocarbide were synthesized for use in fabrication of specimens for physical property determinations. A recent innovation has been to carry out the synthesis with mixed loose powders (UO₂ + C) in a graphite crucible as opposed to the pelletized reaction mix previously used. This has the advantage of yielding a UC clinker which is considerably softer and much easier to crush. X-ray and chemical analysis shows the product to be similar to that previously made from pelletized mix.

Additional bars, 3 inches by 1/2 inch by 1/4 inch, and cylinders 1 inch by 1 inch, were fabricated by cold pressing and sintering, for physical property tests. Densities ranged from 11.35 to 12.80 g./cc. (83 to 94 percent theoretical). The reason for the wide variation is not clearly understood. However, such factors as particle size and freshness of the milled UC powders appear to be important in determining the sinterability of UC.

2. Uranium Mononitride (UN)

Uranium mononitride has been synthesized during the past month using a stainless steel boat and inconel muffle furnace as described in the last quarterly report. This method has made it possible to produce 2 1/2 pound batches of UN. Analysis indicated the product to be single phase UN. Oxygen determination by vacuum fusion is being made.

Bars 3 inches by 1/2 inch by 1/4 inch, have been cold pressed and are currently being sintered for physical property tests.

3. Uranium Silicide (U₃Si₂)

It had been observed that there was some loss of silicide due to the violence of the reaction between uranium and silicon. Three batches of U₃Si₂ were synthesized during the past month with particular emphasis on controlling the rate of the reaction. In the synthesis of U₃Si₂, this
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
was accomplished by limiting the maximum temperature to 1500°C. X-ray analysis of the product showed the major phase to be predominately U₃Si₂ with traces of UO₂ and silicon. Chemical analysis, including determination of oxygen by vacuum fusion is in process.

Additional specimens of U₃Si₂ for physical tests have been fabricated during the past month. Average density of about 94 percent of theoretical was obtained. This is somewhat lower than maximum densities previously obtained.

4. Evaluation of Sintered UC, UN and U₃Si₂ Specimens

Work on determination of physical properties has continued. Several more thermal expansion and modulus of elasticity tests were made. In addition, determinations were made of modulus of rupture, shear modulus and Poisson's ratio.

The modulus of rupture determinations were made at room temperature, 800°C., 1000°C., and 1200°C. using a two-point loading technique in an induction heated furnace. Values for the shear modulus have been determined using a sonic method. From the values of elastic and shear moduli, Poisson's ratio has been calculated. Preliminary resistivity measurements have also been made, but it is felt that thin surface oxide layers may have effected the values and attempts are presently being made to study resistivity in an inert atmosphere. The preliminary thermal conductivity measurements are being made at this time and will be available shortly. Results to date of physical property measurements, which are of a preliminary nature, are summarized in Table I.

K. M. Taylor
C. H. McMurtry

KMT: EFM
12-13-60

<table>
<thead>
<tr>
<th>Material</th>
<th>Density % of Theoretical</th>
<th>Thermal Expansion, cm./cm./°C.</th>
<th>Modulus of Rupture, 10^3 psi. at 25°C.</th>
<th>Modulus of Elasticity at 25°C. 10^6 psi.</th>
<th>Shear Modulus at 25°C. 10^6 psi.</th>
<th>Poisson's Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC</td>
<td>83 - 94</td>
<td>11.3×10^{-6}</td>
<td>10-15</td>
<td>15-20</td>
<td>10 Deformed</td>
<td>18 - 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(25 - 1200°C.)</td>
<td></td>
<td></td>
<td></td>
<td>~8</td>
</tr>
<tr>
<td>UN</td>
<td>81 - 91</td>
<td>9.6×10^{-6}</td>
<td>--</td>
<td>~15</td>
<td>--</td>
<td>20 - 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(25 - 1200°C.)</td>
<td></td>
<td></td>
<td></td>
<td>8 - 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.22 - .23</td>
</tr>
<tr>
<td>U$_3$Si$_2$</td>
<td>93 - 98</td>
<td>16×10^{-6}</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>13 - 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(30 - 1000°C.)</td>
<td></td>
<td></td>
<td></td>
<td>~9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.17 - .18</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Dr. D. F. Cope, Director
Reactor Division
U. S. Atomic Energy Commission
Oak Ridge Operations
Oak Ridge, Tennessee 3

Clevite Corporation
540 East 105th Street
Cleveland 8, Ohio
Attention: R. D. Johnson
Mechanical Research Division

National Carbon Company
Post Office Box 6116
Cleveland 1, Ohio
Attention: J. C. Bowman
Research Laboratories

Union Carbide Metals Company
4625 Royal Avenue
Niagara Falls, New York
Attention: Milton Stern
Technology Department

Oak Ridge National Laboratory
Post Office Box X
Oak Ridge, Tennessee
Attention: R. A. Chappie
W. D. Manly

Director Division of Reactor Development
U. S. Atomic Energy Commission
Washington 25, D. C.
Attention: J. M. Simmons
Nuclear Technology

/ Technical Information Service Extension
U. S. Atomic Energy Commission
Post Office Box 62
Oak Ridge, Tennessee

No. Copies
3
1
1
1
2
5
15
<table>
<thead>
<tr>
<th>Name</th>
<th>Division/Institute</th>
<th>Address</th>
<th>City, State</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Hoylande Young, Director</td>
<td>Argonne Information Division</td>
<td>Lemont, Illinois</td>
<td>Illinois</td>
<td>4</td>
</tr>
<tr>
<td>Dr. H. Pearlman, Director</td>
<td>Atomic International Division</td>
<td>P. O. Box 309</td>
<td>Canoga Park, California</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Russell W. Dayton</td>
<td>Battelle Memorial Institute</td>
<td>Columbus, Ohio</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>The Carborundum Company</td>
<td></td>
<td>P. O. Box 337</td>
<td>Niagara Falls, N. Y.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. K. M. Taylor</td>
<td>Applied Research Branch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>