SINGLE-FACED GRAYQB{trademark} - A RADIATION MAPPING DEVICE

PDF Version Also Available for Download.

Description

GrayQb{trademark} is a novel technology that has the potential to characterize radioactively contaminated areas such as hot cells, gloveboxes, small and large rooms, hallways, and waste tanks. The goal of GrayQb{trademark} is to speed the process of decontaminating these areas, which reduces worker exposures and promotes ALARA considerations. The device employs Phosphorous Storage Plate (PSP) technology as its primary detector material. PSPs, commonly used for medical applications and non-destructive testing, can be read using a commercially available scanner. The goal of GrayQb{trademark} technology is to locate, quantify, and identify the sources of contamination. The purpose of the work documented in ... continued below

Creation Information

Mayer, J.; Farfan, E.; Immel, D.; Phillips, M.; Bobbitt, J. & Plummer, J. December 12, 2013.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 44 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

GrayQb{trademark} is a novel technology that has the potential to characterize radioactively contaminated areas such as hot cells, gloveboxes, small and large rooms, hallways, and waste tanks. The goal of GrayQb{trademark} is to speed the process of decontaminating these areas, which reduces worker exposures and promotes ALARA considerations. The device employs Phosphorous Storage Plate (PSP) technology as its primary detector material. PSPs, commonly used for medical applications and non-destructive testing, can be read using a commercially available scanner. The goal of GrayQb{trademark} technology is to locate, quantify, and identify the sources of contamination. The purpose of the work documented in this report was to better characterize the performance of GrayQb{trademark} in its ability to present overlay images of the PSP image and the associated visual image of the location being surveyed. The results presented in this report are overlay images identifying the location of hot spots in both controlled and field environments. The GrayQb{trademark} technology has been mainly tested in a controlled environment with known distances and source characteristics such as specific known radionuclides, dose rates, and strength. The original concept for the GrayQb{trademark} device involved utilizing the six faces of a cube configuration and was designed to be positioned in the center of a contaminated area for 3D mapping. A smaller single-faced GrayQb{trademark}, dubbed GrayQb SF, was designed for the purpose of conducting the characterization testing documented in this report. This lighter 2D version is ideal for applications where entry ports are too small for a deployment of the original GrayQb™ version or where only a single surface is of interest. The shape, size, and weight of these two designs have been carefully modeled to account for most limitations encountered in hot cells, gloveboxes, and contaminated areas. GrayQb{trademark} and GrayQb{trademark} SF share the same fundamental detection system design (e.g., pinhole and PSPs). Therefore, performance tests completed on the single face GrayQB in this report is also applicable to the six- faced GrayQB (e.g., ambient light sensitivity and PSP response). This report details the characterization of the GrayQb{trademark} SF in both an uncontrolled environment; specifically, the Savannah River Site (SRS) Plutonium Fuel Form Facility in Building 235-F (Metallurgical Building) and controlled testing at SRS’s Health Physics Instrument Calibration Facility and SRS’s R&D Engineering Imaging and Radiation Systems Building. In this report, the resulting images from the Calibration Facility were obtained by overlaying the PSP and visual images manually using ImageJ. The resulting images from the Building 235-F tests presented in this report were produced using ImageJ and applying response trends developed from controlled testing results. The GrayQb{trademark} technology has been developed in two main stages at Savannah River National Laboratory (SRNL): 1) the GrayQb{trademark} development was supported by SRNL’s Laboratory Directed Research and Development Program and 2) the GrayQb{trademark} SF development and its testing in Building 235-F were supported by the Office of Deactivation and Decommissioning and Facility Engineering (EM-13), U.S. Department of Energy – Office of Environmental Management.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SRNL-STI-2013-00654
  • Grant Number: DE-AC09-08SR22470
  • DOI: 10.2172/1110810 | External Link
  • Office of Scientific & Technical Information Report Number: 1110810
  • Archival Resource Key: ark:/67531/metadc871070

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 12, 2013

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Dec. 12, 2016, 4:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 44

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mayer, J.; Farfan, E.; Immel, D.; Phillips, M.; Bobbitt, J. & Plummer, J. SINGLE-FACED GRAYQB{trademark} - A RADIATION MAPPING DEVICE, report, December 12, 2013; [Aiken, South Carolina]. (https://digital.library.unt.edu/ark:/67531/metadc871070/: accessed May 19, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.