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ABSTRACT

The general structure of the two photon processes in colliding

beam experiments, e+e + e+e+r, is studied for an arbitrary hadron final

state r .  The dependence of the scattering amplitudes on the lepton

variables are explicitly factored out from the helicity amplitudes for

the basic (hadronic) process  y+y + r.  General formulas are given for

the differential cross-section as well as for important special cases.

The most important inclusive channel (y+y + anything) and exclusive

channel (Y+y + ,T+,T) are studied in some detail.  The first case can

yield information on the fundamental process y+y + y+y.  The second case

provides a clean method fof extractiAg the s-wave  ,T-7T phase shifts.

*
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INTRODUCTION

Colliding electron (positron) beams are a potentially fruitful

source of interesting information about electromagnetic and strong

interactions. The initial results from several laboratories have

furnished the first clean study of the well known vector mesons and

created much incentive for theoretical investigations of the one
1

photon annihilation process, e  +e- +7+ hadrons. Ithas been recently

realized, however, that the cross-section for "two photon processes"

(i.e. e + e -* e +e+ hadrons, see fig. 1) is expected to be large 2,3 and

will dominate the annihilation process at energies above 1 - 1.5 Gev.

This opens up a whole area of new possibilities and information to be

gained from such processes.  In particular, it provides an important

opportunity to study photon-photon interactionsind hadronic systems of

even charge conjugation 5

The purpose of this paper is to explore the general features of

colliding beam processes in which an arbitrary final hadron system is

produced by two virtual photons and to examine the possibilities of

extracting specific information on the fundamental process y+y+y+y

as well as on the S-wave 7T-7T  phase shifts.  In section II we treat·the

kinematics.  Because of the many particles in the final state, this can

be rather complicated. By using the helicity formalism for these current-

current scattering amplitudes, we factor out in an explicit manner the
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dependence on the lepton variables from that of the hadronic variables

in the process  y+y + hadrons.  This enables us to write down the general

formulas for the scattering amplitudes and differential cross-section

for an arbitrary final state and give the small angle approximation to

such formulas (Weizsacker-Williams approximation6).  In section III we

consider the experimental situation when none of the outgoing hadrons

is  observed.  The cross-section for that case (when either one or both of

the outgoing electrons are observed) can be related to the absorptive

parts of the forward  y+y + y+y scattering amplitudes.  Valuable information

on the latter process can be gained from such measurements.  We also

study, in this section, the full consequences of gauge invariance for

these y-y amplitudes and some of their scaling properties.  In section

IV we study the most important final hadron state for the two photon

process - the two pion state.  The emphasis is on ways to extract the

S-wave  5-  phase shifts from this interesting channel.  In Appendix A

we give some detailed formulas on the kinematics and the differential

cross-section for a general two photon process.  Appendix B contains the

definition of invariant amplitudes for photon-photon forward scattering.

:
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II  GENERAL KINEMATICS

We consider the process

e+e+e+e+r                                 (1)

in the two photon exchange approximation2,3  (Fig. 1).  In (1) e

represents either e- or e  and r stands for some arbitrary hadron

state.  The process can be either exclusive (all particles in r

measured) or inclusive (final state r partially measured or unmeasured). As

shown in Fig. 1, the incoming and outgoing momenta of one electron

are labelled by kl and k2; those of the other by q 1 and q 2.  The

momenta of the virtual photons are therefore,

k=k-k
1          2

(2)

q = qi - q2·

We also define

K=k +k2
(3)

Q = qi + q2

The total four-momenum of the hadronic system r is given by p(=k+q)

while the individual particle momenta will be denoted by pl' P2....pn.

The squared effective mass of the state r is designated by s with,

s = - P2 = -
(k+q)2 (4)

:
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The kinematics of the overall process (1) is considerably

simplified by the assumed two photon exchange structure of the

amplitude (Fig. 1).  The amplitudes for (1) can be expressed in

terms of those describing the simpler process,

y+y+r.                   (5)

To take advantage of this simplifying feature, it is essential to

choose a set of variables which completely separates the known

dependence on the lepton vertices from the unknown dependence on

the hadronic amplitude, (5), in an explicit manner.  The obvious

choice of hadronic variables are those appropriate for the process

(5) with virtual (space-like) photons of "masses"  k2 and q2

respectively.  It is not hard to see that the natural variables for

the leptons are those specifying the lepton configurations in the

"rest frame"7 of the corresponding virtual photons.  We shall

define those variables explicitly in subsection B and derive the

connection between processes (1) and (5) for a general final state

r  in subsection C.  First, however, let us familiarize ourselves

with the process (1) by introducing the laboratory frame variables

which are the experimentally measured variables.

9./.6

.
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A.  The Laboratory Frame Variables

In colliding beam experiments, the Lab. frame is just the

C.M. frame for the incoming particles.  We choose the z-axis to be

that of the incoming beams.  We further specify the x-z plane to

be defined by a vector 81  belonging to the hadronic system  r.

Then  the Lab. frame kinematics is as illustrated in Fig. 2.  The

independent variables in this frame can be chosen as,

E:  energy of the incoming particles,

 , 6, 0:  energy and polar angles of the outgoing particle

with 4-momentum k2.
(6)

6", 8", 0':  energy and polar angles (with respect to a set

of axes related to the above by 180° rotation

around the y-axis) for the outgoing particle q2.

plus other "intrinsic" hadronic variables,   if  any.

Although experimentally the Lab. variables are directly

measured, they are not very useful in exhibiting the structure of

the two-photon exchange amplitude, Fig. 1.  The expression for the

cross-section is exceedingly complicated and without explicit

physical interpretation.  We shall therefore go over to the

"natural variables" alluded to previously.

B.  Natural Variables

The use of lepton Brick Wall frame variables for current-

current amplitudes and its close association  with helicity amplitudes

(or form factors) for current-hadron scattering has  been discussed

89in the context of electron-hadron and neutrino-hadron scattering. '
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The same analysis can be easily carried over to our process, Eq. (1).

There are two separate B.W. frames ("rest frames" for the virtual

photons7) associated with the two pairs of leptons.  In either frame

we define the photon three-momenta to be along the z-axis.  The two

frames are further specified by requiring the time component of

one or the other photon 4-momentum to be zero.  Thus in the B.W. frame

of the "k-electron" we have

k = /F(0, 0,0, 1)                                (7)
and q = ,/F-(sinh u, 0,0, -cosh u)

where cosh u = .k·q/(k2q 2)& . An arbitrary configuration of the

k-electrons in this frame can be specified by two variables (W,X)

which parameterize the transformation 0(*,x) which brings the vectors

k, and &2 along the z-axis and which leaves k, Eq. (7), invariant.-I

Explicitly, 0(W,x) consists of a rotation around the z-axis by the

azimuthal  angle  X and a boost along the x-axis by the hyperbolic

angle  W.  The 4-momenta kl' k2 are therefore specified by Eq. (7)

together with

K = ,/IF(cosh 4, sinh * cos x, sinh 4 sin x, 0).           (8)

Similar· definitions of the variables (0',x') associated with the
10

"q-electron" in its own B.W. frame when transformed to the "k-

electron" B.W. frame yield the following form for the vector Q.

Q  =  ,/F(cosh  *' cosh u,-sinh *'cos x',sinh *'sin x',-cosh 4'sinh  u).

(9)

Eqs. (7)-(9) specify all the relevant vectors in one frame in terms
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of the independent variables,

q2, k2, s(or k·q)

(10)

and 4, X,0",X' ·

The kinematic configuration in this frame is depicted in Fig. 3.

The configuration of these vectors as well as their explicit

expressions in terms of the variables (10) in the "q-electron"

B.W. frame are exactly the same as shown here with the roles of

the k-electron and q-electron reversed.  The connection between

these variables and the Lab. variables is given in Appendix A

along with other detailed kinematic facts.

The utility of the set of variables (10) lies in the fact

that each electron-photon vertex function can be written as a

known function of its B.W. frame variables while the rest of

the overall amplitude is independent of these variables.  For

instance, it is easy to see that

<k2X21ju(0)'kl'Al> = E,
)(k)<k2A21£

.j(0)1klxl>p            (a)*  ,

Ca                                (11)

I E a)(k)<k2x210-1(*,x)£(a)*.j(0)0(0'x)lklxl>

(B)*
= E a)(k)D(*,x)aB<E212|E    •j(0)|Flxl>

= E a)(k)D(*,x)aB j(B)A211(k 2)

Here Rl,2 =  '/ VIT(1, 0, 0, fl); and  , \11(k)(0(=0,1,2,3) are a setCa)

of helicity polarization vectors for the virtual photon. 0(*,X)
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is the SO(2,1) transformation introduced earlier and D(*,x) aB
12is the transformation matrix for j in the spherical basis.

The lepton "form factors" j(B) (k) can be easily calculated.
X2Al

The only non-zero ones are,

j (k2) = jfil*(k2)=-4282 (12)

C.  Scattering Amplitude and Cross-Section

With these preliminaries, we can now write down the

transition amplitude for process (1).

T = ell<k2121ju(0)1klxl,<q212'j\,(0)1qlxl> 1  12,

 dz,x eikx<rIT(Jlt(x)Ju(0)10>   (13)

=(e4/kfq2)TaB(k2,q2,s...)D(*,x)aa'D(*,x)BB' j C2A)(k2) . j(B )A, (.q2).

The amplitude is thus in a manifestly factorized form with the depen-

dence on the leptonic variables explicitly displayed.  The hadronic

part is isolated in the factor T -(k2,q2,5...) which is nothing but the
a ts

helicity amplitude for the. process  y+y + r with virtual photons of
2    2masses k,q  and helicities  a,B  respectively,

T  (k2,q2,s...) = fd4x<rlT(Ju(x)Jv(0))10>eikxE/11 (k) v (q) (14)
a B                                            Ca)   E(B)

:
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We note that for e-e- collisions because of identical particles, an

additional term in Eq. (13) is required.  It can be obtained from the

expression given by interchanging k2 and q2.

For a general experiment of the type (1), let us split the final

phase space for the final hadron system into two factors.

dr = dr' dr" (15)

where dr' is associated with the observed variables while  dr" with

the unobserved variables.  The differential cross-section, after
I.=

averaging (summing) over the initial (final) lepton polarizations can

then be written,

4

dc = -2-  L flk-2 99.2 d(cosh *)d(cost'  0')dxdx'dr'
29A2 E 2  k2  q 2

x w (k2 q2.s...) e-i(m-£)xe-i(n-j)x' (16)

9, mn

x[3(9)£ia(*)mi + a(0)£-ia(*)m-,][8(0') ia(*')ni + a(w,) j.ia(w,)n_11

where we have used (12) and the-explicit form for D(*,x). 12
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We also introduced,

*0 9
W    (k2 q2,5...) = fdr"(27r)464(k+q-p)T .(k*.,q;s...)T mn(k2,q2,s...)

E j, mn              '                                                                                                                              EJ

(17)

which is clearly the contribution to the absorptive part of y-y forward

elastic scattering amplitude due to the state r summed over dr".  These

functions satisfy the hermiticity relation

*
W =W (18)
gj, mn mn,zj

and the parity relation

W        = (-1.)£-j+m-nw (19)2 j. m n -6-ji-m,-n), 1

Eq. (16) can obviously be further expanded out using the explicit

expressions for 2(0)mn as given in footnote 12.  We give the full

expression in Appendix A.  For purposes of discussion, Eq. (16) is,

in fact, more ·concise and clear.

D.  Small Angle Approximation

2 2.  1
Because of the presence of the factor (k q )- , the bulk of the

cross-section is confined to the small momentum transfer region, as

in the famous Mott cross-section formula.  In other words, the photons

0 are mostly near mass shell and the laboratory scattering angles e and e'

0
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for the leptons are small.  In this limit our B.W. frame variables

are simply related to the laboratory variables,

2     2
k=q-0

X  =  +      X'   =  0'

s= -2(k•q) = 4(E-5)(E-e') (20)

cosh W = (E+E)/(E-E)

cosh *' = (E+E')/(E-E').

Thus, if the outgoing leptons are not observed one can easily integrate

2  2
over the small angle region, setting k =q =0 in the photon-photon

amplitudes W . . and obtain the well known expression for the cross-
EJ) mn ·

section of process (1) in the "Weizsacker-Williams approximation".

--T = 2({1)2(lm-)2 „(E, di  f[( F)61 dd Tr                     (21)
0

dc.-   4 202
where

dr   = -s=  Cwll,11 + Wl-1,1-1)
(22)

and f(x) = (2+x2)2ln(1/x)-(1-x2)(3+x2).

The total cross-sections for various hadron processes based on these

2.3,13
approximate formulas were calculated by various authors before.
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III.  CONNECTION WITH FORWARD ELASTIC PHOTON-PHOTON SCATTERING AMPLITUDE

If none of the final state hadrons are

observed, we sum over all possible statesr in Eqs. (14) and (17).
22

The functions W . (k,q ,s...) then become the absorptive part of
RJ ) mn

the forward elastic helicity amplitudes for the fundamental process, 4

Fig. 4,

y(k,In)+7(q,n)+ y (k,£)+7(q,j). (23)

Explicitly, we have

W    (k q s)=7  (k)e<j)(q)W (k,q) (m)(k)€(n)(q)
2 2.  *      *v

tj, mn Uv, XG

(24)

where -

W    (k,q)= fd4xd4Yd4z e-ik(x-z)-iqy<OIT*(Jw(x)Ju(Y. T(JA(z)Ja(0))10>,
pvjic

(25)

In addition to the symmetry relations (18) and (19), these forward

el asti c  ampl i tudes  sati s fy,

W =6 ,       '.W . (angular momentumfj, mn (£-j),Cm-n) £J,mn (26)
conservation)

and

*

Wt j  mn = 4% j'mn
(time reversal

(27)
invariance)

By making use of these symmetry relations, one can write down the

expTicit formula for the differential cross-section for the overall

process (1) summed over r,

:
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04    dk2 dn2
(28)dc = -4- d(cosh $)d(cosh *')d x2UTTE2 ky-- qz

x {(cosh2 4+1)(cosh2 0,+1)j(W     +W       )
11)11  1-1)1-1

+(cosh2 0+1)(cosh2 0,-1) W +(cosh2 4-1)(cosh2 0,+1)W10,10 01) 01

+(cosh2 4-1)(cosh2 4,-1)[W +Acos 2 x   w       ]
001 00 11)-1-1

+ sinh 29 sinh 24' cos x    3(W11,00-W100-1   

where now the x-z plane is defined by the outgoing q-electron.  It is

obvious from the above expression that by measuring the outgoing leptons,

one can determine, in principle, six combinations of the eight independent       _

forward elastic (virtual ) photon-photon scattering amplitudes.

In view of the importance of the fundamental process (23), it is

worthwhile to look into the structure of the helicity amplitudes, Eq.(24),

arising from the gauge invariance properties of the photon interaction.

These can be written

kuw      = quw
pvjXC   .   Uvllc

(29)

X=W k=W qa = 0.
pv, XC Uv, Ac

It is well known that these conditions give rise to low energy theorems

for the helicity amplitudes.  The full content of (29) can be explicitly

displayed by expanding W into a set of minimal polynomial tensor
1.1 Vj  AG

basis  {Li}  which satisfy all the requirements of Lorentz transformation,
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gauge invariance and symmetry conditions (18), (19), (26) and (27),

Wuv,wa =  I Wi(k2,q2,s) Liuv,Aa(k,q). (30)
1

The coefficients Wi(k2'q2's) are then (absorptive-parts of) invariant

amplitudes which are free from all kinematic singularities and zeros

(constraints).  A general precedure for constructing such a tensor basis

14
exists.    Some of the explicit formulas for the resulting gauge

invariant fourth rank tensors are rather lengthy.  We give the detailed

results in Appendix B.  Here we only exhibit  the kinematic structure

of the helicity amplitudes by expressing them in terms of the analytic

invariant amplitudes Wi'

Woo,00 = k2q2{W2+W3+2W6+q2W4+k2W51

W      = _q 2{k2[W3+k2WS+W6+(k0q)W8] + (k.q)2W4}10,10

Wol'01 = -k2{q2[W3+q2W4+W6+(k·q)WB] + (k.q)2W53 (31)

Wll,-1-1 = (k.q)2W2+k2q2[W6-(k·q)W8]

j(Wll,11+Wl-1,1-1) = (k'q)2[jW2+q2W4+kzW5+W6+(k q)w8]

+ Jk2q2[2W3+W6-(k·q)W8]

& (W     -W      ) = - A ( k 2q2 ) A [ ( k ' q ) ( W2+W6 ) -k2q 2W8]
11,00  10,0-1

&(W    -W     1) = 3(k·q)[2Wl+Ck·q)W2] + jk2q2[16-2W7-(k·q)WB]11,11  1-1,1-

1(wll,00+W10,0-1) = -(k2q2)A[Wl+3(k·q)(W2-W6+2W7) + kzq2W8]
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One well known consequence of these relations is the low energy

theorems for W that they display explicitly.  Thus the factors
tj,mn

of (k2)   and (q2)3 associated with each ·longitudinal virtual photon

emerges as expected.  In addition, Eq. (31) shows that the first six

amplitudes, which are the ones appearing in the cross-section formula

(28), each vanishes as the square of the momentum components when

either kv + 0 or qu + 0.

With gauge invariance and other kinematical requirements explicitly

taken care of, one may examine dynamical problems associated with the

photon-photon elastic scattering amplitudes.  We shall not go into much

of these more speculative topics and confine ourselves to a simple

discussion of possible scaling behavior for this process.

The motivation for looking into the scaling behavior comes, of

course, from the rather dramatic results found in deep inelastic

15.16
electron-nucleon scattering. In trying to apply similar considera-

tions to the two photon process, one immediately recognizes some di ffer-

ences.  For instance, the amplitudes for our process, e+e + e+e+anything,

depend on three invariant variables (k q2's) (.cf. Eqs. (24) and (30)).

One must, therefore, decide on which of the many possible scaling

limits to take.  Here, our freedom of choice is limited by some serious

practical considerations.  Since the cross-section drops off very fast

when either k2 or qz  become large, it is impractical to look in the

region where both variables are large.  This suggests that we should

look at the situation where one electron (say, the k-electron) is

detected at large 4-momentum transfers and the other (the q-electron)
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remai nsinside the small momentum transfer forward  peak. This situation

is then very much sihilar to the inelastic electron nucleon scattering

case with the low energy photon emitted by the q-electon

playing the role of the target nucleon in the previous case.

Since the most striking aspect of scaling, so far, has been its

experimental verification rather than its theoretical elucidation,

it appears appropriate to apply the simplest possible arguments in order

to find the scaling behavior of the various amplitudes.  In the present

case where there is no mass variable to set the scale, dimensional

analysis is almost sufficient.  One can invoke analogues of Bjorken's

heuristic relations to argue that the relevant quantities

tend to non-vanishing limits in the scaling region. Thus, for q2 almost

on mass shell, one can obtain,

v i wi(k2,0,s) + Fi(w) (32)

where

v =-k·q

w=- k·q/k 2

1  for  i=1

Ni
= 2  for  i=2,3,6,7

3  for  i=4,5,8

and the limit is taken with k2 + =, (k·q) + - and w fixed.
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The expression for the cross-section then takes the form

dc          .4

dkzdedE'   = TEuEr (ln  -)  ·£r (cosh24,+1 )
e

(33)

·x {(cosh20+1)F(w)- <I F5(W)}

where F(w) = &F2+F6-F8.  We note that when q2*v 0, the connection

between the natural variables and the Lab. variables are rather simple.

From Appendix A, we have

Coshw - (E+ Cos230)/(E-ecos260)

cosh 41 ,(E+ ')/(E-5) (34)

k2 - 2EE(1-cose)
-k'q  2(E-E')(E-Ecoszje).

If the q-electron is not detected experimentally, the above expression

for the differential cross-section must, of course, be integrated

over  '. This integration can not be done without knowing the w-dependence

of the structure functions F(w) and Fs(w).
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IV. THE TWO PI FINAL STATE AND S-WAVE PI-PI PHASE SHIFTS

As mentioned previously, when two high energy electrons collide

in process (1), the bulk of the cross-section is confined to the region

with small scattering angles for the electrons.  In this region, the

electrons also carry away most of the incoming energy, leaving relatively

small energy transfer to the hadron system.  This is reflected, for

instance, in Equation (21) by the  damping factor (1/s) in the hadron

mass spectrum.  Consequently, as a probe for hadronic structure, this

process is most useful in studying low energy hadronic systems which

have the quantum numbers of two photons.  The most important of these,
cr

by far, is the two pion channel which must be in a I=OA2, J=even and

P=+ state.  We shall investigate the possibilities of extracting the

5
s-wave 7T-7T phase shifts from this type of experiment.

For practical reasons, we assume the outgoing electrons are not

observed.  Then, we can make the small angle approximation, and relate

the observed cross-section to that of the process,

Y+ Y    + TT+T[ (35)

for almost on shell photons.  The kinematics for this process in the

C.M. frame is illustrated in Fig. 5. We denote by 6.„ the scattering

angle in this frame and define

p=pltp2=k+q

(36)

r=3(Pl-P2)'

Let T (m,n=+1) be the helicity amplitudes for the processes (35)
m,n
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(cf. Eq. (14)).  Then the differential cross-section for the overall

process e+e + e+e+A+A becomes,

ds  cose )  = 3 - (ln f-)2 - -T (1- 1,12) 2f[ (3' -)2](1Tl,112+1Tl,-112)
IT                                    e

(37)

In the absence of strong final state interactions, the amplitudes

T   are given by the gauge invariant Born term.  Thus for the chargedmn
+-
1    final state (superscript c) we get,

T(B)c -  2u251,1     =2- 2p2singe ('-r + 0'-u) - (112-t)(112-u)'IT U -t

(38)

TIB)1 = 2["sin,8.(.1-ti "3=u)

where p2 =  (S-4u 2)

#2-t  =  p'/F[( '/D2p)-  cose-]

1 2-u  =  P'/E[( 6/2p)  +  coselr]·

The corresponding amplitudes for the neutral 7T°w° final state (super-

script n) are obviously,

T(B)n = 0. (39)mn

Strong interaction effects modify these simple expressions.  In the

low energy region where elastic unitarity approximately holds (from
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threshold (s=4 ) to slightly above the inelastic threshold (s=16,t)).

Most of these strong interaction corrections can be incorporated in the

17
form of final state interaction through Watson's theorem.

We expect such corrections to be only important in the lowest partial
18

wave (i.e. the s-wave) and for the isospin channel I=0. Therefore,

we can write the scattering amplitudes as,

'6(0)

Tl 'lc =     (0)(s)lel  0 --, (B)c(s) + T.1,1(B)c(s,coselr)

Tl'-lc = Tl,-1(B)c((s,coseA)

'6(0)
(40)

T        n   =     _l a(0) (s) l e l      0  + + a(B)c(s)1 ,1

n
T     = 0,1 ,-1

(0)where a   (s) is the I=O s-wave partial amplitude, 6     is its phase

and a(B)c(s) is the s-wave projection of the Born term for the charged

final state (z  -), Eq. (38):  In deriving Eqs, (40) we have used the

relations,

Tc = 2-j T(2)+T(0)

(41)

Tn = 2j T(2).T(0)

where T are amplitudes with given isospin I.  We can now write down
(I)

the differential cross-section for these two final states:
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dac da(B)c (O)  .
ds  d(cose*)-  ds  d(cos 01)  =  N(s) { [     a      (s)  -   a(B)c(s)12 (42)

+ 2[    |aCI)(s)|cos6l(0)-  a(B)((s)] Tl,1(B)c(S .Cosew)}

dan

ds d(cosew) = N(s)1-aCI)(s) *- (B)((s)12

where

4

N(s) = 3,T (ln mE)2 -s-  (1- '2) lf[(2-7)1]
e

dc(B)C
(B)c'2)ds d(cose,T) = N(s)( .Tl,1(B)c 12 + 'Tl,-1

a(B)c( 2 J12 1 n /F +2Ps )    =   FF            /s    -2p

and T   (B)c are given by Eq. (38).
m,n

There are two unknowns in these formulas, |aCO)(s)1 and JOCO)(s).

By making full use of the interference effect between the s-wave correction

term and the Born term in the first equation of (42), one can determine

these two unknowns independently.  Thus one can fit the data with an

expression like

A(s) + B(s) Tll ls,coseA) (43)
(B)c,

fof
for the right hand side and solveAthe unknowns from A(s) and 8(s).
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If one is willing to use more dynamical imput, he can do

better than outlined above by attempting to relate  la   (s)1

(0)
to 6    (s) through dispersion relations.  To do this, we first

need amplitudes which are free from kinematic singlarities and

zeros.  For on-shell photons, two such amplitudes
(Al'A2)

can be

defined by:

Tuv = [(k.q)guv - 9pkv] Al
(44)

+[(k·q)rurv - (k·r)qurv - (q'r)rukY+(k'r)(q r)guv]A2.

It is easy to verify,

1 2,
Tll =   [Al +  0) A2-1

(45)

Tl_1 = -  S P2sin201rA2.

This implies (T  /c) and Tl-1/s(s-4u2)sin20   are regular amplitudes.11 -

We shall be only interested in the first one.  In writing down the

fixed t dispersion relation for T  , we assume:  (i)  the right hand11

cut is dominated by the elastic unitarity and (ii)  the only

important contribution  to  the  left  hand cut comes from the gauge

invariant Born term.  The kinematic zero at s=0 enables us to

make a free subtraction at s=0.  We have, therefore,
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-      ImTI C cr 't)11'-'
T 1(s,t) = T  )I + s· f

ds' .(46)
11

492 S'(S'-S)

Projecting out the s-wave part of this equation, we get:

-               I. ,    .    (I)   -i dfI)
I, ' (B)I + s a (s)sin60 eals) =a f  ds'

7T 4112
S'(S'-S) (47)

This is a standard Omnes equation which has the solution

AI(s)    -    a(B)I(s')sina (I) (s')e
-Rea(s')

aI(s) = a(B)I(s) + se
f ds'    s,(s'-s)   

402

(48)

where

   6 (I8(59I. .   sA ls, =- f ds'
0

(49)
11

4112
S'(S'-S)

(I),  .
 

The dependence of aI(s) on 6  ls) as expressed in Eq. (48) is

too indirect to be of any practjcal value.

To simplify this solution into a manageable form, we notice

that, because of the rapid convergence factor, only the low energy

portion of the integral on the right hand side is  important.  (This

is, of course, necessary in order for the elastic unitarity approxi-

mation to hold in the first place.)  Over this range, the Born term

19
can be well approximated by a pole on the negative real axis.
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By using the explicit formula for a , Eq. (42), we obtain an approxi-
(B)

mate expression.

a(B)c(s) 15,-b b=14.7u2, c=3.35,2 (50)S+C '

which is accurate to within 4% throughout the elastic unitarity range,

s=4U2  to 16U2.  Now, rewrite our solution to the Omnes. equation,

Eq. (48), in the form

I, .

I,,   (B)I(s) _ seb ls)  J  ds' a(B)I(s')e-8(s')als) =a (51)
2 i      cR        s'(s'-s)

with the contour cR circling the cut on the positive real axis as

depicted in Fig. 6.  Inserting the approximate form for the Born term,

Eq. (50), into the right hand side of this equation one can deform

the contour of integration until it is reduced to three circles

(cl,c2 and c3' Fig. 6) around the three poles of the integrand.  One

obtains.then:

I'  .

I, ,    I     1     AI(s) 
e-AI(s) e-AI(0)     e-8 1-c)als)=b  {--se                  -S+C (S+C)S CS C(S+C)   -

I,  '

F b I ebI(s)[1 -  s-- e-8 (-C,] (52)C             S+C
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where

b(0) =(2/3)b= ·9.8u2

b(2) = ( /3)b= 6.9402

Eq. (52) furnishes a simple relation for the magnitude of aI(s)

in terms of its phase:

I

|aI(s)1 =  ·1111 1 - · fz e-8 (-c)leReb(s)                 (53)

-            , C I  s' )I, .  s
where Red .(s) = -P  f  ds'

7T   4 K12
S'(S'-S)

and P denotes the principal part of the integral.  The constant

[-AIC-c)]  is  also, in principle, given  once the phase shift is known.

But in practice one can regard it as a parameter (same for all eneraies)

20
which is positive and small.

Eq. (53) can be used as constraints  to the program for extracting

the phase shifts from data as discussed in the first part of this section

(0),,•(where ia   ls)1  and6     were regarded as independent of each other).

With these constraints available one may even try to put in correction

effects in the I=2 channel, which has been neglected so far, and

experimentally verify whether it is indeed small.  Thus Eq. (42) will

become,

duc dc(B)c (0), ,  1 (2)
(B)c,s)12=   N(s)    { I         a         c s) +4  a         (s) -a            ids d(cos01)- ds d(cosq,)
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(B)c
(2)-2a(B)c(S)]}+ Tll  Cs,coseir)[2 laCI (s) |cos6,C Fla(2)(s) Icosdo

dan       = N(s) 1-aCO)(s) + 47 a(2)(s)12 (54)
ds d (cos 87T )

where the various quantities have the same meaning as defined there.

These equations must be used in conjunction with the constraint equations,

(53), in order to be useful for the extraction of information on the

phase shifts  6     and 6 (2).  If the correction effects due to strong

interaction are small, then we can neglect the square of the correction

terms in Eqs. (42) and (54) for dac/ds d(cose ).  With only the inter-

ference term on the right hand sides of these equations, and with

I                    (Il
a (s) I  related to 60 Is) through Eq.  (53), one may even attempt to

(I)
invert these equations and express 6    (s) directly in terms of the

measured quantities.  Such a program, however, does not seem to be

21
especially efficient and practical.  We shall not pursue it here.

We close this section by remarking that although the extracting

of s-wave  -w  phase shifts from the two photon process is not without

its difficulties, the present method does have considerable advantage

over the other available methods.  We only point to the absence of other

strongly interacting particles in the final state which could make the

extraction of relevent information theoretically ambiguous (as in the

22,
AN + 7r7TN case  ) as well as the absence of the p-wave final channel which

strongly dominates over the s-wave channel and makes the extraction of

information practically difficult (as in K decay  ).
22,

14
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CONCLUDING REMARKS

In this paper, we have only exhbited the most general kinematic

structure of two photon processes in colliding beam experiments and

examined possibilities for extracting interesting information from the

most important inclusive (y+Y + anything) and exclusive (Y+y + A+1)

channels.  There are obviously many more interesting possibilities that

can be explored.

The kinematics for these processes are a bit more complicated

than the cases we are used to, because of the presence of two outgoing

electrons accompanying the final hadron state.  Here, the helicity

formalism proves to be instrumental in explicitly factoring  out  the

dependence on the lepton variables from the essential hadron amplitudes

to keep the physics transparent and the kinematics always manageable.

The possibilities of learning something about yy  elastic scattering and
+hts

ir-z s-wave phase shifts, while in neither case ishthe only method available,

do seem to be extremely interesting and theoretically clean.  It is hoped

that in the near future, these possibilities will also prove to be

experimentally practical.
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APPENDIX A

We give the details of the kinematics for two photon processes

in colliding beam experiments.

Relation Between Various Sets of Variables

The momentum labels are assigned in the text and in Fiq. 1.  We

introduced two sets of independent variables;  the lab. variables

{E, E, 8, 0,6',8',0'} and the B.W. frame variables {s,k2,0,x,qt*",x'} 0

There is a third set, the invariant variables {s, k2, q2, q.K, k.0, K.0,

k.p,   , which is useful in providing the connection between the two

previous sets.  It is easy to verify (we neglect the letpon mass throughout),

k2 = 4E€sin2 & 0

q2 = 4EE'sin2 J 6,

s = 4(E-e)(E-E')-4££'sin2 &0
-q·K = 2(E+E)(E-E')+2EE'sin2 9-3(k2_q2·)               (A-1)

I [(k·q)2-k2q2]a cosh 4

-k·Q = 2(E-E)(E+E')+2EE'sin2 92*j(k2_q2)
= [ ( k • q ) 2 - k 2q 2 ] &c0s 4 '

-K·Q = 2(E+E)(E+E')-2EE'sin2 *.. k2+q2)
= - (k·q) cosh*cosh*' - (k2q2) sin*sin*'cos(x+x')

where 6 is the angle between 32 and q2 in the laboratory frame, i.e.

cos ® = cos e cos e' + sin e sine' cos(0+0').
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These relations enables one to solve one set of variables in terms of

the other.  We shall not do this explicitly.  The formulas become

considerably simplified when one of the electrons (say, the q-electron)

is scattered in the forward cone where one can use the small angle

approximation, then

8'    = 0, 2   A
q   =  u,   cos 0 =    cos   e

s =4(E-e)(E-E')-4·Ee' sin2 3 0
coshw =  (E+e cos 2 je)/(E-E Cos 2 je)

Cosh *'= (E+E')/(E-E') (A-2)

E  = 6(-k·q)(coshll, +1)(cosh *'+1).

Phase Space

The invariant phase space element

dp = (d 3k2/k2)(d  2/ 2) (A- 3,)

takes the form

dp = ·EE' dE d 2 d(cose)d(cose')d«1$' (A-4)

in terms of the lab. variables and the form

dp =  (1/64)dkzdq 2d(cosht)d(cosh *')dxdx' (A-5)

in terms of the B.W. frame variables.
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The region of integration in the lab. variables is

defined by:  (i)  E  fixed

(ii)  0, 8', 0, 0'  their usual range (A-6)

(iii)  E, E' bounded by

<    E-0,  E' =0(E-Ecos2 &®)(E-E ' cos2 be)=112cos2 38+ E2sin2 36

and the corresponding region in terms of the B.W. frame variables is

specified by:

(i) x,  x':  their usual range

(ii)  k2 >0, q2>0' s >4 u2
(A-7)

(iii) -(k·q)(1+cosh* cosh*')+[(k·q)2-k2q2l  (cosh* + cosh *')

(kvq2)3 sinh·*sinh *' cosh(x+x')=8E2  fixed.

The last condition simplifies considerably if k2 =0 or q2 = 0.  One gets

4 u2 <s < 4E2 - &(k2+q2)

(cosh4 +1)(cosh *'+1) = 8E2  << 16 E2 (A-8)

(-k·q) kz+qz+4UZ.

Differential Cross-Section

The general expression for the differential cross-section, Eq. (16),

can be expanded out using the explicit expressions for 8 (0)mn.  The

result is:



- 32 -

04         fle-,-   dr'da-= (A-9)
8A2 E 2   k LqZ

x  {(cosh20+1)(cosh24'+1) j [W +W   ]
11,11 1-1,1-1

+(cosh24+1)(cosh20'-1)[W -cos 2x' a (w      +W        )]10,10 11,1-1  -11,-1-1

+(cosh24-1)(cosh24'+1)[Wol,01-cos 2x A (Wll,-11+Wl-1,-1-1)1

+(cosh24-1)(cosh20'-1)[W -cos 2X W -cos 2X' W
00,00 10,-10 01 ,0-1

+ 3 cos 2(x+X')Wll,-1-1+ 3'cos 2(x-x')Wl-1,-11]

+ 2sinh 24 sinh 20'[& cos(X+X') j Re(Wll,00-W10,0-1 

+ & cos(x-x') & Re(W
10,01  1-1,00.

-W      )]

+ ,/I sinh 20 (cosh24'+1)cosx 3 Re(W      +W         )01,-11    0-1,-1-1

+ /F(cosh24+1)sinh 24' cosx ' 3 Re(W10,1-1+W-10,-1-1 

+ /7 sinh 24(cosh24'-1)[3 cos(x+2x')Re *J11,0-1+cosx  Re W00,-10

+ & cos(x-2x')Re Wl-1,011

+ /2(cosh24-1)sinh 20'[J cos(X'+2X)Re W.. +cosx'ReW11,-10 00,0-1

+1  cos(x'-2x)Re W. 11,101   0

The quantities W .    contain kinematic factors (k2)8 or (q2)&  whenever
W  , mn

the helicity indices are zero (longitudinal virtual photon).  Therefore,

Eq. (A-9) simplifies when one or both of the photon is near their mass

shell.  Also, if none of the final hadrons are measured, we can choose the

x-z plane to be defined by one of the outgoing leptons.  All terms in the

above expression which depend on x-x' then drop out.
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APPENDIX B

Following the procedure of reference 14, we can construct

the tminimal gau0e invariant tensor basis {Li } for the forwardpvXC

photon-photon scattering amplitude defined by (25).  Through a

straight-forward, albeit tedious, calculation, we obtain the

following set:

Ll = guckvqx + qukagvx - guvqxka - qukvgxa

.pv AG Jjc VA
+ (k·q)(y g -g g )

L2 = (qukv - k.q gpv)(qAka - k.q gxa)

L3 = (k2gUx - kwkx)(q29vc _ quqa)

2 1 2 UX
L4 = [k quqA - (koq)(kuqx + qukx) + (k.q) g  ](q2gva _qvqa)

UX - kukA)[q2kvka - (k·q)(kvqa + qvka)+(k.q  gual
LS = (k29

26 = q2k290v9Aa + (q.k)2guAgva + k2qyqxgva+ q299Akvka

XG+ guv[(q.k)kxqa.k2qxqa_q2k1ka]+[(q.k)kuqv-k2qpqv_q2kvkv]g

-(q·k)[gpx(qvka+kvqc)+(qukA+kpqw)gval

+ kukvqxqa + quqvkxka

L7 = k2q2(gwagvA_guvgxc)-(q.k) (guvkAqa+kllqvgXC_gpaqvkx-kuqcgvx)

XC+ guv(k2qxqc+q2kxka)+(k2quqV+q2kukv)9
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I

- gua(k2qvqA+q2kvkx).(k2quqa+q2kuka)g vA

+ kpqvqxka+qukvkxqa.kukvqxqa_ququkxka

L8 = k2q2(gpvqkka+qukvgxc)+Ck.q)3gwAgva

+Ck•q)[q29UXkvka+k2qvqwgva-k2q29Uv9101

-(k·q)2[gux(kvqc+qvka)+(kuqx+qukA)gval

+ ( k • q *q ll k A+ k p q x X'<vq a+q \.1 ka ) - k 2q l'q X ( kvq c+q uka )

-q2(qukx+kvqx)kvka

We see that, although the first five tensors can be easily antici-

pated, the last three involve entirely non-trivial combinations of

the elementary tensors.  Not all of the terms written down in these

equations contirbute to the physical helicity amplitudes (24).  When

contracting with the helicity polarization vectors, terms with

k,q,k.o r q c vanish.
U         V         A
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integrating over the full range of s.  This is true especially

if a broad resonance is present near the elastic unitarity region

as is believed to be the case.  Our results relating laI(s)1
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VI. CONCLUSIONS

We have seen that leading Regge trajectories  a(t) with square-

root branch points at t=0 are generally expected to be present in

amplitudes which require faster than logarithmic shrinkage of the

29
diffraction peak. The more detailed conditions have been summarized

in Section III.  Note that we are talking here about  shrinkage which

is required by unitarity because of the growth of the amplitude.  It

is not an extra feature as in the case of ordinary Regge poles.  In

our arguments, we use s-and t-channel properties·of the amplitudes,

and we assume that the relevant singularities in the complex angular

momentum plane are non-essential.  But isolated essential singularities

and natural boundari'es are also considerably restricted by the analytic

properties of F(t,x) as a function of two complex variables.  In

certain cases they can be excluded, but in this paper we have not

-                                 30
discussed these problems.

We note that trajectories of the form a(t)=0((0)+ const./E+0(t)

can, of course, also be present in cases where they are not required by

general principles.
31

Continued partial wave amplitudes with complex singular surfaces

of the type (1.1) are most naturally related to representations of

scattering amplitudes in terms of superpositions of Bessel functions of

the argument  4,/Tat 1gs, 0-L E€1.  In this sense, the picture of high

energy scattering involving these complex trajectories is actually rather

intuitive from the point of view of the s-channel.  It is possible to

relate it to quasi-classical pictures.
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Using a rather general Ansatz for the partial wave amplitude

near (t,x)=(0,1), we have evaluated the high energy limits of the

amplitude in terms of Bessel function representations.  These represen-

tations are very useful for the construction of specific models.

The character of the singular surfaces (1.1) of F (t,A) is dependent

upon the specific asymptotic properties of the amplitude F(s,t), in

particular for t=0. Although this high energy limit is physical for t€0,

the general notions of dispersion theory require also that we take into

account the t-channel properties of the amplitude, in particular the

unitarity constraints.  To do this requires some analytic continuation,

and it is most simply done by using the continued partial wave amplitudes.

We have shown that, unless we want to introduce very special shielding

cuts, or singular surfaces with t-dependent character, the actual character

of the trajectories (1.1) should be either such that they are by them-

selves compatible with t-channel unitarity, or that they represent the

degenerate limit of a pole-cut relationship.  In a pole-cut relationship

of this type,the Regqe poles and branch points are of the form (1.1)

near t=0, but they are different near the threshold t=t , where the

poles develop a branch point and the branch point trajectories are weak

and do not disturb unitarity.

In,corporating the constraints mentioned above, we have constructed

a one parameter family of explicit examples for amplitudes with complex

trajectories (1.2). We have chosen the particular case of constant

asymptotic total cross-sections c and 3, with c i c.  In the complex
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FIGURE CAPTIONS

Fig. 1: Two photon processes in colliding beam experiments.  The

dashed lines are the incoming and outgoing leptons, the wavy lines are

the virtual photons and the solid lines are final state hadrons.

Fig.2:  Kinematics in the laboratory frame which is also the C.M.

frame of the colliding beams.  Note the x-z plane is determined by

one of the hadronic momenta Pl.

Fig. 3:  Kinematics in the brick wall frame of the k-electron.  The

hadronic vector Pl which defines the x-z plane is not shown.  The

azimuthal angle between the two planes for the k-and q-electrons is

X+X'.

Fig. 4:  Forward photon-photon scattering; m, n, 1, j are helicity

indices.

Fig. 5:  Kinematics in the pion-pion C.M. frame.  The lepton momdnta

are not shown. Their configuration is the same as in Fig. 3 since the

two frames are related simply by a boost along the z-axis.

Fig. 6:  The singularities of the integrand in Eq. (48) in the s-plane

and contours of integration for Eq. (51) and Eq. (52).



5                                                     1
.

('

---fl.
11--- - k-

)   4; ] P
9   J

qn
-Fi I

.-*.--
.+ 'b .-/ .-/ 0-

42-

Fig.1

Z4

q 1

-
/ --

/     -- 6/          Yn2

ft- --... -J
1/
1    01 +V //1A, \ ,-''
 2 ki

Fig.2



.„

Z A

_ --fq          q--1   1
¥' -'' 1

4
1 1

1
1                         

                     1

1         1       
  1

1     r..0         1 - ,-         y1
-1

'   1   =91 73 t» - - - -.

L. ... AL>, 3  --i
*bA    / i \ 1

1 9   I X-&1
\1

KS ---26  -vk2
n

Fig.3

k. m+ .4-»- / 1, , f
«i_311

q 'n/'            \ q,j

Fig.4



--

-

Z
4
q

#
8

p'  i              L-il ___ 1
1 //F I/ \1

x,=                     Y P2/

k

Fig.5

A

0'-3--¢, - -    etf -r 1                            1      -
- 4F2 CR

1

Fig.6

:


