
BY DTih Y

Quantum Theory of (HjH^) Scattering:
Approximate Treatments of Reactive Scattering

K. T. Tang>^**

Depairtments of Physics, Columbia University, New York, New York

•and

Pacific Lutheran University, Tacoma, Washington

and 

M. Karplus

Department of Chemistry, Harvard University 

Cambridge, Massachusetts

LEGAL NOTICE-
This repo rt was prepared as an account of work 
sponsored by the U nited S tates Governm ent. N either 
the U nited S tates nor the United States A tom ic Energy 
Commission, nor any of their em ployees, nor any of 
their contractors, subcontractors, or their employees, 
makes any w arranty, express o r im plied, or assumes any 
legal liability or responsibility for the accuracy, com ­
pleteness or usefulness o f  any inform ation, apparatus, 
product or process disclosed, or represents that its use 
w ould no t infringe privately owned rights.

DISTMBUTION OF Till )CLTi£Er:T IS ur-ujMrw;?;



DISCLAIMER 
 

This report was prepared as an account of work sponsored by an 
agency of the United States Government.  Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof.  The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 
 
Portions of this document may be illegible in 
electronic image products.  Images are produced 
from the best available original document. 
 



Abstract

A quantum mechanical study is made of reactive scattering in 
the (H, H2) system. The problem is formulated in terms of a form 
of the distorted-wave Born approximation (DWBA) suitable for colli­
sions in which all particles have, finite mass. For certain incident 
energies 5 differential and total cross sections, as well as other 
attributes of the reactive collisions, (e.g. reaction configuration) 
are determined. Two limiting models in the DWBA formulation are 
compared; in one, the molecule is unperturbed by the incoming atom 
and in the other, the molecule adiabatically follows the incoming 
atom. For thermal incident energies and semi-empirical interaction 
potential employed, the adiabatic model seems to be more appropriate, 
Since the DWBA method is too complicated for a general study of the 
(H, H2) reaction, a much simpler approximation method, the "linear 
model" is developed. This model is very different in concept from 
treatments in which the three atoms are constrained to move on a 
line throughout the collision. The present model includes the full 
three-dimensional aspect of the collision and it is only the 
evaluation of the transition matrix element itself that is simpli­
fied. It is found that the linear model, when appropriately 
normalized, gives results in good agreement with that of the 
DWBA method. By application of this model, the energy dependence, 
rotational state of dependence and other properties of the total 
and differential reaction cross sections are determined. These 
results of the quantum mechanical treatment are compared with the 
classical calculation for the same potential surface. The most 
important result is that, in agreement with the classical treatment, 
the differential cross sections are strongly backward peaked at 
low energies and shifts in the forward direction as the energy 
increases. Finally, the implications of the present calculations 
for a theory of chemical kinetics are discussed.



I. INTRODUCTION 

The rearrangement scattering of hydrogen atoms by hydrogen 

molecules is the simplest kind of gas phase exchange reac­

tion. It is of fundamental importance, therefore, for the development
1 2of a theory of chemical kinetics. ’ From the exact quantum-mechanical 

solution, we would be able to answer every question concerning this 
reaction. Unfortunately, an exact treatment is not possible at present,

since the reaction involves the motion of six particles, three nuclei
3and three electrons. After the Bom-Oppenheimer separation of nuclear

and electronic motion is made, we are still left with a three-body problem
4-10involving a complicated potential. While many approximate studies exist, 

their accuracy is not sufficient to answer the basic questions concerning 

the importance of quantum corrections in chemical kinetics.

To clarify the chemical problem it is useful to consider its relation 

to nuclear and electron scattering. In nuclear physics, the scattering 

data are used primarily to investigate the nature of nuclear forces.
Hence, one usually assumes certain simple forms for the potential and 

often treats it as an adjustable quantity by the introduction of suitable 

parameters. In chemical kinetics, the questions are reversed; that is, 

from a given potential, it is necessary to determine the reaction cross 

sections. Although simplified phenomenological potentials have been 

Introduced, the true interaction potential is known to be a complicated function 

of the interparticle coordinates and to contain important non-additive 

contributions. Furthermore, methods like the B o m  and the impulse 

approximations, which give useful results in high energy nuclear colli­

sions , are not sufficiently accurate in the energy range of chemical 

interest. In low energy nuclear scattering, the short range of nuclear
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forces can be used to advantage; only s— and p~waves need to be considered and 

cross sections can be correlated with the scattering length. In molecular 

collisions, by contrast, much longer range forces are involved and a large 

number of partial waves contribute to cross sections; this holds true 

even at energies near the threshold of the reaction. Electron scattering 

from a hydrogen atom^^ is a three-body problem that has greater similarity 

to chemical reactions. Considerable progress has been made there, in part 

because the Coulomb interaction between the particles is well defined and 

has a relatively simple form, so that the entire potential is expressible 

as a sum of two-body terms. The reactive scattering of the (H,H2) system 

suffers in comparison to the electron-hydrogen scattering in that the 

potential is much more complicated and that there is no scattering center 

of infinite mass. The latter point is very important because the separable 

coordinate system suitable for describing the initial state is not the 

same as that suitable for describing the reacted state. Consequently, a 

coordinate transformation is required that renders the problem difficult 

to manipulate analytically. In many nuclear problems (e.g., stripping) 

this complication is avoided by the assumption that the target is 

infinitely heavy. However, in three-body collisions between light nuclei 

(e.g., neutron-deuteron reaction), the same coordinate problem is present.

It is, of course, for these nuclear problems that the least progress has 

been made.

An alternative to the quantum-mechanical approach to chemical reac­

tions is to assume that classical mechanics is valid and to carry out an
13exact determination of collision trajectories. The cross sections and 

reaction rates obtained by■this method appear to be in general agreement
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with the data for the system. However, the validity of classical

mechanics needs to be established. In the absence of a simple criterion 

for the validity of classical mechanics, the ultimate justification for 
its use must come from a comparison of a quantum-mechanical calculation 

with the classical results. If only an approximate solution to the 

quantum-mechanical problem is possible, the comparison is of particular 

importance since both the validity of classical mechanics and the 
approximations in quantum mechanics are subjected to test. For the 

(HjH^) reaction system, this type of study especially important 

because the available experimental results are not completely unequivocal. 

Furthermore, there is interest in the dependence of the reaction cross 

section on the internal energy of the reactant and the product molecules.

As these energy levels are a quantum-mechanical concept, they have to be 

incorporated artificially into classical mechanics. Since both the 

rotational and vibrational energy levels in H2 are widely spaced, the 

adequacy of the classical approach is doubtful. Finally, it has been

held by many that quantum-mechanical tunnelling may often be an important
X XAfactor in the determination of 'reaction rates. ’ A study of the reac­

tive scattering of H+H^ is especially suitable for a discussion of tunnel­

ling since quantum effects are expected to be more pronounced than in most 
other systems.

The present work is an approximate quantum-mechanical study of the 

three-body dynamics in the (H,H2) system with a realistic, though not 

exact, potential energy surface^^*^^ which has already been used in accu­

rate classical calculations.
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II. FORMULATION

The energies of primary chemical interest for the (H,H2) scattering

correspond to the thermal range below one electron volt. At such low
energies, the nuclear velocities are sufficiently small relative to those

3 17of the electrons that the Born-Oppenheimer approximation is valid. ’

A further simplification for this reaction is that electronic motion can 

be treated as adiabatic.^ With these assumptions the scattering process 

is reduced to the problem of three structureless atoms (with nuclear 

spin) moving on a potential energy surface that is a parametric function 

of the relative nuclear distances. The semi-empirical potential energy 

surface adopted for the present work is complicated by the fact that it 

includes a large three-body contribution. To facilitate calculation,

effective two-body interaction potentials have been constructed by intro-
16ducing assumptions corresponding to limiting cases of physical interest.

In one, the molecule is unperturbed by the incoming atom, and in the

other, the molecule adiabatically follows the incoming atom. Although
16these two limits yield similar results for elastic scattering, the 

reactive cross sections are found to be very different.

A system of three particles requires nine coordinates to specify the 
wave function. Since the linear, momentum of the center of mass of 

the system is a constant of motion, three coordinates describing the 
motion of the center of mass can be separated.. Thus, the total 

wave function can be written as a product of two parts; the first is the 

eigenfunction of a particle moving in free space, which is simply a plane 

wave, and the second, involving the remaining six coordinates, is the wave 

function describing the internal motion relative to the center of mass.
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In what follows* we assume that the trivial plane wave part has been

separated and are concerned only with the internal motion. Since the

total angular momentum of the system is also a constant of motion, three

additional coordinates describing the rotation of the system as a whole
J 8can, in principle, also be separated. ‘ This has been done in some

19formulations of the three-body problem. However, since the equations 

resulting from such a separation are time consuming to solve, it is not 

evident that the evaluation of the complete multi-dimensional integral 

required for the cross section calculation may not be simpler to do as 

in certain approximations. The latter procedure, as described below, 

was followed in the present paper.

To consider the rearrangement scattering A+BC->AB+C, we can write 

the total system Hamiltonian H in terms of the quantities of the 

entrance channel a (initial system)

H - + V^(R,?), (1)

or of the exit channel ^ (rearranged system)

H = Hg(S,s) -f Vg(S,s), (2)

where R is the coordinate of A relative to the center of mass of BC and

r is the internal coordinate of BC; S is the coordinate of C
relative to the center of mass of AB and s is the internal coordinate

of AB (Fig. 1).' The operators H and H„ are the non-interacting
a p

Hamiltonians,
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where V__ and V.„ are the isolated molecular potential of BC and AB,130 Ai>

respectively, and the u's are the appropriate reduced masses. The terms 

and Vg are initial and final state interaction potentials; that is, 

is the part of the complete three-body potential that goes to zero 

as R-*<o and is correspondingly defined for the final channel. Thus,

V^(R,I) = V^(S,t) - Vg^(r) + V^(R,?) - V^(s)+Vg(S,s) (5)

The plane wave solutions of and with total energy E are and 

respectively (normalized to unit density),

$^(R,r) - exp(i^.R)n^Cr), (6)

♦ ; ( U )  - exp(li^-S)n;(S), (7)

where and rin are the bound state rotation-vibration eigenfunctionsCt [3

of molecule BC and AB, respectively; that is,

[ - 5 5 ^  ''r + > <8> ̂ BL

where the superscripts n and m represent the quantum number of the initial
and final molecular state, and e” and are the bound state rotation-05 p
vibration eigen energies of molecule BC and AB, respectively. Conservation 

of energy requires

r. /in\2 , n ,, râ 2 , m(k ) + ^   (k_) + e„ (10)
^^A,BC “ “ ^^C,AB ^
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(±)For the total Hamiltonian H, the initial channel eigenfunctions 'Fcx,n
with energy E and outgoing (+) or incoming (-) spherical wave boundary

21conditions satisfy the Lippmann-Schwinger equations,

V (11a)a,n a E-H^±ie a a,n

o" + :srhrr- V ; (11b)a E-H±ie a a ’

the positive infinitesimal e introduces the appropriate asymptotic
(±)behavior. The final channel eigenfunctions ^ obey corresponding 

equations.
In terms of these functions, the differential scattering cross section

for rearrangement from the entrance channel (a,n) to the exit channel
20(3,m) can be written

„mn
ga (12)

where is the transition matrix (T matrix) defined as 

ga 3 P ct,n 3 ,m' a ' a (13)

Although the transition amplitude in Eq. (13) is exact, it is only

a formal expression unless total wave function or  ̂ is known.a,n 3»ra
Since its exact evaluation, v?hich is equivalent to solving the three-body 

Schrodinger equation with appropriate boundary condition, is not feasible 

at present, approximations have to be introduced to proceed with the cross 

section evaluation. In most cases, the only approximation method that can
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(+)be applied with relative ease is to replace the total wave function ¥a,n
or Wg ^ by the plane wave or 4>g, respectively; that is,

which is the well-known first B o m  approximation. Although it may be 

useful for some atomic rearrangement problems (e.g., high energy, low 

activation barrier), T^^(B) is expected not to give accurate results
4 5for the H+H^ reaction in the thermal region. * This is a consequence 

of the strong interaction between the atom and the molecule, which dis­

torts the incident wave appreciably, so that the actual wave function 

differs considerably from a plane wave. In particular, potential leading 

to reaction is large just in the region where the incident wave can 

hardly penetrate. If the major effect of the distorting potential can be 

taken into account, the accuracy of the approximate scattering amplitudes 

will be greatly improved. This can be done by separating the interaction 

potential into two parts. One part, which depends only on the distance 

between the atom and the center of mass of the molecule, modifies the 

Incoming plane wave and is thus responsible for the elastic scattering.

The other part, which contains the rest of the potential, is responsible 

for the processes of excitation and reaction. If one wants to take the

principle of detailed balance into account, one must preserve the symmetry
22between the initial and final states. This means that not only the wave 

functions of entrance channel but also these of the product channel must 

be distorted to adjust to the distorting potential.
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V^(R,?) = V®(R) + V^(R,r) (15)

Vg(S,s) » V®(S) + V^(S,s) (16)

where V°(R) and V„(S) are chosen to account for the strong repulsive a p
interaction between the approaching or receding atom and molecule,

subject to the condition that the solutions and Xg~^ of the
Hamiltonians H +V° and H„+Vq can be evaluated exactly or, at least, to CX CX P P '/+)a high degree of approximation. The functions Xg satisfy the integral 

equation, analogous to Eq, (11),

^3 ,m * %  E'-H^±ie ̂ 3^3 ,m. (17a)

“ ^3 F-'(lT^+v|)He ^3^3 ’

(i)the satisfy a corresponding equation.

To simplify the writing in what follows, we drop the super or 

subscripts m and n , except,.in places where confusion might arise from 

their omission. It is understood that, when used in connection with a

wave function, 3 refers to the final state in the exit channel (3,m) and

a refers to the initial state in the entrance channel (a,n).

Rewriting the transition matrix Tg^ [Eq. (13)] in the form

and using Eq. (17b) to relate by Xg  ̂ in the second term, we have
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v>.|v'|y (+).
E-(Hg4-¥®)-ie P P  ̂ “

^ ^ (19)

<$ |v° L — .

^ ^ E-(Hg+?°)+ie P “

The last term of Eq. (19) can be combined with the first term to give

^  ̂ ^ E-(H„+V°)+ie ® “p P (20)
(") iirt I w(+)-<xr'|v^lC'>-

The first term on the right-hand side of Eq. (20) can be transformed

<»bI''6 ( 1 --------
E-(Hg+V°)+ie

* IV? ------  —  fE-H -V°+i£-¥*I
b ' »E-(H„+v°me ‘" “b

P P

. <4 |V° ----------   (E-H+le)|'F'+h
^  ̂E- (Hg+Vp+ie ®
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E-(Hg+V°)~ie ^ ^ “

» <(Xg“^“% )  1 (E-H+ie) (21)

Since is an eigenfunction of the total Hamiltonian H with energy E,

it is evident that as e goes to zero this terra will vanish. This is well
23known in the case that the scattering center is infinitely heavy. ' Here 

we have explicitly demonstrated that this is also true for collisions in 

which all particles have finite mass. Thus, we are left with the single
term

V "  ■ (22)

Equations (13) and (22) for the transition matrix are both exact. 

However, it must be emphasized that they are necessarily equal only if 

the total wave function used in evaluating T^^ is exact. In prac­
tice, inevitably has to be approximated and the two expressions

can give significantly different results. Equation (22) guarantees that 

the transition matrix is zero when there is no interaction other than that 

between the particle under con ider ition and the center-of-mass of the 

remaining system, but in the formulation of Eq. (13), it vanishes only

when the approximation of the total wave function is carried to infinite
24order. This suggests that Eq. (22) is a better starting point for 

approximation.
25To further simplify Eq. (22) , we make use of the relation

‘a E-H+ie
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(+) C-f)which follows from the defining integral equations for and >

Substituting into Eq. (22) we obtain

- <xf"’ V U l  + V'] Ixi'̂ >>. (24)

which is still exact. If the second term on the right-hand side is

neglected, Eq. (24) reduces to the distorted wave B o m  approximation (DWB)

(25)

The calculations of reactive cross sections presented in this paper are

based on Eq. (25).

III. METHOD OF CALCULATION

It is clear that the accuracy of the DWB calculation depends on how

we approximate our total wave function by a judicious choice of V° and 

The construction of these two-body potentials and the corresponding wave 

functions have been described in detail in a previous p a p e r . T h e  

spherical symmetric potential is designated as V° when,the molecule is 
unperturbed by the incoming atom;

''(X ’ C ' W  + '26a)

Vg - V°^(S) + V^^cs.i) (26b)

and as when the molecule adiabatically follows the incoming atom,
a

''b “ • '22'»>
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(a) Distorted Wave Born Approximation 

To determine the transition amplitude in terms of distorted wave 

B o m  approximation (DWB), we need to evaluate Eq. (25). We outline the 

method for the J«0 and J'=0 exchange reaction of the three-body system, 

where J refers to the angular momentum of the initial molecule and j' to 

that of the product molecule. Although the higher transitions require 

somewhat more complicated formulae, the essence of the method can be 

brought out by discussion of the simplest transition.

If the molecule is unperturbed by the incoming atom, the wave 

function is approximated as

(R.r) == F(R)n^(r) (28)

where rî (r) is the initial molecular wave function in the absence of the 

Incoming atom and F(R) is the wave function for scattering by the central 

potential V^R). If the molecule adiabatically follows the incoming 
atom, the wave function is then approximated as

HR,r) 3 G(R)ri^(R,r) (29)

where r|^(R,r) is the perturbed molecular wave function^^ which reduces to 

D (r) as R->°° and G(R) is the wave function for scattering by the adiabatic 

potential V^(R). Both F(R) and G(R) can be written in the standard
partial wave form

i6

and

F(R) = E (2n+l)i”e (R)P ( c o s 8 )  (30)
n=0 " "

i6 ’
G(R) => I (2n+l)i% ”l' (R)P ( c o s 6 )  (31)n=0 n n ,
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where 0 is the angle betx^een R and the initial wave vector k , and the”“CC

phase shifts 6 and the radial wave functions L are obtained from the n n
radial part of the Schro dinger equation with potential , and 6^ and

L* from that with potential V°(R); the function L (R) is the solution n ^ aa n

bounded at the origin and so nor-»alized as to have asymptotic form^^

a

the function L' (R) has the corresponding behavior as R-K) and For xi ^

we use the approximate function

Xfi ^(S.s) - H(S)n„(s) (33)

where n^Cs) is the final molecular wave function in the absence of the 

outgoing atom and H(S) is the wave function for scattering by the central 

potential V^^S). We use Eq. (33) with obtained from Eqs. (26) and

(27) to re tain the simple form given in Eq. (25) for For the adia­

batic dis«-ortion potential, this introduces an additional approximation

into the ttcatment, which could be avoided by using an alternative, some-
IQwhat more complicated, expression for (DWB). The function H(S) can

25be written in the standard partial wave form

II(S) - E(2l+l)ra \(S)Pj,[cos(w-e')] (34)

where 6' is the angle between S and the final wave vector kg, and L^(S) 

is the solution of the Schrodinger equation with the potential Vg^S), 

subject to the condition that L^(S) is bounded at the origin and behaves
asymptotically as
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L^(S) ~ (kgS)"^sin(kgS - I  £tt+6^) , (35)

Substitution of Eqs. (28) or (29) and (33) into the expression for

the transition matrix T„ (DWB) yields the desired formula. To illustrate
p a  ■ ■

the procedure involved, we consider the unperturbed case [Eq. (28)]

Tg^(DWB) « - //{ E (2£+l)i e (S)P^ [cos (tt-6 ') ]} (n^ (s ) )

(36)
“ i6

V' (S,s) •{ Z (2n+l)i% ”l (R)P (cose)k (r)dsdS.
®

It is convenient to choose the volume element of this six-dimensional 

integral to be

dsdS = s^sin5S^sin0d5dxd0dfdsdS (37)

where 0 and $ are the angular coordinates of S, % is the angle between
“4“ ^ -$*•s and S and x is the azimuthal angle of s with respect to S (see Flg» 1). 

To perform the integration, we must express the angle 0’ and the 

coordinates R and r in terms of the six variables in Eq. (37). With some 

algebraic manipulation, it can be .p^own that for system (in which the 

center-of-mass of each diatomic molecule is at its midpoint)

1
r = [S^ + i  + Ss cos5] ^

1
R - [ "  s^ - I  Ss cos?]^ (38)

cosy » ( J  r^ - Ss cosC - j  s^)/Rr

3 _ q ^
COS0 “ ( ■“ S cosO -■ (cosBcosi; ~ slnBsin^sinx))/R-
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Making use of the relation between 0’ and 6*0

COS0* ® COS0COS0 + sin0sin6cos($-

where 0 and $ are the polar angles of k„, and of the addition theorem-p
27for Legendr-'i polynomials

CO

P„(cos6’) = P. (cos0)P. (cos6) + 2 S (-1)® ?™(cos0)
^ X, . X. m=i a-ha)! ^

(39)

P™(cos6) • cos m($- $),

We see that the $ integration can be done immediately since the integrand 

depends on it only through Eq. (39). This is expected because the problem 

is symmetric about the z axis. Substitution of Eq. (39) into Eq, (36) and 

performance of the $ integration permit the scattering amplitude to be 

expressed as a series of five-dimensional integrals

(DHB) = S (2Jl+l)A^P^(cos0) (40)
£=»0

with the partial wave amplitude given by
foo ^7T p2lT "

Ajl ~ I I I I I I(SjS)Ti^(r)s^sin5S^sin6dxd5d6dsdS (41)
VO J o  J o  J o  J o

where

I(S,s) = -2tt exp(-il7r/2 + i6^)L^(S)P^(cos0) (Po (s))

• V̂ j|S,s) Z [('2n+l)i"exp(i6^)L^(R)P^(cose>]
n=0

(42)
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Equation (40) has a form that is similar to that obtained in direct scat­

tering, though the amplitude integral [Eq. (41)] is much more complicated. 

It should be noted also that the sum in Eq. (40) is over final channel 

partial waves, which for the present case is equivalent to the expansion 

over initial channel partial waves.

The differential cross sections are obtained by introducing Eq. (40) 

into Eq. (12). Integration over the solid angle ^  - sin0d6d$ yields the 

total cross section

a . 4„ ^  J (21+1) |a,|^ (43)

From the perturbed molecular approximation [Eq. (29)] the same 

formulae are obtained except that the scattering potential V° is replaced

by V° and q (r) and V'(S,s) are replaced by q (R,r) and V*(S,s),
SL (X U. Ct S

respectively.

(b) Linear Approximation 

Although determination of the Tg^(DWB) matrix elements outlined in 

the previous section is possible, the required integral evaluation is so 

time consuming that only a small number of such calculations were carried 

out. To permit a more general exploration of the nature of the reaction 

cross section, it is desirable to use a simpler, but approximately valid, 

model. The simplifying assumption that we introduce here is that the

reaction occurs only in the neighborhood of the linear configuration.
15Since the potential is minimum for the linear configuration, the initial 

molecule tends to turn toward the .incoming atom. Moreover, the results 

of the complete DWB approximation calculation show (see Sec. IV) that
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the configurations contributing to reaction subtend a cone which is only 

about 10 percent of the total sphere.

The matrix element in this approximation is given by

Tg^(DWBL) =■ A<x^"^ 1 (?-7r) (44)

where A  is the 6-function "strength" parameter. Although A would be 
expected to vary as a function of the energy and of the initial and 

final states, a fixed value of A  was chosen by comparison with a single 
Tg^(DWB) result. Because of the arbitrariness in A, all of the work 
with the DWBL model was based on the simpler unperturbed molecular 
approximation for the distorted waves associated with the relative motion.

To write out the explicit expression for the matrix element appear­

ing in Eq. (44), we make use of Eq. (36). The linear assumption consists 

of replacing the surface element sinCdCdy by A6(5-TT)dC. If the Initial 
molecule is in Its ground state characterized by the vibration-rotation 

quantum number (0,0) and the final rearranged molecule is in the (0,£)th 

vibration-rotation state, we have

tî (?) - 4>°(r)
. im(f)

n^(s)^ 0^(s)P®(cos6^)e ,

kwhere (j)̂ is the radial part of the diatomic molecule wave function, and 

P™ is the (km) associated Lengendre polynomial with the polar angles

of the molecule. Substituting into Eq. (36), we obtain
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, -im^- ®° i(S
(4,^(s)P®(cosej^)e ^)V^'(S,1) • [ S (2n+l)l’̂e \ ( R )

n=0

P^(cos6)] • #^(r)d(C-'n’) • S s sin6d<;d6d4)dSds. (45)

If we expand Pĵ CcosS') according to Eq. (39), there are (2£+l) terms in 

the expansion. Howu\'‘i, since 6 (?-tt) is equilvalent to 6 {0ĵ +0-tr)6 ,

the $ integration ma.c all of the terms vanish except the one which has 

the same m value as the final state of the molecule. To illustrate the 

calculation with Eq. (45), we write do\ra the expression for the reaction 

between the ground rotational state of the initial molecule and the k=l, m=0 

rotational state of the final molecule. For this case, after the 5 and f 
integrations, we find

_ i M  + 16
Tg^(DWBL) = E (22+1) e  ̂ "^B^P^(cos0) (46)

2—0
where

* ~2ttAm tr
L^(S)P^(cose)P^(cos0)*(f)^(s) V^(S,s)

00 id
• { S (2n+l)i“e "l (R)P (cosB)} • 4>°(r)s^S^sin0dedSds (47)n=0 n n o

1 1 3with r*S - s and R = ^ S + - ^ s .  To reduce this integral further, we
28make use of the following relation

i+J I I
(x). (48)P?(x)P“ (x) » E D(k,i,m,j,n)P'“

J ■k=|i-j.|
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The nonvanisliing D have the form

(2k+l) - T ^ n ^
( k - 1) I
(k+1 m

gt(2g-2£»)ig’-m»)!(&-fai)!
(g-£)l(g-£‘)!(g-£")l(2g+l)a-m)!

where i,J > 0; g =■ -j (i+j+k) and an Integer, and |i-j | k < |i+j | .
The quantities m", m', m are such that m" is the largest of the 

triplet, I I , [m2 1 , and [m^-m2 j , m' is the next largest and m is the 

smallest; and £",£* and £ are the corresponding members of the triplet 

i, j, k; the sum over t is to be taken over all terms involving non­

negative factorials. Substituting from Eq. (48) into Eq. (47) and 

performing the 6 integration, we obtain

A-rrA ^+1 . i5,Bj - - I (2j+l)D(£,j,o,l,o)i^e h .  (50)^ 4=U_il ^3

where

b^j =J J L^(S)<f>J(s)V^(S,s)Lj(R)4.°(r)s^S^dsdS (51)

Thus, the evaluation of Tg^CBHBL.) has been reduced to a sum over the 

two-dimensional integrals b^j. Corresponding expressions result for 

molecules in other initial and final states.
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CALCULATIONS AND RESULTS 

Numerical evaluations of the partial wave amplitudes and cross 

sections have been carried out by means of computer programs, which are 

described briefly in the Appendix. Here we report some of the results 

obtained for the H+H2 reaction with the initial and final molecule in 

the ground vibrational state. The initial rotational state of the reac­

tant molecule is denoted as J and the final state of the product molecule 

by J’. We consider firss£:£he ;.J)WB,.afproximatiDn and then turn to the more 

extensive studies by the DWBL model.

(a) Distorted Wave B o m  Approximation 

Both the unperturbed molecule and the adiabatic molecule approxima­

tion were used. Some total cross sections obtained as a function of 

energy for the J=0 to J '=0 reaction with the two limiting approximations

are shown in Table 1. The first incoming energy (O.SeV) is well above
13the classical threshold (.25eV) energy; the second one (0.33eV) is near 

the classical threshold energy and the third one (0.21eV) is well below 

the classical threshold. As can be seen from the table, the adiabatic 

model yields a total cross section which is about twenty times larger 

than that of the undistorted model. From the magnitude of the rotational 

coupling and the associated characteristic times, we believe that the 

adiabatic model is a considerably better approximation for the energies 

under consideration.

The differential cross s-e-Gtion (in arbitrary units) obtained from 

the adiabatic model at an energy of O.SeV is shown by the solid line in 

Fig. 2. It corresponds predominantly to"backward scattering" in the 

center-of-mass system; that is, the incoming atom strikes the molecule,
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and a new molecule is formed which goes back mainly in the direction from 

which the atom came. The differential cross section obtained for the 

undistorted molecule model is very similar in shape to that from the adia­

batic model, although the magnitude is, of course, much smaller.
2From Eq. (40), it is evident that |Â | represents the contribution

2of the 2.-th partial wave to the total cross section. A plot of |Â |

against i is given in Fig. 3 for energy of O.SeV. The relationship 
2between |Â | and I corresponds to that between the reaction probability

2and the impact parameter in the classical picture. It is found that |Â |

decreases smoothly with increasing £ and approaches zero for £ - 10.
2Thus, the magnitude of |a |̂ as a function of £ provides information on 

the size of the reactive region.

In order to obtain some idea of the configurations of the three 

nuclei that lead to reaction, we use the unperturbed molecule model and 

consider a quantity T^^(DWB,t) defined as

Tg^(DWB,x) - <Xg"^|v’H(x-0|Xa’̂^> (51)

where H(x) is the Heaviside function [H(x) = 0, x<0; H(x) - 1, x>0] and

0 ^ X < tt; thus, T„ (DWB,'n') =» T„ (DWB). From Eqs. (40) and (51),pa pa
00

Tg^(DWB,x) » E (2£+l)A^(x)P^(cos0) (52)
£*®0

where

A^(x) = J M  I (Y,x)ri^(r)s'̂ S^sin^sin6dxd5d0dsdS. (53)
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Hie function I(YfT) is defined by

0 when y  > x

I(YrX) - 1 ^ (54)
I(S,s) when y ̂  T

with I(S,s) given in Eq. (42); the angle y depends on the five integra­
tion variables through Eq. (38 ̂ .. Y:._ total cross section (t) , which

2 2 
is obtained from Eq. (43) by |Â | replacing ( (x)| , provides a sem-

classical measure of the contribution to reaction for atom, molecule

orientations with y in the range between 0 and x. The quantity 0^g(x)/0^g

for the J=»0 to J*=0 reaction at an initial energy of O.SeV is plotted

as a function of X in Fig. 4. The figure demonstrates that the dominant

contribution to the reaction cross section comes from small-angle

configurations; i.e., 80% of the cross section is obtained with y  4 40°.

These results coupled with the fact that the molecule turns toward the 
16incoming atom suggest that the linear model should be a satisfactory 

approximation.

(b) Linear Approximation 

For the linear calculation, t ‘ic 5-function strength parameter was 

chosen so that the total cross section obtained by this method at incident 

energy of O'.SeV is the same as the value obtained from the complete 

distorted wave B o m  approximatitjti. The differential cross section at an 

incident energy of O.SeV for the reactions J=0 to J'=0,l,2 (summed over 

all possible m values) are presented in Fig. 5. In all cases, the initial 

and final molecule are in the ground vibrational state. We see that the



-24-

various curves are similar, with a strong backward peak being the dominant

feature. Since the complete distorted wave Born approximation treatment

had a corresponding form for the J=0 to J'^0 case (solid line in Fig. 2),

the comparison provides additional evidence for the validity of the

linear model. Moreover, it should be clear that the present linear model

is very different in concept from treatments in which the three atoms are

constrained to move on .a llae the collision; such an approach,
29of which the accurate H+H2 calculation of Truhlar-Kuppermann is a 

recent example, provides only reaction probabilities and does not permit 

the evaluation of differential cross sections. In the present linear 

approximation, the full three-dimensional aspect of the collision is 

included and it is only the evaluation of the transition matrix element 

itself that is simplified.

The shape of the differential cross section as a function of inci­
dent energy for the J=0 to J'=0 reaction is shown in Fig. 6. As the 

incident energy increases, the peak in the, cross section gradually shifts 

in the forward direction. This type of behavior, in which the incoming 

atom "remembers" where it came from as its energy becomes considerably 

larger than the barrier energy is familiar from nuclear physics. For the

(d,p) stripping reaction in a Coul- -b field, the differential cross
30section is peaked backward for an incident energy of a few MeV but the

■̂1peak is drastically shifted toward the forward direction'' when the 

energy is increased to a few hundred MeV, In the atom-molecule case, 

the shift in the peak direction occurs over an energy range on the order

of 2eV. It would be extremely interesting to have data on the. energy
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dependence of the differential cross section for a better understanding 

of the reaction mechanism.

The energy dependence of the total cross section for J-0 to J'=0,l,2 

reactions is shown in Figs. 7 and 8. The solid triangles are the values 

obtained by the distorted wave B o m  approximation for the J=0 to J*“0 

case. Since the presently available reaction rate data emphasize the 

low-energy range (E 0.6eV), an expanded plot is given in Fig. 7, while 

the more general energy dependence is shown in Fig. 8. The dominant 

feature of the curves for all J’ is the steep increase in 0 with incident 

energy, up to a maximum at about 0.8 to 0.9eV, and a subsequent drop off 

for higher energies. It is expected that the reaction cross section will 

continue to decrease as the incident energy is increased; further, for 
very high energies, the process H+H2-^3H becomes important. For all of 

the energies studied (except in the neighborhood of the threshold), it 

can be seen that the J-0 to J'=l reaction has the largest cross section, 

J=0 to J'=2 is next, and that the J=»0 to J'“0 actually has the lowest 

cross section. However, quantitatively the difference between the vari­

ous cross sections is not great, being less than a factor of two over 

the entire energy range. The threshold results with J=0 to J ’=0 becoming 

largest are reasonably understood in terms of the available energy.
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?. DISCUSSION

In this section we compare the results of the quantum treatment 

with the classical calculation for the same potential surface, consider 

some alternative approximations for a quantum-mechanical approach to 

reactive scattering, and comment on some of the implications of the 

present calculations for a theory of chemical kinetics.

(a) Comparison with Classical Theory

Although the question of whether classical mechanics is adequate 

for chemical reaction rate calculations is a fundamental one, no unequi­

vocal answer is available. Since a detailed classical treatment exists
13for the (H,H2) reaction, we hope to provide some information on this 

point by comparing the present quantum results with the classical ones.

The fact that the classical and the quantum calculation used the identi­

cal potential energy surface makes the agreement or disagreement 

particularly significant, independent of the availability of experimental 

data. However, it should be noted that differences between the classical 

and the quantum results could be due to the approximations in the present 

treatment, as well as to "real" quantum effects.

The most important result is that the differential cross sections 

obtained from the classical calculation is almost identical in form with 

that from the quantum-mechanical calculation (see Fig. 2). Both are 

highly anisotropic with a broad backward peak and essentially no scatter­

ing for 6<90'*.

For a relative translational energy of 0.5eV where the most extensive 

classical and quantum-mechanical calculations were done, the total quantuin-
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mechanical cross section is less' than the classical cross section by

about a factor of two. The comparison is not completely unequivocal

since in the quantum-mechanical treatment, only the transition from

J®0 to J'“0 x f a s  calculated by the distorted wave B o m  approximation,

while the other transitions were estimated by linear model approximation.

At lower energies, the linear quantum model gives results that drop

more rapidly to zero than the classic values, while at higher energies

the quantum cross section rises rapidly above the classical result.

The high-energy quantum values suffer from the breakdown of the adiabatic

approximates which would require a variation in the strength parameter in

the linear approximation. Also, the linear model is expected from classi- 
.13cal calculations' to be less accurate at higher energies. Finally, the 

DWB method itself becomes less valid as the magnitude of the total cross 

section increases. Thus, significance of the comparison of the energy 

dependence between the classical and quantum calculations is somewhat 

uncertain. However, a possible explanation for the larger cross section 
obtained in the classical calculation in the low-energy range is the zero- 

point molecular vibration (equal to the quantum-mechanical zero-point 

energy) incorporated into the classical calculation. More of this energy 

may be available for crossing the barrier in the classical than in the 
quantum treatment. Also, the equilibrium distance of the molecule is 

the most probable place for the two atoms in quantum mechanics. However, 

in classical mechanics, vibrational motion makes the two atoms spend 

most of the time at the extremal positions . Since it has been found that 

reaction occurs most easily when the molecule is stretched to its extreme 

length, a larger classical cross section is not. unexpected.
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Hie above comparison suggests that the quantm and classical results

are similar in many, though not all, respects. This is somewhat surprising

since the choice of the was suggested by the fact that, since it is

the lightest element, it has the longest de Broglie wavelength for a

given energy. Thus, many authors have suggested that quantum effects

should be very pronounced for the system. Considering a one-
32dimensional barrier approximation for a reaction, Kondratev gives a 

condition for the validity of the classical limit as

(Hf/iĵ v ^)«1 (54)

where F is the effective force (F ~ -dl^dx where is the potential and 

X is the distance), p is the mass and v is the velocity of the particle. 

Since for a hydrogen atom, hydrogen molecule collision at 300°K, the
2 3most probable velocity gives (nF/y v ) « 15, it may be concluded that

33classical mechanics is not applicable. Also, Mazur and Rubin in a 
a quantum-mechanical calculation for a linear system with an idealized 

potential found that the reaction rate computed by solving the Schrodinger 

equation differed by at least a factor of 5 from the classical value.

More recently, Mortensen^^ studied the (H,H2) system with the atoms con­

strained to move on a line and found that there is a large discrepancy 

between classical and quantum results.

We must consider why there are no significant quantum effects in • 

certain features of the (H,H2) reaction when the condition for the 

validity of classical mechanics appears to be violated, as discussed in 

the introduction of this section. One point is that the condition
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established for one-dimensional motion may not be correct for the three- 

dimensional case. Also, it is likely that the linear calculations which 

constrain the atoms to move on a line show larger quantum effects than 

the complete three-dimensional calculation in which the greater number 

of degrees of freedom may lead to some blurring of quantum effects.

Finally, the particles with energies that violate the validity condition 

[Eq. (54)3 have a very small reactive cross section and do not contribute 

to the general behavior. For example, at 300®K, most of the particles do 

not react at all; only the collisions corresponding to the high-energy 

tail of the distribution make an important contribution to the cross 

section and those satisfy the condition; e.g., for an incident energy of
O.SeV, fiF/|î v̂  “ 10~^. It should also be mentioned that the recent exact 

34calculations of idealized linear collisions show that for certain poten­
tial barrier the quantum and classical results agree well with each other.

(b) Alternative Approximations 

The distorted, wave Born approximation is obtained when wtc replace 
the elastically scattered wave in Eq. (22). ■ The resultsUv ct

reported in the paper were based on this approximation. If the substitu­

tion of by were made in Eq. (13), we obtain an alternative

approximation. The results of that approximation have the general features 

of the distorted wave B o m  approximation except that the differential cross sec­
tion has a sharp forward peak in addition to the broad backward peak. Although 

the fort^ard peak might be thought to be due to the diffraction effect of 

wave mechanics, an examination of the polar intensity of the Incoming 

particle near the reactive region shows that this interpretation is 

incorrect. The forward peak is spurious and is caused by the use of an
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inconsistent approximation; that is, the distortion of both the initial 

and the final wave is required in calculating the transition amplitude. 

This conclusion is in accord with the principle of detailed balancing.

A calculation with the B o m  transition amplitude [Eq. (14)] yielded 

a differential cross section that oscillates violently as a function of 

angle and is large in the forward direction. This result confirms the 

inapplicability of Bora sspproxlmatic... io a process in which the repulsive 

distortion of the wave function is very important.

The distorted wave Born approximation has been successfully applied
35to a large class of nuclear scattering problems. In these treatments, 

the usual approach has been to utilize a potential that Includes some 

adjustable parameters. Thus, it is not always certain whether the agree­

ment with experiment justifies the method or x-zhether errors in the method 
are compensated by the suitable altered potential. In the present calcu­

lation , the potential used was completely independent of the scattering 

data and no adjustable parameter was Introduced. Thus, the comparison 

with the classical and the experimental results is of greater 

significance. It appears from the present results that the distorted 

wave Bo m  approximation is a valid first step in the study of chemical 

reactions with activation energy; that is, many reaction attributes (e.g., 

form of differential cross section)are obtained with sufficient accuracy 

with this approximation. However, for some properties (e.g. , energy 

dependence of the total cross section) a more detailed treatment is 

required. In particular, although the adiabatic approximation used here 
is probably satisfactory for the vibrational degree of freedom of the 

molecule, it may be less appropriate for rotation. To examine this
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question, a coupled equation approach is now being employed for the study
36of the H,H2 reaction.

(c) Implications for Chemical Kinetics 
2In absolute rate theory, the reaction is assumed to proceed 

through some intermediate region whose properties can be formulated in 

terms of an "activated complex." It is assumed that collisions in which 

the reactive system passes through this region can be characterized by 

assuming that there is an equilibrium phase space distribution among the 

degrees of freedom of the " ctlvited complex." Some difficulties with 

this assumption in the pure„y classical treatment have been described
37 ■previously. For the quantum-mechanical problem, there is the added

complication that the time spent in the transition region determines the 

widths of the "energy levels" of the activated complex, so that, if the 

complex "lifetime" is too short, a simple evaluation of its partition 

function may not be valid.

In the present calculation we assume that, given the potential sur­

face, the dynamical problem can be solved in sufficient detail to ob tain 

the reaction attributes from first principles. A direct interaction 

approach is used and no intermediate state is introduced into the theory. 

From a complete set of scattering cross section and their energy dependence,

the macroscopic rate coefficient and its temperature dependence can be 
38determined in a simple fashion for comparison with the kinetic measure­

ments . With the classical cross sections, such a rate constant calcula­

tion has been made and surprisingly good agreement with the measured
13values was obtained. The results of the quantum-mechanical treatment
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that were obtained here are too limited to permit a corresponding rate 

constant evaluation.

From the classical treatment and its comparison with the quantum- 

mechanical Calculation, there is no evidence for an "activated complex" 

with an extended lifetime. Thus, quantization of certain of the degrees 

of freedom (e.g., the bending vibrations) may not occur in this reaction. 

However, a number of the concepts associated with usual chemical reaction 

rate theory are supported by the quantum-mechanical treatment. Certainly 

the concept of an activation energy is valid. We have found that for 

energies less than a "threshold", the reaction cross section is 

negligibly small. Such an energy dependence for the cross section will 

evidently give rise to an activation energy. The "threshold" is the 

incident relative translational energy that the system must have in 

order to reach a "reactive region;" that is, for the atom and molecule 

to get sufficiently close so that reaction will occur with a significant 

probability. One way of defining the reactive region is as the region in 

which the transition matrix element has an appreciable amplitude. From 

the calculations, this appears to be a region with a radius of about 2 a.u.

Another assumption that is used in ordinary rate theory is that for 

systems in which the potential energy is a minimum for the three atoms 

along a line, the reactions proceed through a linear configuration. While 

it is impossible that a reaction occurs only in an exactly linear config­

uration , near linear configurations do seem to be dominant in the (H,H2) 
system, particularly at energies near threshold. Evidence presented in 

the quantum-mechanical calculation shows that most of the reaction comes 

from a cone with less than 40° deviation from linearity, and the adiabatic 

molecular wave function shows that the molecule tends to line up itself
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with the incoming atom. Furtheraore, the quantum-mechanical linear model 

results are in very good agreement with the complete distorted wave 

calculation.

A point that plays an important role in the direct interaction theory 

is the effective two-body potential (optical potential) for the collision 

between atom and the molecule. For a given energy, the nature of the 

potential determines how close the particles can come together. As we 

have seen,^^ the two-body potential is difficult to evaluate uniquely, 

and different alternatives are possible according to how much transla­

tional energy is transferred to and from the energy of vibration and 

rotation. The exact airsvjer can come only from the complete solution of 

the three-body problem. However, the calculations that we have done 

represent the two extremes of a real approximation to the optical 

potential. In one case, we have assumed that the initial molecule is 

unaffected by the incoming atom and in the other, that the initial 

molecule adiabatically follows the incoming atom. It is the latter cal­

culation that appears more reasonable in terras of the characteristic 

times involved. However, the adiabaticity and resulting energy transfer 

depends on incident velocity and, therefore, on the total energy of the 

system. This suggests that the concept of an energy-dependent potential 

may be useful for the molecular collisions. We have found that not only 

the spherical part of the potential can change, but the higher harmonics 
may do so as well. Since the latter are responsible for molecular 

excitation, it appears that such an energy dependent potential should 

play a part in the study of inelastic molecular collisions, as well.
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^ntlsymmetrizatlon Process 

In all of the preceding discussion, we have assumed that three 

particles are distinguishable and that only the reaction A+BC-^AB+C has 

.to be considered. Since the reaction A+BC->AC+B yields exactly equiva­

lent results for the H+H2 system, the reported total cross section 

values include this factor of two. However, the Pauli exclusion prin­

ciple has not been explicitly introduced i.nto the calculation. This is 

permissible because the necessary antisymmetrizatipn can be applied to 

the T-matrix elements obtained from the unsymmetrized calculation. It 

is well known that such a process will mix the amplitudes of the direct 

and the exchange scattering. Thus, even the experimental measurements 

of the elastic scattering include contributions from the reactive 

process, though this term is relatively small for the present case.

Also, a consideration of the nuclear spin statistics is required to

relate the quantum-mechanical cross sections to the measured para->ortho
38conversion rate constants.
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APPENDIX

Brief Description of the CoTOputatxon 

Because five-dimensional integrals must be evaluated in the present 

formulation of the distorted wave B o m  approximation and the number of 

machine operations required goes as the fifth power of the number of 

points used in each dimension, much effort was expended in preparing an 

efficient program. As an illustration, we give a brief description of 
the program used to calculate the reactive scattering amplitude A^.

The total wave function which is approximated by the elastically 

scattered waves is summed up according to Eq. (30). The radial part 

L^(r) is normalized to

L^(r) « (cos6^j^(kr)-sin6^N^(kr)) (Al)

in the region where V(r)=0, with the phase shifts d calculated by the
X/

method reported previously. Legendre polynomials, spherical Bessel 

(J ) and Neumann (N ) functions are computed with their standard recur-
X/ Xf

sion formulas. The real and imaginary parts of the total wave function

are stored separately in two three-dimensional tables with 3360 entries

each. A table-look-up routine is used to interpolate when the required

value is not at an entry point.

The numerical integration is done by the method of Gaussian quad- 
40rature. The five-dimensional integration is programmed into a loop of 

five interlocked one-dimensional integration routines. The program is 

so written that the most time-consuming part, namely the potential evalua­

tion, is carried out a minimum number of times.
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The radial part of the molecular wave function is obtained with a

one-dimensional Schrodinger equation solution routine provided by 
41J. Cooley. The angular part for the adiabatic molecule is calculated

as described previously. The resulting values are entered in two- 

dimensional arrays in preparation for the numerical integration.

Because the IBM 7094, which was used for the calculation, is too 

small for the entire program, the program is written as a chain job with 

three links. In the first link, the tables of total wave functions are 

prepared and the Gaussian points and weights are determined. In the 

second link, all quantities depending on £ [see Eq. (42)] are calculated. 

In the third link, the numerical integration is performed. After one 

is obtained, it is stored. Link 2 is then called in again and L is 

increased by 1. The process is repeated until A^ is negligibly small. 

Then all A^'s are summed up according to Eq. (40), which yields the 

desired scattering amplitude.
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Figure Captions

Fig. 1 Definition of Symbols
Fig. 2 Differential cross-sections of the reactive

scattering of H + H 2 system. The solid line is 
obtained by DWB approximation for J = o to J' = o 
transition. The dotted line is from the classical 
trajectory calculation fox- J = o to all J* states.

Fig. 3 Contribution of each orbital angular momentum
to the reactive cross-section at incident energy of 
0.5 ev-

Fig. 4 Fractional contribution of different configurations
of H 3 system to the total reactive cross-section.

Fig. 5 Differential cross-section of the reactive scatter­
ing of H + H 2 system according to the linear model.

Fig. 6 Differential cross-section of the reactive scatter­
ing of H + H 2 at different incident energies accord­
ing to the linear model.

Fig. 7 Energy dependence of the total reactive cross-
sections of H + H 2 between incident energy 0.3 and 
0.6 ev. according to the linear model. The triangles 
are from the complete DWBA calculation.

Fig. 8 Energy dependence of the total reative cross sections
of H + H 2 between incident energy of 0.3 and 1 . 1  eVe>
according to the linear model.



Table I . Total Cross Section (J = o, J ’ = .) by DWB 
Approximation.

.Relative Energy Unperturbed Model Adiabatic Model 
ev a.u. a.u.
0.5 D.009 0.20
0.33 - 0.027
0.21  -  0.0001
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