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PROPOSED HEAD-END TREATMENTS OF PURM-1WW WASTE FOR FISSION PRODUCT 
RECOVERY BY I O N  EXCHANGE 

W.  C. Yee and W.  Davis, Jr. 

ABSTRACT 

Two methods are  described f o r  preparing Purex 1WW radio- 
act ive waste f o r  recovering strontium and/or ra re  ear ths  by 
cation exchange. One method involves (1) complexing the major 
cationic impurities with c i t r a t e  ion a t  pH 2.5, and (2) proc- 
essing a twentyfold di luted and t rea ted  waste solution through 
a column of res in  (pre-equilibrated t o  pH 2.5 with ammonia) 
where the uncomplexed alkaline ear th and rare  ear th elements 
a re  sorbed. The other method involves (1) precipi ta t ing 
sulfate  ion (as f e r r i c  su l fa te )  from Purex 1WW waste a t  
55 t o  60% H N O ~ ,  and (2) precipi ta t ing strontium n i t r a t e  from 
the resul t ing nearly-sulfate-free solution from 85% KNO . 
Cation exchange i s  used t o  purify thj .s  prec ip i ta te  f u r t  r! er .  

Pretreatment (complexing) with c i t r a t e  ion r e su l t s  i n  a 
fourfold and threefold improvement i n  res in  capacity f o r  
strontium and rare  earths, respectively, over tha t  f o r  un- 
t rea ted  and tenfold di luted waste. Less than 1$ of the  
f e r r i c  ion i n  the waste i s  sorbed on the resin.  Pretreat-  
ment by a double precipi ta t ion concentrates the  strontium 
by a factor  of 2.5 t o  3.0 and reduces by more than 200-fold 
the r a t i o  of t o t a l  t r iva lent  cationic impurities t o  strontium. 
Resin capacity f o r  strontium i s  improved by a fac tor  of 20 
over tha t  f o r  the c i t ra te - t rea ted  waste. 

Radiation degradation of the res in  i n  both processes 
i s  discussed i n  terms of expected res in  l i f e .  I f  c i t r a t e  
complexing i s  used as the bas is  f o r  separating strontium 
and/or rare  ear th elements from impurity ions, then operat- 
ing time t o  lo$ res in  capacity lo s s  would be about 2500 h r  
or  100 hr, depending on whether jus t  strontium o r  strontium 
and rare  ear th elements were recovered. If the head-end 
precipi ta t ion process i s  used f o r  removing impurities, 
then the  time t o  10% loss  of resin capacity i n  the f i n a l  
purif icat ion would be only about 15 and 10 hr, respectively, 
depending on whether strontium o r  strontium and rare  ear th 
elements were recovered. 



1. INTRODUCTION 

The principle  purpose of t h i s  report  i s  t o  describe two preparatory 

procedures f o r  separating strontium and/or ra re  ear th elements from the 

major cat ionic  impurities i n  Purex 1WW waste solution. One of these 

procedures i s  based on the use of c i t r a t e  t o  complex the cationic i m -  

p u r i t i e s  (iron, chromium, and aluminum) p r io r  t o  separating them from 

strontium and the  r a re  earths.  The second preparatory procedure involves 

a double prec ip i ta t ion  i n  which f i r s t .  sin_l.fate i s  removed and the11 

strontium n i t r a t e  i s  precipi ta ted nearly f ree  of the nn.t8i.r?nic impuritico. 

A second purpose of t h i s  report  i s  t o  indicate how these materials tha t  

a r e  nearly f r e e  of the  cationic impurities may then be fur ther  processed 

by ion exchange i n  order t o  obtain more o r  l e s s  pure fract ions of 

strontium and rare  earths.  

One of the  most s ignif icant  wastes from nuclear fue l  processing 

operations i s  a Purex 1WW waste. In  t h i s  waste, concentrations of radio- 
4 * isotopes a r e  small, about lo3 t o  10 curies p e r  tonne of urani~m, or  

0.1 t o  1.0 gram per l i t e r  o f  waste solution. Associated with the  f i s s ion  

products, amongst other things, a re  about 30 g of t r iva len t  cationic 

impurit ies (iron, chromium, and alumini~m) t .hat  ~ r e a t l y  in tc r fcre  wi.Ll1 

t he  separation of strontium and rare  eart,h e1em~nt.s from t h i s  solution 

by ion exchange. I n  addition, there i s  about one mole of sulfate  ion 

per  l i t e r  of solution tha t  prevents the use of precipi ta t ion t o  separate 

strontium a s  the  n i t r a t e  from these imp11r l t . i~~ .  Becau~e ion exchange 

o f fe r s  a ra ther  simple process ten recover f i s s i ~ n  prod1lr:f.s ti1 the absence 

of su l fa te  and the  cationic impurities, some effort. has been spent t o  

eliminate them. 

The scope of this report in.cludes the  deocript.ian of ors lu l l  exchangc 

process i n  which the  cstionic impurities of ~ u r e x  1 W W  waste a re  complexed 

with c i t r a t e  and then passed through a column of Dowex 50W cation resin 

where the  uncomplexed allsaline ear th and rare  ear th elersents a re .  sn rh~d .  

* 3 A "tonne" i s  a metric ton, 10 kg. 



It a l so  includes the  description of a method f o r  removing su l f a t e  from 

the  waste by a prec ip i ta t ion  process, and a subsequent p rec ip i ta t ion  of 

strontium n i t r a t e  from the  resul t ing nearly-sulfate-free solution. Also 

included i s  a discussion of how present ly  avai lable  ion exchange tech- 

nology can be applied f o r  fur ther  pur i f ica t ion  of strontium and ra re  ear ths  

a f t e r  e i t he r  of the  preliminary pur i f ica t ion  procedures. 

Two flowsheets a r e  given a s  a l te rna t ive  methods of cleaning up Purex 

1WW waste i n  order subsequently t o  process it by cation exchange f o r  

recovery of the  f i s s i o n  products, strontium and/or r a r e  earths.  The 

composition of the  waste solution i s  given i n  Table 1, which includes 

the  major cat ionic  impurity concentrations corresponding t o  Hanford 

Purex 1 W W  supernatant. l7 Fission product yie lds  were calculated from 
3 the  data of Blomeke and Todd on the  bas i s  of about a ten th  of Yankee 

Atomic Power Reactor conditions, which correspond t o  a burnup of about 

8000 Mwd/tonne of 3.5% u235 and a cooling time of 100 days. 
4 

2.1 Waste Treatment by Ci t ra te  Complexing 

One simple and e f fec t ive  method of waste treatment i s  t o  complex the  

major t r i va l en t  cat ionic  impurit ies by adding c i t r a t e  ion i n  the  r a t i o  of 

1.5 moles f o r  each mole of f e r r i c ,  chromic, and aluminum ion i n  the  

f i l t e r c d  w-acte. The pH of the 6al.11.t.l.on i s  adjusted t o  2.5 with ammonium 

hydroxide and-heated t o  gOOc f o r  0.5 hr.  Subsequent cation exchange 

processing i s  accomplished by passing a twentyfold d i lu ted  and t r ea t ed  

waste solution through a column of Dowex 5CN X-8 (100 t o  200 mesh) r e s i n  

which has previously been converted t o  t he  armnonium form a t  pH 2.5. A 

l i nea r  flow ra t e  of about 1 cm/min i s  used. The flowsheet f o r  t h i s  

procedure i s  given i n  Fig. 1. 

Laboratory t e s t s  with simulated Purex 1 W W  indicated t h a t  up t o  3 and 

5 volumes of o r ig ina l  f i l t e r e d  waste (equivalent t o  60 and 100 volumes of 

twentyfold d i lu ted  waste) can be processed f o r  strontium and r a re  ear ths  

(FIE'S), respectively, per  volume of Dowex 50W i n  t he  ammonium form. 
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Table 1. Approximate Composition of Purex 1WW Waste Solution 

Ion 

Concentration 

Molarity ~ r a m / l i t e r  

Major Impuritiesa 

C e 

Zr-Nb b 

0.01 

0.01 

0.6 

0.01 

0.01 

0.02 

Fission product sC 

Rare ear ths  0.93 

c s+ 0.43 
Ru 0.25 

- - ----. - ....... -.. 
a Same a s  Hanford Purex 1WW waste supernatant. 

A s  precipi ta te .  
C Concentrations based on 0.1 of Yankee Atomic Power Reactor conditions, 

which correspond t o  a burnup of 8000 Mwd/tonne of 3.4% u235, and 
100 days of cooling time. 

Greater than 95% of the  strontium and rare  ear ths  a re  retained on the  

res in  bed while greater  than 99% of the f e r r i c  ion i n  the waste i s  re-  

moved by c i t r a t e  complexing. 



2.2 Waste Treatment by Nitr ic  Acid Precipi ta t ion 

The n i t r i c  ac id  treatment of Purex 1WW waste consis ts  of a double 

prec ip i ta t ion  i n  which su l fa te  ion i s  precipi ta ted as f e r r i c  su l fa te  i n  

55 t o  6 6  HNO and then strontium i s  recovered by precipi ta t ion i n  8546 
3 

HN03. m e  procedure follows the  flowsheet shown i n  Fig. 2. 

1. Add f e r r i c  ion t o  Purex lWW,  a s  f reshly precipi ta ted Fe203*xH20 
or  p a r t i a l l y  dehydrated Fe ( ~ 0 ~ ) ~  9H20 (boiling temperature of 
about 135Oc). 

2. Add 90% HN03 t o  increase the  ac id i ty  t o  55 t o  6% HN03 i n  order 
t o  p rec ip i t a t e  su l f a t e  a s  F ~ ~ ( s o ~ ) ~ .  

3. F i l t e r  and evaporate f i l t r a t e  u n t i l  the temperature reaches 
1 3 5 " ~ .  

4. Make 8546 i n  n i t r i c  ac id  with 9O$ KNO? .to predipjt.~t.e: strontium. 
-I 

5. Hold at  about 70°c t o  12 hr5 t o  minimize coprecipitation of 
the remaining i ron and aluminum and then f i l t e r  at temperature. 

6 .  Dissolve the  strontium prec ip i ta te  i n  water f o r  ion exchange 
processing. 

7. Add c i t r a t e  ion i n  the  r a t i o  of 3 moles per mole of remaining 
f e r r i c ,  chromic, and alwninm ions i n  t h i s  solution; adjuct 
the  pH t o  2.5 with ammonium hydroxide and process through a 
column of Dowex 5OW X-8 (100 t o  200 mesh) which has .been 
converted t o  the ammonium form a t  pH 2.5. 

Laboratory s tudies  with simulated Purex 1WW show tha t  the dsuble 

prec ip i ta t ion  procedure yields  a so l id  product containing 75 t o  80% of 

t h e  or ig ina l  strontium and l e s s  than 1% each of the  major cationic 

impurities, f e r r i c ,  aluminum, and sodium ions and sulfate .  Subsequent 

cation exchange processing of t h i s  product indicates an improvement i n  

r e s in  capacity of over 20 times tha t  of the  c i t r a t e  waste treatment 

procedure ( ~ e c  2.1); t ha t  i s  t o  say, , t h e  equival-ent of almost 67 volumes 

of or ig ina l  Purex 1WW could be processed per volume of Dowex 50W resin 

i n  the ammonium form, with greater  than 95$ of the  strontium retained 

on the res in  bed. Rare ear th recovery i s  not improved by t h i s  treatment 

because only p a r t i a l  precipi ta t ion occurs i n  the  85% HN03 solution. 

3. PROCESS CHEMISTRY STUDIES 

The i n i t i a l  objective was d i rec t  ion exchange processing of diluted, 

ac id  Purex 1W waste by cation exchange, but t h i s  approach had t o  be 
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abandoned. Early work by others6 with a waste somewhat similar t o  a 

tenfold d i lu ted  Purex 1WW indicated tha t  a volume d is t r ibut ion  coefficient 

of nearly 200 could be expected f o r  strontium. However, i n  the  present 

experiments with a waste t h a t  closely simulated the di luted Purex lWW, 

a value of 7.5 was found because of the overwhelming amount of iron, 

chromium, and aluminum i n  t h i s  waste.7 The d is t r ibut ion  coefficient 

f o r  r a re  ear ths  w a s  found t o  be about 17. Furthermore, a cation-resin- 

se l ec t iv i ty  scale  published by ~ t r e h l o G  confirmed tha t  re la t ive ly  l i t t l e  

strontium could be sorbed under these conditions and tha t  there w a s  

l i t t l e  hope uf improved strontium recovery by using e i the r  more concen- 

t r a t e d  o r  more d i lu t e  waste solutions. Thus, it w a s  necessary t o  develop 

procedkes  t o  overcome the  adverse e f fec ts  of the  major cakian iargwi.ties. 

3.1 Addition of Complexing Agent, pH Adjustment, 
and Ion Exchange Separat ion 

9 Ci t ra te  complexes of iron, chrmiwn,l0 and aluminum have been 

reported t o  be s tab le  a t  pH values a s  low as 3 i f  1.5 moles of c i t r a t e  

a r e  added f o r  each mole of t r iva len t  ion. However, at t h i s  pH l eve l  

t h e  ra re  ear ths  a re  a l so  known t o  form c i t r a t e  complexes1' and therefore 

would not be separated from the  waste. Hence, a lower pH range was 

investigated t o  see i f  both strontium, and the  r ~ r e  ear ths  could be 

separated from the  t r iva len t  cationic j.mpuritics. 

Exploratory t e s t s  showed t h a t  t h i s  separation could be achieved a t  

pH 2.5. Distribution coeff ic iont  s were then determined f o r  rare  earths 

(ce3+), strontium, and i ron (Fe3+) a s  a function of Purex 1WW d i lu t ion  

i n  order t o  f i n d  the  optimum conditions f o r  column operation a t  t h i s  

pH value. For these experiments, Dmex 50W X-8 (100 t o  200 mesh) resin 

was converted t o  the  ammonium form p r io r  t o  i t s  use by equilibrating 

with a 0.5 M HNO --0.05 M ammonium c i t r a t e  solution a t  pH 2.5. The - 3 - 
waste solution was prepared f o r  use by adding 1.5 moles of c i t r a t e  per 

mole of combined l?e3+, ~ l ~ + ,  and cr3+, by neutralizing t o  pH 2.5 with 

concen1;rated ammonia, by heating t o  gOOc f o r  half  an hour t o  ensure 

complete cornplexing of the chromic ion,'' and by d i lu t ing  with water 

t o  the desired values. Experimental data (Fig. 3) indicated. that  the  
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major cat ionic  impurities were retained as strong c i t r a t e  complexes, 

even i n  grea t ly  d i lu ted  waste solutions; t he  volume dis t r ibut ion coef- 

f i c i e n t  values f o r  iron were l e s s  than 0.3 f o r  both 40- and 400-fold 

d i lu ted  Purex 1 W W  waste. Resin capacity f o r  strontium and rare  earths 

was observed t o  increase a s  the extent of water di lut ion was increased. 

For colwnn operations a reasonable d i lu t ion  factor  of 20 was selected, 

and the  separation fac tors  were then determined t o  be a s  follows: 
Sr  Fe Ce Fe Ce Sr  

D /D , more than 200; D /D , more than 600; and D /D , about 3. 

Treated waste a t  t h i s  twentyfold d i lu t ion  was run through a column 

(0 .5- in . -1~ x 6-in.-long) of cation res in  i n  the ammonium form (15 ml) 
t o  obtain k ine t ic  sorption data. A l i nea r  flow r a t e  of 0.73 cm/min has 

used. Resin capacity f o r  strontj-mu, rare  earths, barium, and calcium 

w a s  obtained by the  use of Sr85, ce141, ~ a ~ ~ ~ ,  and ~ a ~ ~ - S c ~ ~ ;  the . 

isotope ~e~~ was a l so  added t o  observe the  a b i l i t y  of c i t r a t e  t o  complex 

f e r r i c  ion. Each r e s in  volume of eff luent  was c.nllect.cd and counted on 

a 200-channel gamma-ray sc in t i l l a t ion  spectrometer. A least-squares 

analysis  was made of these data with the a i d  of the  Control Data Corp. 

1604-A computer t o  solve f o r  the  amount of ac t iv i ty  i n  each solution. 

From t h i s  analysis, a p lo t  w a s  made of t h e  sorption cycle, t h a t  is, the 

a c t i v i t y  of each isotope r e l a t ive  t o  the concentratinn i n  the or iginal  

feed solution, (=), a s  a f'unction of res in  volumes of eff luent  ( ~ i g .  4). 

A more detai led discussion of the method of analysis i s  given i n  the  

Appendix. 

A comparison of the sorption-cycle data (Fig. 4) with the  volume- 

dis t r ibut ion-coeff icient  data (Fig. 3) f o r  20-times di luted Purex 1WW 

indicated t h a t  (I) the  strontium 50$ breakthrough point of 68 res in  

volumes was i n  aareement w5t.h tha t .  prcctiated from cquilibi-iucla &La, 
141 

(2) the r a re  ear ths  ( ~ e  ) 50% breakthrough point or  1ll res in  volumes 

was lower than the  190 res in  volumes predicted, and (3) the i ron was 

ef fec t ive ly  complexed by c i t r a t e .  The apparent 4@ decrease i n  thc dis- 

t r ibu t ion  coeff ic ient  value. o f  rmc earths is a reoult of com~ai*i1le5; data 

taken under dynamic conditions with data taken from a batch t e s t  i n  which 

there  w a s  a change i n  composition of the  waste solution; tha t  i s  t o  say, 

under equilibrium conditions (the beaker t e s t s ) ,  a large f rac t ion  of the 



RFSl N VOLUMES OF EFFLUENT 

Fig.  4. Sorption Curves. During t h e  sol-ption cycle with c i t r a t e -  
Lr~eaLed h r c x  UnJ colution, 5n$ hren.kt,hrough po in t s  of strontium and 
cerium occur a t  60 and 111 res in  volumes, respect ively .  



r a re  ear ths  i n  solution was sorbed on the res in  and thus the concentra- 

t i o n  of r a re  ear th  ions i n  t h e  waste solution w a s  reduced considerably; 

under flow conditions t h i s  e f fec t  was l e s s  marked. The calcium and barium 

50% breakthrough points  occurred a t  50 and 125 res in  volumes, respectively. 

Bulk separation of the  sorbed f i s s ion  products was made by elution 

with ammonium a-hydroxyisobutyrate according t o  a procedure published 

by wish12 ( ~ i g .  5). This eluant, though expensive, i s  reportedly more 

capable of rapidly elut ing the  ra re  ear ths  than ammonium lac ta t e  o r  am- 

monium c i t r a t e  and does the job with no s ignif icant  movement of the  

strontium and barium sorbed on the  cation resin column. 13,14  he eluant 

a l s o  separates strontium from calcilun and barium at re la t ive ly  low pH 

values and over a small pH range. The use of the  l e ~ ~  expensive ethylene- 

diaminetetraacetic acid (EDTA) f o r  recovery of strontium from acidic 

solutions i s  ra ther  l imited because of i t s  low solubi l i ty  a t  low pH 

values ( p ~  4 t o  5); appreciable column loading can lead. to precipi ta t ion 

of a lkal ine ear th  'and other cations on the res in  column.15 A material 

balance of the r e s in  column experiment  able 2) gave the  following 

resul ts :  

1. Yhe product rare  ear th stream contained more than 75% of the 
ra re  ear ths  sorbed together with 12%, 7%, and 3% of the  
calciwn, strontium, and barium. The calculated dennnt.amina- 
t i o n  fac tor  (DF) f o r  i ron  was abu.u.t 9, Based on a 20-fold 
d i lu ted  Purex 1WW feed solution. 

2. The product strontium stream contained about 55% of the  
strontium sorbed together .with 31% of the  barium and l e s s  
than 1% each of the  ra re  ear ths  and calcium. An additional 
33% of the strontium was found i n  the calcium product stream. 
The DF f o r  i ron w a s  about 600. 

The material  balance of each radioactive t r ace r  used ranged from 685 t o  

7876, with the exceptfon of strontium, which was g5$. 

Oxalic ac id  w a s  a l so  considered a s  a complexer f o r  the t r iva len t  

cat ionic  impurities. Added i n  a r a t i o  of two molec per mole of Fe3+ ion, 

it effect ively complexed i ron  i n  the  waste solution. However, i t s  use 

w a s  precluded because of subsequent slow desorption of sorbed rare  earths 

and strontium i n  the  elut ion cycle. 
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Fig. 5 .  Elution Curves. During desorption with ammonium a-hydroxy 
isobutyrate only rough separation of f i ss ion  products from each other i s  
achieved j,P the res in  colume i s  f u l l y  loaded during sorption. Higher 
puri ty  products could be obtained i f  the column were not f u l l y  loaded 
during corption. 



Table 2. Material  Balance of Strontium and Rare Earth Recovery 
from Purex 1WW Waste by Cation Exchange 

Sorption Elution Step: 
Step Elutriant-Ammonium a-Hydroxy Isobutyrate 
Total  Rare 

Radio- Ion Earth (ce3+) Calcium Strontium Barium Material 
ac t ive  Sorbed Recovery, Recovery Recovery Recovery Balance 
Tracer b e d  ($1 (%> (%> ($1 ($) 

3.2 Precipi ta t ion i n  Ni t r ic  Acid and Ion Exchange Separation 

Solubi l i ty  data16 indicated that ,  i n  a n i t r a t e  system, the  so lubi l i ty~  

of strontium ion decreased 1.5 t o  2 times f a s t e r  than e i the r  f e r r i c  or 

aluminum ion as the  acid concentration increased t o  40% HNO Additional 3 
determinations of t h e  so lubi l i ty  of Fe3+, A13+, and sr2+ i n  50 t o  8$ 
M U  solutions showed that ,  a t  80% HN03, ~ b n o s t  90% of the strontium i n  

3 
Purex 1WW could be precipi ta ted and tha t  l e s s  than 20$ of the  and 

l e s s  than 1% of the  ~ e ~ +  would be i n  the  product ( ~ i g .  6). Since the  

so lub i l i t y  of aluminum n i t r a t e  r i s e s  f a s t e r  than tha t  of strontium n i t r a t e  

with increase i n  temperature, the solution could be heated t o  70°c t o  
5 decrease the  aluminum impurity t o  l e s s  than 10%. 

Similar t e s t s  with Purex lWW, d i luted t o  60 t o  8% IINO by the  ad- 
3 

d i t ion  of 90% HN03, indicated tha t  t h e  su l fa te  i n  the  waste was in te r -  

fe r r ing  with the  d i r ec t  recovery of strontium. Iron and aluminum sulfates  

precipi ta ted along wlth the strontium, as evidenced by (1) the  greater  

than 90% material  balance hetween the  major cationic impurities and the  

su l fa te  i n  the prec ip i ta te   a able 3) ,  and (2) the lower so lubi l i ty  values 

of strontium, aluminum, and i r o n  than i s  predicted f o r  these ions  a able 4) .  

Therefore i f  we want t o  take advantage of hiown chemistry of strontium 



Fig.  6. The S o l u b i l i t y  of Strontium N i t r a t e  i n  N i t r i c  Acid i s  Very 
S i g n i f i c a n t l y  Lower than  t h e  S o l u b i l i t i e s  of Aluminum o r  F e r r i c  N i t r a t e s .  



Table 3. Precipi ta t ion of Purex 1WW Waste from 60 t o  80% Ni t r ic  Acid: 
Material Balance Between Cations and Sulfate i n  the Precipi ta te  

Ni t r ic  Precipi- 
Acid t a t ed  
Concen- Amount of Precipitated Cations (meq) S u l f p  - e 
t r a t  ion 
(wt %) Fe3+ ~ 1 ~ +  . cr3+ ~ a +  Total 

so4 
(mes) 

i n  n i t r a t e  solutions, removal of su l fa te  i s  necessary. Such a separation, 

however, must be made at a concentration of n i t r i c  acid l o w  enough t o  

prevent the  precipi ta t ion of strontium n i t r a t e .  

I n  tests a t  45 t o  60% HEJO excess f e r r i c  ion, i n  the form of freshly 3' 
prec ip i ta ted  Fe 0 'xH20, w a s  added t o  the  waste solution p r io r  t o  di lut ing 

2 3 
with 90% HN03. About 85 t o  9% of t h o  m l f a t e  precipitated, w l ~ i l r  mure 

than 90% of t h e  strontium and about 10% of the  ra re  ear ths  remained i n  

solution at 50 t o  60% HNO  a able 5) . l7 3 
A laboratory-scale experiment was performed t o  t e s t  the  double pre- 

c ip i t a t ion  treatment of the waste, t ha t  is, precipi ta t ion of the  su l fa te  

ion a t  55 t o  60% HNO followed by precipi ta t ion of strontium at 85% m0 
3 3 ' 

1iadiochenGcal and wet analyses showed tha t  the  product precipi ta te  con- 

ta ined more than 85% of the strontium from the  or ig ina l  waste solution 

together with the  following amounts (as percent of tha t  i n  the  feed) of 

f i s s i o n  product contaminants: barium, more than 85%; calcium, 25%; and 

r a r e  ear ths  (Ce14'), l e s s  than 1  able 6) .  In  terms of solution 

concentration, t he  double precipi ta t ion step reduced the  amount of 

cationic impurities--Fe3+, ~ 1 ~ + ,  and cr3+ -- by a  fac tor  of 80 and in- 

creased the  strontium by a  fac tor  of 2.5 t o  3.0. Thus, the  r a t i o  of t o t a l  

t r iva len t  cat ionic  impurities t o  strontium was reduced by a  fac tor  of 

about 210. 



Table 4. Comparison of the Solubi l i t ies  of Strontium, Ferric, and 
Aluminum Ions i n  Concentrated Ni t r ic  Acid and i n  1WW Purex- 

Nitr ic  Acid Solutions 

Solubi l i ty  (grams of cation 
1W-HN03 per 1000 g of solution) 
Solution I n  1WW-HNO 

In  Pure 
Densit 
( g / d  

il ~ o l u t  ionb3 ~ o l u t  *O3 lon 

strontium (sr2+) 

60.9 1 . 3954 0.0736 0.200 
66.0 1.4081 0.0432 0.0690 
68.3 1.4164 0.0183 0.0435 
72.4 1.4293 0.0126 0. 0190 
78.1 1.4475 0.0069 0.0060 

Iron ( ~ e ~ ' )  

59.9 - - - - 3 0 
60.9 1 3954 1.87 - - 
66. o 1.4081 0.198 -- .. 
68.3 1.4164 0.141 - - 
69.0 1.5414 - - >44 
72.4 1.4293 0.321 - - 
78.1 1.4475 0.601 - - 

Aluminum ( ~ 1 ~ ' )  
60.9 1 3954 0. goo 2.26 - 
66. 0 1.4081 0.862 1.47 
68.3 1.4164 0.767 1.21 
72.4 1.4293 0 732 0.86 
78.1 1.4475 0 332 O. 52 

The solutions were prepared by di lut ing 100 m l  of the synthetic lWGI 
with 90% n i t r i c  acid t o  the indicated nitrTc acid concentrations. 

After dissolving i n  a m i n i m  amount of water, t he  strontium product 

w a s  processed flirther by complexing the remaining cationic. impurities 
w i t h  c i t r a t e  ion and by sorbing the  f i ss ion  products on a column of 
cation exchange resin i n  the ammonium form, as described in  Sec 3.1. 

A least-squares analysis  of the radioisotope ac t iv i ty  data (~ig. 7) 

showed tha t  the  capacity fo r  strontium (50% breakthrough) w a s  23 resin.  
volumes of feed solution -- the equivalent of 67 resin volumes of Purex 

1 W W  processed. In terms of capacity, t h i s  represents a more t h a  



2 - 
Pig. 7. If ~ e ~ ' ,  ill3+, cr3+, and SOb Impurit ies a r e  Removed by 

Prec ip i ta t iun  then the  Resin column Capaclty f o r  Strontium i s  Increased 
by' .a Factor of about 20 t o  23. Volumes of Concentrated .Solution which was 
Derived from 67 Volumes.,of Purex 1WW. 



Table 5. Ferr ic  Sulfate Precipitation from Purex 1 W W  Waste i n  
which the Nitr ic  Acid Concentrations Ranges from 45 t o  60$ 

-- 
A. Sulfate Distribution Between Precipi ta te  and the 

Waste Solution - Wet Analysis 

~ 0 ~ ~ -  i n  Products by Wet Analysis 

m03 ~ 0 ~ ~ -  Material 
Conc . Simulated 1WW Solution precipi ta te  Balance 
( w t  %) (moles/l i ter)  (moles/l i ter)  (% ~ o t a l )  (wt $1 

46.6 0 987 8.31 x 42b 71 

50.9 0 987 2.22 x 10'~ 8 5 93 

54.1 0 987 2.16 x 88 97 
54.8 0 987 1.73 x 89 96 
59.0 0 987 1.70 x 92 99 

B. Strontium and Iron Distribution Between the  Precipi ta te  and 
the  Waste Solution - Radioactive Tracer Analysis 

' Cation i n  Products by Tracer Analysis 

Total Total Activity 

m03 Activity i n  Total Activity i n  Pre- Material 
Conc . Simulated 1WW i n  Solution c ip i t a t e  Balance 
(a $1 ( C P ~ )  (%) ($1 (wt  %) 

85 Strontium - Sr 

46.6 7 4.35 x 10' 114 4b 118 

50.9 4.31 x 10 102 6 108 7 

54.1 4.54 lo7 Y 9 8 107 
54.8 4.21 x 10 7 i o g  9 114 

59.0 2.90 x 10 5 100 4 104 
6 

Iron - Fe 59 
46 -6 1.09 x l o  7 91 17b 108 

- -- 

a Each solution was prepared by (1) adding about 90 g freshly prepared 
Fe203*xH20 t o  10 ml of simulated lWW, (2) s t i r r i n g  f o r  24 hr t o  ensure 
the  presence of excess ~ e 3 + ,  (3) d i lu t ing  with enough 90% n i t r i c  acid 
t o  the  indicated HNO concentration, and (4) s t i r r i n g  f o r  a t  l e a s t  48 3 h r  t o  tipproursh equilibrium conciitj nns . 
Precipi ta te  w a s  only p a r t i a l l y  recovered. 



Table 6. Comparisorl of Compositions of Purex 1WW and Strontium 
Concentrate After Head-End Precipi ta t ion 

Purex 1 W W  Waste 

Ion M - g / l i t e r  , 

Strontium concentrat ea 

M g / l i t e r  
- - 

0.5 

0.5 

0.002 

0.007 

0, ouuy 

0.0001 

< 0.0001 

0.0026 

0.18 

0.72 

0.18 . , 

1.64 
a 

The head-end precipi ta t ion treatment consisted of (;) adding excess 
t o  100 m l  of I'urex lWW,  (2) ptecipi ta t ing ~04"- ion a t  55 t o  

( 3 )  reducing the  volume of f i l t r a t e  by 'd i s t i l la t ion ,  
' 

90% n i t r i c  ac id  t o  the P i l t r a t e . t o  'precipi ta te  srP+ 
greater  than 85% HNO ( 5 )  fil.t.ering, (6) discolving the  strontium 
prec ip i ta te  i n  a min 9' .m amount. 'of water. The volume of struntiurn 
concentrate was 33 m l ,  -1/3 the  volume of the  or ig ina l  Purex 1 W W  
w a s t e .  

twentyfold improvement f o r  strontium sorption over tha t  obtained by using 

only c i t r a t e  complexing t o  eliminate cationic interference. 

The elut ion data ( ~ i @ ; ;  8) and the  material  balance of t h i s  res in  

column experiment c  able 7) showed tha t  about 4 8  of the strontium 

sorbed w a s  recovered i n  the  product stream,to~;ether with 21$ of the 

barium and l e s s  than 1% each of calcium, cerium, and iron. An additional 

38$ of t h e  strontium was found i n  the  calcium product stream. The over- 
5 a l l  i ron decontamination f ac to r  w a s  calculated t o  be about 5 x 10 , 

based on Purex 1WW waste i n  i t s  or ig ina l  form. 



Fig. 8. If t h e  Resin Column i s  Fu l ly  Loaded with Product from t h e  
P rec ip i t a t i on  I?roce~s, then on1.y a Rough Separation i s  Achieved During 
Desorption v i t h  Ammonium a-hydroxy Isobutyrate.  Higher-purity pro2uct s 
cuuld t@ obtained i f  t.he r.ol.~.lmn Irere not f u l l y  loaded during sorption.  



Table 7. Material  Balance of Strontium Recovery from h r e x  1WW 
Waste by the  Precipitation-Ion Exchange Process: 

' Ion Exchange Portion 

Somt  ion Elution Step : 
S~;D E lu t r ian t  -Ammonium a-Hydroxy Isobutyrat e 
Tota l  Rare Earth 

Radio- Ion ( ~ e 3 + )  Calcium Strontium Barium Material 
ac t ive  Sorbed Recovery Recovery Recovery Recovery Balance 
Tracer (me¶) ($1 - ($1 (4) ($1 ($1 

4. RADIATION DAMAGE TO THE CATION RESIN 

A s  t he  composition of t he  feed solution i s  modified to achieve 

grea te r  spec i f ic  sorption of radioactive f i s s i o n  products on the cation 

resin,  so a l s o  does the  spec i f ic  radiat ign power n.nd t.hp r a t e  of redia- 

t i o n  degradation of the  r e s in  increase. The extent nf thi-r degradation 

i n  a process based on e i t h e r  method of strontium and/or r a r e  ear th  element 

benef ic ia t ion ( ~ e c  2.) w i l l  be of considerable significance, a s  indicated 

below. 

The cat ion exchange r e s i n  Dowex 50W X-8 was exposed18 i n  t he  hydrogen 
60 

form t o  a 10,000-curie Co gamma-ray source i n  a s y ~ t e m  of flowing water. 
9 After  a d o ~ e  of about 2 wllr per  gram of dry r e s in  (0.75 x 10 r )  the  res in  

t 

had l o s t  about 40$ of i t s  strong-acid c ~ ~ p ~ c i t y ;  su&fonate dccnmposition 

products appeared mainly a s  dissolved su l f a t e  i n  the  flowing water stream. 

Swelling of t h e  r e s i n  beads occurred, a s  shown by the 10 t o  15% iricrease 

i n  spec i f ic  wet-resin volunle. About 2096 of the  r e s in  volume decomposed 

and dissolved i n  t h e  water. Signif icant  breakup of t he  r e s in  polymer 

was v i s ib l e  a t  a dose of about 1.5 whr per gram of dry resin,  a s  evidenced 

by the  t u r b i d i t y  of t de  column eff luent .  Thus, a t  I. t o  2 whr per gram of 



dry resin, mechanical d i f f i c u l t i e s  i n  ion exchange column operation (due 

t o  bead swelling and f lo t a t i on )  and ' loss  of capacity w i l l  become 

s ignif icant  . 
The calculat ion of the  r a t e  of capacity l o s s  of Dowex 50W X-8 r e s i n  

 a able 8) was made assuming the r e s in  t o  be saturated with strontium o r  

cerium f o r  both t h e  ion exchange and precipitation-ion exchange processes. 

Further it was assumed that radiat ion degradation data  obtained with de- 

ionized water apply t o  t he  n i t r a t e  solutions a t  t h i s  report. Ratios of 

sr90 t o  t o t a l  strontium and Ce144 t o  t o t a l  cerium and other  per t inent  

nuclear data were obtained from the  tab les  of ~lomeke and  odd.^ In  

addition, the  shapes of the  sorption cycle curves* ( ~ i g s .  4 and 7) were 

used a s  a bas i s  f o r  assuming tha t  both strontium and cerium were uniformly 

d is t r ibu ted  throughout t he  column i n  the  ion exchange process, while 

each of t h e  four f i s s ion  products -- ca2+, sr2+, 13a2+, and ce3+ -- was 

sorbed i n  a d i s t i n c t  band i n  the  column i n  t h e  precipitation-ion exchange 

process. 

The calculations showed tha t :  (1) The mass of Sr  

s o r b e d p e r c u r i e  o f r a d i a t i o n i s a b o u t 2 5 t i m e s t h a t o f C e  

285 d) due t o  the  difference i n  half- l ives .  Consequently, r e s in  on which 

cerium i s  sorbed would be exposed t o  a correspondingly grea te r  i n t ens i ty  

of beta-par t ic le  radiat ion than t h a t  on which strontium i s  sorbed. 

(2) The f a c t  t h a t  the  r e s in  (when the  head-end pur i f ica t ion  i s  based on 

ion exchange) has a capacity f o r  cerium up t o  tenfold grea te r  than i t s  

capacity f o r  strontium and the f a c t  tha* ~r~~~ has a higher average beta- 

pa r t i c l e  energy than ygO fur ther  d i f f e r en t i a t e  the  r e l a t i ve  e f f ec t s  of 

cerium and strontium radiat ions  on the  res in .  (3) The calculated dose 

ra tes ,  i n  the  ion exchange process, due t o  S r  g O - ~ g O  and Ce 144-~r144 were 

0.2 x and 4.6 x lom3 watts of be ta  energy per gram of dry resin,  

respectively. Assuming a loss  of 20% of capacity per watt-hour per gram 

* 
The sorption of a cation on an ion exchange column was followed by plot-  
t i n g  the  f rac t ion  of the  feed solution cation concentration i n  the  ef- 
f luen t  (C/CO) vs r e s in  volumes of feed passed through the  column. When 
the  charac te r i s t ic  "S"-shaped curve approached uni ty  a t  100% breakthrough 
and leveled off a s  more feed solution was passed through the  column, the  
cttlion sorbed wac considered un.i.formly d is t r ibu ted  over t he  e n t i r e  length 
of t he  column. However, when t h i s  curve went above uni ty  and then re-  
turned asymptotically t o  unity, a s  i n  Fig. 8, then t h e  cat ion was 
consid~rerl  t o  be c~ncen t r a t ed  i n  a band, which occupied only a f r ac t ion  
of the  column. 



Table 8. . Nuclearand Chemical Data on srgO and. cel& and t h e i r  
Calculated Effect on Cat ion Exchange Capacity 

A. General Nuclear Data 

Radionuclide 

srw ce'44 

Mass per  uni t  ac t iv i ty ,  medcurie  . 0.156 . 0.0066 

. Average energy of'f3 emmitting daughter, 
~ e v &  , 0.73 (ygo) 0.97 (kl-44) 

Energy release per  u't act iv i ty ,  
(watts/curie) x 10' 3 4.32 5.74 

-.- - 

b B. Calculations Based on Experimental Data 

Process 

Ion Exchange Fpt  'n-Ion Exch. 

srgo Ce144 sr90 C e 144 

Cation r e s in  capacity, medg of 
dry r e s in  0.023 0.18 3 52 1.81 

Radionuclide mass, meq p emitter/g 
of d ry  resir1 0 .007 0.059 1.1 , 0.602 

RadisnucliCle energy release, 
4.64 of dry resin)  x 0.197 '32.5 46.4 

Operating time t o  loge 10% of 
res in  capacity, h r  2540. 108. 15 11. 

A>- - 

?From t h e  data of Blomeke and Todd.. 
144 Assume res in  saturated w i t h  e i ther  ,SrgO or Ce . 

C Assil.me capacity lo s s  r a t e  of 20% per watt-hour per gram of dry resin.  

of dry resin,  '.l;he r e s in  could be used i n  excess of 2500 h r  f o r  srW-ygo 

processing before losing 10% of i t s  capacity. For ~ e ~ ~ ~ - ~ r ~ ~ ~  processing, 

t h i s  would be redi.iced t o  about 100'hr.  (4) The calculated dose r a t e s  

(i'n the .precipitation-ion exchange process), due t o  beta  emission from 
144 144 

srgO-ygO and, Ce -Pr , were 32.5 x 10'~ and 46.4 x watts per gram 

of dry resin,  respectively. This assumes band-type sorption. The res in  

could be used i n  excess of 15 h r  , f o r  srg0-y90 processing or  f o r  10 h r  f o r  

~ e ~ ~ ~ - ~ r ~ ~ ~  processing before losing 10% of i t s  capa<ity. 



5. DISCUSSION OF FESULTS 

Pretreatment of Purex-1WW waste with c i t r a t e  ion a t  pH 2.5 effect ively 

complexes the  major cationic impurities -- 3'e3+, cr3+, and ~ 1 ~ '  -- and, 

upon subsequent cation exchange processing of a twentflold di luted waste, 

increases the capacity f o r  strontium t o  the  equivalent of about 3 volumes 

of or ig ina l  waste per volume of r e s in  -- a fourfold improvement over the 

processing of an untreated waste which has been di luted by a fac tor  of 
3+ 10. Resin capacity f o r  rare  ear ths  ( ~ e  ) i s  increased by a fac tor  af 

3 from 1.7 t o  5 volumes of or iginal  waste per  volume of resin.  

Pretreatment of Purex 1WW by a double precipi ta t ion -- precipi ta t ion 

of su l fa te  ion a t  55 t o  60% HNO followed by precipi ta t ion of strontium 
3 

at 85% HID3 -- recovers 75 t o  80% of the strontium i n  the waste together 

with l e s s  than 1% each of sulfate  ion and the major cationic impurities. 

This pretreatment concentrates the  strontium by a fac tor  of 2.5 t o  3.0 

and reduces by more than 200-fold the r a t i o  of t o t a l  t r iva len t  cationic 

impurities t o  strontium. !This r e su l t s  i n  a twentyfold improvement i n  

strontium capacity, t o  67 volumes of Purex 1WW processed per volume of 

resin, when the dissolved and c i t ra te - t rea ted  prec ip i ta te  i s  processed 

by cation exchange. Rare ear th recovery by t h i s  treatment i s  not i m -  

proved because rare  ear ths  a re  only p a r t i a l l y  precipi ta ted with strontium. 

Elution of the  sorbed strontium with ammonium a-hydroxyisobutyrate 

r e su l t s  i n  the  following decontamination fac tors  f o r  f e r r i c  ion: 600 

fo r  waute pretresrt.ed wi%h. n i t r a t e  ion and di luted twentyfold, and 5 x 
5 10 f o r  waste pretreated by a double precipi ta t ion using n i t r i c  acid. 

E L ~ t i o n  of ra re  ear ths  sorbed from the  c i t r a t e  pretreatment step r e su l t s  

i n  an i ron decontamination fac tor  of only 5. However, t h i s  fac tor  can 

probably be improved by eluting f e r r i c  ion with c i t r a t e  t o  pH 2.5 t o  3 

before recovering any of the  f i s s ion  products. 

Cross-contamination was observed i n  each of the  eluted f i s s ion  

products -- ce14', Ca47, and Sr85 ( ~ i g s  . 5 and 8). Complete loading of 

the  column t o  obtain capacity data during the  sorption cycle l e f t  no 

reservoirof resin t o  provide f o r  clean separations during the  elut ion 

cycle. It was estimated tha t  an additional 0.25 volume of f resh r e s in  



would be ample t o  prevent the  observed cross-contamination. Thus, purer 

e lut ion products could probably be obtained by e i the r  loading t o  75$ of 

capacity during the  sorption cycle or  adding 0.25 volume of f resh resin 

t o  the base of a f u l l y  loaded column p r io r  t o  elution. 

With the  precipitation-ion exchange process, both the  resul tant  

volume of l i qu id  waste and t h e  amount of organic chemical i n  the  waste 

a r e  smaller than i n  the waste derived from the d i rec t  ion exchange 

process. The volume i s  about a fourth t o  a t h i r d  l e s s .  Ci trate  and 

a-hydroxyisobutyrate a re  present i n  only about 5% of the  500 res in  

volumes col lected from processing 67' volumes of Purex 1WW i n  the  pre- 

c ip i t a t ion  ion exchange process. On the other hand, i n  the  d i rec t  ion 

exchange process, about 759 of the 1800 res in  volumes collected from 

handling a l i k e  amount of Purex 1 W W  a re  about 0.05 M i n  c i t ra te ;  the - 
balance contain a-hydroxyisobutyrate. 

Radiation damage t o  the  res in  i s  up t o  ten  times greater  when proc- 

essing Purex 1WW waste f o r  ra re  ear ths  (Ce144-Pr144) than fo r  strontium 

(srgO-ygO). I n  t h e  d i rec t  ion exchange process, the calculated dose 

r a t e s  are 0.2 x and 4.6 x w of beta  energy per gram of dry 
144 144 re s in  f o r  sr9-yg0 and Ce -Pr processing, respectively. A t  these 

in tens i t ies ,  it i s  estimated t h a t  strontium and rare  ear ths  can be 

yrocessea i n  excess of 2500 and 100 hr, respectively, before lo$ of the 

r e s i n  capacity i s  l o s t .  I n  t h e  precipitation-ion exchange process, 

capacity i s  increased a hundredfold, thereby, increasing the  dose r a t e  

t o  32.5 x lom3 w of beta energy per gram of dry res in  from Sr 90-,90 

A t  t h i s  dose rate ,  there  would be a 1% loss  i n  res in  capacity a f t e r  

about 15 h r  of processing time. Obviously, the res in  w i l l  last about 

150 times longer if di rec t  ion exchange i s  used rather  than precipitation- 

ion excharge, Radiation d-gc per cycle can bc minimized by the use u£ 

continuous ion exchange equipment, such as the  Higgins contactor. 19 
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METHOD FOR ANALYZING A MIXTURE OF GAMMA-EMmING ISOTOPES BY THX USE 
OF A MlTLT1CH.L GAMMA-RAY SPECTROMETER 

This section describes the general procedure used i n  order t o  obtain 

the sorption and elut ion curves. Since the  object of the  analysis was t o  

obtain sat isfactory data f o r  flowsheet proposals, refinements i n  the pro- 

cedure were l imited t o  those necessary f o r  achieving tha t  goal. I n  order 

t o  follow the path of some of the f i s s ion  products i n  the  processirg of 

Purex 1WW waste by the two procedures described i n  t h i s  .report, the gamma- 

ray emitting isotopes Sr85, ce14', Ba133, and ~e~~ were added i n  t r ace r  

quantity t o  the  waste solution. The separation of strontium and rare  

earths, i n  the  ion exchange step of both. processes, required the  col lect ion 

of hundreds of eff luent  samples. The job of obtaining sorption and elut ion 

curves f o r  each of the f i v e  isotopes i n  each of the  two runs was simplified 

by (1) analyzing the gamma spectra of the  effluent samples on a 200-channel 

gamma-ray spectrometer and (2) using the  Control Data Corporation 1604-A 

computer t o  calculate the  ac t iv i ty  contribution of each isotope at each 

channel i n  a ~pectnlrn by a least-squares procedure and t o  p lo t  the  r a t i o  

of the  individual isotope a c t i v i t i e s  r e l a t ive  t o  t h e i r  individual 

a c t i v i t i e s  i n  the feed solution t o  the ion exchange column a s  a function 

of res in  volumes of l iqu id  passed through the  column. 

Data obtained by sc in t i l l a t ion  spectrometry included the  gamma spectra 

of the  background and of ident ica l  volumes of the feed solution and solu- 

t i ons  eff luent  from the ion exchange column. The feed solution with the  

concentration of any t r ace r  expressed a s  Co was used as a standard f o r  

c a l c ~ d a t i n g  the  unknown concentrations C i n  the  eff luent  samples. Each 

sample was placed i n  about the same posi t ion bn a sodium iodide well- 

type c rys t a l  (3-in. i n  diameter by 3-in. high), co~mted, and the  time of 

counting recorded. The multichannel analyzer was se t  t o  cover the gamma- 



energy range from 0 t o  1.6 Mev i n  160 cllarmels,. o r  0.01 Mev per channel. 

Electronic problems produced a nonlinearity of energy versus channel 

number at the' lower end of the  energy spectrum ( in  the  region 0 t o  0.2 

~ e v )  and a l so  caused energy-peak s h i f t s  t o  occur during long-term opera- 

t i o n  of the  instrument, wherein the channel-number s h i f t  was proportional 

t o  energy. The overal l  e f fec t  of these problems was t o  cause greater  

inaccuracies at t h e  lower end of the  energy spectrum where, characteris- , 

t i ca l ly ,  the  a c t i v i t y  of a gamma peak would ,span only about four t o  f ive  

channels, compared with the  1 5  t o  20 channels'at greater  than 1 Mev. 

uf the  pa r t i cu la r  group of isotopes used f o r  the  experiments'  a able 9') 

two of them had peaks of almost the  same energy level:  (1) The daughter 

product of ~ a ~ ~ ,  namely ~ c ~ ~ ,  had an energy peak bf 0.157 Mev, compared 

with 0.145 Mev f o r  ce141; and (2) the  energy peak of Ca4? a t  1.29 Mev 

was about the  same a s  the  1.289 Mev peak of ~ 8 ~ ' .  The interference of 

Sc4? w a s  remedied by repeating measurements for  ce141 a f t e r  t he  short- 

l ived  Ca4?-Sc4? had decayed. Interference of 3'e5' i n  the  determination 

of Ca47 was l imited t o  the  sorpt ion cycle only; t h i s  interference was 

fur ther  minimized because the  3'e5' a c t i v i t y  reached a steady-state 

value at the  beginning of the  sorption cycle (iron formed a strong 

c i t r a t e  complex and was not sorbed). Thus, when calcium bre~ .k t .h ro~ .~h  

occurred, the addi t ional  a c t i v i t y  was detected, without d i f f icu l ty .  Wet 

analyses of some of the samples containing calcium ion provided an ad- 

d i t iona l  check on the  radiochemical data. 

The resolution of these gamma spectra in to  individual isotopic 

a c t i v i t i e s  w a s  done by a least-squares procedure. 'A correction was made 

f o r  the channel s h i f t  of t he  energy peaks, proportional t o  the  energy 

l e v e l  of the  peak. However, the computation assumed l inea r i ty  over the 

en t i r e  energy spectrum covered, 0 t o  1.6 Mev. The FORTRAN code written 

f o r  the computer i s  based on the following general solution t o  the  

problem. 

1. Background. M s e t s  of background counting a re  obtained. The 

number of counts collected on channel J i s  designated as Y(J,M) and the 

time of counting, T, i s  represented by T(M) . 



Table 9. Nuclear Data on Gamma-Emitting Radioisotopes Used i n  
Tracer Quanti t ies  i n  the  Reported Experiments 

Energy of Emitted Gamma Radiation 
Radioisotope Half -Lif e (MeV) 

2. Samples. A + N samples a re  counted of index K. A represents 

the  standard or  Peed solution, which contains only one isotope; s i x  

isotopes were used, so f o r  t h i s  problem, A = 1 t o  6. N represents the 

number of unknowns or effluent samples counted. Y (J,K) designates the 

t o t a l  counts collected on channel J of sample K. T(K) i s  the  time tha t  

the same K i s  counted. . 

3. Equations. For the unknown samples (K = A + 1 t o  A + N cor- 

responding t o  K = 6 + 1 t o  6 + N i n  the present work), the  a c t i v i t y  

count r a t e  on channel J i s  the sum of the  count r a t e s  of the  isotopes 

and of the background, where the count r a t e  of an isotope i s  expressed 

a s  a f ract ion [F(I,K)] of the count r a t e  [x(I,J)] of the  standard. 

These re la t ions  a re  then summarized f o r  the present report  as: 

where 



F(I,K) i s  obtained by a least-squares solution of the  equation: 

where t h e  variance of a count, namely a 2 
Y(K, J)' 

i s  equal t o  the  count. 
. - .  

That i s , 

Since a11 the  samples were not analyzed on the  spectrophotometer on 

t h e  same day nor counted f o r  the  same length of time;appropriate time 

corrections had t o  be made i n  order t o  make the  a c t i v i t y  data s ignif icant  

and comparable. These adjustments were made according t o  the  equation: 

where 

B(I) i s  the decay constant X of isotope I, 

Z(K)  i s  t he  elapsed time between counting any sample, K, ahd i t s  
standard, 

T(A) i s  the time of counti.ng the  standard, 

T(K) i s  t h e '  time of counting the  unknown. 

Plots  of R(I,K) vs res in  volumes of l i qu id  passed through the  ion exchange 

column f o r  each of the  s i x  isotope t r ace r s  are included s~  fig^. 4, 5 ,  7, 
and 8 of t h i s  report ,  

, 
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