Analysis of the steady-state operation of vacuum systems for fusion machines

PDF Version Also Available for Download.

Description

A computer code named GASBAL was written to calculate the steady-state vacuum system performance of multi-chamber mirror machines as well as rather complex conventional multichamber vacuum systems. Application of the code, with some modifications, to the quasi-steady tokamak operating period should also be possible. Basically, GASBAL analyzes free molecular gas flow in a system consisting of a central chamber (the plasma chamber) connected by conductances to an arbitrary number of one- or two-chamber peripheral tanks. Each of the peripheral tanks may have vacuum pumping capability (pumping speed), sources of cold gas, and sources of energetic atoms. The central chamber may ... continued below

Physical Description

8 p.

Creation Information

Roose, T.R.; Hoffman, M.A. & Carlson, G.A. November 1, 1975.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A computer code named GASBAL was written to calculate the steady-state vacuum system performance of multi-chamber mirror machines as well as rather complex conventional multichamber vacuum systems. Application of the code, with some modifications, to the quasi-steady tokamak operating period should also be possible. Basically, GASBAL analyzes free molecular gas flow in a system consisting of a central chamber (the plasma chamber) connected by conductances to an arbitrary number of one- or two-chamber peripheral tanks. Each of the peripheral tanks may have vacuum pumping capability (pumping speed), sources of cold gas, and sources of energetic atoms. The central chamber may have actual vacuum pumping capability, as well as a plasma capable of ionizing injected atoms and impinging gas molecules and ''pumping'' them to a peripheral chamber. The GASBAL code was used in the preliminary design of a large mirror machine experiment--LLL's MX. (auth)

Physical Description

8 p.

Notes

Dep. NTIS

Source

  • IEEE 6. symposium on engineering problems of fusion research, San Diego, California, USA, 17 Nov 1975

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL--77263
  • Report No.: CONF-751125--30
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 4174982
  • Archival Resource Key: ark:/67531/metadc871341

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Oct. 11, 2017, 2:34 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Roose, T.R.; Hoffman, M.A. & Carlson, G.A. Analysis of the steady-state operation of vacuum systems for fusion machines, article, November 1, 1975; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc871341/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.