METALLOGRAPHIC TECHNIQUES FOR BOND STUDY OF ALUMINUM-CLAD NICKEL-PLATED URANIUM FUEL ELEMENTS

By
H. W. Woods

March 27, 1957

Atomic Energy Division
Sylvania Electric Products, Inc.
Bayside, New York

Technical Information Service Extension, Oak Ridge, Tenn.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

This report has been reproduced directly from the best available copy.

Printed in USA. Charge 25 cents. Available from the Technical Information Service Extension, P. O. Box 1001, Oak Ridge, Tennessee. Please direct to the same address inquiries covering the procurement of classified AEC reports.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
METALLOGRAPHIC TECHNIQUES FOR BOND STUDY OF ALUMINUM-CLAD NICKEL-PLATED URANIUM FUEL ELEMENTS

By

H. W. Woods

Contract AT-30-1 GEN-366

March 27, 1957

Atomic Energy Division
SYLVANIA ELECTRIC PRODUCTS, INC.
Bayside, New York
Various metallographic techniques were employed to determine the best method for the preparation of aluminum-clad, nickel-plated uranium fuel elements for bond studies. The quality of the final results and the speed of the preparation were the most important factors to be considered. The following procedure was found to yield the most advantageous results in the minimum amount of time.

An entire hollow core fuel element was cut lengthwise; half of the element was surface ground. Sections to be prepared for bond studies were cut from the top, middle, and bottom portions of the other half. The half of the element which was surface ground was then polished on emery papers 0 through 3/0, with kerosene as a lubricant. When a suitable polish was obtained, the entire slug was immersed in a 50 per cent solution of hydrochloric acid. This etching strength was used in order to obtain a contrast between the uranium core and the aluminum clad. Figure 1 is a photomicrograph of this section, showing an over-all longitudinal view of the element. The sections from the top, middle, and bottom of the element were cut to convenient sizes for hand polishing. The samples were not mounted in bakelite so that a maximum electrical contact for final electrolytic polishing could be maintained. The samples were ground on a 240 grit wet belt and then polished on emery papers 0 through 4/0 with kerosene as a lubricant. Owing to the differences in hardness of the aluminum, uranium, and the bonded areas, the samples were polished in one direction across the interface on both the papers and the rotating lap. Since uranium is much harder than aluminum, if the samples were rotated during polishing, both the bonded and the uranium areas would stand in relief from the aluminum. This effect is minimized to a great extent by polishing in one direction only -- across the uranium to the aluminum.

These samples were then polished for less than 60 seconds on a microcloth with eight-micron Diamet-Hyprez as the abrasive and kerosene as the lubricant. The samples were then washed in alcohol and dried. The diamond polish removes most of the disturbed metal and also levels the area around the bonded interface.
The samples were then electrolytically polished on the Disa Electrolytic Polishing Unit (Fig. 2) distributed by the Udderholm Corporation of America. An electrolyte called Disa-Electrolyte A2 containing 700 cc. ethyl alcohol, 120 cc. water, 78 cc. of 60 per cent perchloric acid, and 100 cc. Buthyl Cellosolve was used for the electrolytic polishing of both the uranium and the aluminum. A polishing potential of 50 volts and a current density of 13 amperes was used for five seconds. The samples were thoroughly washed and dried. The diffusion zones were clearly defined by electrolytic polishing, but in order to define more clearly the extent of the remaining free nickel, the samples were etched with concentrated nitric acid by swabbing for one second. This acid attacks only the free nickel.

Photomicrographs were taken of the bonded interfaces. Figs. 3 and 4 show the zones on the top and the bottom of the element. Figs. 5 and 6, taken from the middle section, show the zones on the outside and the inside of the element. Fig. 7 shows the aluminum-to-aluminum (or cap-to-can) bond as electrolytically polished.

Several other techniques were tried in this laboratory with varying degrees of success. By far, the method just described produced the best and the most dependable results, and is, therefore, recommended for use in future bond studies of aluminum-clad, nickel-plated uranium.
Plate No. 14947

Fig. 1 - Longitudinal View of Element.
Fig. 2 - Disa Electrolytic Polishing Unit.
Plate No. 14952 500X

Fig. 3 - Uranium, Nickel, Aluminum Zones from Top of Element. (Longitudinal Section)

Plate No. 14953 500X

Fig. 4 - Uranium, Nickel, Aluminum Zones from Bottom of Element. (Longitudinal Section)
Fig. 5 - Uranium, Nickel, Aluminum Zones from Inside of Element. (Longitudinal Section)

Plate No. 14954
500X

Plate No. 14951
500X

Fig. 6 - Uranium, Nickel, Aluminum Zones from Outside of Element. (Longitudinal Section)
Fig. 7 - Aluminum Cap-to-Can Bond.