

BLANK PAGE

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 2216-Price: Printed Copy \$7.75; Microfiche \$2.25

This report was prepared as an account of work sponeored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legst liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process declased, or represents that its use would not infringe privately owned rights.

1

ORNL-5035 \RC-1, -5

Contract No. W-7405-eng-26

Reactor Division

FLANGE: A COMPUTER PROGRAM FOR THE ANALYSIS OF FLANGED JOINTS WITH RING-TYPE GASKETS

E. C. kodabaugh Battelle-Columbus Laboratories

F. M. O'Hara, Jr. S. E. Moore Oak Ridge National Laboratory

Nork funded by the Nuclear Regulatory Commission under Interagency Agreement 40-495-75

JANUARY 1976

Subcontracy No. 2913

for

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 Operated by UNION CARBIDE COMPORATION for the U.G. LNERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

Approximately to an anomal of and proceed by the United States Generation Works for United States are a the United States (resp. States) and the United States) are a distant of the United States (resp. States) and the United States) are a distant of the United States (resp. States) are an united States) and the United States of the Internet, completeness of conductors of the Internet, completeness of conductors of the Internet, completeness process Audited, or responses that is an internet of process Audited, or responses that is an internet of the Internet of Internet.

NOTION PORTIONS OF THIS REPORT ARE has been reproduced from the t

copy to permit the broadest ponny

ability.

÷

CONTENTS

		iste
FOR	ENORD	v
1.	INTRODUCTION	1
	Purpose and Scope	1
	Nomenclature	-
2.	GENERAL DESCRIPTION OF THE ANALYSIS	x
3.	FLANCE NITH A TAPERED-WALL HUB	•
	Equations for the Annular Ring	7
	Equations for the Tapered Hub	Ä
	Equations for the Pipe	11
	Boundary Conditions	12
	Boundary Equations	1.
	Stresses	15
	Displacements	11-
4.	FLANGE WITH A STRAIGHT HUB	17
5.	BLIND FLANGES	<u>ی</u>
	Analysis Method	32
	Stresses	24
	Displacements	25
6.	THERMAL GRADIENTS	24
₹.	CHANGE IN BOLT LOAD WITH PRESSURE, TEMPERATURE, AND EXTERNAL MOMENTS	27
	Analysis	- 28
	External Moment Loading	36
S	COMPLETER PROCESS	\$7
•••	Ontion Control Data Card	-1 37
	leput for Code-Compliance Calculations	10
	Output from Code-Compliance Calculations	41
	Input for General Purpose Calculations	45
	Output from General Purpose Calculations	47

L

I.

I.

. e^{n 15}

•

.

i. E

2

.

. .

.

i.

T

T

BLANK PAGE

Page

ACKNOWLEDGHE	NT	52
REFERENCES		52
APPENDIX A.	Examples of Application of Computer Program	53
APPENDIX B.	Flowcharts and Listing of Computer Program FLANGE and Attendant Subroutines	9 7

1

2.0-

FOREWORD

The work reported here was performed at Oak Ridge National Laboratory and at Battelle-Columbus Laboratories under Union Carbide Corp., Nuclear Division, Subcontract No. 291 × as part of the ORNL Design Criteria for Piping and Nozzles Program, S. E. Moore, Manager. This program is funded by the Division of Reactor Safety Research (RSR) of the U.S. Nuclear Regulatory Commission as part of a cooperative effort with industry to develop and verify analytical methods for assessing the safety of pressure-vessel and piping-system design. The cognizant RSR project engineer is E. K. Lynn. The cooperative effort is coordinated through the Pressure Vessel Research Committee of the Welding Research Council under the Subcommittee on Piping, Pumps, and Valves.

The study described in this report was conducted under the general direction of N. L. Greenstreet and S. E. Moore, Solid Mechanics Department, Reactor Division, ORNL, and is a continuation of work supported in prior years by the Division of Reactor Research and Development, U.S. Energy Research and Development Administration (formerly the USAEC,.

Prior reports and open-literature publications in this series are:

- N. L. Greenstreet, S. E. Moore, and E. C. Rodabaugh, "Investigations of Piping Components, Valves, and Pumps to Provide Information for Code Writing Bodies," ASME Paper 68-NA/PTC-6, American Society of Mechanical Engineers, New York, Dec. 2, 1968.
- 2. N. L. Greenstreet, S. E. Moore, and R. C. Gwaltney, Progress Report on Studies in Applied Solid Mechanics, ORNL-TM-4576 (August 1970).
- 3. E. C. Rodahaugh, Phase Report No. 115-1 on Stress Indices for Small Branch Connections with External Loadings, ORNL-TM-3014 (August 1970).
- 4. E. C. Rodabuagh and A. G. Pickett, Survey Report on Structural Design of Piping Systems and Components, T1D-25553 (December 1970).
- 5. E. C. Rodabaugh, Phase Report No. 115-8, Stresses in Out-of-Round Pripe Due to Internai Pressure, ORNL-TM-3244 (January 1971).
- 6. S. E. Bolt and W. L. Greenstreet, "Experimental Determination of Plastic Collapse Loads for Pipe Elbows," ASME Paper 71-PVP-37, American Society of Mechanical Engineers, New York May 1971.

Ŷ

j.

II

- 7. G. H. Powell, R. W. Clough, and A. M. Gantayat, "Stress Analysis of B16.9 Tees by the Finite Element Method," ASME Paper 71-PVP-40, American Society of Mechanical Engineers, New York, May 1971.
- 8. J. K. Hayes and B. Roberts, "Experimental Stress Analysis of 24-Inch Tees," ASME Paper 71-PVP-28, American Society of Mechanical Engineers, New York, May 1971.
- 9. J. M. Corum et al., "Experimental and Finite Element Stress Analysis of a Thin-Shell Cylinder-to-Cylinder Model," ASME Paper 71-PVP-36, American Society of Mechanical Engineers, New York, May 1971.
- N. L. Greenstreet, S. E. Moore, and J. P. Callahan, Second Annual Propress Report on Studies in Applied Solid Machanics (Muolean Safety), ORNL-4693 (July 1971).
- 11. J. M. Corum and W. L. Greenstreet, "Experimental Elastic Stress Analysis of Cylinder-to-Cylinder Shell Models and comparisons with Theoretical Predictions," Paper No. G2/5, First International Conference on Structural Mechanics in Reactor Technology, Berlin, Germany, Sept. 20-24, 1971.
- R. W. Clough, G. H. Powell, and A. N. Gantayat, "Stress Analysis of B16.9 Tees by the Finite Element Method," Paper No. F4/7, First International Conference on Structural Mechanics in Reactor Technology, Berlin, Germany, Sept. 20-24, 1971.
- 13. R. L. Johnson, Fhotoclastic Determination of Stresses in ASA 816.9 Tees, Research Report 71-9E7-PHOTO-R2, Nestinghouse Research Laboratory (November 1971).
- E. C. Rodabaugh and S. E. Moore, Phase Report No. 115-10 on Comparisons of Test Data with Code Methods for Fatigue Evaluations, ORNL-TM-3520 (November 1971).
- W. G. Dodge and S. E. Moore, Stress Indices and Flexibility Factors for Moment Loadings on Elbows and Curved Pipe, ORNL-TM-3658 (March 1972).
- 16. J. E. Brock, Elastic Buckling of Heated, Straight-Line Piping Configurations, ORNL-TM-3607 (March 1972).
- J. M. Corum et al., Theoretical and Experimental Stress Analysis of ORNL Thin-Shell Cylinder-to-Cylinder Model No. 1, ORNL-4553 (October 1972).
- W. G. Dodge and J. E. Smith, A Diagnostic Procedure for the Evaluation of Stisin Data from a Linear Elastic Test, ORNL-TM-3415 (November 1972).

1

1

1 11 1

ιı

- N. G. Dodge and S. E. Moore, "Stress Indices and Flexibility Factors for Moment Loadings on Elbows and Curved Pipe," Welding Research Council Bulletin 179, December 1972.
- W. L. Greenstreet, S. E. Moore, and J. P. Callahan, Third Annual Progress Report on Studies in Applied Solid Mechanics (Nuclear Strety), ORNL-4821 (December 1972).
- W. G. Dodge and S. E. Noore, ELBBM: A Portran Program for the Calculation of Stresses, Stress Indices, and Flexibility Factors for Elbows and Curved Pipe, ORXL-TN-4098 (April 1973).
- N. G. Dodge, Jocondary Stress Indices for Integral Structural Attachments to Straight Pipe, ORNL-TM-3476 (June 1973). Also in Welding Research Journal Bulletin 198, September 1974.
- E. C. Rodabaugh, N. G. Dodge, and S. E. Moore, Stress Indices at Lug Supports on Piping Systems, ORNL-TM-4211 (May 1974). Also in Welding Hosearch Council Bulletin 198, September 1974.
- N. L. Greenstreet, S. E. Moore, and J. P. Callahan, Fourth Annual Progress Report on Italies in Applied Solid Mechanics (Pressure Unseels and Figury System Components), ORNL-4925 (July 1974).
- G. H. Powell, Finite Element Analysis of Elastic-Plastic Tee Joints, URNL-Sub-3193-2 (UC-SESM 74-14), College of Engineering, University of California, Berkeley (September 1974).
- R. C. Gwaltney, URT-11 A Computer Program for Analyzing Surved Tubes or Elbous and Actuated Pipes with Symmetric and Unsymmetric Loalings, URNL-TM-4646 (October 1974).
- 27. E. C. Rodabaugh and S. E. Moore, Stress Indices and Fleribility Factors for Ioncentric Reducers, ORNL-TH-3795 (February 1975).
- iv. R. Henley, Test Report on Experimental Stress Analysis of a 14 Inch Diameter Tee (ORNL 7-13), ORNL-Sub-3310-3 (CENC 1189), Combustion Engineering, Inc. (March 1975).
- D. R. Henley, lest Report on Experimental Stress Analysis of a 24 Inch Diameter The (ORML T-12), ORNL-Sub-3310-4 (CENC 1237), Combustion Engineering, Inc. (April 1975).
- D. R. Henley, Dest Report on Experimental Stress Analysis of a 24 Inch Diameter Tee (ORNL 7-16), ORNL Sub-3310-5 (CENC 1239), Combustion Engineering, Inc. (June 1975).

1

11

 R. C. (Waltney, S. E. Bolt, and J. N. Bryson, Theoretical and Experimental Stress Analysis of ORNL Thin-Shell Cylinder-to-Cylinder Model 4, ORNL-5019 (June 1975).

- 32. R. C. Ghaltney, S. E. Bolt, J. N. Corun, and J. N. Bryson, Theoretical and Experimental Stress Analysis of ORML Thin-Shell Cylinder-to-Cylinder Model 3, ORNL-SOLU (June 1975).
- 33. E. C. Rodabaugh and S. E. Moore, Stress Indices for AUSI BIG. 11 Standard Socket-Welding Fittings, ORNL-TH-1929 (August 1975).
- 34. R. C. Gualtney, J. N. Bryson, and S. E. Bolt, Experimental and Finite-Element Analysis of ORML Thin-Shell Model No. 2, ORNL-S021 (October 1975).

1. INTRODUCTION

Purpose and Scope

The 4.222 a Sier bal Pressure New? Node¹ gives rules for designing bolted flange connections with ring-type gaskets based on a stress analysis developed by Waters et al.² These rules give formulas and graphs for calculating stresses due to a moment applied to the flange ring. The Code rules, however, do not require that stresses due to internal pressure be taken into account, although Ref. 2 briefly discusses such stresses.

The computer program FLANGE was written to calculate not only the stresses due to moment loads on the flange ring but also stresses due to internal pressure; stresses due to a temperature difference between the hub and ring; and stresses due to the variations in bolt load that result from pressure, hub-ring temperature gradient, and/or bolt-ring temperature difference. The program FLANGE is applicable to taperedhub, straight, and blind flanges. The analysis method is based on the differential equations for thin plates and shells rather than on the strain-energy method used by Waters et al... The stresses due to moment loading calculated by the two methods are essentially identical for identical boundary conditions. The analysis provided herein also includes a different, and perhaps more realistic, set of boundary conditions than those used in Ref. 2.

The nomenclature used in this report is identified in the remainder of this chapter. In Chapter 2 a description of the general model of flanges used in the theoretical development of the computer code is provided. The actual mathematical expressions for calculating stresses and displacements due to moment and pressure loads are derived in Chapters 3, 4, and 5 for tapered-hub, straight hub, and blind flanges, respectively. In Chapters 6 and 7, these expressions are extended to include the effects of thermal gradients and variations in bolt loads. The computer program FLANGE is described in the last chapter of this report. Example calculations, listings, and flowcharts of the program and its subroutines are included as appendices.

-

Nomenclature

a = outside radius of ring A = 2a = outside diameter of ring $A_{\rm L}$ = cross-suctional bolt area $A_{\mu} = gasket area$ b = inside radius of ring and mean radius of pipe B = 2b = inside diameter of ring b = Bessel function of n c = bolt-circle radius C = 2c = bolt-circle diameter $C_i = constant of integration$ $C_i^{\prime} = C_i^{\prime}/b$ $D = Et^{3}/12(1 - v^{2})$ D_{ii} = constants of integration (blind-flange analysis) $E = E_c = modulus$ of elasticity of flange material $E_{\rm b}$ = modulus of elasticity of bolt material E_{g} = modulus of elasticity of gasket material f = ASME Code design parameter F = ASME Code design parameter g₀ = wall thickness of pipe g₁ = wall thickness of hub at intersection with ring g = gasket centerline radius G = 2g = gasket centerline diameter h = length of tapered-wall hub K = a/b = A/B $\ell_0 = \text{bolt length}$ M = total moment applied to ring, in.-lb M_{i} or M_{i} = moment resultants, in.-lb/in. p = internal pressure P_1 = shear resultants, lb/in. $P^* = \frac{[1 - (v/2)]bp}{g_0 E} = nondimensional pressure parameter$ r = radial coordinate, ring

t = ring thickness t_ = hub thickness u = radial displacement, hub u, = radial displacement, pipe u_ = radial displacement, ring V = ASME Code design parameter v_a = undeformed gasket thickness w = axial displacement, ring W, = initial bolt load, lb N, = residual bolt load, lb x = axial coordinate, hubx₁ = axial coordinate, pipe $\alpha = (g_1 - g_0)/g_0 = \rho - 1 = nondimensional wall-thickness parameter$ $\beta = [3(1 - v^2)/b^2g_2^2]^{1/4}$ = dimensional parameter used in the analysis $\gamma = [12(1 - v^2)/b^2g_c^2]^{1/4}(h) = dimensional parameter used in the analysis$ Δ = temperature difference between hub/pipe and ring δ_i = axial displacement of ring ε_{e} = coefficient of thermal expansion, flange material $\epsilon_{\rm b}$ = coefficient of thermal expansion, bolt material ε₀ = coefficient of thermal expansion, gasket material $n = 2\gamma(\psi/a)^{1/2}$ = nondimensional argument of the modified Bessel functions v = Poisson's ratio (0.3 used herein) $\xi = x/h = nondimensional distance parameter$ $\rho = g_1/g_0 = \text{nondimensional wall-thickness parameter}$ σ = stress, with subscripts: £ = longitudinal (pipe or hub) c = circumferential (pipe or hub) t = tangential (ring) r = radial (ring) b = bendingm = membrane o = outside surface of the pipe or hub on the hub side of ring i = inside surface of the pipe or hub on the gasket-face side of ring $\psi = \xi + (1/\alpha) =$ nondimensional parameter

2. GENERAL DESCRIPTION OF THE ANALYSIS

The model used for the analysis of tapered-hub flanges is shown in Fig. 1. The three parts involved are the pipe, hub, and ring, respectively. The analysis presented here is based on the theory of thin plates and shells. The pipe is considered to be a uniform-wall-thickness cylindrical shell with micourface radius b. The hub is considered to be a linearly variable-wall-thickness cylindrical shell with midsurface radius i. The ring is considered to be a flat annular plate with constant thickness t, inside radius b, and outside radius a. The effects of the bolt holes are neglected.

Three different types of loadings on bolted flanges are considered:

1. Bolt load, represented by W in Fig. 1. In application, the moment M applied to the flange ring is converted into an equivalent bolt load by the relationship W(a - b) = M. This is the same approach used in the ASME Code calculation method.¹

2. Internal pressure, acting radially on the pipe, hub, and ring and axially on an (assumed remote) end closure on the pipe.

3. A temperature difference between the pipe and the ring. The pipe and the hub are assumed to be at the same uniform temperature. The ring is also assumed to be at a uniform temperature, which may be different from that of the pipe or hub.

Upon integration of the shell and plate differential equations, algebraic equations in terms of dimensions, materials propertie: and loadings, and 12 integration constants are obtained, 4 for each part. These constants are evaluated by the usual discontinuity analysis method of writing continuity equations at the junctures of the parts and at the boundaries. After numerical values are determined for the constants, the algebraic equations provide the means for computing the stresses and deflections. In the development of the equations for stresses, the assumption is made that the bolt load W does not change with pressure or temperature. Later the analysis is modified to include changes in W as a function of these loadings. Because the relations are linear, it is possible to determine the stresses (or stress range) due to combinations

Fig. 1. Analysis model of a tapered-hub flange.

of initial bolt loading, pressure, and temperature change. The model used for straight-hub flanges is a simplification of the tapered-hub case in that only two parts are involved, the pipe and the ring.

In common with all shell-type analyses, the analysis gives anomalous results at points of abrupt thickness change or meridional direction change. In particular, the stresses at the juncture of the hub to the ring represent only the gross loading effect; detailed local stresses are not determined by the theory. Displacements, however, are represented fairly accurately.

3. FLANGE WITH A TAPERED-WALL HUB

The first step in deriving the stress equations is to state the basic shell/plate equations for the ring, the hub, and the pipe. We then inspect the boundary conditions, compute the constants, and calculate the stresses and displacements.

Equations for the Annular Ring

The basic differential equation for the displacement w of a circular plate given by Timoshenko³ is

$$\frac{1}{r}\frac{d}{dr}\left\{r\frac{d}{dr}\left[\frac{1}{r}\frac{d}{dr}\left(r\frac{du}{dr}\right)\right]\right\}=\frac{q}{D},\qquad(1)$$

where the coordinate r and displacement w are illustrated in Fig. 1 and q = a uniformly distributed lateral load on the plate, $D = Et^3/12(1 - v^2) =$ the flexural rigidity of the plate, E = modulus of elasticity of the flange material, t = plate thickness, and v = Poisson's ratio. Equation (1) can be integrated to give a relation for the displacement in terms of arbitrary constants:

$$w = C_7 r^2 \ln r + C_8 r^2 + C_9 \ln r + C_{10} + \frac{r^4 q}{640}$$
, (2)

where numerical values for the constants C_7 , ..., C_{10} are established from boundary conditions. Derivatives of w, required in the subsequent analysis, are:

$$\frac{dw}{dr} = C_7(2r \ln r + r) + 2C_8r + \frac{C_9}{r} + \frac{r^3q}{160}, \qquad (3)$$

$$\frac{d^2w}{dr^2} = C_7(2 \text{ tn } r + 3) + 2C_8 - \frac{C_9}{r^2} + \frac{3r^2q}{160}, \qquad (4)$$

$$\frac{d^{3}u}{dr^{3}} = C_{7}\left(\frac{2}{r}\right) + \frac{2C_{9}}{r^{3}} + \frac{3rq}{80}.$$
 (5)

In the subsequent analysis the distributed load q is taken as zero. The radial and tangential momen are given³ by the equations:

$$M_{r} = -D \left(\frac{d^{2}v}{dr^{2}} + \frac{v}{r} \frac{dv}{dr} \right)$$
(6)

and

$$H_{t} = -D\left(\frac{1}{r}\frac{du}{dr} + v\frac{d^{2}w}{dr^{2}}\right).$$
(7)

Using Eq:. (3) and (4), these moments can be expressed as

$$M_{r} = -D \left\{ C_{7}[2(1 + v) \text{ in } r + (3 + v)] + C_{8}[2(1 + v)] - C_{9}\left(\frac{1 - v}{r^{2}}\right) \right\}$$
(8)

and

$$M_{r} = -D \left\{ C_{7}[2(1 + v) \text{ tn } r + (1 + 3v)] + C_{8}[2(1 + v)] + C_{9} \left(\frac{1 - v}{r^{2}}\right) \right\}.$$
 (9)

Equations for the Tapered Hub

The basic differential equation for the radial displacement u of a cylindrical shell with a Jinearly variable wall thickness t_x is given by Timoshenko³ as

8

and

$$\frac{d^2}{dx^2} \left(\frac{t_x^3}{t_x^3} \frac{d^2u}{dx^2} \right) + \frac{12(1-v^2)t_x^2}{b^2} - \frac{12(1-v^2)[1-(v/2)]p}{E} = 0 - \frac{10}{10}$$

The solution of Eq. (10) can be shown* to be:

$$u = \frac{b}{\sqrt{1/2}} (C_1 b_1 + C_2 b_2 + C_3 b_3 + C_4 b_4) + \frac{bP^*}{1 + a\xi}, \qquad (11)$$

where $P^* = [1 - (v/2)]bp/g_0E$. Derivatives of u, required in the subsequent analysis, are

$$u' = \frac{du}{dx} = \frac{b}{2\psi^{3/2}h} (C_1b_5 + C_2b_6 + C_3b_7 + C_4b_8) - \frac{baP^*}{h(1 + a\xi)^2}, \quad (12)$$

$$u^{**} = \frac{d^2 u}{dx^2} = \frac{b}{4\psi^{5/2}h^2} (C_1 b_9 + C_2 b_{10} + C_3 b_{11} + C_4 b_{12}, + \frac{2b\alpha^2 P^*}{h^2 (1 + \alpha\xi)^3}, \quad (13)$$

and

AND A DESCRIPTION OF A

$$u^{\prime\prime\prime} = \frac{d^{3}u}{dx^{3}} = \frac{b}{8\psi^{7/2}h^{3}} (C_{1}b_{13} + C_{2}b_{14} + C_{3}b_{15} + C_{4}b_{16}) - \frac{6ra^{2}P^{*}}{h^{3}(1 + a\xi)^{4}} .$$
(14)

The b_n 's used in Eqs. (11) through (14) are modified Bessel functions of argument $\eta = 2\gamma (\psi/\alpha)^{1/2}$ defined in Table 1, which gives equations for n = 1 through 20; ψ , α , and ξ are defined in the nomenclature.

^{*}A solution to an equation that is essentially the same as Eq. (10) is given by Timoshenko,³ who credits the original solut² on to G. Kirchoff in 1879.

Table 1. Nodified Bessel functions of argument η^{a}

b1 = 'er' n $b_2 = bei' \eta$ $b_3 = ker' \eta$ $b_{\mu} = kei' \eta$ $b_5 = -\eta$ bei $\eta = 2$ ber' η $b_{fi} = \eta ber \eta - 2 bei' \eta$ $b_7 = -\eta$ kei $\eta - 2$ ker' η $b_n = n \ker \eta - 2 \ker^2 \eta$ $b_9 = 4\eta bei \eta + 8 ber' \eta - \eta^2 bei' \eta$ $b_{10} = -4\eta$ ber $\eta + 8$ bei' $\eta + \eta^2$ ber' η $b_{11} = 4\eta \text{ kei } \eta + 8 \text{ ker' } \eta - \eta^2 \text{ kei' } \eta$ $b_{12} = -4n$ ker n + 8 kei' $n + n^2$ ker' n $b_{13} = -n^3$ ber n - 24n bei n - 48 ber' n + $8n^2$ bei' n $b_{1L} = -n^3$ bei n + 24n ber n - 48 bei' n - $8n^2$ ber' n $b_{15} = -n^3$ ker n - 24n kei n - 48 ker' n + 8n² kei' n $b_{16} = -n^3 kei n + 24n ker n - 48 kei' n - 8n^2 ker' n$ $b_{17} = -\eta ber \eta + 2 bei' \eta$ $b_{16} = -\eta bei \eta - 2 ber' \eta$ b19 = -n ker n + 2 kei' n b₂₀ = -n kei n - 2 ker' n

^{c2}The argument $\eta = 2\gamma(\psi/\alpha)^{1/2}$, where $\gamma = [12(1 - \nu^2)/b^2g_0^2]^{1/4}(h)$, $\psi = \xi + (1/\alpha), \xi = x/h$, and $\alpha = (g_1 - g_0)/g_0$.

Equations for the Pipe

The basic differential equation for the radial displacement u_1 of a cylindrical shell with uniform wall thickness is:

$$g_{0}^{3} \frac{d^{4}u_{1}}{dx_{1}^{4}} + \frac{12(1-v^{2})g_{0}}{b^{2}}u_{1} - \frac{12(1-v^{2})[1-(v/2)]p}{E} = 0.$$
 (15)

The solution of Eq. (15) is:

 $u_1 = e^{-\beta x_1}$ (C₁₁ sin $\beta x_1 + C_{12} \cos \beta x_1$)

$$\beta x_{1}$$

+ e (C₅ sin βx_{1} + C₆ cos βx_{1}) + bP*. (16)

For large negative values of x_1 , $u_1 = bP^*$. Hence, $C_{11} = C_{12} = 0$. Derivatives of u_1 needed in the subsequent analysis are

$$u_1' = \frac{du_1}{dx_1} = \beta e \qquad [C_5 (\sin \beta x_1 + \cos \beta x_1)]$$

+
$$C_6 (\cos \beta x_1 - \sin \beta x_1)$$
, (17)

$$u_1^{**} = \frac{d^2 u_1}{dx_1^2} = 2\beta^2 e^{-\beta x_1} [C_5 \cos \beta x_1 - C_6 \sin \beta x_1], \qquad (18)$$

and

$$u_{1}^{\prime \prime \prime} = \frac{d^{3}u_{1}}{dx_{1}^{3}} = -2\beta^{3}c^{-1} \left[C_{5} \left(\sin \beta x_{1} - \cos \beta x_{1}\right) + C_{6} \left(\sin \beta x_{1} + \cos \beta x_{1}\right)\right]. \quad (19)$$

Boundary Conditions

The equations listed above involve ten unknown constants: C_1 , C_2 , ..., C_{10} . These can be determined from the ten boundary-condition

equations shown in Table 2 [Eq. (20)]. The ASME Code stress-calculation method¹ is based on the assumption that the radial displacement at the hub-to-ring juncture is zero. A more realistic assumption (particularly for internal pressure loading) is that the displacement of the hub equals the displacement of the surface of the ring where it joins the hub. Boundary-condition equations for both of these alternatives are provided in Table 2. [See Eqs. (20-5).] In Eq. (20-5b) a positive dw/dr gives a negative radial displacement at the surface of the ring adjacent to the hub. Also in Eq. (20-5b), u_r is the radial expansion of the ring due to internal pressure as given by Lame's equation:

$$u_{r} = \frac{b}{E} \left[\frac{(1 + v)k^{2} + (1 - v)}{k^{2} - 1} \right] \left(\frac{p}{t} - \frac{P_{1}}{t} \right), \qquad (21)$$

where k = a/b. In this expression, it is assumed that in addition to internal pressure p, the shear resultant P₁ is uniformly distributed around the inner edge of the ring.

Boundary Equations

When the equations in Table 2 are satisfied simultaneously, they establish the values of the ten constants $(C_1, C_2, ..., C_{10})$ in terms of the dimensions, Poisson's ratio, and the loads (total bolt load W and internal pressure p). After algebraic manipulation, the equations are reduced to the forms shown in Table 3. This table provides the elements for the matrix equation [A]|C| + |B| = 0, where the terms in the coefficient matrix [A] are given under the headings of the corresponding constants in the column matrix |C|. The loading parameters constitute the column matrix |B|.

To derive numerical values for the constants, three items should be noted.

- 1. It is convenient to define two new constants, $C_5^* = C_5/b$ and $C_5^* = C_6/b$.
- 2. The radial expansion of the ring u_{μ} is defined in Eq. (21).

	Hub-to-pipe juncture		Hub-to-ring junctu	re	King	
	Equation	ty. No.	hquation	Eq. No.	liquetion	lig. So
Displacements ⁴	$(u)_{x=0} = (u_1)_{x_1=0}$	(20-1)	$(w)_{x+h} = 0$	(20-5#)	(w) _{f*1} , = 1)	(20-#)
			$\left\{ \left(u\right)_{xeh} * \left(u_{r} + \frac{t}{2} \frac{dv}{dr} \right)_{reh} \right\}$	(20 - \$6)	(Fouthate h)	
- Rotations	$(u^{*})_{n=0} = (u^{*}_{1})_{n_{1}=0}$	(20-2)	(u') _{x=h} = (dy) _{F=h}	(20-6)		
Homent 4 " 	(u**) _{X=0} = (u**) _{X1=()}	(20-5)	M _{hl} = -M _{rl} = ¹ / ₂ P _l t (Footnote /)	(20-7)	M ₇₂ - 0	(20.4)
Shears	$\left(\frac{\lambda_0}{\lambda} u^{\prime} \cdot \cdot u^{\prime} \cdot u^{\prime}\right)_{\chi=0} \cdot \left(u^{\prime}_1 \cdot \cdot\right)_{\chi_1 \neq 0}$	(20-4)			Q . JP . P . JP	(20-10)

Table 2.	Loustions i	for the	boundary	conditions	for	a tapered-hub	flange
						a cohore uno	

Linkson 1

_

w. 27. 5

5

a in the second processing of

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	į	م . د	۲, ر`	ť,			: a	۰ ۲	<u>.</u> •	.*	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41.9	•	•,-	37	****	3		. 2	\$	÷	3	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	() .	8 .A A	9 ₄ 4	1 21	12	1/1 •	/	2	=	-	э	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.0	•7	3	÷۲	÷.	1/1 1/1	2	2	=	3	3	a . 1 . 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		÷	7	s.: 2	*			*	÷	:	•	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7			ï	z	=	2	÷	-	з	est of the second
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	· 54'2 · . 4		·	· · · · · · · · · · · · · · · · · · ·	-	=	7	÷	2	3	e f ^{el} ko (nrek) Nr e d _e r
	Ĩ	*	24	7	.* 1	3	-	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		11/11/11/11/11/11/11/11/11/11/11/11/11/	8	
			•!	*!45 . !!4	******	2	:	5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	le • Calla		3	
	1	•	3	•	3	3	=		· <u>·</u>		-	2
		•	•	•	3	3	2	884	•		3	s
	101-0	٠	•	3	•	3	=	: -	2	-	2	

П

н П

14

~

i

I

ı H

1 1

3. The ASME Code stress-calculation method uses a moment M, applied to the flange ring, rather than a bolt load W, where the correlation between M and W is M = W(a - b). In the present analysis, however, Eq. (20-10) from Table 2 is used with the loading parameter M, rather than W.

Stresses

After having solved the set of equations in Table 3 for the constants C_1, \ldots, C_{10} , the stresses can be obtained anywhere in the structure. The equations for these stresses, used in other reports^{4,5} in this series, are given in Table 4 [Eqs. (22)-(45)] for the same locations as those given by the ASME Code stress-calculation method; these are (1) at the hub-to-pipe juncture, (2) in the hub at the hub-toring juncture, and (3) at the inside edge of the ring (r = b).

Displacements

In Chapter 7 the displacements w of the flange ring are used. The equations for these displacements (with w arbitrarily set to zero at r = b) are:

$$w_{g} = C_{7}g^{2} \ln g + C_{8}g^{2} + C_{9} \ln g + C_{10}$$
 (46)

at the gasket centerline radius, g = G/2; and

$$w_{c} = C_{7}c^{2} \ln c + C_{8}c^{2} + C_{9} \ln c + C_{10}$$
(47)

at the holt-circle radius, c = C/2.

$\begin{array}{l lllllllllllllllllllllllllllllllllll$	ii ĝ	And Concernent of the second s		(actual address of the second se	-
Evolution $(1, j_1 + \frac{16}{2(1 - j_1)}, (25))(2)$ Bending $(1, j_1 + pb/2g)$ Numbrance $(2, j_1 + pb/2g)$ Mathematic $(2, j_2 + bb/2g)$ Mathematic $(2, j_2 + bb/2g)$ Mathematic $(2, j_2 + bb/2g)$	(77)	liques to the second	72	Lease and the second seco	31
Numbrance $(v_1')_{m} = pv_1/k_0^{-1}$. Analonity Unitatule $(v_1')_{m} = pv_1/k_0^{-1} + 1.41 mit_2^{-1}$ Instide $(v_1')_{m} = pv_1/k_0^{-1} + 1.41 mit_2^{-1}$ Fourformation $(v_2')_{m} + v_2/v_1^{-1})_{m}^{-1}$ Bonding $(v_2')_{m} = (Eu_0/k_0) + v_2(pv_2)_{m}^{-1}$ Numbrane $(v_2')_{m} = (Eu_0/k_0) + v_2(pv_2)_{m}^{-1}$		$\frac{(r_{1})_{h}}{(r_{1})_{h}} = \frac{h_{H_{1}}}{(r_{1})_{h}} = \frac{(r_{1})_{h}}{(r_{1})_{h}} = \frac{(r_{1})_{h}}{(r_{1})_{h}} = \frac{(r_{1})_{h}}{(r_{1})_{h}} = \frac{(r_{1})_{h}}{(r_{1})_{h}}$	(Ĵ.	× 10,0 × 102/1414 × ⁴⁶⁴ 8300 (۲۵/۵۵) × ⁴ 6 ⁴ 63	1 3
Numbrance $(v_{i})_{in} + pb/2g_{in}$ Untaide $(v_{i})_{in} + pb/2g_{in} + 1.81m(c_{in})_{in}$ Inside $(v_{i})_{in} + pb/2g_{in} + 1.81m(c_{in})_{in}$ Inside $(v_{i})_{in} + v_{in}(v_{i})_{in}$ Pending $(v_{i})_{in} + (u_{in}/b) + v_{in}(ph/2g_{in})_{in}$ Numbrane $(v_{in})_{in} + (Eu_{in}/b) + v_{in}(ph/2g_{in})_{in}$				(subjection of the state of the	
Untaide $(J_{1}J_{0} + \mu^{0}/2g_{0} + J_{1}a_{1}\mu_{1}^{2}$ Inside $(J_{2}J_{1} + \mu^{0}/2g_{0} + J_{2}a_{1}a_{2}a_{2}$ conferential conferential bending $(J_{2}J_{0} + (Eu_{0}/b) + v(p_{0}/2g_{0}))$ Moderane $(J_{2}J_{0} + (Eu_{0}/b) + v(p_{0}/2g_{0}))$	(£.)	¹ Wr / 44 ¹ × ¹⁰ (* c)	(11)	$\left(\frac{1}{2}, -\frac{1}{2}\right)^{\frac{1}{2}}$	(H)
$\begin{aligned} \text{Isside} & (J_1 J_1 \times \mu h/2g_2 + 1.81 \text{ec}_2 \\ \text{conformation} \\ \text{conformation} \\ \text{reading} & (J_2 J_2 + v_2 (J_2 J_3 + 0 \text{pb}/2g_2) \\ \text{boolding} & (J_2 J_3 + (Eu_6/b) + v(pb/2g_2) \\ \end{aligned}$	60	41,14 - 142,44 - 11,1 4	(20)		1,041
cumforential or rading ''' _' ' _' ' _b + ''(' _' ') _b bending '''' _' '' _b + ''('' _b 'b) + '(pb/2d ₆) Numbrane (' ₂ ') _b + (Eu ₆ /b) + '(pb/2d ₆)	(32)	⁴ િંદા + ¹ 95744 - ¹ CC	(68.)		
(₀ 12/44)++(11 ⁰ /6)+(² 1 ⁰ /2)	A	۹(°،) ۹(°،).	(11)	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	-
. ((C),62,4 44 44 4 3,31 + 2,46 - 4,70 /H-3	
	ب ^د (۲۲)	ر] الم	"(3L)	عد <mark>اً م</mark> م م م الألار ال	(11)
Ourside (u _c) ₀ + (Eu ₀ /b) + v(u _t) ₀	(12)		(Ħ_	۹، ³ د) . ۹، ⁴ د) . ۹، ⁴ د)	44)
laside (a _c); + (Eu ₆ /b) + ×(a _c); ((#;*)	ין טוא • נא'אַאאַנ • וֹר׳טן	(35)	"("n) · "("n) · "("n)	
$\frac{3}{4} \log r_0, \ k + a/b, \ and \ \frac{r_1}{r}, \ \frac{r_2}{r}, \ \frac{r_3}{r}, \ \frac{r_4}{r}, \ \frac{r_5}{r_1}, \ \frac{r_6}{r_1^{2/2}}, \ \frac{r_6}{r_1^$	(;•;) ·	5,414 + 6,413 + 6,45,0.	7 1 1 1 1		
Mub-side surface of ring. Gaster-side surface of ring. "a b(C_ + P.).					

•

4. FLANGE WITH A STRAIGHT HUB

Although the mathematical expressions for the straight hub can be obtained by letting $g_0 = g_1$, this would result in indeterminate quantities in the emputer program. Therefore, the direct solution to the ring with a straight hub was obtained by using the previously given basic equations for only the pipe and the ring. There are six constants of integration to be established; the boundary-condition equations are displayed in Table 5 [Eq. (48)].

After algebraic manipulation, the equations displayed in Table 5 are reduced to the matrix-equation form [A][C] + [B] = 0, where the terms in the coefficient matrix [A] are given in Table 6 under the headings of the corresponding constants in the column matrix [C]. Solving this set of equations for the six constants $(C'_5, C'_6, C_7, C_8, C_9,$ and C_{10}) allows calculation of the stresses in the structure. The equations for the stresses in the pipe-to-ring juncture and in the ring at the inner edge (r = b) are analogous to those previously derived for the flange with a tapered hub (see Table 4).

One can calculate the displacements w_g and w_c for a straight-hub flange from Eqs. (46) and (47), respectively, using the constants C_7, \ldots, C_{10} , identified in Table 6.

5

	Hub-to-ring junctu	ITC	Ring	and & all 10 and an or density 2.0
***	Equation	Eq. No.	Equation	Eq. No.
Displacements	$(u_1)_{x_1=0} = 0$	(48-1a) ^{a,b}	(m) ^{1=p} = 0	(48-4)
	$(u_1)_{x_1=0} = \left(u_r - \frac{t}{2} \frac{dw}{dr}\right)_{r=b}$	(48-16) ^{a,b}		
Rotations	$(u_1^*)_{x_1=0} = \left(\frac{dw}{dr}\right)_{r=b}$	(48-2)		
Moments	$M_{r1} = -M_{ho} + \frac{1}{2} P_0 t$	(48-3)	M _{r2} = 0	(48-5) ^d
Shear along radius r			$Q = -\frac{dM_r}{dr} + \frac{M_t - M_r}{r} = \frac{W}{2\pi r}$	(48-6)

Table 5. Equations for the boundary conditions for a straight-hub flange

^aRadial displacements.

^bFor an ASME-type calculation, Eq. (48-1a) is used.

^CAxial displacements; (w)_{r=b} = 0 is the reference point for all other axial displacements. ^dRadial moment at outside edge of ring (r = a).

		Coefficients of C _n		lowling		
c;	C ;	C7	C _k	Gg Cig	c_{12}	parameters
0	1,0	0	0	0	0	bP* + bc 2 - U3P
U34 - U33	1 + U34 + U35	Ø	0	ø	Ð	ø
8	\$	-(2b in b + h)	- 2Þ		Ð	0
28 ² • 28 ³ t/2	-28 ³ t/2	$-(2.6 + n b + 3.3) \times (t/g_0)^3$	$-2.6(t/g_0)^3$	(0.7/b ²)(t/g ₀) ³	ø	U
0	Û	b~ 2n b	b²	en b	1.0	Ð
U	U	2.6 tn a + 3.3	2.6	-0.7/u	0	0
0	0	1.0	0	0	U	$\frac{-3(1 - v^2)M}{2\pi (1 t^3(a - b))}$
	C; D U34 - U33 B 28 ² + 28 ³ t/2 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{Coefficients of C_n}{C_5^2} = \frac{C_6^2}{C_7^2} = \frac{C_7}{0}$ $\frac{D}{U_{34} - U_{33}} = \frac{1 + U_{34} + U_{33}}{1 + U_{34} + U_{33}} = \frac{0}{1 + U_{34} + U_{33}}$ $\frac{B}{B} = \frac{B}{B} = -(2b \ln b + h)$ $\frac{2B^2 + 2B^3t/2}{2B^3t/2} = -2B_1^3t/2 = -(2.6 \ln b + 3.3) \times (t/g_0)^3$ $\frac{D}{D} = \frac{1}{2} \ln b$	Coefficients of C_n C_5 C_6 C_7 C_8 D 1.0 0 0 0 U_{34} - U_{33} 1 + U_{34} + U_{33} 0 0 0 B S -(2b th b + b) -2b 28 ² + 28 ³ t/2 -28 ³ t/2 -(2.6 ih b + 3.3) × (t/g_0) ³ -2.6(t/g_0) ³ 0 0 b ⁻ ih b b ² 0 0 1.0 0	Coefficients of C_n C_5 C_6 C_7 C_8 C_5 0 1.0 0 0 0 0 $U_{34} - U_{33}$ 1 + $U_{34} + U_{33}$ 0 0 0 0 B 8 -(2b th b + b) -2b -2b -2b 28 ² + 28 ³ t/2 -28 ³ t/2 -(2.6 in b + 3.3) × (t/g_0) ³ -2.6(t/g_0) ³ (0.7/b ²)(t/g_0) ³ 0 0 b b ² th b b 0 0 2.6 th a + 3.3 2.6 -0.7/a ² 0 0 1.0 0 0	Coefficients of C_n C_5 C_6 C_7 C_8 C_9 C_1; 0 1.0 0 0 0 0 0 U_{34} - U_{33} 1 + U_{34} + U_{33} 0 0 0 0 0 8 8 -(2b th b + b) -2b 0 0 0 0 28 ² + 28 ³ t/2 -28 ³ t/2 -(2.6 ih b + 3.3) × (t/g_0) ³ -2.6(t/g_0) ³ (0.7/b ²)(t/g_0) ³ 0 0 0 b ⁻ ih b b ⁷ ih b 1.0 0 0 2.6 th a + 3.3 2.6 -0.7/a ² 0 0 0 1.0 0 0 0

Table 6. Matrix coefficients of the discontinuity equations" for a flange with a straight hub

²These equations are in the form [a][C] + [B] = 0, where [A] is the coefficient matrix, |C| is the column matrix of unknown constants, |B| is the column matrix of loading parameters.

 $\frac{b}{U_3} = (b/E) \left[\frac{(1+v)K^2 + (1-v)}{K^2 - 1} \right], \text{ where } K = a/b; U_{33} + \frac{2U_3 Eg_0^3 B^3}{12(1-v^2)t}; U_{34} = tB/2.$

5. BLIND FLANGES

Analysis Method

Blind flanges (or flat heads) are modeled as shown in Fig. 2. The general equations for a circular flat plate are:³

$$w = D_1 r^2 tn r + D_2 r^2 + D_3 tn r + D_4 + r^4 p/64D$$
, (49)

$$\frac{dw}{dr} = D_1(2r \ tn \ r + r) + D_2(2r) + D_3/r + r^3p/16D , \qquad (50)$$

$$\frac{d^2w}{dr^2} = D_1(2 \ln r + 3) + D_2(2) - D_3/r^2 + 3r^2p/16D, \qquad (51)$$

and

~

$$\frac{d^3w}{dr^3} = D_1(2/r) + D_3(2/r^3) + 3rp/80 .$$
(52)

The radial and tangential moments ${\rm M}_{\rm r}$ and ${\rm M}_{\rm t}$ (see Fig. 2) are given by

$$M_{r} = -D \left(\frac{d^{2}w}{dr^{2}} + \frac{v}{r} \frac{dw}{dr} \right)$$
(33)

and

$$M_{t} = -D \left(\frac{1}{r} \frac{dw}{dr} + \frac{d^{2}w}{dr^{2}} \right) ; \qquad (54)$$

and the shear is given by

$$Q = -\frac{dM}{dr} + \frac{M_t - M_r}{r}.$$
 (55)

1.1

Offic - Date 75-4290

1

The moments and shears, in terms of the integration constants $D_{\rm 1}$ through $D_{\rm 4},$ are:

$$M_{r} = -D\{D_{1}[2(1 + v) \text{ tn } r + (3 + v)] + D_{2}[2(1 + v)] - D_{3}[(1 - v)/r^{2}]\} - r^{2}p/16(3 + v) , \quad (56)$$

$$M_{t} = -D\{D_{1}[2(1 + v) \text{ in } r + (1 + 3v)] + D_{2}[2(1 + v)] + D_{3}[(1 - v)/r^{2}]\} - r^{2}p/16(1 + 3v) , (57)$$

22

· · ·

and

$$Q = D \left(\frac{4D_1}{r}\right) + \frac{rp}{2}.$$
 (58)

For analysis, the plate is divided into three parts as shown in Fig. 2. There are four integration constants for each segment. The boundary-condition equations used to evaluate these constants are shown in Table 7. These boundary conditions show that 3 of the 12 constants are zero. The set of simultaneous equations to be solved to establish the remaining 9 constants is shown in Table 8. Again, this table presents the elements of the matrix equation [A][C] + |B| = 0.

Table	7.	Boundary	condition	equations up	ed for	blind-flange	analysis

Equation No.	Boundary condition
ł	$2\pi rQ = \pi r^2 p$ for all of Part 1. This gives $D_{11} = 0$.
2	$(dw/dr)_{1} \approx 0$ at $r = 0$. This gives $D_{13} = 0$.
3	$(w)_{I} = 0 \text{ at } r = g$
1	(dw/dr) ₁ = (dw/dr) ₁₁ at r = g
S	$(Q)_{11} = (W/2\pi r) - (\pi g^2 p/2\pi g)$ at $r = g$. This gives
	$b_{2,1} = W/8\pi D - g^2 p/80$.
	(For pressure loading, $W = \pi g^2 p$; hence $D_{21} = 0$.)
6	(w) ₁₁ = 0 at r = g
7	$(M_r)_i = (M_r)_{ii}$ at $r = g$
8	(dw/dr) = (dw/dr) at r = g
9	$(Q)_{111} = 0$. This gives $P_{31} = 0$.
10	$({}^{(1)}r)_{11} = ({}^{M}r)_{111}$ at $r = c$
11	(M) ill = 0 at r = a
12	^(w) II = (w) _{III} at r = c

			Table 8,	Boundar	ry equation:	for a	blind f	lange				
	Coefficients of D _{ij}											
No.b	v ₁₂	Die	D ₂₁	D ₂₂	1) ₇₃	D ₂₄	D32	P33	U 34	Loading parameter		
3	g ²	1.0	U	0	0	0	0	0	0	g ⁴ p/640		
4	-2g	0	2g tn g + a	2g	1/g	0	0	0	U	-g ³ p/16D		
5	0	0	1.0	0	0	0	0	0	0	-W/8mD		
6	υ	0	g ² in g	g ²	th g	1.9	0	0	0	0		
7	-2.6	Q	2.6 $tn g + 3.3$	2,6	-0.7/g ²	0	0	0	0	-3,3g ² p/16D		
8	0	0	2c fn c + c	2c	1/c	0	· 2c	-1/c	0	0		
10	0	0	2.6 in c + 3.3	2,6	-0,7/c ²	0	-2.6	0.7/c ²	0	0		
11	0	0	O	0	0	0	2.6	-0.7/# ²	0	0		
12	D	U	c ² tn c	¢?	en c	1.0	-c ²	-Ln c	-1.0	Ø		

^aThese equations are in the form [A]|C| + |B| = 0, where [A] is the coefficient matrix, |C| is the column matrix of unknown constants, and |B| is the column matrix of loading parameters.

^bBoundary condition number from Table 4.

Stresses

After having established values for the integration constants, the stresses at any point in the blind flange can be readily obtained. Equations for stresses at the center of the flange and at r = g and r = c are given by

$$\sigma_{t} = \pm 6M_{t}/t^{2} = \pm EtM_{t}/[2(1 - v^{2})]D$$
 (59a)

and

$$\sigma_{\mathbf{r}} = \pm 6M_{\mathbf{r}}/t^2 = \pm EtM_{\mathbf{r}}/[2(1 - v^2)]D.$$
 (59b)

At the center of the flange (r = 0),

$$\mathbf{M}_{t} = \mathbf{M}_{r} = -D\{D_{12}[2(1 + v)]\}.$$
(60)

At the gasket (r = g),

$$\mathbf{M}_{\mathbf{r}} = -D\{D_{12}[2(1 + v)] + \mathbf{g}^2\mathbf{p}(3 + v)/16D\}, \qquad (61)$$

and

$$M_{t} = -D\{D_{12}[2(1 + v)] + g^{2}p(1 + 3v)/16D\}.$$
 (62)

At the bolt circle (r = c),

$$M_{r} = -D\{D_{32}[2(1 + v)] - D_{33}(1 - v)/c^{2}\}, \qquad (63)$$

and

$$M_{t} = -D\{D_{32}[2(1 + v)] + D_{33}(1 - v)/c^{2}\}$$
(64)

In all of the above, a positive moment produces a tensile stress on the back of the flange (positive w side of Fig. 2).

Displacements

In the third and sixth boundary conditions listed in Table 7, the axial displacement at the gasket has been arbitrarily set equal to zero. The relative displacement of the bolt circle to the gasket is therefore

$$w_c = D_{32}c^2 + D_{33} \ln c + D_{34}$$
 (65)

1
6. THERMAL GRADIENTS

Two kinds of thermal gradients are included in the analysis: (1) a constant temperature in the pipe and hub that may be different from the assumed constant temperature in the ring and (2) a constant temperature in the bolts that may be different from the assumed constant temperature in the ring.

The significance of the bolt-to-ring thermal gradients is dependent upon the dimensional and material characteristics of the flanged joint and is covered later in Chapter 7.

The pipe/hub-to-ring temperature gradient is included in the analysis by an appropriate change in the "loading parameters" shown in Table 3. We define Δ as the difference in temperature between the pipe/hub and the ring; Δ is positive if the pipe/hub is hotter than the ring. The radial expansion of the tapered hub at its juncture with the ring is then:

$$v = \frac{b}{\sqrt{\psi_1}} \left(C_1 b_1^* + C_2 b_2^* + C_3 b_3^* + C_4 b_4^* \right) + b \varepsilon_f^{\Delta} , \qquad (56)$$

where b is the pipe radius; b' terms are the Bessel functions defined in Table 1 evaluated at x = h, $\eta = 2\gamma\rho^{1/2}/\alpha$, as indicated in footnote c of Table 3; and ϵ_{f} is the coefficient of thermal expansion of the flange material.

The effects of such a thermal gradient are taken into account by adding $(\sqrt{\psi_1}/b)$ (be f^{Δ}) to the existing terms in the loading-parameter column in Table 3 [Eqs. (20-5a) and (20-5b)]. The analogous term is already included in Table 6.

7. CHANGE IN BOLT LOAD WITH PRESSURE, TEMPERATURE, AND EXTERNAL MOMENTS

A flanged joint is a statically indeterminate structure. Thus, in order to determine the residual bolt load in the joint, it is necessary to calculate the relative displacements of the parts when the joint is subjected to (1) initial bolt loading, (2) moment loading, (3) internal pressure, and (4) thermal gradients.

The object of the analysis is to determine the residual bolt load N_2 in terms of (1) the loadings N_1 , p, Δ , and Δ^* ; (2) the component temperatures T_b , T_f , T_f , and T_f^* ; (3) the flanged-joint dimensions; and (4) the material properties.

The basic analysis is given by Wesstrom and Bergh,⁶ and we follow their nomenclature, with additions as nece≤sary. Reference 6 covers only the effect of initial bolt loading and part of the influence of internal pressure; the remaining influence from the internal pressure is discussed by Rodabaugh.⁷ The extension of the analysis to cover thermal gradients is relatively simple and is covered below.

The nomenclature used in this development is:

A = cross-sectional area of bolts or gasket

- B = inside diameter of ring
- C = bolt-circle diameter
- E = modulus of elasticity
- $g_0 =$ wall thickness of pipe
- G = gasket centerline diameter
- i = bolt length
- p = internal pressure

p* = equivalent pressure for external moment loading

- q = elastic deformation coefficients
- t = ring thickness
- T = final-state temperature (initial-state temperature is defined as zero)
- v = gasket thickness
- W = bolt load

- & = relative axial displacement between the gasket centerline and the bolt circle
- $\varepsilon = coefficient of thermal expansion$
- △ = temperature between hub/pipe and ring

The subscripts 0, 1, and 2 refer to the undeformed, initial deformed, and final deformed states, respectively; subscripts b, g, and f refer to the bolts, gasket, and flange, respectively. Quantities with a prime (*) are for one of the flanges in a pair (e.g., T_f^* refers to the temperature of the right-hand flange in Fig. 3); quantities without a prime are for the other flange.

Analysis

Figure 3 shows a schematic illustration of the general case of two dissimilar flanges and their mode of deformation. When the bolts are initially tightened to make up the joint, the resulting initial deformed bolt length is

$$t_1 = v_1 + t_1 + t_1^* - \delta_1 - \delta_1^* .$$
 (67)

Fig. 3. General case of two dissimilar flanges and their mode of deformation.

After application of loadings, the bolt length becomes

$$k_2 = v_2 + t_2 + t_2^{\dagger} - \delta_2 - \delta_2^{\dagger}$$
 (68)

The basic displacement relationship is thus

İ

1

$$t_2 - t_1 = (t_2 - t_1) + (t_2 - t_1) + (t_2^* - t_1^*)$$

- $(\delta_2 - \delta_1) - (\delta_2^* - \delta_1^*)$. (69)

We also use the following relationships:

$$k_{2} = k_{0} + T_{b} e_{b} k_{0} + q_{b} R_{b}$$
, (a)

$$v_2 = v_0 + T_1 c_1 v_1 - q_2 (W_1 - H_{D_2} - H_{T_2})$$
, (b)

$$\mathbf{t}_{2} = \mathbf{t}_{0} + \mathbf{T}_{\mathbf{f}} \mathbf{t}_{\mathbf{f}} \mathbf{t}_{0} , \qquad (c)$$

$$t_{2}^{*} = t_{0}^{2} + T_{f'}^{*} f_{0}^{*} t_{0}^{*}$$
, (d)

$$\delta_2 = q_{f_2} H_{f_3} h_{G} + q_{p} h_{G} + q_{t} \Delta h_{g}$$
, (c)

$$\delta_2^{\dagger} = q_{f_2}^{\dagger} N_2^{\dagger} h_G^{\dagger} + q_p^{\dagger} p h_G^{\dagger} + q_t^{\dagger} \Delta^{\dagger} h_G^{\dagger}, \qquad (f)$$

$$f_1 = i_0 + q_{\mathbf{b}_1 \mathbf{b}_1} , \qquad (g)$$

(70)

$$v_1 = v_0 - q_{g_1 g_1} v_1$$
, (h)

$$\mathbf{t}_1 = \mathbf{t}_0 , \qquad (i)$$

$$t_1^* = t_0^*$$
, (j)

 $\delta_{1} = q_{f1}M_{1}h_{G}, \qquad (k)$

$$\delta'_{i} = q'_{f_{i}} M_{i} h_{G} . \qquad (*)$$

The elastic deformation coefficients q_{b1} , q_{g1} , q_{b2} , and q_{g2} in Eqs. (70a-2) are further defined as

$$q_{L_1} = \frac{x_0}{A_b E_{b_1}}$$
, (71a)

$$q_{g_1} = \frac{v_0}{A_g E_{g_1}}$$
, (71b)

$$q_{b_2} = \frac{k_0}{A_b E_{b_2}}$$
, (71c)

$$q_{g2} = \frac{v_0}{A_g E_{g2}}$$
 (71d)

In Eqs. (70a-1), the term q_{f_1} is a rotation of the flange due to a unit moment load, q_p is a rotation of the flange due to a unit internal pressure, and q_t is a rotation of the flange due to a unit temperature gradient between the hub and the ring. The quantities q_{f_1} , q_p , and q_t are obtained from the functional expression

$$q(L) = \frac{-w_c(L) + w_g(L)}{h_G}$$
, (72)

where $h_G = (C - G)/2$, C is the bolt-circle diameter, and G is the gasketcenterline diameter. Values for the displacements $w_C(L)$ and $w_g(L)$ are obtained from Eqs. (46) and (47) with the appropriate unit values for the load: Δ , P, and A.

For q_{f_1} the modulus of elasticity used is that for the initial condition. For q_p and q_t , the moduli used are those for the final condition. The term q_{f_2} is obtained from q_{f_1} and the ratio of the initial and final elastic modul; thus:

$$\mathbf{q}_{\mathbf{f}_2} = \mathbf{q}_{\mathbf{f}_1} \frac{\mathbf{E}_1}{\mathbf{E}_2} \,.$$

The moments and loads are defined by Eqs. (73a-n). The nomenclature used in these equations is analogous to that used in the ASME Code.¹ The symbol H represents a load, h represents a lever arm, and H represents a moment. The term H_D is the hydrostatic end force (in pounds) on the area inside the flange, H_G is the gasket load in pounds, H_T is the difference between the total hydrostatic end force and the hydrostatic end force on the area inside the flange, h_D is the radial distance in inches from the bolt circle to the circle on which H_D acts (as prescribed in Table UA-50 of the Code), h_G is the radial distance in inches from the gasket-load reaction to the bolt circle, and h_T is the radial distance in inches from the bolt circle to the circle to the circle on which H_T acts (as prescribed in Table UA-50). Symbols, C, B, G, g₀, and p are defined carlier in this chapter. Again, a subscript 1 refers to the initial deformed state, and primed quantities refer to the mating flange.

(g)

$$h_{\rm D} = (C - B - g_0)/2$$
, (a)

$$h_D^* = (C - B^* - g_0^*)/2$$
, (b)

$$h_{T} = [C - (G + B)/2]/2$$
, (c)

$$h_T^* = [C - (G + B^*)/2]/2$$
, (d)

$$h_{G} = (C - G)/2$$
, (c)

$$H_{D2} = \frac{\pi}{4} B^2 p$$
, (f)

$$H_{D_2}^{*} = \frac{\pi}{4} (B^{*})^2 p$$
,

$$H_{T2} = \frac{\pi}{4} (G^2 - B^2)p$$
, (h)

$$H_{T_2}^{\prime} = \frac{\pi}{4} [G^2 - (B^{\prime})^2]p, \qquad (i)$$

 $H_{G_2} = W_2 - H_{D_2} - H_{T_2}$, (j)

$$H_{G_2}^{ij} = W_2 - H_{D_2}^{ij} - H_{T_2}^{ij}$$
, (k)

(73)

いたの

$$N_1 = M_1 h_G = H_{G_1} h_G$$
, (1)
 $M_2 = H_{D_2} h_D + H_{T_2} h_T + H_{G_2} h_G$, (m)

and

$$M_2^* = H_D^* h_D^* + H_T^* h_T^* + H_{G2} h_G^*$$
 (n)

Substituting Eqs. (70a-1) into Eq. (69) gives

$$T_{b}\epsilon_{b}t_{0} + q_{b2}N_{2} - q_{b1}N_{1} = T_{g}\epsilon_{g}v_{0} - q_{g2}(N_{2} - H_{D2} - H_{T2})$$

$$+ q_{g1}N_{1} + T_{f}\epsilon_{f}t_{0} + T_{f}\epsilon_{f}t_{0}' - h_{G}(q_{f2}N_{2} + q_{p}p + q_{t}\Delta - q_{f1}N_{1})$$

$$- h_{G}(q_{f2}N_{2} + q_{p}p + q_{t}\Delta' - q_{f1}N_{1}) . (74)$$

In order to eliminate M_1 and M_2 from Eq. (74), Eqs. (73% and m) are used; the sixth term on the right-hand side of Eq. (74) then becomes

$$-h_{G}\{q_{f_{2}}[H_{D_{2}}h_{D} + H_{T_{2}}h_{T} + (W_{2} - H_{D_{2}} - H_{T_{2}})h_{G}] + q_{p}p + q_{t}\Delta - q_{f_{1}}W_{1}h_{G}\}.$$

The last term in Eq. (74) is treated similarly. Collecting terms containing W_2 on the left gives:

$$(q_{b2} + q_{g2} + h_G^2 q_{f2} + h_G^2 q_{f2}') W_2 = (q_{b1} + q_{g1} + h_G^2 q_{f1} + h_G^2 q_{f1}') W_1$$

$$+ T_g \varepsilon_g v_0 + T_f \varepsilon_f t_0 + T_f \varepsilon_f t_0' - T_b \varepsilon_b t_0 + q_{g2} (H_{D2} + H_{T2})$$

$$- h_G q_{f2} [H_{D2} (h_D - h_G) + H_{T2} (h_T - h_G)]$$

$$- h_G q_{f2}' [H_{D2}' (h_D' - h_G) + H_{T2}' (h_T' - h_G)]$$

$$- h_G (q_p + q_p') p - h_G (q_t \Delta + q_T' \Delta') . \quad (75)$$

à

33

Defining

$$Q_1 = q_{b1} + q_{g1} + h_G^2 q_{f1} + h_G^2 q_{f1}^*$$

and

$$Q_2 = q_{b2} + q_{g2} + h_C^2 q_{f2} + h_C^2 q_{f2}'$$

and using the given definitions of H_D , H_D^* , H_T , and H_T^* , Eq. (75) becomes

$$\mathbf{N}_{2} = \frac{\mathbf{Q}_{1}}{\mathbf{Q}_{2}} \mathbf{N}_{1} + \frac{1}{\mathbf{Q}_{2}} (\mathbf{T}_{g} \mathbf{\varepsilon}_{g} \mathbf{v}_{0} + \mathbf{T}_{f} \mathbf{\varepsilon}_{f} \mathbf{t}_{0} + \mathbf{T}_{f}^{*} \mathbf{\varepsilon}_{f}^{*} \mathbf{t}_{0}^{*} - \mathbf{T}_{b}^{*} \mathbf{\varepsilon}_{b} \mathbf{t}_{0})$$

$$+ \frac{\pi \mathbf{h}_{G}}{4\mathbf{Q}_{2}} \left\{ \left[\frac{\mathbf{q}_{g2}}{\mathbf{h}_{G}} - \mathbf{q}_{f2} (\mathbf{h}_{T} - \mathbf{h}_{G}) - \mathbf{q}_{f2}^{*} (\mathbf{h}_{T} - \mathbf{h}_{G}) - \mathbf{q}_{f2}^{*} (\mathbf{h}_{T} - \mathbf{h}_{G}) \right] \mathbf{G}^{2} - \left[\mathbf{q}_{f2} \mathbf{B}^{2} (\mathbf{h}_{D} - \mathbf{h}_{T}) + \mathbf{q}_{f2}^{*} (\mathbf{B}^{*})^{2} (\mathbf{h}_{D}^{*} - \mathbf{h}_{T}^{*}) \right] \right\} \mathbf{p}$$

$$- \frac{\mathbf{h}_{G}}{\mathbf{Q}_{2}} \left[(\mathbf{q}_{p} + \mathbf{q}_{p}^{*})\mathbf{p} - \frac{\mathbf{h}_{G}}{\mathbf{Q}_{2}} (\mathbf{q}_{t} \Delta + \mathbf{q}_{t}^{*} \Delta^{*}) \right] . \quad (76)$$

In order to compute the flange stresses under the various loading conditions, it is necessary to compute the flange moment M_2 or M_2' . From Eq. (73m) and the definitions in Eqs. (73a-k),

$$M_{2} = \frac{\pi}{4} p [B^{2}h_{U} + (G^{2} - B^{2})h_{T} - G^{2}h_{G}] + W_{2}h_{G} . \qquad (77a)$$

And similarly for the mating flange,

$$M_{2}^{\prime} = \frac{\pi}{4} p \left\{ (B^{\prime})^{2} h_{D}^{\prime} + [G^{2} - (B^{\prime})^{2}] h_{T}^{\prime} - G^{2} h_{G}^{\prime} \right\} + W_{2} h_{G}^{\prime} .$$
(77b)

و محمد و و معرور و معرور و مربع المربع المربع المربع المعرور و معرور و المعرور و المعرور و المعرور الم

The computer program was written to separately evaluate the various effects involved in holt-load changes. The residual holt load due to

and the second
a es efeñidans.

temperature differences that produce differential axial strain is

$$\mathbf{W}_{2a} = \mathbf{W}_{1} + \frac{1}{\mathbf{Q}_{1}} \left(\mathbf{T}_{g} \overset{\epsilon}{g} \overset{\mathbf{v}}{g} + \mathbf{T}_{f} \overset{\epsilon}{f} \overset{\mathbf{v}}{f} + \mathbf{T}_{f} \overset{\mathbf{v}}{f} \overset{\mathbf{v}}{f} \overset{\mathbf{v}}{f} - \mathbf{T}_{b} \overset{\mathbf{v}}{b} \overset{\mathbf{v}}{h} \right) .$$
(78)

The residual bolt load, after internal pressure (acting in an axial direction) has transferred the bolt load on the gasket to a tensile load on the attached pipes due to a shift in lever arms, is given by:

$$\mathbf{W}_{2b} = \mathbf{W}_{1} + \frac{\pi}{4} \frac{\mathbf{h}_{G}}{\mathbf{Q}_{1}} \left\{ \begin{bmatrix} \mathbf{q}_{g_{1}} \\ - \mathbf{h}_{G} \end{bmatrix} - \mathbf{q}_{f_{1}} (\mathbf{h}_{T} - \mathbf{h}_{G}) - \mathbf{q}_{f_{1}}^{*} (\mathbf{h}_{T} - \mathbf{h}_{G}) \end{bmatrix} \mathbf{G}^{2} - \left[\mathbf{q}_{f_{1}} \mathbf{B}^{2} (\mathbf{h}_{D} - \mathbf{h}_{T}) + \mathbf{q}_{f_{1}}^{*} (\mathbf{B}^{*})^{2} (\mathbf{h}_{D}^{*} - \mathbf{h}_{T}^{*}) \right] \right\} \mathbf{p} .$$
(79)

The total effect of internal pressure due to both the shift in the lever arms and the radial effect of pressure acting on the integral flange(s) and/or on the inside surface of a blind flange is given by:

$$W_{2c} = W_{2b} - \frac{h_G}{Q_1} (q_p + q_p^2)p$$
. (80)

The residual bolt load due to a temperature difference between the hub and the ring is given by:

$$W_{2d} = W_1 - \frac{h_G}{Q_1} (q_t \Delta + q_t' \Delta')$$
 (81)

A slight modification of the above is required for the case of a blind flange. If we designate the blind flange as that with the "primed" nomenclature, then all* of Eqs. (70a-4) are valid except Eqs. (70f and 4) for δ_1' and δ_2' .

For v_2 it should be noted that $H_{D2} - H_T = \pi G^2 p/4$; hence, this equation is valid for blind flanges.

For blind flanges, W is used rather than M as the loading parameter because the relationship M = N(a - b) is not valid for the blind-flange analysis. For blind-flange analysis, Eq. (65) gives a value of w_c ; here $-w_c$ is the equivalent of $-w_c + w_g$ in Eq. (72) because $w_g = 0$ in the blind-flange analysis. For blind flanges we define

$$q_{f}^{*} = \frac{(-\kappa_{c})N}{h_{G}^{2}},$$
 (82)

where $(-w_c)_{N}$ is the axial displacement per unit total bolt load N. The equation for W₂ for a blind flanged joint is then:

$$W_{2} = \frac{Q_{1}}{Q_{2}} W_{1} + \frac{1}{Q_{2}} (T_{g} \varepsilon_{g} v_{0} + T_{f} \varepsilon_{f} t_{0} + T_{f}^{\dagger} \varepsilon_{f}^{\dagger} t_{0}^{\dagger} - T_{b} \varepsilon_{b} z_{0})$$

$$+ \frac{\pi}{4} \frac{h_{G}}{Q_{2}} \left\{ \frac{q_{2}}{h_{G}} - q_{f2} (h_{T} - h_{G}) - G^{2} - q_{f2} B^{2} (h_{D} - h_{T}) \right\} p$$

$$- \frac{h_{G}}{Q_{2}} (q_{p} + q_{p}^{*})p - \frac{h_{G}}{Q_{2}} q_{t} \Delta . \quad (83)$$

In Eq. (83) the primed values refer to properties of the blind flange.

After the internal pressure has transferred the bolt load on the gasket to a tensile load on the attached pipe due to a shift in the lever arms, the residual bolt load for the case where a blind flange is used is

$$W_{2b} = W_{1} + \frac{\pi}{4} \frac{h_{G}}{Q_{1}} \left\{ \left[\frac{q_{g1}}{h_{G}} - q_{f1}(h_{T} - h_{G}) \right] G^{2} - q_{f1}B^{2}(h_{D} - h_{T}) \right\} p .$$
 (84)

It should be noted that $q_t^{\prime \Delta'}$ does not exist for an integral flange mated to a blind flange.

The combined effect of all of the above is also obtained from the computer program by calculating W_2 from Eqs. (76) and (83).

External Moment Loading

Up to this point, all loads considered have been axisymmetric. For flanged joints in pipe lines, there is one other significant loading; that is, the bending moment imposed on the flanged joint by the attached pipe. To distinguish this from the local moments applied to the flange ring, the bending moment will be designated as an "external" moment. The external moment can be represented by a distributed axial edge force acting on the attached pipe:

$$F_{u}(\theta) = F_{cos} \theta$$
, (85)

where θ = angle around the circumference (θ = 0 at the point of maximum tensile stress in the pipe due to the external moment). Since this report deals only with cases in which all contact occurs within the bolt-hole circle, a reasonably good first approximation for the effects of the external moment loading can be obtained by replacing the distributed axial force $F_M(\theta)$ with the axisymmetric tensile force $F_m =$ $F_M(max)$. Then, since F_m is axisymmetric, there is some pressure p° that will produce the same axial force in the pipe; or alternately, there is an equivalent pressure p° that will produce an axial stress in the pipe which is equal to the maximum tensile stress S_b produced by an external moment. The relation between p° and S_b is given by

$$p^* = 4S_b g_0 / D_0$$
, (86)

where S_b is the bending stress in the attached pipe due to the external moment. The change in bolt load W_{2b} is then obtained by replacing p with $p + p^*$ in Eqs. (79) and (84). It should be noted that this equivalent pressure is included only in Eqs. (79) and (84) and not in Eq. (80).

8. CONPUTER PROGRAM

A Fortran computer program named FLANGE has been written to carry out the calculations according to the analyses described in this report. The program calculates appropriate loads, stresses, and displacements for the flanges, bolts, and gaskets when the flanged joint is subjected to internal pressure, moment, and/or thermal gradient loadings; thus, the program is much more general than that needed only to determine compliance with the ASME Boiler and Pressure Vessel Code. The program also has the advantage of internally computing the values of the Code variables F, V, and f that must otherwise be extracted manually from the curves given in Code Figs. UA-S1.2, UA-S1.3, and UA-S1.6. Loose hubbed flanges, which are covered by the Code, however, are not covered by the computer program.

The main function of this chapter is to describe the input and output for the various computational options available to the user. For more detailed information, the reader is urged to carefully study the examples given in Appendix A where a flanged joint, selected from API Standard 605 (Ref. 8), is analyzed. Several sample problems are worked, and the data input and program output are given for the various program options along with a discussion of the results. Flowcharts and listings of the program and its subroutines are given in Appendix B. In the following sections, the input data for option control and the input data and program output for Code compliance calculations and for more general calculations are discussed.

Uption Control Data Card

The first card of each data set, herein called the option control card, contains control information for execution of the various program options. It contains information specifying the type of flange being analyzed, the boundary condition placed on the displacement $(u_r)_{x=h}$, the stresses and other variables to be calculated, and the joint configuration and which flange (of the pair) is to be analyzed. These specifications are under control of the four variables ITYPE, IBGND,

ICODE, and MATE. The admissible values and their significance are as follows.

ITYPE (indicates the type of flange being analyzed)

- i for a tapered-hub flange
- 2 for a straight-hub flange
- 3 for a blind hub

IBRD (specifies the displacement u_{p} at x = h)

0 for $(u_r)_{x=h} = 0$ to conform with the ASME Code basis

- 1 (see footnote)*
- 2 for $(u_r)_{x=h} \neq 0$ [see Eq. (20-6) of this report]

ICHDE (controls the amount of output data)

- 0 for a wide variety of stresses, moments, and loads for specified moment, pressure, and ΔT
- 1 (see footnote)*
- 2 for a select list for checking Code compliance in accordance with Section VIII, Div. 1 of the ASME Code

MATE (specifies the joint configuration and the flange to be analyzed)

- 1 for only one flange to be analyzed (This is the situation for ASME-Code related calculations.)
- 2 for two identical flanges mated together
- 3 for the first of two flanges that are not identica!, neither of which is a blind flange
- 4 for the <u>second</u> of two flanges that are <u>not identical</u>, neither of which is a blind flange
- 5 for a blind flange
- 6 for a flange that is mated with a blind flange.

The data card with the above information is followed by other data cards containing physical-property data, etc., for the particular flange being analyzed. Since the program can be used to analyze any number of flanges

In the original conception of the program, IBGND and ICGDE were envisioned as controlling additional calculations that were not implemented in the present version. As it is now written, the program does not distinghish between values of 0 or 1 nor between 2 and numbers greater than 2 for either IBGND or ICGDE.

or flanged joints sequentially (as done in the examples of Appendix A), the data card set for each flange must start with an option-control data card.

Different types of flanges and different types of calculations have different input data requirements. These data and their formats are discussed in the following sections.

Input for Code-Compliance Calculations

Since the ASME Code calculation procedures consider only one flange at a time, the input data requirements for the computer program are quite simple and straightforward. Input data are completely prescribed by the three data cards illustrated in Table 9. The nomenclature is the same as that used in the Code.

The first card is the option control card discussed in the previous sections. The first variable ITYPE may be equal to 1, 2, or 3, demending on the type of flange being analyzed. The next variable IBWND will always be 0, in which case the displacement u_{T} will be equal to zero at x = h, as specified by the Code. The third variable ICWDE will always be 2 and will therefore cause the program to compute the stresses in accordance with Code paragraph UA-50 for straight or tapered-hub flanges or paragraph UG-34(c)(2) for blind flanges. The last variable MATE will always be 1 for Code-compliance calculations. This variable essentially controls the bolt-load-change calculations made by the program. Since the ASME Code does not consider bolt-load changes in determining compliance, when MATE = 1 these calculations are not performed.

The second card in the data set enters the physical dimensions of the flange being analyzed, as shown in Table 9. These dimensions are the outside and inside diameters of the flange ring A and B, the ring thickness t, the pipe-wall thickness g_0 , the hub thickness at the hubto-ring juncture g_1 , the hub length h, the bolt-circle diameter C, and the internal pressure. All dimensions are expressed in inches; the pressure is in pounds per square inch.

Table 9.	input data for ASME bolt and flange stress calculation, using symbols define	J.
	in ASME Code, Section VIII, Division 1, Appendix 11	

interaction and a second se second sec

Column number	5	10	15	20
Variable	FTADE _s s	i minit	1C)ID):	MATE
Value	1, 2, or 3	0	, 11	1

Option-Control Card (Read-in in FLANGE)

-Second Card (Read-in in TAPHIB, STILLB, or BLIND, b_{s}^{++}

Column number	0-10	44-20	21-30	31 - 40	41-50	51-60	64-70	71-80
Quant i ty	Flange outer diareter A	Flange inner diameter B	Ring thickness t	Pipe-wali thickness ^R o	Hub thicknoss R ₁	Hub Length h	Bolt-circle diameter	Pres jare P
Variable	XA	XB	TH	GO	61	HL.	C	PRESS

Third Card (Read-in in ASMEIN)

Column number	0-10	11-20	21-30	3 1-40 ¹	41-50	51-60	61 - 70 ⁴	72 ^{,1}	73-80 ⁻¹
Quant i ty	Gasket factor M	Minimum design seating stress y	liaskot outor diamotor li o	liasket inner dianeter li	Allowable holt stross ut design temperature S b	Allowahle holt stress at atmospheric temperature S	Buit cross-sectional aroa ^A b	Option f	Busic gasket seat width bu
Variable	XUN	Ŷ	GOUT	GIN	58	SA	AB	: NBO	N O

When iTYPE = 2 for a ring fixingle, g_0 , on the second card, should be a suitably small value, but not zero (e.g., 0.01).

^bSubroutines TAPHUB and STINUB call both ASMEIN and FLGDW; BLIND calls ASMEIN.

For ITYPE = 2, g_0 must be entered; g_1 and h are not used. For ITYPE = 3, B_1 , g_0 , g_1 , and h are not used.

²If I (Column 72) is 0, the program computes b, b_{01} and G for the particular case of $b_{0} = N/2 = 1/2(G_0 - G_1)/2$ as defined in Table UA-49.2 sketches (1a) and (1b) of the Code. Columns 73-80 may then be left blank. For other values of b_{01} , enter 1 = 2. In this case, the value of G_1 is not used and thus columns 31-40 may be left blank.

"Column 71 is blank.

The third card inputs other physical data, including the gasket factor m, the minimum-design seating stress y, the outside diameter of the gasket G_0 , the inside diameter of the gasket G_1 , the allowable bolt stress at design temperature S_b , the allmable bolt stress at ambient temperature S_a , the total cross-sectional area of the bolts A_b , an option-selecting variable I, and the basic gasket-seating width b_0 . The option variable I controls the calculation of b and G.

Output for Code-Compliance Calculations

For Code-compliance calculations, all of the output for each flange being analyzed is printed on a single page (e.g., see examples 1 and 2 of Appendix A). The program prints the input data followed by the effective gasket seating width b_0 and the loads, bolt stresses, and moments identified under the headings shown in Table 10. For compliance with Code criteria, the value of SB1 must not exceed the allowable bolt stress at design temperature, and the value of SB2 must not exceed the allowable bolt stress at atmospheric^{*} temperature.

Immediately below, the program prints the flange stresses needed for comparison with the ASME Code criteria. For tapered-hub and straighthub flanges (ITYPE = 1 or 2), the program prints five stresses under the two headings "ASME FLANGE STRESSES AT OPERATING MOMENT, MOP" and "ASME FLANGE STRESSES AT GASKET SEATING MOMENT." The stresses are identified as follows:

> 2/3(SH) = two-thirds of the longitudinal stress on the outside surface at the small end of the hub,

ST = the tangential stress on the hub side of the ring, SR = the radial stress on the hub side of the ring, (SH + ST)/2 = the average of SH and ST, and

(SR + ST)/2 = the average of SR and ST.

Although "ambient" would probably be a better term here, the word "atmospheric" is used as it is used in the Code.

ASME Code symbol ²	Program symbol	Description				
b	BO	See ASME Code, Table UA-49.2. (This will be input data for $1 = 2.3^{2}$				
Н	W11	∍G ² p/4				
	NN12	2*bGap				
¥_,	NM 1	zG ² p/4 + 2ztzGmp				
	SBI	Bolt stress, W _{m1} /A _b				
N	MPL2	4PC'A				
—	SB 2	Bolt stress, N _{mc} /A _b				
(ः)	HOP	H _C h _C + H _L h ₂ + H _D h _D				
(ď)	MCS	$[(A + A)S_{a}/2] \times [(C - G)/2] = Except forITYPE = 3(Blindfigures)$				
	MGS1	$W_{max} \times [(C - G)/2]$				

Table 10. Output data identification, ICHDE = 2, (ASME Code stresses)

³All symbols are defined in the ASME Boiler Code, Section VIII, Div. 1 (1971), Appendix II.

²See Footnote d of Table 9.

^oMOP is the operating moment as defined by the ASME Code.

"MGS is the gasket seating moment as defined by the ASME Cude.

For compliance with the Code Criteria, each of the above values printed under the first heading must not exceed the allowable stress for the flange material at the <u>design</u> temperature. The values printed under the second heading must not exceed the allowable stress for the flange material at atmospheric temperature.

For blind flanges (ITYPE = 3), the program prints the following five quantities under the heading "ASME CODE STRESSES FOR BLIND FLANGE":

SP = the stress due to pressure loading only, SW1 = the stress due to the bolt load W only, where W = $\pi (3^2p/4 + 2\pi bGmp)$, SOP = the stress at operating conditions,

SW2 = the stress due to the bolt load N_{m2} , where $N_{m2} = \pi b \partial y$, and SGS = the stress at gasket-seating conditions.

For Code compliance, SOP must not exceed the allowable stress for the flange material at design temperature, and SGS must not exceed the allowable stress at atmospheric temperature.

Input for General Purpose Calculations

When the computer program is used for general purpose calculations, (i.e., when it is used for calculating displacements and stresses other than those needed specifically for checking Code compliance), the user may select almost any combination of admissible values for the four variables ITYPE, 180ND, 1C0DE, and MATE coded in the option control data card. The only specific requirement is that the variable 1C0DE <u>must</u> be less than two for other than Code-compliance calculations. In this case the input data are structured somewhat differently than those described in the previous section.

When ICDDE = 0 and MATE = 1, (i.e., only one flange is to be analyzed and the user does not wish to obtain holt load changes), three data cards are needed as shown in Table 11. These are the option-control card (for which ITYPE may be 1, 2, or 3 and IBDND may be 0 or 2) and two physical-property data cards.

When ICGOE = 0 and MATE = 2, 3, ... 6, the program will analyze a pair of flanges mated together and give bolt load changes. If MATE = 2, the program performs the calculations for a pair of identical flanges mated together. The input data requirements include the data cards shown in Table 11 <u>plus</u> the three cards shown in Table 12. These last three cards contain data on the physical properties of the bolts and gasket, supplemental data on the initial and final state of the flange, and other conditions. For this case, the six cards listed below complete the input data set when MATE = 2.

Column number	S	10	15	20
Variable	ITYPE ^{a,b}	1 DEND	istoe	MATE
Value	1. 2. or 3	0 to 2	0	1 or (2

Option-Control Card: (FORMAT (415) read-ir in FLANGE)

Table 11. Input data for the general purpose analysis of a single flange and partial data for paired flanges

Second Card: [FØRMAT (SE10.5); read-in in TAPHus, SHUB, or BLIND]

*

RA-

I

-

Column number	0-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
Quantity	Flange outer diameter A	Flange inner diameter B	Ring thickness t	Pipe-wall thickne≭s ^g o	Hub thickness S _l	itub Length h	Bolt-circle diameter C	Pressure p
Variable	XA	XBP	TH	60 ^{a, b}	Gl ^{a,L}	HL ^{a, b}	C	PRESS

Third Card: [FØRMAT (SE10.5); read-in in TAPHUB, STHUB, or BLIND]

Column number	0-10	11-20	21-30	31-40	41-50
Quantity	Moment applied to flange ring M	Coefficient of thermal expansion ^c f	Thermal gradient pipe or hub to ring A	Modulus of elasticity flange E	Gasket centerline diameter 2g
Variable	xmoab	EF ^b	DELTA	YN	G

^aWhen ITYPE = 2, GO must be entered; Gl and HL are not used.

^bWhen ITYPE = 3, XB, GO, G1, HL, EF, and DELTA are not used; the value for XMOA is the total bolt load W. ^OWhen MATE = 2, additional data as described in Table 12 are also required.

Table 12. Last three input data cards for the general purpose analysis of paired flanges

Card No. 4 or 7:"	FORMAT	(7E10,5);	read-in	in FLGDW
-------------------	--------	-----------	---------	----------

Column number	0-10	11-20	21-30	31-40	41-50	51-60	41-70
Quantity	Nominal bolt diamoter	Initial state; bolt modulus of elasticity Eb	Bolt coefficient of thermal expansion ¹ h	Final state; holt temperature Tb	Outside diameter of gasket	lnside diameter of gasket	Cross-sectiona) root area of all bolts
Variable	BSIZE	YB	EB	ï B	xcu ^s *	X61 ⁹⁷	AB

Card No. 5 or 8:" [FØRMAT (6E10.5); read-in in FLGDW]

Column number	0-10	11-20	21-30	31-40	41-50	51-60
Quant i t y	Gasket thickness o	Initial state; gasket modulus of elasticity E g	Gasket coefficient of thermal expansion ^c R	Final state; gasket temperature T R	A free bolt length variable	h. uivalent pressure seu hq. (36) of text p*
Variable	vo	YG	EG	Tu ^d	FACE	PBE

Card No. 6 or 9:2 [FORMAT (7E10.5); read-in in FLGDW]

Column number	0-14	11-20	21-30	31-40	41-50	51-60	6] - 70
Quantity	lnitial holt load N _l	Final state temperature of flange, side one Tf2	Final state temperature of flange, side two Ti2	Final state flange modulus of elasticity, side one Ef2	Final state flange modulus of clasticity, side two E _{f2}	Final state bult modulus of elasticity ^U b2	Final state gasket modulus of clasticity E g.
Variable	WL	TF ^d	TFP ^d	YF2	¥FP2	YB2	¥G2

²First card number applies when MATE = 2; second number applies when MATE = 3 and 4 or 5 and 6.

^b The effective holt load is calculated as $t_0 = XLB = TH + THP + VO + BSIZE + FACE.$

"Values for G_1 and A_2 are calculated using input variables XGO and XGI. "Initial-state temperatures are defined as zero.

Card No.	Identification					
1	Option control card with MATE = 2					
$\left. \begin{array}{c} 2\\ 3 \end{array} \right\}$	Data cards per Table 11					
4 5 6	Data cards per Table 12					

When lC@DE = 0 and MATE = 3, the program performs the calculations for a pair of nonidentical flanges, neither of which, however, is blind (i.e., ITYPE = 1 or 2 \neq 3 on the option-control card). Data for the first flange of the pair follows the option-control card. Data for the second flange in the pair will follow an option-control card with MATE = 4. The three cards described in Table 12 will then complete the data requirements. The complete input data set for analyzing a pair of nonidentical flanges (neither of which is blind) consists of the following nine cards.

Card No.	Identification								
1	Option-control card, ITYPE ≠ 3, ICØDE = 0, MATE = 3								
2 3	Data cards per Table 11 for first flange of pair								
4	Option-control card, ITYPE \neq 3, IC#DE = 0, MATE = 4								
5 6 }	Data cards per Table 11 for second flange of pair								
7 8 9	Data cards per Table 12								

When ICØDE = 0 and MATE = 5, the program performs the calculations for a flanged joint that is closed with a blind flange. For this option, the blind flange is designated as the first flange and the mating flange is designated as the second with MATE = 6. As before, the input data set is completed by using the data cards described in Table 12. The complete input data set for this case consists of the following nine cards.

Card No.	Identification
1	Option-control card, ITYPE = 3, ICODE = 0, MATE = 5
2 3	Data cards per Table 11 for blind flange
4	Option-control card, ITYPE = 1 or 2, IC ϕ DE = 0, MATE = 6
5 6	Data cards per Table 11 for second flange
7 8 9	Data cards per Table 12

Output from General Purpose Calculations

The amount and format of the data printed out are determined predominantly by the number and types of flange. being analyzed, which in turn are determined by the value of the option-control variable MATE. When MATE = 1, the output consists of one page of printout, which gives (1) the input data; (2) the three sets of stresses for moment loading only (the bolt load for blind flanges), pressure loading only, and temperature-gradient (hub to ring) loading only (except for blind flanges); and (3) the displacements prod¹ led by the calculated stresses. The symbols used on the printout are explained in Tables 13 and 14.

When MATE = 2, the output consists of three pages of printout. The first page gives (1) the input data and (2) the parameters involved in the bolt-ioal-change calculations. The second page gives (1) the loadings, (2) the residual bolt loads, and (3) the initial and residual moments. The symbols used in the first and second page of printout are explained in Tables 15 and 16. The third page gives the stresses and

1

....

Theory Symbol	Description	
(° _t) ₀	SLS0 ⁴	Stress, longitudinal, small end of hub, outside surface
(ơ ₁) _i	SLSIª	Stress longitudinal, small end of hub, inside surface
(ơ _c) ₀	SCS0 ⁴	Stress, circumferential, small end of hub, outside surface
(o _c) _i	scsi ^a	Stress, circumferential, small end of hub, inside surface
(c _t) ₀	SLLO	Stress, longitudinal, large end of hub, outside surface
(o _t);	SLLI	Stress, longitudinal, large end of hub, inside surface
(ơ _c) ₀	SCL0	Stress, circumferential, large end of hub, outside surface
(_σ ,)	SCLI	Stress, circumferential, large end of hub, inside surface
(o,)	STH	Stress, tangential, hub side of ring, at r = b
(ơ,);	STF	Stress, tangential, face side of ring, at r = b
(o_)	SRH	Stress, radial, hub side of ring, at r = b
(o_);	SRF	Stress, radial, face side of ring, at r = b
6	ZG	Axial displacement at r = g
ర ్	2 C	Axial displacement at $\mathbf{r} = \mathbf{c}$ $\{\mathbf{o} = \mathbf{U} \text{ at } \mathbf{r} \neq 0\}$
۹ _۶ h _G	QFHG	-6 c + 6 g
У ₀	YO	Radial displacement, small end of hub
у ₁	¥1	Radial displacement, large end of hub
•	THETA	Rotation of ring at $r = b$
		For blind flanges ^b
σ _r , σ _t , r = ο	SORT	Stress, r = 0, radial and tangential
σ_, r = g	SGR	Stress, r = g radial
а, т = g	SGT	Stress, r = g, tangential
σ _r , r = c	SCR	Stress, r = c, radial
- o, r = c	SCT	Stress, r = c, tangential
σ, I = 2	SAT	Stress, r = a, tangential
٥ د	ZC	Axial displacement at r = c (δ ∃ 0 at r = g)

Table 13. Output data identification, stresses, displacements, and rotation

^aFor "Straight Hub Flange," these are at juncture of hub with ring.

^bAll stresses are for the side of the flange opposite the pressurebearing side. Stresses on the pressurized side of the flange have reversed signs.

Theory symbol	Program symbol	Description						
q _{f1} h _G	QFHG	Axial displacement from C to G, unit moment load						
¶pj ⁱ G	QPHG	Axial displacement from C to G, unit pressure load						
q _{ti} h _G	QTHC ^a	Axial displacement from C to G, unit DELTA						
2Ь	XB ^{a,b}	Inside diameter						
E ₀	۵۵ ^۳ ۰ <i>۵</i>	Pipe wall thickness						
t	тн	Ring thickness						
^E f1	YM ^b	Modulus of elasticity of flange material, initial state						
E _{f2}	YF2 ^C	Modulus of elasticity of flange material, final state						
٤f	EF ^b	Coefficient of thermal expansion of flange material						
()'	()P	The above nine symbols with a prime mark (') on the theory symbols are for the mating flange. The program symbol has the added final letter "P."						

Table 14. Output data identification when NATE = 2, 3 and 4, or 5 and 6

^aFor blind flanges, these values are not significant; an artificial value of -1.0000 is printed out.

^bThese values are input data for flange side one, input cards ? and 3 (see Table 11). For MATE = 2, these values, along with calculated values of QFHG, QPHG, and QTHG, are used for side one and side two (i.e., an identical pair). If MATE = 3 or 5, the primed values are stored; the unprimed values are read in by input cards 5 and 6, and values of QFHGP, QPHGP, and QTHGP are salculated.

^CInput from card 6 for MATE = 2, card 9 for MATE = 3 and 4 or 5 and 6 (see Table 11).

In the second second

Theory symbol	Program symbol Description ²					
Ĺ	XLB	Effective bolt length				
А _Ъ	AB	Cross-sectional root area of all bolts				
C	С	Bolt-circle Jiameter				
E D 1	YB	Modulus of elasticity, bolts, initial state				
E, b2	¥ B 2	Modulus of elasticity, bolts, final state				
٤Þ	EB	Coefficient of thermal expansion, bolts				
٧o	٧O	Gasket thickness				
	XGO	Outside diameter of gasket				
	XGI	Inside diameter of gasket				
Е д 1	YG	Modulus of elasticity of gasket, initial state				
E g2	YG2	Modulus of elasticity of gasket, final state				
٤	EG	Coefficient of thermal expansion, gaskets				
W ₁	W1	Initial total bolt load				
т _ь	TB	Temperature of bolts, final state				
T _{f2}	TF	Temperature of flange ring, side one, final state				
Τ ' f2	TFP	Temperature of flange ring, side two, final state				
T g	TG	Temperature of gasket, final state				
۵	DELTA	Thermal gradient, pipe/hub to ring, side one				
۵'	DELTAP	Thermal gradient, pipe/hub to ring, side two				
P	PRESS	Internal pressure				

Table 15. Output data identification, NATE = 2, 3 and 4, or 5 and 6, bolts, gasket, and loadings data

^aAll values are input data, except XLB which is calculated by the equation: XLB = TH + THP + VO + BSIZE + FACE.

Program ^d symbol	Effect included					
W2A	Relative change in temperature of bolts, gasket, flange (AXIAL THERMAL)					
W2 B	Change in moment arms (MOMENT SHIFT)					
W2C	Total pressure					
¥2D	Thermal gradient, pipe/hub to ring (DELTA THERMAL)					
W2	All of the above, plus change in modulus of elasticity (COMBINED)					
	Program ² symbol N2A N2B N2C N2D N2					

Table 16. Output data identification, MATE 2, 3 and 4, or 5 and 6, residual bolt loads and moments

²²The change in bolt load (e.g., W1 - W2A) and ratio of residual to initial bolt load (e.g., W2A/W1) are also printed out, along with the corresponding values of the initial moment (M1) and residual moments, M2A, ..., M2P. The residual moment identifiers with final letter P (for prime) are for the first entered of a pair of nonidentical flanges. If the pair of flanges are identical, then M2B = M2BP, etc. The residual moment values are not significant for blind flanges, ITYPE = 3; therefore, residual bolt loads are used for blind flanges.

displacements as for the case when MATE * 1 plus the stresses and displacements for combined loading. The heading includes the value of the residual moments M2 * M2P used for the combined-loading calculations.

When MATE = 3 and 4 or 5 and 6, the output consists of four pages of printout. The first two pages have the same format as for the case when MATE = 2, except input data for both of the (nonidentical) flanges are printed. The residual moments on the last line of page 2 apply to flange one; those on the preceding line apply to flange two. The last two pages of printout are for flange one and flange two, respectively, and are identical in format to the third page of the printout for the case when MATE = 2.

. :

Acknowledgment

The authors gratefully acknowledge the assistance of O. W. Russ of the Computer Sciences Division for converting the CDC 7700 Fortran program written at Battelle-Columbus Laboratories to double precision for operation on the ORNL IBM 360 computers.

References

- 1. ASME Boiler and Pressure Vessel Code, Section VIII-1971, "Nuclear Power Plant Components," American Society of Mechanical Engineers, New York, July 1, 1971.
- 2. E. O. Waters et al., "Formulas for Stresses in Bolted Flanged Connections," Trans. ASME 59, 161-69 (1937).
- 3. S. Timoshenko, Theory of Plates and Shells, 1st ed., McGraw-Hill, New York, 1940.
- 4. E. C. Rodabaugh, F. M. O'Hara, Jr., and S. E. Moore, Analysis of Flanged Joints with Ring-Type Gaskets (in preparation).
- 5. E. C. Rodabaugh, F. M. O'Hara, Jr., and S. E. Moore, Stresses in the Bolting and Flanges of B16.5 Flanged Joints with Metal-to-Metal Contact Outside the Bolt Circle (in preparation).
- D. B. Wesstrom and S. E. Bergh, "Effect of Internal Pressure on Stresses and Strains in Bolted-Flanged Connections," *Trans ASME* 73, 553-68 (1951).
- 7. E. C. Rodabaugh, Discussion Section of Ref. 6.
- Large-Diameter Carbon Steel Flanges (Size: 26 Inches to 30 Inches, Inclusive, Naminal Pressure Rating: 75, 150, and 300 lb), API Standard 605, 1st Ed., American Petroleum Institute, New York, 1967.

والمراجع المطلب والمطلب والمطلب والمطلب والمستر والمستر والمستر والمستر والمستر والمستر والمستر والمستر والمستر

APPENDIX A

EXAMPLES OF APPLICATION OF COMPUTER PROGRAM FLANGE

- -

APPENDIX A

CONTENTS

	Page
INTRODUCTION	57
DETAILS OF THE FLANGE USED IN THE EXAMPLES	59
ASME CODE CALCULATIONS, EXAMPLES 1 AND 2	62
BLIND-TO-TAPERED-HUB FLANGED JOINT, EXAMPLES 3(a) and 3(b)	67
Input Data	67
Output Data	7 U
Residual Bolt Loads	70
Blind Flange Stresses, Example 3(a)	80
Tapered-Hub Flange Stresses, Example 3(a)	81
Blind and Tapered-Hub Stress ^a s, Example 3(b)	83
Displacements	83
IDENTICAL PAIR OF TAPERED-HUB FLANGES, EXAMPLES 4(a) AND 4(b)	84
Input Data	84
Output Data	84
Residual Bolt Loads	84
Flange Stresses	93
Displacements	94
COMPUTER TIME	96

INTRODUCTION

Several examples have been selected to illustrate the input/output data of the computer program FLANGE and the significance of the results. The flange selected for analysis is one included in API Standard 605.* The particular size and rating selected was the 60-in., 300-lb taperedhub flange. This particular flange represents a design in which the bolt stresses and flange stresses are close to the upper limits set in API-605.

Six examples are included:

- A Code stress calculation is performed for a tapered-hub flange at its rated pressure of 720 psi at 100°F. The results show that this particular flange does indeed meet the criteria given in API-605 at 720 psi and 100°F.
- 2. A Code stress calculation is performed for a blind flange to match the 60-in., 300-lb API-605 tapered-hub flange. The thickness of the blind flange was selected so that its maximum stress was the allowable flange stress of 17,500 psi used in API-605.
- 3. A blind flange bolted to a tapered-hub flange under pressure loading only is analyzed.
 - (a) For an initial bolt stress equal to the API-605 allowable stress for the bolting material of 20,000 psi, the results indicate that the flanged joint will probably leak at its rated pressure of 720 psi at 100°F.
 - (b) For an initial bolt stress of 44,300 psi, the results indicate that the flanged joint will pass a hydrostatic test of 1.5 × 720 psi at ambient temperature.
- 4. A tapered-hub flange bolted to an identical tapered-hub flange with an initial bolt stress of 46,100 psi is analyzed.

Large-Diameter Carbon Steel Flanges (Size: 26 Inches to 30 Inches, Inclusive, Nominal Pressure Rating: 75, 150, and 300 lb), API Standard 605, 1st Ed., American Petroleum Inst., New York, 1967.

- (a) For pressure loading only, the results indicate that the flanged joint will hold a hydrostatic test pressure of 1.5×720 psi.
- (b) For pressure loading of 300 psi (API-605 rated pressure at 850°F) plus an external bending moment that produces an axial stress in the attached pipe of 7500 psi, the results indicate that the flanged joint is adequate to carry these loads.

DETAILS OF THE FLANGE USED IN THE EXAMPLES

A sketch of the tapered-hub flange is shown in Fig. A.1. The dimensions are as specified in API-605. The inside diameter and dimensions B (and therefore g_0 and g_1) are not specified in API-605. For the purpose of checking ratings, the following equation given in API-605 was used to establish B:

 $\mathbf{B} = \mathbf{D}_{\mathbf{p}} - 2\mathbf{t}_{\mathbf{p}} , \qquad (A.1)$

where

D = nominal outside diameter of pipe, in.; t = $p_1 D/2(0.875)S$ (but not less than 0.25), in.; p_1 = rated pressure at 100°F, psi; 0.875 = assumed pipe-wall tolerance; and S = 20,000 psi, the allowable stress at 100°F.

The definition of t_p, with $D_0 = 60$ in. and $p_1 = 720$ psi, leads to t_p = $g_0 = 1.2343$ in. Equation (A.1) gives B = 57.5314 in. and $g_1 = (X-B)/2 = 2.7030$ in.

For the purpose of checking ratings, the hub length h was calculated by the equation given in AP1-605:

 $h = Y - t + 0.176g_0 + 0.469$.

Dimensions Y and t are shown in Fig. A.1. For this flange:

h = 10.6875 - 5.9375 + 0.176(1.2343) + 0.469 = 5.4362 in.

The API-605 standard states that flange ratings were based on use of a 1/36-in.-thick, compressed-asbestos, flat ring-shaped gasket, with an inside diameter 1/4 in. larger than the outside diameter of the pipe and with an outside diameter equal to the raised-face diameter. For the 60-in., 300-1b flange, the gasket inside diameter is 60.25 in.; its

ORNL-DWG 75-4296

والرجاج الدارية والانتقاد والمستحد بالم

Т

DIMENSIONS IN INCHES

I I

1

Fig. A.1. Dimensions (in inches) of 60-in., 300-1b API-605 taperedhub flange. The terms B, R, C, D, X, and A are diameters expressed in inches. outside diameter is 65 in. According to the ASME Code, for a 1/16-in.thick asbestos gasket, m = 2.75, and y = 3700 psi.

The 60-in., 300-lb flange has forty 2-1/4-in.-diam. bolts. For an 8-pitch thread, the root area per bolt is 3.423 in.², giving a total bolt root area of 136.92 in.².

P. 2643 40%

ASME CODE CALCULATIONS, EXAMPLES 1 AND 2

The input data for examples 1 and 2 are shown in Table A.1. The source of all input for Cards 2 and 3 are contained in the previous section on flange details, except that the thickness of the blind flange was selected* so that the controlling flange stress is 17,500 psi. Note that Card 2 is identical for examples 1 and 2 except for the value of t; however, **B**, g_0 , g_1 , and h are not used for example 2 (blind flange), and any number (including zero) can be entered for these dimensions.

Example 1 is a Code stress calculation for the 60-in., 300-lb API-605 tapered-hub flange at its rated pressure of 720 psi at 100° F. The output data are shown in Table A.2. The value of SBI = 20,033 psi is the controlling bolt stress, which essentially meets the API criterion value of a bolt stress not greater than 20,000 psi. The value of (SH + ST)/2 = 17,293 psi under the heading "ASME FLANGE STRESSES AT OPERATING MOMENT, MOP" is the controlling flange stress and meets the API-605 criterion of a controlling flange stress not greater than 17,500 psi. The results, therefore, confirm that the 60-in., 300-lb API-605 tapered-hub flange meets the stated criteria.

The reader who is accustomed to using hand calculations for checking flange designs according to Code rules will note that the program input does not require either the factors T, U, Y, Z from Code Fig. UA-51.1, or F, V, and f from Code Figs. UA-51.2, UA-51.3, and UA-51.6, respectively. These factors are calculated by the computer program. In addition to simplifying the input, the program accurately calculates F, V, and f values for any values of h/h_0 and g_1/g_0 , including those beyond the range of the Code figures.

Example 2 is a Code stress calculation for a blind flange to match the 60-in., 300-lb API-605 tapered-hub flange. The calculation method is that given in UG-34 [Eq. (2)], with C = 0.3. The output data are shown in Table A.3. The controlling flange stress is SOP = 17,500 psi;

API-605 does not give blind-flange thicknesses.

First card					_
Column number	5	10	15	20	
Variable	ITYPE	I BØND	TCØDE	MATE	
Example 1	1	U	2	1	
Example 2	3	0	2	1	

Table A.1. Input data for ASME Code stress calculations, examples 1 and 2

Second card

and the second

Column number	0-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
Variable	A	В	t	k 0	¥1	h	с	Р
Example 1	73.9375	57.5314	5.9375	1.2343	2,7030	5.4362	69.4375	720,
Example 2	73,9375	57 .53 14 ^a	7,9044	$1,2343^{ct}$	2,7030 ^a	5.43627	69,4375	720,

Third card										
Column number	0-10	11-20	21-30	31-40	41-50	51-60	61-70 ^b	72	73-80	
Variable	m	y	Go	G _i	s _b	s _a	А _р	1	b _o	
Example 1	2.75	3700.	65,	60,25	20000,	20000,	136.92	0	()	
Example 2	2.75	3700.	65.	60.25	20000,	20000.	136.92	0	[0]	

^aNot used in calculations for a blind flange. b

^bColumn 71 is blank.
Table A.2. Output data for example 1, ASME Code analysis of a tapered-hub flange

PLANGE 0. D., A 73. 93750	PLANGE I.D., B 57.53140	PLANGE THICK.,T 5.93750	PIPB NOBAT VALL,60 BASB,61 1.23430 2.7030	NOB LRNGTN,N 0 5.43620	BOLT PRESSU CINCLE,C P 69.43750 720.	N3, 000	
n 2.7	5000	3700.00000	600 t 65.00000	g i n 60 . 25000	58 20000 . 00000	5A 20000.00000	136.92000
80 1. 1875)	00	##11 2.3097D 06	4.33220 05	UN1 2.7430D 06	SD 1 2.00330 04	NN2 4.04770 05	50 2 2.9563D 03
80P 1. 17 191	0 07	NGS 7.5742D 06	NGS1 1.11860 06				
ASHE PLAT	IGE STRES	SIS AT OPH	RATING MOMENT, NOP				

(2/3)*5R= 1.5608D 04 ST = 1.1174D 04 SE = 8.4442D 03 (SN+ST)/2= 1.7293D 04 (SN+SR)/2= 1.5928D 04

ASHE PLANGE STRESSES AT GASKET SEATING NONENT, NGS

R Sweet and a streat of the

(2/3) +SH= 1.00470 04 ST = 7.22160 03 SR = 5.45760 03 (SH+ST)/2= 1.11760 04 (SH+SR)/2= 1.02940 04

Table A.3.	Output day	ta for	example	2,	ASME	Code	analysis	of	blind	flango

•

......

18.88 A 3.014 -

PLANGE 0. D., A 73, 93750	FL ANGE I.D., P 0.0	FLANGE THICK.,T 7.90440	PIPE NOS AT WALL.GO BASE.GI 0.0 0.0	NUS Lengta, N Q.Q	BCLT PRESSU CIPCLE, C P 69.43750 720.	# 2 , 00 0	
2.7	5000	¥ 3700.00000	60 07 65.60000	g i n 60 . 25000	55 20060.00000	SA 20000.00000	A B 1 36 . 9 20 00
80 1. 1875	D 00	UN11 2.3097D 06	WN 12 4.33220 05	NR 1 2.74 309 06	58 1 2.00 330 04	W#2 4.04770 05	582 2.95630 03
4	SNE CODI	STRESSES FOI	BLIND FLANGE				
SP 1.4121	D 04	\$#1 3.37920 03	50P 1.75000 04	512 4,98650 02	S65 3.37630 03		

the flange thickness of 7.9044 in. was selected to obtain this result. This example was included to illustrate that a blind flange may have to be considerably thicker than a mating flange in order for both to meet the Code stress limitations. BLIND-TO-TAPERED-HUB FLANGED JOINT, EXAMPLES 3(a) AND 3(b)

Input Data

The input data for examples 3(a) and 3(b) are shown in Table A.4. In addition to the basic purpose of illustrating input/output data for the program FLANGE, this pair of examples was selected to show how the program can be used to estimate required initial bolt stresses. In addition, example 3(a) shows how the general purpose option (ICODE $\neq 2$) gives stresses as obtained from Code calculations plus deformation data and additonal stresses.

Examples 3(a) and (b) do not involve temperature gradients or temperatures other than ambient; hence, the modulus of elasticity is the same for the initial and final states. Values of temperatures for the flanges, bolts, and gaskets in the final state have been entered as zero. The initial-state reference temperature is zero; hence, a zero in the final state denotes a zero thermal gradient. However, the value of DELTA (the hub-to-ring thermal gradient) cannot be entered as zero without causing a divide-check error, so a value of 0.01 was used. A smaller value could be used (e.g., 0.001 or 0.0001), but the output data shows that DELTA = 0.01 is sufficiently small so that its influence is negligible. A coefficient of thermal c...pansion of 6×10^{-6} has been entered but is not significant in these examples.

The value of FACE, which is intended to permit use of a bolt length other than $t_0 = TH + THP + VO + BSIZE$, was entered as zero. The modulus of elasticity for both the flanges and the bolts was assumed to be 3×10^7 psi. The modulus of elasticity for the 1/16-in.-thick asbestos gasket was assumed to be 3×10^6 psi.

Some comments on the use of a modulus of elasticity of 3×10^6 for a 1/16-in. asbestos gasket may be appropriate. The stress-strain relationship for such a gasket, which is confined between the two rigid flange faces, is highly nonlinear and both time and history dependent. Starting out with a new gasket, the first increment of bolt stress to produce a gasket stress of 1000 psi might decrease the gasket thickness

Card No.			Variable	s and num	rical va	lues			Read format
1	ITYPE	IBOND	ICODE	MATE				P 5 720. (1080.) P 5 720. (1080.)	
	3	0	0	5					415
2	A	8	t	20	£ 1	h	С	P	
	73_9375	57.5314	7.9044	1.2343	2. 7030	5.4362	69.4375	720. (1080.)	8E10.5
3	XXXXA	EF	DELTA	YM	G				
	2.74300+6	6. D-6	.01	3. D+7	62.625				SE10.5
	(6.06560+6)								
4	ITYPE	I BOND	ICODE	MATE					
	1	0	0	6					415
5	A	B	t	E o	£ 1	h	С	P	
	73.9375	57.5314	5.9375	1.2343	2.7030	5.4362	69.4375	720. (10 8 0.)	8E10.5
6	XMGA	EF	DELTA ^C	YM	G				
	1.17190+7 (2.0661D+7)	6. D-6	.01	3. D+7	62.625				SE10.5
7	BSIZE	YB	EB	TB	XGO	XG1	AB		
	2.25	3. D+7	6. D-6	0	65.	60.25	136.92		7E10.5
8	vo	YG	EG	TG	FACE	PBE			
	. 0625	3. D+6	6. D-6	U	0	0			6E10.5
9	W1	TF	TFB	YF2	YFP2	YB2	YG2		
	2.7#30D+6 (6.0656D+6)	0	0	3. D+7	3. D+7	3. D+7	3. D+6		7E10.5

Table A.4. Input data for blind-to-tapered-hub flanged joint, examples^a 3a and 3b

 $a_{\text{Values in parentheses are for example 3b.}}$

^bInitial bolt load is used here since ITYPE = 3; see footnote b to Table 11 in the text. ^cSince DELTA cannot be entered as zero, 0.01 was used as a satisfactorily small value.

مورد والإحاد المراجع فالمعهمين ومناطق الهم منته المناديون والالا المتاريين

by 20%, so that the modulus would be $1000/(0.2 \times 0.0625) = 8 \times 10^4$ psi. Crude observations indicate that, at a bolt stress that produces a gasket stress of 40,000 psi, the gasket thickness is about one-half of its original thickness, so that the average modulus up to this stress is $40.000/0.03125 = 1.28 \times 10^6$ psi. These numbers are dependent upon the ratio of width to thickness of the gasket and the time under stress. particularly for low gasket stress. However, for the flanged-joint analysis, we are not interested in the gasket stress-strain characteristics when the bolt load is applied but rather in the gasket stressstrain characteristics when the gasket stress is decreased after the gasket has been under bolt load for several days or many months. No data on the "spring-back" of asbestos gaskets are available, but in most flanged joints using 1/16-in.-thick asbestos gaskets. the assumed modulus of elasticity of the gasket is not very significant provided it is not unrealistically low. This can be shown for example 3 by noting that the change in the bolt load depends upon the sum of the loaddisplacement characteristics of the bolts, the flanges, and the gasket. The displacements for a unit bolt load are -

for bolts:
$$\frac{t_0}{A_b E_b} = \frac{16.15}{136.92 \times 3 \times 10^7} = 3.93 \times 10^{-9}$$
,

for flanges: $2 \times QFHG = 2(1.197 \times 10^{-9}) = 2.40 \times 10^{-9}$,

and

for gasket:
$$\frac{V_0}{A_G E_G} = \frac{0.0625}{467.26 \times E_G} = \frac{1.34 \times 10^{-4}}{E_G}$$

As E_{G} varies from 10^{5} to 10^{7} , the sum of these three displacements varies as follows:

EG	10 ⁵	3 × 10 ⁵	10 ⁶	3 × 10 ⁶	107
Sum of displace- ments (×10 ⁹ in.)	7.67	6.78	6.46	6.37	6.34

From the above, it can be seen that changing the gasket modulus by two orders of magnitude changes the sum of the displacement by only 17%.

The initial bolt stress used in example 3(a) is 20,033 psi, giving an initial bolt load of $N1 = S_{bb}A_{b} = 20,033 \times 136.92 = 2.743 \times 10^{6}$ lb; N1 is entered in place of XMOA on caid 6 (see footnote b to Table 11 of text). The initial moment, XMOA, used in example 3(a) is 1.1719×10^{7} in.-lb. The initial bolt stress used in example 3(b) is 44,300 psi, giving an initial bolt load of N1 = 6.0656×10^{6} lb. The initial moment, XMOA, used in example 3(b) is 2.0661×10^{7} in.-lb. The reasons for using these particular values of N1 and XMOA are discussed in connection with the output data for these examples.

Output Data

Residual Bolt Loads

The output data for example 3(a) are shown in Table A.5. The output starts with a printout of all input data on the first page (Table A.5a).* The parameters involved in the bolt-load-change calculations are then printed, followed by residual bolt loads and moments, all on the second page (Table A.5b). The initial bolt load under "LOADINGS" is 2.743×10^6 lb; the residual bolt load after application of the pressure of 720 psi is given following "COMBINED" as $N2 = 1.0948 \times 10^6$ lb. The loss in bolt load is given by $N1 - N2 = 1.6482 \times 10^6$ lb, and the ratio of residual to initial bolt load is given by N2/W1 =0.39911. Calculated stresses for the blind flange and for the taperedhub flange are printed on the third and fourth pages (Tables A.5c and A.5d, respectively). These are discussed later.

For convenience in referring to specific pages of multipage tables, we have used alphabetic suffixes on table numbers. For example, the first page of Table A.5 is designated Table A.5a; the second page is Table A.5b, the third is Table A.5c, etc.

Table A.5a. Output data for example 3(a), blind fiange holted to a tapered-hub flange, with initial bolt stress = 20,033 psi*

PLANGE 0. D., A 73. 93750	FLANGE I.D., D 57, 53140	FLANGE THICE.,T 7,90440	PIPT WALL,GO 1,23430	NUB AT BASE, G 1 2,70306	NUB 1 EMOTH, N 5 . 4 36 20	BCLT CIJCLE, C 69.43750	PRESSURE, P 720.000	I			
BOLT	COEFI. 07	PELTA	400. OF #	EAN GASHET	ITYPE	ISCAD	10082	MATE			
2,7430 06	6.000P-04	1.0000-03	3.0000 07	4.243D 01	3	0	0	\$			
71 A NG 2 0. D . , A 73. 93750	PLANGT 1.D.,8 57.73140	PLANGE TNICK.,T 5,93750	PIPE WALL, GO 1.23430	NUD AT DASE, G1 2.70300	NUD Lengin, H 5,43420	BCLT CIPCLE, C 69.43750	P#ISSUPE, P 720.000				
NON ENT	CO177. 07	PELTA	NOD. OF #	EAD CASEIT	17778	1 PC ND	ICODE	MATE			
1. 1720 07	THEPHAL EN	1.0000-02	3,0000 07	6.2630 01	١	ħ	0	6			
8512 2.250 Va		78 3.90000 n7 Yg	23 4 , 0000 16	D-06 0,	78 .0 .70	x 80 6. 50 00 7 AC	D 01	161 6.0756D () PBI	A8 1.36920 0	2	
•.250 41 2.763	100-02 1 100-02	3.00000 08 TP 0.0	r . 0000 T F F 0 . 0	10-06 0. J.	172 .00005 07	0.0 777 3.0000	2 D 07	782 3.00008 07	443 9. 00000. C	•	
₽ LA N	GE JCINT B	MIT LOAD C		O APPLIEC I	LOADS, DLT	ND TC INTE	GRP PATR				
FL	ANGE JOINT	SIDE ONE	(PRINEC QUA	NTITIES)							
Q7 HG= → 7 H	. 499 -2-10 = 3.0000	0PNG= 6.9	53500-06 Q 772 + 3	THE1.000	CD OC X	5 = -1.000 .00005-06	69 60	do= -1,0000p	01	TN +	7,90440 00
7L	ANGE JOINS	STRE THO	Q Q2NIRTNU)	VANTITIES)							
Q7HG= 1 7N), 19600-09 = 3,0001	9746= 8.0	94220-06 Q	TNG- 3.551	00-05 1 27 - 4	8 = 5.743 .00009-04	10 01	60= 1,2343D	00	TH •	5.93750 00
	BOLTING										
BOLT LEN YB	GTN= 1,61 90000 =	540 01 pc1 0 07	T AREA= 1 702 + 3,	.34920 02 00008 07	BOLT CINC 88 = 6,0	LE- 6.943 000CP-06	89 01				
	ga sk et										
40 - 1g	4.2400E-0 = 3.0000	2 XGO = ()D 04	1.40000 01 YG2 = 3,	X63 - 4.0 00000 C4	2500 01 26 = 6.	000CB-06					

"For the convenience of the user, the first page of Table A.5 is designated Table A.5a, the second page is Table A.5b, the third is Table A.5c, etc. This convention is also used in the following tables.

1.000 Tr. 4. . 8 ...

(beunijnop) d2.A eldaT

FOVELNCE

INITIAL BOLF LOAD= 2,70300 06 BOLT TENP.= 0.0 Ansket Tenp.= 0.0 71050 06 BOLFA= 1.00000-03 Delease 0.0 710000 03 Ansket Tenp.= 0.0

SCION SUBSERIA-THREEL BELAN SCIOT LTOR THREESE

DO GARTALIANTER - 459, TAINE THENON DO GOEAT.S = 454,14MMENT LAIXA

DOLAL PRESSORF, 420- 1, 09495 06 DELTA TREMAL, 20- 2.74390 06

COMBINED'AS- 1'00480 00

UI-UZA 0,00000 00 UZU-UI-UZA 05 UI-UZC-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-U UZA-UI- 1,00000 00 UZU-UI-UZU-01 UZC-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-UZU-UI-U

. READ RESIDEL NUMBER REFLA STRING JABSTER ONA JAITINI

M3#E- 4.28808 07 M3CP- 3.90158 07 M3P- 1.16468 07 M3C- 7.78188 06 M3P- 9.34308 06 M3- 7.78148 06 M2BE- 4.28808 07 M3CP- 3.90158 07 M3P- 3.96158 07 Table A.Sc (continued)

BLIND FLANGE

CALCULATIONS FOR POLY LOADING

SORT= 4.0213P 03 SGP= 4.0213P 03 SGT= 4.0213P 03 SCR= -1.6157P 02 SCT= 2.57640 03 SAT= 2.41400 03 3C+ -2.6C*70-03

CALCULATIONS POR PRESSORE LOADING

SCT* 4.54030 03 SAT* 4.25555 03 SCR= -2.84720 02 56T- 5.0937D 03 3684 -8,3815D 02 EC- -4.70420-03 SORT= 1.314 ND 04

CALCULATIONS FOR CONBINED LOADING. N2 ON N2P FCR ITTER=1 OR 2, W2 FOR ITTER=3, = 1.09+40 06

368- 7.66810 02 367- 6.69870 03 SCR- -3.49210 02 SCT- 5.56858 03 JAT+ 5.21930 03 EC= -5.74520-03 SORT- 1.47490 04

Table A.5d (continued)

TAPERED HUB PLANGE

CALCULATIONS FOR HORENT LOADING

SLSO= 2.3042D 04 SLSI= -2.3042D 04 SCSO= 1.9763D 04 SCSI= 5.9379D 03 SLLO= 2.34110 04 SLLT= -2.34110 04 SCLO- 7.02340 03 SCLT= -7.02340 03 STN= 1,11730 04 STF= -1.84820 04 SRN= 8.44410 03 28F= -6.64800 03 \$G= -1.0421D-02 2C= -2.4446D-02 0FMG= 1.4026C-02 Y0= 1.2322D-02 Y1= 1.0058D-18 THETA= -4.0579D-03 CALCULATIONS FOR PRESSURE LOADING

36= -4.51140-03 3C= -1.03020-02 QPNG= 5.79040-03 30+ 9.72240-03 31+ 4.07150-18 1HBTA= -1.60880-03

EG= -7.4476D-07 2C+ -1.7007D-06 0PHG= 9.5390D-07 Y0= -2.4965D-07 Y1= -1.7259D-06 THETA= -2.9860D-07

CALCULATIONS FOR CONDINED LOADING, N2 OR M2P FCB ITYPE=1 OR 2. M2 FOR ITYPE=3, # 7.78140 06

SLS0= 1.41940 00 SLST= 2.58630 03 SCSQ= 1.43980 04 SCSI= 1.09150 00 SLLO- 1,8645D 03 SLLI- 5,7979D 03 SCLO- 5.5935D 02 SCLI- 1,7394D 03 STN= 9,33110 03 STP= -1,10620 03 SRN= -2,29320 03 SPF= 2,70380 02

SISO= 1.22280 00 SISI= -1.22280 00 SCSO= 1.06490-01 SCSI= -6.27220-01 SLLO= -1.39770-01 SLLT= 1.39770-01 3CLO= -1.84196 00 SCLT= -1.75810 00 STN= 1,1007D CO STT= -6.1330D-01 SNN= -2.7247D-01 SNT= 1.5072D-01

SLSU= 3.3385D CA SLSI= -1.6603D 04 SCSO= 3.0857D 04 SCSI= 1.5860D 04 SLLO= 2.1362D 04 SLLT= - .3700D 04 SCLO= 5.4068D 03 SCLT= -4.1117D 03 STN= 1.0630D 04 S17= -1.6493D 04 SRN= 4.7391D 33 SR7= -5.2641D 03

CALCULATION" FOR TEMPERATURE LOADING

a California a California a California a California a California a California a California de California de Cal

ź

To avoid leakage,* the residual bolt load must not be less than the critical value W_c , which may be obtained from simple equilibrium considerations; thus,

$$W_{c} = \frac{\pi}{4} G_{0}^{2} p$$
, (A.2)

where

1

N_c = "critical" bolt load, G₀ = outside diameter of gasket (65 in. in this example), and p = pressure (720 psi in this example).

In this example, the value of W_{c} is

 $W_{c} = \frac{\pi}{4} \times 65^{2} \times 720 = 2.389 \times 10^{6} \text{ lb}$.

Because W_C is significantly greater than $W2 = 1.0948 \times 10^6$ lb, the result: for example 3(a) indicate that the joint will leak at the rated pressure with the initial bolt stress of 20,033 psi. The results illustrate an aspect of ASME-designed flanges that is well known to many users; that is, the joints often cannot be made leaktight (especially in order to pass the hydrostatic test) by applying an initial bolt stress equal to the Code-allowable bolt stress.

The output data for example 3(b) are shown in Table A.6. Example 3(b) is the same as 3(a), except that the initial bolt stress has been increased from 20,033 psi to 44,300 psi (W1 input under XMOA increased to 2.0661×10^7); the initial moment has been correspondingly increased; and the pressure has been increased from 720 psi to 1080 psi, the latter being the hydrostatic-test pressure of 1.5 times the cold rating pressure. It can be seen in Table A.6 (on the second page, Table A.6b) that the

Leakage is defined as the gross type of leakage that occurs when the load on the gasket is reduced to zero. Slow, diffusion-type leakage may occur at lower pressures.

Table A.6a. Output data for example 3(b), blind flange bolted to a tapered-hub flange, with initial bolt stress = 44,300 psi

0. D A 73. 9375	1 50 5	L ANGE . D . , D 7 . 53 1	40	PLANG PHICK. 7,90	2 ,T 427	PIPE WALL,GO 1.234	N BA: 30	BB.41 BB.41 2.70300	N 09 Leygti 5,434		BCLT CIBCLE, C 69.43750	1000.000	,)	
BOLT	COR	PP. 0	7	UBLTA		ROD. O			T 1777	ł	IBOND	ICODE	HATE	
6.0660 0	ENE)6 6.(000D-	06 1	i.000D	-02	3.0000	07 6.	430 01	3		0	0	5	
FLANGE O. D A	2: I	L A HG Z	. 9	PLANG MICK.	1	PIPE VALL, GO	HI 848	18 AT 81,61	N D D L B MG T N), H (BULT CIRCLE, C	PRESSURE, P	,	
73. 9375	0 5	7.531	40	5,93	750	1,234	3 0 :	2.70300	5.436	20	69,43750	1080.000)	
HONLYT	COL	77. 0	7 773.	DELTA		NOD. O	7 NEA1	GASX3	T ITTPE	8	IIOND	ICODE	RATE	
5.046D 0	7 6.	000D-	06	1.0000	-02	3.000D	6.	1630 OI	١		0	0	6	
851	2 R	_	_	TB					78		XQ	0	XGI	AD
2.25	000 (0	00	3,	,0000D Ta	07	6,0 T	000D-(1	96	0.0 Ta		6,500 78	0D 01 C e	8.0250D (PBE	01 1.36920 02
6.25	000-	02	3.	. 0000D	06	6.0	000D-()6	0.0		0.0		0.0	
	H N	~ /	•	* *		17	7		172	A.7	77	P2	567 1 0000 C	TG2

FLANGE JOINT SIDE ONE (PRINED QUANTITIES)

QFHG= 9.4940-10 QFHG= 6.5350D-06 QTHG= -1.0000D 00 XB = -1.0000D 00 GO= -1.0000D 00 TH = 7.9044D 00 TH = 3.0000D 07 TF2 = 3.0000D 07 EF = 6.0000D-06

PLANGE JOINT SIDE TWO (UNPRIMED QUANTITIES)

QPHG= 1,19680-09 QPHG= 8.04220-06 QTH6= 9.55900-05 XB = 5.75310 01 GO= 1.23430 00 TH = 5.93750 00 YH = 3.00000 U? YP2 = 3.00000 07 IF = 6.00000-06

BOLTING

BOLT LENGTH= 1.6154D D1 BOLT AREA= 1.3692D 02 BOLT CIRCLE= 6.9436D 01 TB = 3.0000D 07 TB2 = 3.0000D 07 EB = 6.000CC-06

GASKIT

Table A.6b (continued)

INITIAL BOLT LOAD- 6.9656D 06 BOLT TEMP.= 0.0 PLANGE ONE TEMP.= 0.0 PLANGE TWO TEMP.= 0.0 GASKET TEMP.= 0.0 DELTA= 1.0000B-02 DELTAP= 1.0000D-02 PRESSURE= 1.0600B 03 RESIDUAL POI? LOADS AFTER THERMAL-PRESSURE LOADS AXIAL THERMAL, W2A- 6.0656D 06 MONENT SWIPT, W2E= 5.2952D 06 TOTAL PRESSURE, W2C= 3.5934E 06 DELTA THERMAL, W2D= 6.0655D C6 CONBINED, W4= 3.5933D 06

W1-W2A= 0.0 W1-W2B= 7.7030D 05 W1-W2C= 2.4722D 06 W1-W2D= 1.0333D 02 W1-W2= 2.4723D 06 W2A/W1= 1.0000D 00 W2B/W1= 8.7299D=01 W2C/W1= 5.9242D=01 W2D/W1= 9.9990D=01 W2/W1= 5.9240D=01

INITIAL AND RESIDUAL NOMENTS APTER THERMAL PRESSURE LOADS.

LOADTHES

NAME OF STREET, AND A DESCRIPTION OF STREET,

H1= 2.0461D 07 H2A= 2.0661D 07 H2B= 2.4115D 07 H2C= 1.8319D 07 H2D= 2.0661D 07 H2= 1.6318D 07 H2BP= 7.0966D 07 H2CP= 6.5169D 07 H2P= 6.5160D 07

un ein deinen von wetradriktisch herbilden in Sprikt

Table A.6c (continued)

N4 - -

BLIND FLANGE

- - -

.

- - - --

CALCULATIONS FOR BOLT LOADING

SORT- 8.89240 03 SGR- 8.89240 03 SGR- 8.69240 03 SCR- -3.57270 02 SCR- 5.69710 03 8AT+ 5.33990 03 EC= -5.76200-03

CALCULATIONS FOR PRESSURE LOADING

SORT= 1.9716D 04 SGR= -1.2572D 03 SGT= 7.6405D 03 SCR= -3.2709D 02 SCT= 6.8104D 03 SAT= 6.3833D 03 SCR= -7.0778D-03

CALCULATIONS POR CONDINED LOADING, NO ON NOP FOR ITYPE-1 OR 2, NO ITYPE-3, - 3.59330 66

SORT= 2.49840 04 SGR= 4.01070 03 SGT= 1.29080 04 SCR= -6.38730 02 SCT= 1.01850 04 SAT= 9.54678 03 SCR= -1.04718-02 Table A.6d (continued)

TAPESED HOR PLANCE

CALCULATIONS FOR MOMENT LOADING

SLSC= 4.0624D 04 SLST= -4.0624D 04 \$CSC= 3.4843D 04 \$CST= 1.0469D 04 SLLO= 4,1275D 04 SLLI= -4,1275D 04 SCLO= 1,2382D 04 SCLI= -1,2382D 04 STN= 1.96998 04 STP= -3.25848 04 SR#= 1.48870 04 SRP= -1.17210 04 36= -1.63720-02 1C= -4.31000-02 0786= 2.67260-02 10= 2.17240-02 11= 2.15530-19 18874= -7.15420-03

CALCOLATIONS FOR PRESSURE LOADING

SLS0= 2.1290D 04 SLST= 3.87940 03 SCS0= 2.1596D 04 SCST= 1.6373D 04 STR= 1.39970 04 STF= -1.65030 03 SRH= -3.43970 03 SRF= 4.05560 02

CALCULATIONS FOR TEMPERATURE LOADING

SI SUN 1.24280 00 SIST -1.22280 00 SCS0 - 1.06490-01 SCSI -6.27220-01 SLLOW - 1, 39778-01 SLLT = 1, 39778-01 SCLOW - 1,84198 00 SCLTW - 1,75818 00 STN= 1.10870 00 STF= -6.1330D-01 SBH= -2.7247D-01 SAF= 1.5072D-01

SLSO= 5.73090 04 SLSI= -3.21390 04 3050= 5.24890 04 SCSI= 2.56540 04 SLLO+ 3,93920 04 SLLT= -2,78980 04 SCLO= 1,18140 04 SCLT= -8,37120 03 STN= 3,1463D 04 STP= -3.0541D 04 SRN= 9.7592D 03 SRP= -9.9860D 03

SLLO= 2,7967D 03 SLLT= 8,69'8D 03 SCLO= 8,3902D 02 SCLT= 2,6090D 03 \$6= -6.76710-03 \$C= -1.5+530-02 OPN6= 8.68560-03 Y0= 1.45840-02 Y1= 6.07150-18 THETA= -2.71320-03

86= -7.4476D-07 8C= -1.7007D-06 07N6= 9.55900-07 Y0= -2.4965D-07 Y1= -1.7259D-06 3H8TA= -2.9866D-07

80= -2.3057D-02 8C= -5.3667D-02 GPNG= 3.0610D-02 80= 3.3844D-02 81= -1.7259D-06 1N87A= -9.0565D-03

residual bolt load after application of a pressure of 1080 psi is W2 = 3.5933×10^6 lb. The value of the critical bolt load to prevent gross leakage is

$$W_c = \frac{\pi}{4} \times 65^2 \times 1080 = 3.584 \times 10^6 \text{ lb}$$
.

With an initial bolt stress of 44,300 psi, the residual bolt load is now greater than W_c . Accordingly, the results of example 3(b) indicate that an initial bolt stress of 44,300 psi is sufficient for the joint to pass a hydrostatic test to 1080 psi, albeit with no margin of safety. As the reader may have surmised, the initial bolt stress of 44,300 psi was preselected for example 3(b) to achieve this final result. It is pertinent to note that, because of the linear nature of the calculations, it is not necessary to iterate in order to find a value for the initial bolt stress that would make $W2 = W_c$. Note that $(W1 - W2) = 1.648 \times 10^6$ in example 3(a) and that (W1 - W?) varies linearly with pressure. To find the required value of W1 to make $W2 = W_c$ at an arbitrary pressure p, we need only solve the equation:

$$W1 = \frac{\pi}{4} G_0^2 p + \frac{p}{720} (1.648 \times 10^6) . \tag{A.3}$$

For p = 1080, Eq. (A.3) gives $WI = 6.056 \times 10^6$, and the corresponding initial bolt stress is $W1/A_b = 6.056 \times 10^6/136.92 = 44,228$ psi, which was rounded off to 44,300 psi for Example 3(b).

Blind Flange Stresses, Example 3(a)

Example 3(a) was run with an initial bolt stress of 20,033 psi to permit direct comparison of the blind-flange stresses with the stresses calculated in example 2, where the controlling bolt stress was SB1 =20,033 psi.

Stresses for the blind flange are shown in Table A.Sc. The maximum stress due to initial bolt loading only is SORT = 4021.3 psi. A comparable stress from the Code calculation (Table A.3), is SGS = 3376.3 psi. This also represents a stress at the center of the blind flange due to bolt loading only. The maximum stress due to pressure loading only of the blind flange (mable A.Sc) is SORT = 13,144 psi. A Comparable stress from the Code calculation (Table A.3) is SP = 14,121 psi.

The maximum stress due to combined bolt loading and pressure loading (Table A.Sc) is SORT = 14,749 psi. Note that this combined stress is <u>not</u> the sum of the stress due to the initial bolt load and the stress due to pressure. Rather, the program recognizes that the pressure changes the bolt load — in this example, from 2.743×10^6 lb down to 1.0948×10^5 (Table A.Sb). Stresses for combined loadings are related to stresses for initial bolt loading only and pressure only by the equation

$$\sigma_{c} = \sigma_{b} \cdot \frac{W^{2}}{W^{2}} + \sigma_{p} , \qquad (A.4)$$

where σ_c = combined stress, σ_b = stress due to initial bolt load only, W2 = bolt load at pressure, W1 = initial bolt load, and σ_p = stress due to pressure only.

The Code equation for combined stresses [i.e., $S = (d/t)^2 (G.3p + 1.78Wh_G)$ from paragraph UG-34 and Figs. UG-34 (j) and (k)] can be derived by assuming that the blind flange is a flat circular plate of outside diameter equal to the effective gasket diameter d. The metal outside the diameter d is ignored. The plate is simply supported along d and loaded by edge moment Wh_G and pressure p. Wh_G is either the operating moment or the gasket-scating moment, as obtained in Appendix II of the Code. The method used in this report is the stically more accurate than that used in the Code, and the relatively good agreement between stresses in Table A.5c and those in Table A.3 is, in part, coincidental. Large differences can exist, particularly when there is a significant amount of flange material outside the gasket diameter d.

Tapered-Hub Flange Stresses, Example 3(a)

Example 3(a) was run with an initial moment of 1.1719×10^7 in.-1b to permit direct comparison with the stresses given for example 1 in

Table A.2 under the heading "ASNE FLANGE STRESSES AT OPERATING MOMENT, MOP." In example 1, the value for MOP was determined to be 1.1719×10^7 in.-lb. To be consistent with the Code calculation in this example [3(a)]. we chose IBOND = 0.

Calculated stresses for the tapered-hub flange are shown in Table A.5d. The Code method covers <u>only</u> moment loading. The stresses in Table λ .5d for initial moment loading only are the same as those in Table A.2 for operating moment, MOP:

Stress values from Table A.5d	Stress values from Table A.2
SLLO = 23,411 psi	SH = 23,412 psi
STH = 11,173 psi	ST = 11,174 psi
SRH = 8,444 psi	SR = 8,444 psi

The Code method gives stresses at the small end of the hub if the Code factor f is greater than 1.0; otherwise, it gives stresses for the large end of the hub. The Code method calculates radial and tangential stresses on the hub side of the flange only. Usually these are higher than the corresponding stresses on the face side of the flange, but in this example, STH = 11,173 psi is less than STF = -18,482 psi in absolute magnitude. The Code method does not give circumferential stresses in the hub.

Stresses for pressure loading only, temperature loading only, and combined loadings are shown as the 2nd, 3rd, and 4th groups of stresses in Table A.5d. The small values under the heading "CALCULATIONS FOR TEMPERATURE LOADINGS" come from using DELTA = 0.01, since DELTA = 0 is not a permissible input value.

Combined stresses are not the sum of the stresses due to the three individual loads. Rather, the program recognizes that pressure and temperature change the moment from M1 = 9.3433×10^6 in.-lb to M2 = 7.7814 × 10⁶ in.-lb in this example* (Table A.Sb). The maximum stress

It should be noted that MI is not the same as the input moment XMOA. The program will accept any value for calculating stresses but, for calculating bolt load changes, it assumes that the moment is equal to W(C-G)/2.

under combined loads (in this example, residual moment and pressure) is SLSO = 33,385 psi. Under initial moment only, the maximum stress is SLLO = 23,411 psi.

Blind and Tapered-Hub Flange Stresses, Example 3(b)

Stresses are shown in Table A.6c and A.6d for blind and tapered-hub flanges, respectively. It can be seen that maximum stresses are quite high for the realistic initial bolt stress of 44,300 psi needed to pass the hydrostatic test pressure of 1080 psi [i.e., SORT = 24,984 psi for the blind flange (Table A.6c) and SLSO = 57,309 psi for the tapered-hub flange (Table A.6d]. Comments on the significance of these high calculated stresses are included later in the discussion of examples 4a and 4b.

Displacements

Tables A.5 and A.6 include, along with stresses, the displacements ZC for the blind flange or ZG, ZC, QFHG, YO, Y1, and THETA for the tapered-hub flange. One potential application for these displacements is discussed later in connection with examples 4(a) and 4(b).

IDENTICAL PAIR OF TAPERED-HUB FLANGES, EXAMPLES 4(a) AND 4(b)

Input Data

The input data for Examples 4(a) and 4(b) are shown in Table A.7. The initial bolt stress of 46,100 psi and corresponding W1 = 6.312 \times 10⁶ lb were selected by a preliminary calculation so that W2 would equal W_c at the hydrostatic-test pressure of 1080 psi. The value of W1 = 6.312 \times 10⁶ lb leads to initial moment XMOA = W1(C-G)/2 = 2.1500 \times 10⁷ in.-lb. Example 4(a) is for hydrostatic test conditions at atmospheric temperature. Example 4(b) is for steady-state operating conditions at the rated pressure of 300 psi and corresponding API-605 temperature of 850°F.

The modulus of elasticity of the flange, bolt, and gasket materials was assumed to be 2.25×10^7 psi at 800° F, as compared with 3.0×10^7 at atmospheric temperature. It is assumed that at steady-state operating conditions there is an external bending moment such that the axial stress in the attached pipe is 7500 psi. This axial stress gives 617 psi as the input value for PBE for example 4(b), as shown below:

PBE = $4 S_{b}g_{0}/D_{0} = 4 \times 7500 \times 1.2343/60 = 617 \text{ psi}$.

Output Data

Residual Bolt Loads

The output data for example 4(a) are shown in Table A.8. The output data starts with a printout of all input data. The parameters involved in the bolt-load-change calculations are then printed, followed by residual bolt loads and moments (Table A.8b).

The residual bolt load is given by $W2 = 3.585 \times 10^6$ lb. The critical bolt load, derived from Eq. (A.2), is $W_c = \pi G_0^2 p/4 = 3.584 \times 10^6$ lb. Accordingly, the results of example 4(a) indicate that an initial bolt stress of 46,100 psi is sufficient for the joint to pass a hydrostatic test to 1080 psi, albeit with no margin of safety.

Card No.			V	ariables and	numerical v	alues			Read format
1	ITYPE	I BOND	ICODE	MATE		- <u></u>			
	1	0	0	2					415
2	Α	В	t	8 0	8 1	h	С	р	
	73,9375	57.5314	5.9375	1,2343	2.7030	5,4362	69.4375	10 8 0. (300.)	8E10.5
3	XMOA	EF	DELTA ^b	YM	G				
	2.1500D+7	6. D-6	.01	3. D+7	62.625				5E10.5
4	BSIZE	YB	EB	TB	XGO	XGI	AB		
	2,25	3. D+7	6. D-6	0	65,	60.25	136.92		7E10.5
5	vo	YG	EG	TG	FACE	РВЕ			
	,0625	3. D+6	6. D-6	0	0	0			6E10.5
						(617.)			
6	W1	TF	TFP	YF2	YFP2	YB2	YG2		
	6.3120D+6	0	0	3. D+7	3. D+7	3, D+7	3. D+6		7E10.5
				(2.25D+7)	(2.25D+7)	(2.25D+7)	(2.25D+6)		

Table A.7. Input data for tapered-hub-to-tapered-hub flanged joint, examples⁴ 4a and 4b

^aValues in parentheses are for example 4b.

^bSince DELTA cannot be entered as zero, 0.01 was used as a satisfactorily small value.

.

85

.

Table A.8a. Output data for example 4(a), identical pair of tapered-hub flanges, with initial bolt stress of 46,100 psi

PLANG 0. D., 73. 93	8 A 750	PLANGE I.D.,B 57.53140	PLANGE THICK.,T 5.93750	PIFS WALL,GO 1.23430	NUB 1 BASE, 0 2.70	1 1 0 3 0 0	H 87 LENGTH, H 5.43620	BCLT CINCLE,C 69.43750	PRESSURE, P 1080.000)					
KONEN	t co	177. OF	DELTA	#00. 07 1	NEAN GI	SKIT	ITYPE	IBOND	ICODE	HATE					
7.1500	07 6	.000D-06	1.050D-02	3.000D 07	6.2630	01	1	0	0	2					
2.	31 22 2500d Vo	00	TB 3.00000 07 Tg	23 6,000 16	00-96	ΰ.	T B . 0 . T G	1 GO 6,5000 PAC	D 01	XGI 6.0250D PBB	01	AB 1.3692D	02		
6. 6.	25000 N 1 31200	-02 06	3.0000D 06 TP 0.0	6.000 TPP 0.0	00-06	0. 3.	0 172 00000 07	0.0 ¥FP 3.0000	2 D 07	0.0 782 3.0000D	07	1G2 3.0000D	04		
7	LA NGE	JOINT B	OLT LOAD CI	ANGE DUE :	TO APP1	IRD 1	LOADS, ID	ENTICAL PAI	8						
	PLAN	GE JOINT	SIDE ORE	PRINED QU		(\$)									
Q7 #G=	1,1 TB =	96 80-09 3.0000	QPNG= 8.0 D 07	422D-06 TP2 =	9 7 NG = 3 . 0 0 0 0 1	9.559 07	00-05 EP = (KB = 5.753 5.0000D-06	1D 01	60 =	1.23430	00	TH	•	5.93750 00
	PLAN	GE JOINT	SIDE TWO		2° ANTI 1	I I I)									
07 HG=	1. j TH =	9680-09 3.0000	QPNG= 0.0 D 07	422D-06 TP2 =	00001 3.00001	\$.559 07	0D-05 1 BP = 0	18 = 5.753 5.0000-06	1D 01	Q0=	1, 2343D	00	TR	•	5.93750 00
	80	lt Ing													
BOLT	LBNGT TD =	N= 1.41; 3.0000;	880 01 801 D 07	T NAER- 1 TB2 - 3	1.3~920 .00v0D	02 07	BOLT CIRC BB = 6	LX= 6.943 .0000D-06	OD 01						
	GA	S R BT													

VO = 6.2500D-02 XGO = 6.5000D 01 XGI = 6.0250D 01 TG = 3.0000D 06 TG2 = 3.0000D 06 TG = 6.0000E-06

ությունին չություններին են առաջանան հերկությունը ններկությունը ուսությունը ենք են հայտարություններին է է է է է

Table A.85 (continued)

.

1

.

.

1

8

LOADINGS

INITIAL BOLT LOADS 6.3320D 06 BOLT TEMP.= 0.0 PLANGE ONE TEMP.= 0.0 PLANGE TWO TEMP.= 0.0 GASKET TEMP.= 0.0 DELTA= 1.0000D-02 DELTAP= 1.0000D-02 PRESSURE= 1.0000D 03 RESIDUAL BOLT LOADS AFTER THERMAL-PRESSURE LOADS AXIAL THERMAL, W2A= 6.3320D 06 NOMENT SHIFT, W2E= 5.0760D 06 TOTAL PRESSURE, W2C= 2.38520 06 DELTA THERMAL, W2D= 6.3318D 06 CONDINED, W2= 3.5850D 06

W1-W2A= 0.0 W1-W2B= 1.2360D 06 W1-W2C= 2.7268D 06 W1-W2D= 1.6408D 02 W1-W2= 2.7270D 06 W2A/W1= 1.0000D 00 W2D/W1= 8.0418D-01 W2C/W1= 5.6799D-01 W2D/W1= 9.9997D-01 W2/W1= 5.6796D-01

INITIAL AND RESIDUAL NOMENTS AFTER THERMAL FRESSURE LOADS.

NI= 2.15000 07 N2A= 2.15000 07 N2B= 2.33690 07 N2C= 1.02910 07 N2D= 2.15000 07 N2= 1.02900 07 N2BE= 2.33690 07 N2CP= 1.02910 07 N2P= 1.02900 07 Table A.Bc (continued)

TAPERS A00 PLANGE

CALCULATIONS POR MONENT LOADTHE

14- -1.91100-02 3C- -4.10500-02 8700- 2.57320-02 70- 2.26000-02 71- 1.65240-14 74874- -7.44400-03 587+ -1.2 1979 04 4.22736 44 5121+ -4.22736 64 5056+ 3.62566 64 3051+ 1.66946 64 4-1295 10 00 31111- -1-129510 00 3010- 1-20050 00 30111- -1-12050 00 10 R615'1 - M1 577= -3, J9678 04 CALCULATION POR POSSOON LOADING 578- 2.04998 M 36.10-110

14- -4.76719-03 3/- -1.54530-03 8786- 0.66549-03 70- 1.65040-02 71- 4.07150-10 34874- -2.71320-03 2.12900 64 \$151- 3.07949 03 \$500- 2.15900 04 \$531- 1.43730 64 3410- 3.79678 93 3111- 8.49488 03 8610- 0.39028 03 8611- 2.4998 03 278- 1.39939 04 277- -1.65039 03 588- -3.43930 03 587- 4.05560 02

CALCULATION POR TURPEATURE LOADING

Ma - T. M. M.B-67 Sca - 1, 70078-04 GPMa 9,55908-07 Tea - 2,49650-07 Ta - 1,72590-06 THPA: - 2,99400-07 1.02000 07 CALCULATIONS POR CONSTRUE LOADING, A2 00 A20 POA 27770-1 04 2, 42 POA 77774-3, -3130- 1.22200 00 3131- -1.22200 00 2000- 1.00400-01 2031- -6.27220-01 1110--1'30779-01 5LIT- 1,39779-01 5CL0--1.0119 00 SCLI--1.75019 W 318- 1,100 % 00 317- -0,13308-01 800- -3,72430-61 847- 1,54738-01

164 - 2. 30320 - 02 Sc+ - 1. 36680-02 QPR+ 3. 05750-02 70+ 3. 30140-02 71+ - 1. 72590-06 THFA+ - 9. 64640-03 3.93356 CH BLLT- -3.78419 0+ BCL0+ 1.17558 0+ BCLT+ -0.35419 03 3.11366 64 277- -3.64948 64 388- 9.73666 13 587- -4.94966 03 224- 5.72536 M \$121- -3.20039 M RCM- 5.2418 01 8231- 2.5448 M Ę

The output data for example 4(b) are shown in Table A.9, which is identical in format to Table A.8 for example 4(a). The residual bolt load for example 4(b) is given by N2 = 3.2718×10^6 lb. The pressure is lower in example 4(b) than in 4(a), but there is a modulus-of-elasticity decrease which, by itself, makes N2 = N1 $\times 2.25 \times 10^7/(3 \times 10^7)$ and makes the effect of the equivalent pressure correspond to the external moment PBE. We can check to see if the residual bolt load is sufficient to prevent leakage by an extension of the concept of the initial bolt load W_c, which was discussed in the previous section. We made the conservative assumption that the maximum tensile stress due to the external bending moment (which exists only at one point on the pipe circumference) acts around the complete circumference of the pipe. The value of W_c, the critical bolt load to prevent gross leakage, is then the sum of Eq. (A.2) and the axial load due to the bending moment; thus

$$\mathbf{W}_{c} = \frac{\pi}{4} G_{0}^{2} \mathbf{p} + \mathbf{A}_{\mathbf{p}} \mathbf{S}_{\mathbf{p}}, \qquad (\lambda.5)$$

where

 $A_p = \pi (\mathbf{B} + \mathbf{g}_0) \mathbf{g}_0 = \text{cross-sectional area of attached pipe, and}$ $S_b = \text{axial stress in attached pipe due to an external moment.}$ For example 4(b), Eq. (A.S) gives:

$$W_{c} = \left(\frac{\pi}{4} \times 65^{2} \times 300\right) + (\pi \times 58.7657 \times 1.2343 \times 7500)$$

= 2.7045 × 10⁶ lb .

Because W2 = 3.2718×10^6 lb is greater than W_c = 2.7045×10^6 lb, the results indicate that the flanged joint with an initial bolt stress of 46,100 psi can carry, at least for a short time at 850°F, an external moment giving both an axial bending stress of 7500 psi in the attached pipc of 1.2343-in. wall thickness and an internal pressure of 300 psi.

At 850°F, the carbon-s.eel flanges and bolts would be expected to undergo significant relaxation due to creep in the flanges and bolts,

of tapered-hub 250°F	
T ind and	
identical at 300 psi	
4(b),	
example ite opers	
for -sta	
data steady	
Output	
able A.9a.	

		8	2	
		ž	2	
		•		
		•	•	
	2 5	=	-	
		:	:	
		5	-	
		Č.	Ē.	
		-	-	
		i	ż	
	• • •	•	•	
1-1 8 °	: :	5	÷	5
2 "			-	
	.			
5 2	3			
				5
	· · · · · · ·	T		2
: ::::	ě ě ř		: E .	
	ž ž			
	÷ ÷	P 3 5.	5 5.	-
			· • • •	:
	••••			
				5
	::		8	ŏ
				5
	****			5
: .!:				
	_			-
			:::	51
87	;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			8 ţ.
			• 6	الله الم
	· · · · ·	- ¥	Ĩ	13
Nor .		5	9	

To2 - 2.25000 07 29 - 6.00000-04 70 - 3.00000 07

11 16 10

Vo = 4.25000.02 300 = 4.50000 01 261 = 4.02500 01 Ye = 3.00000 06 762 = 3.25000 07 26 = 4.00000-04

Table A.9b (continued)

INITIAL BUIT LOAD* 4.3120D 04 BULT TEMP.* 0.0 Gasmet temp.* 0.0 felfa* 1.00000-02 deltas* 1.00000-02 pressure* 1.00000 02 LOADINGS

I

к Т

I.

1

AESIDUAL BOLT LOADS APTER THRUPAL-PARSSER LCADS

AXIAL THERNAL, W24- 4.31200 06 MORENT SHIPT, W28- 5.26250 06

TUTAL PARSENAP. M2C. 4.84846 04 DELTA THRAMAL, W2D. 6. 11180 06

JONBINED, 42+ 3.27100 06

J. 0402D 06 W24/W1+ 1.000PD D0 W28/W1+ 8.33760-D1 W2C/W1+ 7.68130-01 W20/W1+ 9.44970+01 W2/W1+ 5.19350-01 WI-W28- 1.04950 06 WI-W2C+ 1.46160 06 WI-W20+ 1.64080 02 WI-W2+ #1-#28+ 0.9

INITIAL AND RESIDUAL MORPH'S APPEN THIAMAL PRESSURE LOADS.

MI- 2.1500D 07 M2A- 2.1900D 07 M2B- 1.9614D 07 M2C- 1.6201D 07 M2D- 2.1900D 07 M2- 1.28136 07 M289- 1.94145 07 H269- 1.82030 67 H29- 1.28330 07

l L

I.

i T T

.

I

Table A.9c (continued)

TAPPRED NUD PLANCE CALCULATIONS FOR MONENT LOADING

SLSO- 4,22730 04 SLST- -4,22730 04 SCSO- 3,62560 04 SCSI- 1,06940 04 SLLO- 4,29510 04 SLLT- -4,29510 04 SCLO- 1,26650 04 SCLI- -1,26650 04 STM- 2,04990 04 STM- -3,39070 04 SNM- 1,54920 04 SRM- -1,21970 04 SG- -1,91160-02 XC- -4,46500-02 QM64 2,57320-02 Y0- 2,26060-02 Y1+ 1,65240-18 THATA- -7,44460-01

CALCULATIONS FOR PRESSURE LOADING

SLSO- 5.918CD 03 SLST* 1.0774D 03 5.30* 5.9990D 03 SCST* 4.5481D 03 SLLO- 7.7687D 02 SLLT* 7.4158D 03 SCLO* 7.3334D 02 SCLI* 7.2471D 02 STN= 3.8880D 03 STP* -8.5841D 02 SR#= -9.5549D 02 SRF+ 1.1266D 02 SG= -1.8798D-03 ZC= -8.2924D-03 UPNG= 2.4127D-03 T0* 4.0510D-03 Y1* 8.4734D-19 THETA* -7.5365D-04

CLUCULATIONS FOR TEMPERATURE LOADING

3250 1.22200 00 S1SI -1.22200 00 SCS0 1.06400-01 SCSI -4.2722D-01 SLLO -1.3077D-C1 SLLI 1.3077D-01 SCLO -1.0419D 00 SCLI -1.7501D 00 STN 1.1007D 00 STP -6.1330D-01 SRN -2.7247D-01 SRP 1.5072D-01 SG -7.4476D-07 3C -1.7007D-04 OPNd 9.5590D-07 Yd -2.4965D-07 Y1 -1.7259D-03 SNETA -2.9060D-07 CALCULATIONS FOR CONDINED LOADING, 02 OF N2P FCR STYPE 1 OR 2, 02 FOR STYPE 1, 1.2033D 07

SLSO= 3,1147D 04 SLSI= -2.4196D 04 SCSO= 2.7641D 04 SCSI= 1.1050D 04 SLLO= 2.6411D 04 SLLI= -2.3221D 04 SCLO= 7.9222D 03 SCLI= -6.9680D 03 STN= 1.6125D 04 STP= -2.0698D 04 SBN= 8.2010D 03 SRP= -7.1671D 03 ZG= -1.3292D=02 ZC= -3.1064D=02 QPNG= 1.7772D=02 T0= 1.7544D=02 T1= -1.7255D=06 SNETA= -5.1976D=03 particularly with the high bolt stresses and flange stresses involved in example 4(b). For long-term service (many years) at 850°F, one might expect the flanges and/or bolts to creep so that a residual bolt stress of around 20,000 psi would exist, at which time N2 = 2000 \times 136.92 = 2.7384 \times 10° lb. Because this is larger than N_C = 2.7045 \times 10² lb obtained from Eq. (A.5), indivitions are that the flanged joint could still carry the external moment and pressure, albeit with almost no margin of safety.

It should be noted that, if bolts relax in high-temperature service, then the bolt load does not return to its initial value upon returning to initial conditions. The permanent loss in bolt load would be W2 - $S_{br}A_{b}$, where S_{br} = relaxed bolt stress, assumed here to be 20,000 psi. The permanent loss in bolt load, in this example, is 3.2718×10^{4} -20,000 - 136.92 = 533,400 lb. The load is theoretically not sufficient to pass a hydrotest of 1080 psi, but it is extremely unlikely such a hydrotest would be required for a system operating at 300 psi and 850°F.

Flange Stresses

Tables A.Sc and A.9c show the flange stresses for examples 4(a) and 4(b), respectively. The maximum calculated stress occurs in example 4(a) where SLSO = 57,255 psi for combined loadings. Note that this is not the sum of the stresses due to initial moment loading only plus pressure loading only (first two groups of stresses), but rather it is the stress due to the moment as changed by pressure, M2 = M2P = $1.829 + 10^7$ in.-1b, plue the stress due to pressure only.

The question arises as to whether the flanges in the flanged joint are strong enough to pass the hydrostatic test. To pursue this question, it is appropriate to tabulate the tangential and radial stresses at initial and pressurized conditions:

Condition	STH	STF	SRH	SRF
۵۰۰ میں اور				
lnitial	20,499	- 33, 907	15,492	-12,197
Pressurized	31,436	- 30,496	9,739	-9,970

It should be noted that the stresses are, in large part, bending stresses. Before large plastic deformations occur, these stresses must reach about $1.5S_y$, where S_y is the yield strength of the finnge material. Further, high stresses in the hub will not lead to large plastic deformations if there is reserve strength in the flange ring as indicated by relatively low tangential and radial stresses. If the capability for calculating these stresses has been attained, the next logical step is to conduct an extensive study to develop suitable design criteria for stress limits in flanged joints. Until such a study is conducted, however, the following limits are suggested as appropriate for stresses under hydrostatic test conditions:

St ress	Limit
Longitudinal hub stresses	<u><</u> 1.58
Radial stress or tangential stress	<\$ - y
Averages of radial or tangential stress and longitudinal hub stress	<\$ - y

The above criterion makes the average of SLSO and STH under pressurized conditions [i.e., $1/2(5.7253 > 10^6 + 3.1436 < 10^6) = 14,344$ psi] the controlling stress and infers that the flanged joint is ceptable, provided the flange-material yield strength is not less than 44,344 psi.

Displacements

In tightening the belts to 46,100 psi, the question arises as to whether the flanges will rotate so that contact occurs on the outer edge. Table A.8c shows values of THETA, the rotation of the ring at the mean radius of the pipe wall. An estimate* of the displacement of the ring edge with respect to the gasket centerline can be obtained by

The deformation of the ring is not exactly linear across the ring, but in this example it is suffic ently close to linear.

Bultiplying HETA by (A-G)/2, the radial distance between the ring edge and gasket centerline. In example 4(a), A = 70.9575, G = 62.625, and HETA = -9.0466 - 10⁻⁷ under combined loading; the minus sign means that the rotation is such that clearance is reduced at the outer edge. The displacement of A with respect to C is 9.0466 - 10⁻⁷ - 475.9575 -62.625)/2 = 0.0512 in. Because API-605 flanges have 1/16-in. raised faces, the outer edges of the flanges will not contact each other. The clearance will then be (0.0525 - 0.0512) - 2 = 0.0056 in. plus the trickness of the gasket.

.....

ī.

т. т. т.

COMPUTER TIME

The six examples discussed in this appendix were run on Battelle's CDC 6400 computer and also on ORNL's IBM 360/91. The IBM FORTRAN source deck (converted to double precision for use on the IBM machine) has 1583 cards. The total length of the program is 80K bytes (10,240 actual words), and it needs no auxiliary storage devices except standard read and write units. The program requires 270K bytes for compilation and has a capilation time of 19.4 sec. The total execution time for the six examples was 1.15 sec.

I.

APPENDIX B

FLOWCHARTS AND LISTING OF COMPUTER PROGRAM FLANGE AND ATTENDANT SUBROUTINES

Т

1

i.

1

1

ļ

•

1

an the a constant

APPENDIX B

COMENTS

Page

1.	Flowcharts of Program FLAXGE and Attendant Subroutines	10'
2.	Listing of Program FLANGE and Attendant Subroutines	11

Fig. B.1. Program FLANGE.

I.

.

Fig. B.2. Subroutine TAPHUB (Part 1).

Т

المحاصير الأراجا الروحا

1

Fig. B.2. Subroutine TAPHUB (Part 2).

1

1

1 I

ORNL-DWG 75-4303R

Fig. B.2. Subroutine TAPHUB (Part 3).

A NO THE

• Sec. 1.

an 11 an

. .

Fig. B.3. Subroutine STHUB (Part 1).

1

I.

÷

Т

ŝ

.....

Fig. B.4. Subroutine BLIND.

I.

I.

Fig. B.S. Subroutine ASMEIN.

1.1

1 1 1

- <u>人</u> 壁

rig. B.6. Subroutine FLGDM (Part 2).

ORAL-DUG 75-43098

Fig. B.7. Subroutine STORE.

and the second
No. 1 You wanta and a sub-

the grant states of a state of a state of the

Fig. B.S. Subroutine COMBIN (Part 1).

• •

19416.379

Fig. B.8. Subroutine COMBIN (Part 2).

113

.

an 🛔 a san anan ar san ang ang digitata ar an ang ang ang ang ang

USING OF PROCEDUR FLANCE AND ATTENDANT SUBNILITIES

199971126 - 3762355 - 32764 - 8229,6873466,668555463,6724**4 30666**, 274268,986666,2966278,79366666,728,828,82867,846367,84636 2 - 2346783 762552 16997,966796,522352 159973 744 ¢ 8 LA シアンスマリ Ć 731,752 2.99 Thread : Land the straight and - 1- 24-25 atthe for all stars, all stars that the stars that the second and the 3 31 TESSICE 27(1, 14), 50(14 214 18 and a start a start a start a start a s The start and a start and a start and a start and a start The start and a start a . 8 78 4 F 13. 14 P14 Ś₿ 2. 12. 12. 12. 18 . 28. 18 . 19 . 18. 5". 27. 17." e 14 64 C 2 1772 + V Thists 235 74 ITTE + 2 SIFALGET MER C 74 . i t 11135 + 1 51115 714 .
 1772
 1
 5440
 744

 1472
 1
 5440
 7444
 5474
 744

 1472
 1
 56754
 1475
 1444
 744

 1482
 1
 1475
 1475
 1444
 1444

 1482
 1
 1475
 1547
 1444
 1444

 1483
 1
 1475
 1547
 1444
 1444

 1483
 1
 1475
 1547
 1444
 1444

 1483
 1
 1475
 1444
 1444
 1444

 1484
 1
 1444
 1444
 1444
 1444

 1484
 1
 1444
 1444
 1444
 1444
 18 ¢ 81 ċ 12 € 13 ¢ 10 NAT. + 1 I'VE HET CHICHLATT LOAD CALETA : 715 15 MALL * * J THE BOD CALOFILITY LONG CREEKS MALL * J CLARENTS LIGT CREEKS 705 TNEETHEL FALS MALL * J CLARENTS LIGT CREEKS FOR INTERFE TO A TURK MALL * J CLARENTS LIGT CREEKS FOR INTERFE TO A TURK MALL * CALOFILITS LIGT CREEKS FOR INTERFE MALL * CALOFILITS LIGT CREEKS FOR ALLON IN CREEKS MALL * A TURKSLIPS LIGHT CREEKS FOR ALLON IN CREEKS MALL * A TURKSLIPS LIGHT CREEKS FOR ALLON TO THE TURKS 714 C 16 74 17 ÷ 13 ¢ 14 716 10 C 2 714 20 21151 11 Ţ 294 714 1 28-2 140 1216 80 10006 22 40 10 10 10 27 (L.OF. 6) 10, 5 2 172+17775 766 22 s 714 23 1 3745(3, 1, 3, 5, 5, 10) ; (16,3, 1835),(0331, 415) 17 (1799)-21 3,4,5 3 0211 197304 シト・ススートン 7 18 20 7 14 45 63 10 4 74 i. * IXLL Sid74 40 70 e 27 7 : 4 11 28 -5 CALL BLIND 27 36 IG A 74 20 e 160 10 17,7,4,7,4,7,4,10, Sini. 7 10 10 1 P 14 31 74 22 3 - CPHG2+QFPL (1) /X30 & 74]] 228-P+ . PH: 10 /7/125 714]0 74 274 FP+473 F (5) /2_LTS 15 766 36 jj?=70 ? 64 37 +H2 =TH 724 34 112=13 754 37 716 -277=41 545178+53514 7 14 31 elà 11 × 37471 74 10 10 1 14 •2 Y OTHODA-UTE: (1)/4404 764 •3 224.424-3785 (4)/12455 754 2-11-1-1. 716 -5 -----74 46 ; 774-1. 754 . 7 716 ... 12.2 + 17 ... r 14 1999.42 214 50

01111111111	ا، الت
17 - 178-5	لفات المشاع
14 M 1	tii a.
1. TITA	- 1- 4 l+ l-
	ž14 3+
11 - 7/2 株1 (作:1)	ಕೊಡ ತಿತ್ರೆ ತಿತ್ರಿ
1. FUETRE (415)	fuñ 38
	7

		-
CHIC CALCELATION IS THE STHE - IN LANGUE FRE FRANKS	1.42	•
THE TAKET ALLEN (D-A) C-AL	. 1	1 - 7 -
219282. (A. W.), 2916), 2197(1), 172(1), 172(1), 172(1), 2011, 14		
2137541 (5-42 (C. 19) - A (1 m	. 12	7.
199755 TTY CLARKEN COLLAR CO		-
1 A. FERRAR ST. AND TARGET AND A CARAGE AND A	- 12	1 -
	جد -	-
		1
and the second product of the second s		
************************************	• #F	
" μπιμιτή μια ματιμάτημα σα ματιμάτημα το Ε από τη τηματική τηματική τηματική τηματική του τηματική του τηματική τηματική τηματική τηματική τηματική του τη	- 55	
3 m. m. 64 \$3 4 * 2 4 7 g 7 / 100 3 4 7 g 5 2 1 2 7 1 4 * 4 7 g 6 2 . 7 5 * 9 / g 6 2 - 7 5 7 * 17 y 6 ¥ 14 9 * 44	/	
1 213° 44, 88,88,18,80,61,22,00,2015	2 22	1.
221NI 47	* ∦?	1.
دماية والمراجع والمراجع والمراجع والارتقاد والاتهان الاتهان	TAR	1 *
· · · ·	2.42	20
¥#=1.	782	
17 Acculture de la contre d	. P	
	2.42	
	717	
reserves and the second s	~ 12	
·····································	- 1 3	1.2
		2
	7 32	10
* #** * ### / ## * * * * * * * * *	-12	
	- AC	
* · · · /		
- 1974 0 	212	•
3 R 2 - 1 7 - 10 1 - 3 - 1 - 2	- Ar	
「「「「「「」」」「「」」」」」」」」」「「」」」」」」」」」」」」」	2 AP	
「「「「」」「「」「」」「」」「」」「」」「」」」「」」」「」」」「」」」「	TAP	44 Å
	- AP	20
· trasformer	- AF	22
. TA GEZ WIA TA ALPEA	2.45	54
17A1~ (5 0) #*+>) # 27AU	- 49	20
\$K=\$\$\$/\$	2 AP	- 58
J = 1	275	~ 0
64.1 A C	2 A P	o∠
?u=(u=Ru# ##/(¥###U)) #21556	2 #P	ə ~
3 2 DATINE	245	n6
これ (よう)にしい) マッチャック	2 A2	0.6
■ T=x/10.0	275	7 Ú
$c s = \Gamma L_{J, r} (X/2 \cdot 0)$	285	726
1247°T	T AP	74
〒3月12月11日 - 11日	282	70
t a ≠ t 8#1	2 A P	70
· += ; • = · •	2.48	うし
112:57P=10	247	32
1 14 × C 124 C 4		5.4
1 2 3 T T T H = T H	: 12	46

•

•

1

ς

724+120+14 110 á 🗈 128-124-14 : # 90 132+12#+14 -42 C ** CUSS. TO CARDS TAPS-105 OF SUDD. 142800, 02-27-75. # F3 X=. y73 y9 y9 49 44 7483-154. 2495979595767880764678. 16844. 7663 89 108° 27 4P 944 1#-070.5502795489968800512093.459664297172600516-7.20225672762376978 962 2*T20*. 45477735607£6*;2**. 6 6464671237270 6*124*.46540104744658**T32 F.M BZL I**T4* (-24.499999999994099940 **34.22777777778880*T4*678.166424776978 954 1004 1907 00 + [4+, 44], 34,754 34425748 (+ 112-23, 34763347864993, +216+1, 436 33427; 49 1621 2697629C+720-,0Jd62442d27J66C+726+_003546426317590+2_d+_0+71J0+5+7537AP 100 4 421 230 1054 2 82 F1 = C M (- 62, 69 7 5 99 7 5 99 7 4 900 ° 542, 5 3 6 72 22 22 23 6 70 0 ° 54 - 55 5, 14 4 3 5 46 72 AP - 10o à 176 500 0* 26 • 150 . 175 • 7 16 • 3 22 7 # 00 • 112 - 10. • # • 5 16 • 40 year 30 • 1 6 • . 6 23 • 7 26 32 AF 104 14 3243 3007 20-. G 1 27 2460 36 1+8 0° 7 24+ . 1 7 6 1 45 345 18- 3° 7 4 4- . 1 4 50 6 466 - 5 47 37 88 1 104 321 2 82 1114 DS 111-1* (-4.999999999999999950.206.4164.006655330091+-676.104.064776724 1126 153900+14+336. 243456 502345 1" (+ 1+2-52, 10426 (#475905 8J+216+3. 2419352 12 M - 1 144 _045798C+720-.09991947666932C0+724+.00163317C04376C+224-.00017522698EA2-176A 380D00T321 :12 1174 2 11 = T 2* (2 4, 99 59 95 59 47 59 20 C- 79 5, 7 1 7 392 5724 89 60 C* 2* * 1 34 6, 4 34 5 1 36 7 30 97 AP 1184 1920 UP 19-62 5.61 567 17+052 01 ED * 12 + 1. 952+77 10 06 200* 1 10- +. 5107+591 326TAP 1204 239D3+226+_12220E73R2152D0+126+_33144667778660P+220+_15+393047D+4+_2M 1228 37.321 T # 1434 15.0471742713475004712+21,212345166323173416-.0061324027676304723+5AP 120 . 2.0154320144705009120-.001797627996039124+.0000012161139000 23.1 EAP 120A 021 X= TP (4.999)/9999975 [0-477,430555555 1526 COPT 4+ 1544.4 d+51 yes 5283787 1304 15/0+18-072. 219140 267245 50 C+ 172+167. 5146565913 3376 6+216-9. 9+1440 3201 AF 132A 2972 50 0° 12 6+ . 3 1774 164 3 46 86 70 °C 24 +. 00 54 16 85 56 40 809* 12 4+. 0 J0 45232 94 J 1 CAP - 1 J4A 1354 34 90 **** 32) TAP 0221=73•(93.74553599999950C-113C.2406712562694800 2001350.5936223377 AP 136A 1245200° Id=408.1354788.52574.00 m12+42.424690313108.6204714= 1,9347669148-1384 22 29 2.17 E.V+ 2 20+.0++2 6 3 86 2 1 4 50 0+ 7 2 5- . OC C 5 75 2 C 42 20 30 0+ 2 20+.0 06 0 6+ 3 66 21 AP 1404 305300+1321 CAP 1914 2514= -.7853781643979500+ 2281+ 211+ (.577215664980+C3)95823 228 1424 CEAL= +.785 396 164 39 /450 C+ BELL- 32X- (.5772 156649 DJ+33) +BERA 1.00 166 4 DKERE+.7853981413974520+CREII-DK24-(LLAX/R)- (.>7741203430-CJ)+08TAP 146.4 1228 739 187A DKEIX=-.785372167397450C+DBE2X+031X-(6EXX/X)-(.57721566466460+C3)+DBCA7 1384 12 I I TAP 1444 60 TO 6 20 150 5 1=10.0/1 : 12 152 $\begin{array}{rcl} 1 & = & (DEXP(+X/1.0.1021356237190) & / Ei (47(6.203165037109003)) \\ C2 & = & (BEXP(-X/1.0.1021256237100) & 0.50211(1.5707563267920/2)) \end{array}$ TAP 1540 T AP 154 8 SIM1 = RSI#((3/1.41421354237100)+(.342649064164900)) 2.00 158.8 SIN2 = DSIS((1/1.41421356237100)-(.3+2699C8169906)) TAP 1600 COS 1 = CCOS ((X/1.41421356237100)+(.392699C8169900)) I MP 1625 CAP 1648 2052 = 200; ((1/1.41421356237100) - (.39269908169900)) 12=1+1 7 M P 166 IJ=I2+I T 88 16.8 TIP 1.20 14=53+1 10=14=1 2 67 17. 17' T6=75=1 C AP 77-16-1 7M 1 . 17.4 18=77=1 * 10 1834 \$=1.+. Oudd J + d 346D G#T+.7 E-9#T2 -. 0000 5 17869 EJ#T 3-.0 OJJ11220 703# I+-.01AP 1000 616 192 DOPT5+. 1 350- dPT6 +. 18 540-6+17+. 89 20-7-18 TAP 1824 TT=-, CO88 348 340 CO +T-. COC703 124 10 0+ 12-. CCUC5 18 0040 G+ TJ-. 72 D-0+T++, 17 AP 184 A TAP 1864 #=1.-.0255165C60DC4T-.dD-94T2+.725024D-44T3+.1462550-44T4+.19780D-2782-1868 15+75-.1470-7+1t-.16711-t+17-.1630-7+18 7 AP 190 A V=+ .02651650340047+.001171674000412+.7251790-4413+.790-4454-.400421AF 192A 10-5-15-.69920-0-1 (-. #130- + 17+.2090- 8-1A 2.82 199A 352 X=C1+((3+C(52) -(T2+51#2)) 1 11 196 BIIX=C1+((TT+COS2)+(S+SIN2)) 198 : #P 362 - X=C 1+ ((9+COS 1) - (V+SIN 1)) 2 42 200 202 D821X=C1+((V*CCS1)+(U*SIH1)) TAP 7=-T M 2)+ FAP 206 12=1=1 208 73=12=1 TAP

24+13+1 7 80 210 15+3+1 242 212 :6+:5+: 11 21+ :7=26=: t DP 216 Tb+:7+1 719 21 8 15-15-1352-4-16+. 1652 5-6-17+. 4928-7-18 2.82 2224 211-.80366348-201-.7531418-3072-.5388662-0073-.73 1754.57498-60164.3568-7023-.4038-7013 d=:+.16+J10-5:AP 22+A 1 88 2354 #=1.+. 62+5165 CD 20 **-. #D=4 +22+. 72502+ 5-4 +23+. 10+25 52- 1+, ++. 19762 5-142 2301 125-. 1475-7024-. 14710-0 27-. 5630-7078 2306 :0 1 = • . \$. * 5 10 5 0 , 00 0 • 1 • . 1 17 14 700 - 2 • 12 • . 72 51 796 - 0 • 12 • . 77 3 - 0 • 2 • - . 40 • 20 -1 10 2345 112 2.001 -1+1+C2+((S+COS) +(12+S36 1)) 2.00 236 :": #C2*((:T*CCS1)-(\$*5251)) 7.82 234 38 2 M + - CI + (15+ JES 4) + (H+ S; # 2)) 115 28.0 \$8 32 4 = - Ci = ((Y + Ci) 5 2 - (H= S2 5 2)) 2 10 2+2 :es::st: :42 244 : F (J-7) 7, 7, F 7 78= (1./(\$80-1.)) ++.5 : # 286 2+4 2.00 1.Jelel 2.00 250 à (1, 1) = 80 (à 1 1 18 252 A (7,2) +0625 X 145 25. A (1, J) + M LP 1 788 25+ A (1, 4) = JEL:1 : 10 250 4 (7,5) **.** 269 1 (1,+) +-20 112 262 A (1,7) =0. 2 2 20 A (1,3) +C. 710 200 à (1, 7) = ¢. : 10 25.8 A (1,10) =0. 270 TAP L (2 , 1) =-X* b1_ 3-3_*58#FX :12 272 4 (2, 2) =x= #L34-2. +L#EIX : # 27 4 5 (2,3) =-19622 **3-2. 998**2 FX :12 27. L (2, +) = 1+CE+1-2. - IN +11 10 278 A (2, 5) == ; 1+ to/(1. ++. 5)) 1.10 ن هگ * (2,+) +* (2,5) 110 262 L (2,7) +v. : # 204 A (2,0)=0. : 57 206 1(2,4)=0. -12 20.5 1 (2, 10) =0. 2 12 39 1 (3,1) ++.+ X++1 X+ P. +5 62 84 -X+6 +5 3232 : 14 292 \$ (J, 2) = -4, * A* \$271 +6.* \$6 _11+1* \$*D#25 \$ 299 A (3,3)=0. *I «CIII+ +, *BREFI-I*I*OKEII 296 * (\$,+) ==+.* \$*CC5X+#.*CK223+3*X*2K223 : 10 23.5 A (J. 5) = -1+1+70 1 12 901 A (3,4) =C. 302 TAP \$ (3,7) =0. :10 30a 1 (3, 5) =C. 1.11 33. A (3,9) +C. :22 308 Å (J, 10) =0. 1.60 31 4 \$ f0, 1) = (-X* 84\$X+2 .+ 6821X) :12 312 519 114 :MP 30 A (4,4) = (-X+CE1X-2.-DF 22 R) 1 14 318 4 (4,5) +4 (2,5) 141 120 A (4,4) ==A (2,5) :48 322 A (=,7)=0. : 24 12+ A (4 ,4) =G. 1 17 32. A (# ,9) =0. TAP 328 A (4, 10) =0. I=I43HC=4.5 : N 325 288 332 GO TO 3 112 110 20= (280/(280-1.)) +=.5 1 10 336 17 (18030-1) 4,10,10 748 330 9 11=0. : # 340 02=0. 2 10 34 Z U3=0, 1M 344 30=ù. 7 68 39.0 75=0. : 12 39.0

ţ,

- State

	66 70 11	TM	350
10	PHI 1= 20020	1 1	352
	P =PP2 2 2	TN	154
	1 K Z= 1 K = KK	TN	356
	u1-11/(\.+PRI 141)	1.10	358
	12-10 10 10-610-3/ (U7,)60 100 (FE 110EL)00 2	TAP	360
	#]= (1 &/TR) = ((1,]= 11 2+.7) / (112-1.3)	1.10	352
	34=- 18 - 18-4 L2844-F 1/(28L-0 (1. +AL284) = 02)	14	
	45-41754 (0+1(+7/ ++ + K-75))	TA	366
11	AATHOELEX	1.00	Ma
	AA12=DOZIX	Th	370
		7.00	112
		T M	18
	AA21=- 19321 K-2, 938282	TM	376
	AA22.1 PEP1-2. OF BIL	2.00	174
	AR23 20CZ: 2-2-00 /ESE	TAP	344
	LAZASIN LINI-J. OTI HIN	TAP	187
	ALA W LO FERIO OLAFIM	1 88	-
	ALB 7 # /- 10 85: 1-7 - 0 (AF87)	240	-
		+ 40	34.0
			b A
		TAD	242
		7.88	
			- MA
	a (3, 4) - an 10 - 0 an 20		
		T	
		INT	
		EAT.	414
	6 (0 ,4) * R* F E # A* 4, * 10 F E # A	INT	
	A (0, J) = 71 - C Z A - 4 VAR E A A A A A A A A A A A A A A A A A A	1 11	
	A (0 /0) " #**C - # # *2 - * & # EA 1 A m - 6 A		
		7 H	
	A (+,/) = -2.8 FRL == 1.3 AL (2.6 PLO6(AE) + 6 P)	TM.	- 271
			- 426
	A (5, 7) -2 2 R 11- 1. 30 RL/ (13013)	TM	428
		- 	
			474
	\$ {/,2} ····, 2 ····, 2 ····, 2 ····, 2 ···· 2 ···· 2 ···· 2 ···· 2 ····· 1 ····· 2 ····· 1 ····· 1 ········		30
		1.00	
	A (/, 4) = ~4, ~A ~ (2A ~ ~ CA E A A * 2* 3* 0 K E 2 A * ((GA KHA * ~2 'III) / (H L * AL FIL A)) *		
	₹~ 8~~53 8~6 ° Ø B 58 AJ A 27 \$ 5 - A	7.47	
			-
] E 3 F 4 - C		472
	A(7,7) = 1247 (2.5 - 0.00 (2.5) + 3.5)		- 34 6
			424
	A (7,7) =-TEAP 0. // (A 0 80)	THE	4794
	A (/, TO) =0.		
	A (4, J) -V.		
		5	
	A (Up/) = XUTITULG (X2)	TAT	- 74
	A (7,8) = 18"X]		
	A (8,9) * DLOG (18)	T AV	-
	A (4, 10) + 1.0		
	A (7, 1) =0.	- T #	••• 2
	74 (5, 7) A	TAP	
	A (7, 3) +G	7.87	
	A (9,9) #J	T NP	

4 (9,5) =0 TAP 990 492 1 (9,6)=0 : 12 A (9,7) + 2.4+8105 (14)+3.3 TAP 4994 1 (9,4)=2.6 ZAP -\$ {9, 9} ==0.7/(26=2*4*) 1 12 418 A (9,10) =0. 110 500 502 **t 10** A (10, 1) =0. L (14, 2) -0. : # **59** % 506 TAP L (1 ∋,]) =0. 2 22 598 L(10, 4) =0. 2.88 510 L (1 C, 5) =0. 210 A (16, 6) =0. \$12 4(10,7)=1.0 T 514 516 1 (10,0) -0. 242 A (10, 7)=0. 510 :# A (10, 10) = 0. 1 10 520 PALET 3,4(1), 522 = 8(2), 8(2), 2(0), 2(0), 2(0), 2(7), 5(4, 5(3,3(14 TAP 52.0 DO 13 1=1,10 : # 1 1 DO 12 J=1,10 526 528 A#(1,J)=1(1,J) ?N) 12 COPTINE 530 : # 13 :0512 542 200 532 CALCULATIONS FOR ADDINT LOADING, TAPINED AND C 739 536 536 pe0. : 10 25=0. :10 538 BELT=0. 710 390 IP (1001-1) 10,14,15 542 2 10 180-1804 500 :W 30 70 16 546 548 15 CALL ASECTS 554 123+10P 20 3=(60L1+518)/2. 552 : ... C 1111 54 11 5544 16 16 : OUTI BUZ 7 10 556 50 17 I=1,10 556 210 3(I)=0. 55 6 ¥ 10 560 17 :0511 SW 2 20 562 \$(10) -- (2.73/ (5.2832* TH*TH**3.* (1.2-14)))*180 710 CALL LIN2 (A, 10, 1C, 0., 0, 1, 1C, LTENP, ISBE, DET, NPLT, H, V, LP 4, LPC) N17+(- POBER 1-2, POBER 1) 564 1 10 566 7 M 568 31#= (-X+8EIX-2.+8EERX) :17 5 19= (-I+CI+I+1. +BREIX) 570 1 10 7.10 520+(-1*CLI 1-2. *9 HEAL) 572 ₽1= (-TH+61++].+ X8+X76 7++2 ./ (07.)6+PH; 7++].5+H [++]...) + (3.174 181 18 57 % 1*6 (2) *8 19*8 (3) *62 (*8 (4) 576 2.00 8 7=4. • X•8 EI X+ 8. • 8 EL 3 I - X• X• E E E I X TM 578 8 70=-4. * X * 8 24 X * 8. * 2 3 L 3 I * X* 3* D# 2 R X 560 1 10 811-0. • #•CEIX+8. • EFEBX-X•X•EFEEX TAD 502 812=-4. +X+CEAX+8. + EXZIX+I+ X+9 KEAX 110 56% 11= (1./ (0.09#1100;.5)) 0 (8508 (1) +81008 (2)+81108 (3) +81208 (4)) 506 MA==2=FS/((1,+A1+NA)==3) 588 7 N 11 = 2(7)*(2.0*18*LLOG(30)+D)+2.0*3(8)*10+8(9)/18 T 11 590A P 14 1= P 1/2 1 2 10 592 :0#== (1#=G0=# [= 6# (==3.) / (I t=2.7)==.25=GAR #A== 3.) 594 210 F= F141/007 2 12 596 7141=11/41 2.00 548 COT= (1 2+2.73++.25+10++3.)/(1 L+GARRA) TM 60.0 V=1141/COV : # 60 2 -01-17-75 24 IF (IRO#8-7) 18,18,19 C 1 10 6J 8 ۲ 18 CONTLINE 696 141 -6 - 17-75 19 IP=0 1 12 605 58=1 TH 618 20 SL85= 1. 814-13 -8 (5) TM 612 IF (19090-2) 21,21,42 614 T # 21 P1+ (- 18+3 1+3 - 18+ 2111+ 2/ (87, 3++PH11++3, 5+31++3)) + (+17+3) b (5 AP 616 12) + 219+ 2 (3) +8 (3+3 (4)) 618 TH 30 TO 73 T M 620 22 P1= (- T4+G1++2)+20 P1A1++ 2/ (47, 3++ PH21++), >+K++3+) +(+17++(1++14++)(2AP 622

	12) + E1 → = E(3) + # 23 + E (4) + # 22 × A+ = C+ XA+ 2 / (+ , + 2 Z)	: N		2.
	23 *1 * \$ (7) * (2.0°18 °C LGG (14) *14) *2.0*3 (6) *12+3 (7) /1 E	7 M	62	é.
	t 3=15= (>(t) +f 5)	24 P	٩	28
	T T (1 // U) = () E :) I = 3 (] + 3 (] + 3 (] + 7 (] + 7 (] = 2 (] + DEL : P + (+) + 1.5 + 5 / d			30
	3534=31834 (* 18) (* 18) (* 16)	1.00	•	32
	3632-6379282841710483 2101-6478828413264175278 00813081 66546545545654565455455	12.22		
		11 1		
		- 41		26
		- 15		
	SCLUE, SOSILUD BROYBARS			
	SCLI-, ISLL STRATIZE	- 5		-5-0
	578 = - (TS-3/1, 3) + (2, a) (3) (1, - 1, (7) + 2, - + a) + (-, 7/) and a		65	24
	N = 6 (1)			
	\$ 27= ((46 ° 16 ° 1.3 / (16 ° 15- 1.3) ° (2-21 / 26)			50
	STH = S 18+ S 19	787		50
	\$TP=-5720\$24	2.12	é	n J
	\$85 = -(13+72/1.62)+((2.++2L0+(2.5)+3.3)+3.(7)+2.4+b(4)+4.7+c(7)/(0	11 A 2		Nă -
	1+13)	- 1 M2	•	1 de la
	SMAJJZ-WAZ WTH	- 25		10 6
	38" == 53c= P+ 71/TE	- 	•	
	P6+5133/5110	: M	•	576
	26 = [17] ************************************	.: IP	61	12.2
	۲ ۲ ۲ ۳ ۴ (۲) ۹ ۲ ۳ ۲ ۳ ۲ ۳ ۲ ۳ ۲ ۳ ۲ ۳ ۲ ۳ ۲ ۳ ۲ ۳ ۲	: 17	•	1+ L
	2FH6=- &:+ Z5	: P		76
				570
	∠F (IC)IE-a) a0,21,23	- : R		
_	Je ZALL SIDEZ	- 44		
ς .	26 Paist >>, _:C,ziC.			
				10 A
		- 1847		
	65 5 2 4 4 7 7 4 4 7 6 4 2 5 (5 2 50) , (6 2 2 (5 2 10))			
	3L1			-83
		- 19		576 13 8
		- m - 1		
	UILEU DE LE			
	7 E.F. 319 3639339960.900.900 31 47 6.		-	1: A
	EVA Y. JT CIMACIMUTINI			13.7
	< 2 H = 2 H = 2 L = 2			744
		- 22	1	246
		236		7.6
				710
	Failer ST. Straid and and a Crace	: #	1	712
	79567 e.	757		71 +
	30 13 47	- : H		716
	70 [5=[5+]	:H		?†
c	90 TO(17, 30, 40, 44), 1 2	: N	7	201
	30 10(27,34,43),27	: N9	7	21 A
C	CALCUINIICS FOR PIESSAGE LEADING, CAPE-12 402	- 7.58		722
	37 x x0=6.	- : H		72•
	249311	: 15	•	726
	34LT=0.	11		720
	?\$* (+ #5*R3/(X**;G)) *;	: M		730
Ĵ,	9215T SV	- : #	7	MA
	20 as 1+1, 12	. 19		734
	3(3)+0.	: AP		730
	14 CONTINUE	:		7 5 0
	[·]= (1./(x2)·1.)) ●●. 5	- T M		749
	1 (4) ********	- : H		772
	5 (J) + t, *; C * 2 j	- - - - - - - - - - -		
•**	,	; ;-	17	-/7
•	THE TRANSFORMER AND AN AND AN AND AN AND AND AND AND AN	- 49		Ber A
	STE STONET & BOY DEPOSIT	- 1 11		
<i>.</i>	· · · · · · · · · · · · · · · · · · ·		12	-75
	xx x x 1 x m / 1 1 - 11 PP - /	2.1		756
	The second part of the second se	2 22		1.2
	6 36 CONTROL TROP TO TO			

	11 # (5) * (7L/13)* (161*i 5/ (1. • L1963)) - 8 J* 7*3 ** 13*L(*)2 L3)		754
	3(/) *3. *//**3/(94) 		
	sur ju ju ju Na sela provinska odrugače prve a tarteka a kancedka planika manika stala.		
	3] [[] -2. / / / / / / / / / / / / / / / / / / /		
			1114
			776
•	CALCULATICS FLE BELAA AERAEDAGUELA - AFCSEL WE		
•	3261982 66		
•	F5422 BU		
	30 3/ 1 - 4, 10		
	8 (.) = v .		
	3 (2) = (20/ 20) + (23+2/ 2001)		
	30 51 3-1, 10		
	PI COSTISUE		
		- i 🔐	
-			
ç	** CAESS ISPOTO-000 BELEED G9-19-75.	- 782	0005
C	· · · · · · · · · · · · · · · · · · ·	IN	
			BODC
		387	
	es calle fligge		876
	46 205 23 STE		672
		- 78	1736
			8735
-	-/ x; Jeb		
	45 POZZAT, (1216-3)		
	Parat (001 Kab(L KabG2 Flasse Flasse Flasse		
	18 JOLI PIZOSBER, /644 G.L., A L.C., J BALA., J		
	50 -C2341 (1713-5,17W-3/)		
		767	
	- 26 FUTSAL (THE BURSH: WEFF. 37 PUBLIS - BUD, UT ALAB ONDIE.		
	1172 JUDO ALGE ZELL /212 LEVERA		
	68 80		
	The formation of the second state of the secon	; 	
	- 20 FUETAT DAI CALCUMATION FOR STATES LANG THE FILM OF FAMILY	//) i W	
	- 77 FURTAL (17 3630" WEIGONG IN 3635"-1200 /W 3630"Elos 4,13		
		w/:W	701
		•:N	
	JT=514+4278 44*514+4273 gT825214+4273 TL=514+4231 \$1=514+424 ∧5244*2×151 - 7	₩ 	
	TARE AT LTG (T) A MARTINAR LEASE ENDER CREATE TO DE ET TANK AN ANN ANN ANN ANN ANN ANN ANN ANN A		
	- 27 FUSTAL [113 6/2]7284, IFEIde 4,05 30 4/21604,68 24 5,51604,13 1/48449 4/24 31 4 136 688443 4/2 31 4/24		414
			714
	- 78 - VIETRE 1778 - ADTE FLADUE DIDIDALD & L'HADFLI ALATERE AVILLE, BO	> 7 11	710
		; W	214
	DY FRYTAN (JOH CALUTATIONS FOR SYSSENE LEAD, NO//)		720
	to FORMA, (JPR CALCHINIACAD TOP (1778/8/07) (JACAD (7))		76.6
	NT YOYTA: (JAN CALUBLE).UDJ FUB COASIDID DON'S NO//)		
	6. (Ja 7)		720
	5 PT		768

ing s**and** , and a set

	Sebiotitse Sies	578	2
C	THIS CALCULATION IS PUB ITTPE = 2, STRAIGHT PUB Flades	51	
	INFLUCIT FEALON (I-H, C-2)	31-2	8-75
	5175351J5 A (10,10), B (10), LT ESP(13), LF= (10), LF=(13), As(10, 10)	5 M	6
	913285103 F2(4, 10), SC(10)	STA	61
	201205 1 FTE E, ISCAL, 2002, RATE, FA, FR, G, C, PRESS, FG, 402, 41, 40, 18, 18	,s Til	
	128, (787 (P), 2, 251 2, 12, 1304, 9783F, 9286F, 5786F, 51, 39, 139, 179, EFP	. 3 M	10
	23 ELT&E, 2007, 515, 566	5 TH -	12
	٤, ٥٤, ٤٤, ٤٤, ٤٤, ٤٤, ٤٤, ٤٤, ٤٤, ٤٤, ٤	3 1	31
	a, ST. F. S. F. S. F. In, Z PBG. IC, VI, TI, TI, TA, SOFT, SGE, SG SC	378	48
	5, 82,41,55,78,21,411,422,8226	52	ac .
	242 1 4/ 130+3. /, 1/ 10+0. / LIZH? / 10+6/ LIS / 1 C+2/ LIZ / 14+0/ H/ 106+9.	/	
C			
	1 2ELT 32, 14,8E,T2,6C,61,8E,C,P2E35	S TH	1.
	22142 33	3 7H	16
	8E157 Ja, Ik, Is, TI, 60, 61, 82, 2, 98E53	5 TR	18
	j=1.	5 7 R	20
	¥9=7.	578	22
	IF (ICODE.62.5) 60 TO 2	5 TR	24
	siat 35, IRCA,IF,FLLIA,Y8,G	5 7 H	26
	25157 36	5 1	28
	<u> </u>	STR	30
	teldt (j7, 1306,2F,D21th,t9,6,27YPE,1803E,1006E,NATe	5 TB	32
	2 x 4=\$\$,2	S 2	34
	x æ < ō/ż.	s TH	36
	II =	5 M	- 38
	142=18+15	5 TH	
	; == /2.	378	•2
	5=572.	57	44
	5177 = 4.7340 (. 23/850 a) (1846-3)	378	
	IF (13362-1) 3,0,0	211	
	j j≠0, ⊐ j)-		28
		214	74
			74
		2.78	24
		5 10	70
	999-20-89-10-00-EE-89-37 (-8-10-72) 198-20-89-51-52-3	3.78	62
		378	
		< 14	44
		STI	68
		5 2	70
	A (1, 2) = XT 2	518	72
	A (1,3) =0-	S TH	7.
		5 11	76
	à (1, 5) ≠C.	5 TH	78
	A (1,6) = C.	5 TF	
	а (2, 1) = БЕТА	5 TH	82
	\$ (2,2) = cZTX	5 TH	
	A (2,3) = -(2.0° X8°DLOG(X8) *X8)	5 M	86 A
	\$ (2,4) = -2.41b	578	
	A (i, j) =- 1./XB	STR	70
	£ (2,4) =C.	5 32	72
	$A(3, 1) = 2, = 1222 A^{-1} 2^{-1} (1, 6) = 24 - 10 / 2^{-1}$	SIN	
	$K(3,2) = -2 - B \sum_{i=1}^{n} \frac{1}{2} - B \sum_{i=1}^{n} $	3 TH	70
	A(3, 3) = -(2, 0, 3) + (2, 0, 3) + (2	2.11	788
		21	100
	A (3 ,2) = (, // (A [" 10]) " (10/00) =" J 1/2 A) e3	< 7 m	10 4
	8 () = 7) = 70 = 8 () = 1 = 2()	s 11	10.4
	B (4) 1 40	512	104
	A (A_3) A She(Religis)	S TH	110 4
	# (*#// - ##*##*##\#(##/ 1 (# _#) #17016	5 14	112
		5 TH	1141
	A (0 _n) +1.	5 TH	116
	à (5, 1) =C.	5 TH	178
	L (5, 2) = 0.	5 T.H	120
	\$ (5,3) + 1.4+DICG (XA)+3.3	5 2 1	12ZA
	a (5, 0) = 2, 9	s 1#	124

			~	
	A (5,5) = 7/		- 11	K
	エ (フ。つ) エリー		s 🌉 🛛	144
	A (6. 1) =0.		5 N	130
	A 46 23 46.		570	112
			5 74	110
	A (0, 3) · · ·		-	
	£ (4,4) =L.		2 28	176
	£ (6,5)=C.		514	132
	L M. 6) +C.		519	34.0
			. 28	b .2
	50 / 1-1,4		-	
	DG & J=1,e		Jà C	1++
	J) = → (I,		5 7 2 -	he.
	. TONTINE		5.24	lee.
	7 CONTER!		- 1-	15.3
-	/ CU3. 100_			
C	CALCULATICS	S PLE PLEIS STADING STELLER RU	3-2	02
	P=0.		≦ ia	lie
	25=0.		∃ 1 ĕ	lie
	B-17#8			15.6
	3254.			
	IF (ICCLI-1)	}	3 R.	
	a teleta		5 2 8	b 2
	30 13 14		5 28	
	A			
	· · · · · · · · · · · · · · · · · · ·		-	
	20 I+LR X		3 68	D Ö
C	lj filst je		5 B	1746
	10 COSTINUE		± 72	176 E
	NO 11 1-1 4		: 10	17 3
	1 I I I I I		3 43	
	H(I)=C.		514	1/0
	11 20572575		3 7 8	176
	\$ 161 4-2.710	1967 - A. Jaho 1997 2 993 9 1 3 - 1 54 1	3 1	17 m
			- 11	144
	CALL Li>2 (A, C, W, Ju, E, Y, IC, 2556, 2558, 2558, 2558, 2767, 7667, 7667, 7667, 7667, 7667, 7667, 7667, 7667, 7667, 766	3.85	
	IP=C		5 🕫	- 10 a
	54=1		516	164
	12 (54 64 1)		2.28	126
	2873(2)		2 28	
	D1=2(3)		578	199
	32+7(4)		1 7 A	192
	3 142 (5)		£18	164
				-
	74* c (e)		5 M	170
	tri theological		222	- P ø
	THEILS = T3	* 12.0* 35* 4 136 (18) * 4 5) * 2.0* 1.2* 1.2* 1.2* 1.2* 1.2* 1.2* 1.2* 1.2	534	ـ انتا ا
	1 5345 PO / 1.0	• (1 • (3 5° - • • •) • • • • • - • •	4 TB	23.2
	PUT [3-G[]	• 3 \$; * • • 3 • { -; 3 • (e } / 3 • • e	3 24	<i></i>
	てきゃくら きにゅうち		5 Th	296
	る上海がある。中国語の	/ 6:•64	3 7 8	2:8
	21 67 44 515 54			318
	5 L 5 7 # 2 1 6 8 # 2	· · A &/ (2 , · · · 50)	7 î U	414
	SC30+13+515	J+3#76/1.	3 T ei	21+
	えじら こっし ろうしゃ	1 • V2 • Y C/X ->	173	216
	277 + + 17 40	THAT A . YO TH		1 144
	D & JA E CURAN	***)/ (#**##***))* ((****//.**)	÷ 18	- 44 0
	5 33844 3844 384		3 2 11	222
	517 212+ 31	9	5 TA	22+
		23/3, 1219 4., et ale (), for () (() () 10/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 2	413	
				114
	28.5=52.3=[*/	('ad' à-1	2 X X	
	ジェアマナンシュード・	2673H	- 1 M	- 230
	16 x 61+6+6	i +6 24 22 6 6 6 6 4 4 4 7 7 6 6 4 6 2 * 2 16 26 3 1	37B	232L
	7		1.74	2 8-4
		~		
	シアロ・ショーズレーズ		3 W	430
	マネカッ (ごう) トウオ	(Hi)	- Z#	234
	if fiction) 11,10,10	512	254
~	1 4 4 4 T T 1 1 1 1		< 1#	2 - 3 -
•		** * * * *	2 4 4 4 2 4 4 4	
	13 CALL SITES		2 2 4	4768
	10 10 14		4 M	244
	1- 5237-8-11 70	1	120	266
	····		1.4	2
	C-32 - 52 - 52 - 52	****	2.24	474
	₹#\$%\$ 4L		3 T #	252
	2873. 91	AT a star star at CL a CC a	171	21-
			1.84	244
			100 BC	· / ·
			1.04	470
	はしき キンチャッチ・	,	ي الله	203

\$ 0,0-5 0,000 CDT=COCOD \$10 26 4 26 4 570 Ē 5¶. PRINT 4%. SLA_STR_SEL_COT, CH 520 PREST 46 510 **60 20 31** s ÌŻŻ 15 IP-IP-1 520 31 C 30 10 (16,20,36,20),10 2768 51 60 20(16,20,20),19 CALCULATIONS PC5 LEASING ICAGING, 57541622 040 SPB £ 510 **7**0 5 % 5 % 200 202 θ, 1.2-0 P-75235 590 200 90- (. 05-El/ (18-90))+P 578 578 200 8 C PÜĘŻĘ 43 10 17 1-4 4 SP **200** 8(3)-6. 17 200% DEE 5\$N 2) S sip 20 8 (1) = 42 8995 +2 89 JL +842.7- 83+982.55 5 🎁 **796** 00 V I=1,6 528 30 18 3-1 6 510 A (I,J) +88 (I,J) 510 392 10 CONTINE 570 570 CALL LARE (A, 6, 10, 8, 1, 1, 16, L 1200, J200, 021, 0017, 017, 10. . 10C) 510 396 310 214.2 570 51 00 20 12 312 CALCULATIONS ING (BLTA TENFERATURE LANDING, STALL ONT AND C 528 314 28 2-9. 316 510 13-0. 5 20 DELT-DELTL 518 326 C PRINT NO 518 1228 80 21 2=1,6 578 129 D(1)=0. 512 26 120 21 CUST THE 570 130 0 (1) = 30°E 1°9E IT STR 00 23 J=1,6 112 570 30 22 3=1,6 134 570 1 (L.J) -10 (L.J) 196 570 22 200 12 142 \$28 184 ЪÖ 2) CONTINUE 510 302 304 306 CALL LINE (8,6, 10,0., 8, 1, 10, LTENP, IESS, BE1, BPIV, PIV, LPS, LOC) 578 14») 510 60 10 12 571 C -+ BELETER CAMES STRIG-JON OF SPIL. STRE 09-19-75. STE 3864 28 PRENE 46 C 5 TE 365 B 5 H 306 2N CONTINE 34 90 (30,29,30,29,30,29), METE 29 CALL FLOOD :10 300 30 20071 St. 570 22 510 3124 60 10 (70,70,71,76,71,70),MTE 70 CALL CORSIS 520 320 71 COSTLEVE 57 MAC 590 390 J1 921989 C \$11 106 396 51 32 PORGAT (0210,5) TLANCE 7171 ----5 12 100 33 POBRAT (BAR TLAFIL flance: BALT PHENSORD, /BAN O. L., A BASE, 61 LENGTO, R CIDCLE, C 1.1.,. I BICh -.,7 1575 **ab** 2 12 . 211,00 52 1)* FORMAT (7110.5, W 10.3/) 35 FORMAT (5210.5) 5**2**1 196 518 405 FOORAT (YOU WARDE COEFT. OF DELTA 100. 07 16.54 Jub 162 17518 81 B 36 /510 1 9099 3C001 TTPE 8414 20 Lobal 15 76 +12 ELASTICITY DIAMETER) 288. 52 41 Q IT POPENT (19521C. 1, 34, 3114/) STU 30 POPENT (53) CALCULATION FC BORENT LOADING, STAADAR DOG FLADGE//570 518 316 -16 51 20 m 30 FORMAT (71 SLSD= 10 E13. 9, 70 SLSE=E12.4, 70 SCSO=E12.4, 70 SCSO=E12.4, 70 SCS 42 12.4//78 ST8+E12.4.78 ST 1+ E12.4.78 SB#+E12.4.78 SB 2+E12.4.78 258 84-E12.4.58 SC+E12.4.78 gras+E12.4.58 W+E12.4.68 IBLA+E1878 424 126

1.1

2.•1	5 🏞	420
- NO PURYAT (NOM - ASR'S FLAK OF STRESSES AT UPERATING NOM ON , NO	//) 518	
-+1 FO:247 (114 (2/3)+5d=, Frild, 4,68 SI =,E12.4 ab is =,ite		- 632
1(Sin+51)/2=,E12.+,13# (58+53)/2=,E14,4///}	518	434
-92 FGatat (554 - ASTE FLAGGE STRESSES AT GASTET SCATLAS BURSE)	i, 865 S 1 8	436
VA	311	430
BU PARAT (BAR CALCULATIONS FOR FRISEDRE LOADING//)	S 🗯	
44 FORMAT (178 CELCTERIES FOR TERPESSIEL LURDING/2	5 1 1	
as Poerai (344 CALCHARISES ECS CORRESEL LOALISC//)	578	
46 702327 (1H1)	S 🎘	446
LED	5 Í H	408

		- 	6
:	THIS COLONIATION IS FOR ITYPE = 3, SLISE PLANGES	à 11	۰
	IMPLICIT ELLOPE (AFR. 0-2)	. u 🏲 .	28-75
	21828548 £116.10), 5(14, £2292(14), £75(14), £20(14), 66(14,10)	øll	6
	71 328 51 G5 50 (6.18) .3C (10)	āL	68
	COTTAL ATTRIA LEUS LA MORA AN TALANA ANALAS AND	. 5 il	
	11 B . JEJE (e) . AL DEL TA ALEO APCA CENTE - 2tuB - CEUE Ste ster des 42-1 Et = FE	-ill	10
	//////////////////////////////////////	ЭЦ	12
	L SINGNIS TOTOLS COLOR SILLANDA SILLANDA SCLAPTA		121
		a Li	12.5
		812	NC
		, —	
-			
•	1 SEEF 17 15 18 78 48 48 47 41.04 -45		1.
	t Ital fig angalg.ngovgvvgingtgings District	- 17	16
	ГЛАЛА 10 1977 — Вальсьа Салу — 1941 — 1927 те		
	Γι ωλ. Ι ^ω η Ακηβόη. Ιη ^ν α η ^π Ιηπάη-ηΓχ		
			17
			24
	7 LAD 20, ISCA, 17, Lab. A, 18, 4		
	PF251 21		28
	AL# 2P		
	Piist 22, Inda, Produlta, Prog, 217PF, 2265C, 200-E, Ali-	3 1	32
	8=* *• I f = • J/16 . 92	21	30
	X5=X6/2.	- 914	30
	: .</td <td>يتساهد</td> <td>- 30</td>	يتساهد	- 30
	j≠6/2.	1 i i i	40
	A (1,1) =;+u	311	•2
		9 LI	
	£ (7, 3) +0.	្នដ	* •
	x (1, b) = G.	i 11	•8
		- 614	50
	8 (1.6) =0.	- 8 L S	- 52
	A (1 - 7) + u.	ي: د	54
	A (1, 4) +	31.	56
	A (1-91-6.	- J 🔓	58
	λ (2, 1) = -2, • G	- 2 L I	60
	A 12 - 21 + 6-	تا و	•2
	4 () B 2 () C (41	494
			66
		312	
		ĴЦ	74
			12
	n 165/1/ -v/ 1/2/ 41 -		7-
	R 16 977 - 149 2 7 - 41		74
	A 54977-59 A 74 56	4 17	7-
		- 17 6 4	7 0
	A \$ \$ \$ \$ \$ \$ \$ \$	- # b is	

1 (3, 3) = 1. A (3,4) =0. A (3, 5) = J. A (3,6)=0. 4(3,7)=0. 1 (3,7) = 6. 1 (3,9) =0. à (4, 1) =.. 1 (4, 2) =0. 1(4,) = GP (P LLCG (G) L (4, 4) = = 6 1 (+,5) = DL36 (G) à (4,6) = 1, A (4,7)=0. L (+ ,+) =0. 1 (4, 7) =6. 1 (5,1) =-2.0 4 (5,2) =C. 1 (5, 3) = 2.6* ELUG (G) +3.3 4 (5,4) =2.6 1 (5, 5) =-. 7/ (6* 6) 1 (5,6) = 4. 1 (5,7) =0. 4 (5, 9) =0. 1 (5,9)=0. 4(6,1)=(. A (6, 2) =C. 1 (6,3) * 2.0*C*ELCE (C)*C + (6,4)=2. °C 4 (6 ,5) = 1, /C A (6,4) =C. 1 (, 7) =-2. + : 1 (6, 8) =-1./C A (7. 4) = 2. 6 217,41=.7/129 1 (6,9) = 6. A (7, 1) =0. A (7, 2) = 5. A (7,3) = 2.5+ELGE (C)+3.3 A(7,5) =-.7/(CPC) 1 (7,6) = C. 1 (7,7) =-2.6 A (7, 9) =0. A (8,1) =6. 1 (8,2)=C. 6 (4,3) =0. A (4,*)=0. A (8, 5) =G. 3 (4,6) =0. \$ (8,7)=2.4 4 (1, 1) =-. 7/ (1 4+1a) 1 (4,7) =0. A (9, 1)=6. L (7,2)=0. 1 (9,1) = C+2+B1(6 K) 111,41-00 A (9,5) = DLG: (C) A (9,4) =1. A (9,7) =-C+C A (7,8) = ->LC4 (C) 1 (7,7) =-1. 90 J 1+1,9 10 2 3+1,9 AH(1,J)=Å(1,J) 7 107 11 MA 1 20511501 CALCULATION FOR TOPERT LOADING, BLIDE FLANGES C 7A + 1 f =0 . 4+1-1

1 1 1

c	PEINT 2J	3 LL	2201
	50 4 J=1, 9	34	222
	B (I) = G_	411	224
	a contract	341	226
	a(3)=-b/{{25,13297}}	311	22 0
	CALL LINZ (A. S. IU, C., e. I. IC, LIEVZ, I Eca, 511, SFEV, PIT, Len, ed.)	a l I	230
	1P=C	a LL	232
	5 ZC + C+C+5(7)+tL36(3+3(4)+t(9)	للاذ	2001
	↓ P 35(IP+1)= 3 .	à Li	236
	SQ21=- (1919134) 1.42 (92.695 (1)	3 1 5	230
	5 G3=-{{Y4P TR/1,3;} \$(2,69){1} \$(3,69){2}**.3/{{7+.+}}	sII	200
	361- (19- 12/1.d2) • (2. 60E(1) + 346 • 1. 7 • 1/ (h. • 1))	= 1 4	24
	5C8=-{TY9*5#/1.#2]*{L.\$*B(7]7*3(5)/(C*2)}	3 L L	244
	SCT == {120 78/1.4 () +(2. (+3(7) +.7+3(0) / (*+.))	-II	26
	SAT- (19 10/1.42) • (2. + E(7) •. 7• 3(4) / (1.41))	116	248
С	PEIXE 24- HTCL HTCL	411	2504
-	I P=IP+1	511	252
	CALL SIGT	116	2504
C	50 704 6 K. 14 L. P	all	25
-		11	2500
C	CALCULATING POP PROSSES LOADING, MILLS FLINGES	al.	256
•		hII	254
		211	2544
			36.6
c			26.21
•	731 V6 #J D/0 1 V-8 #	3 44	204
		786	
		3.1.1	
			377.6
			4/1
			272
	3 (5) = -; -; -; -; -; -; -; -; -; -; -; -; -;		2/1
	76 5 J=1,9		
		SLL.	
	9 - Cor II P24) LL	2 2
	4 208 21 F LE	311	204
	CALL LIS2 (A, 9, 10,0., 6, 1, 10, 1987, 1838, 51, 8717, 8717, 686, 686)	فلة	
_	50 10 5	3 🖬	200
<u>c</u>	•• EXISTE CALLS ELISTC-322 OF SUB2. ELIST, C4-14-75.		
C			JPA
			3.85
	IF(4477.10.1) CALL COMPIN		326
	IF(CCB2-1) No, 10, 15	11	121
	15 J C / L .	1 e	**
	CALL ASPES	- 11	330
C	PLIOD IS CALLED TENU TAGNUE DI SINUD, 150 TILL TUNU	11	775
	PRINT 27	211	134
	16 JOHT PUT	Цe	170
	32795	11	30
C		110	330
	17 FOEPLT (0610.5)	111	
	TO POPSAT MAS ILAS CE PLASEE PLASE? PIPE dub at	1011	M 2
	70 BCLT PIESSUL, /MOA 0.3.,1 I.D.,0 IACCA.,1	161	"P •
	JLL,36 9452,67 LEDGTO,A (IECLE,C P)	111	346
	19 POERAT (7716.1, 19 %, 3/)	e l I)
	40 PG8141 (5119.5)	511	356
	it porter (ton 1011 carte at bill Sob. of stat Jacket	mill	362
	TTPE I BOND SCCOL RATE /	1 LL	354
	2 STP LOAD TREPAL EN. 2 LASTSCIPS DE MERER) 851	354
	22 PORTAT (185416, 3, 16, 3116//)	116	350
	2) FORSET MOR CALCULATIONS FOR ADD LOATING M.D. C. M.D. C. M. D. D. C. M. D.	i ii	
	2 POISAT (7# SOFT= # 112 7# Sea == 12 7# SET=112	116134	" »2
	14.4.78 SCI+E12.8.78 \$81+E14.8//98 IC+E14.4//1	11	24
	25 POBRAT LINE CALCULATIONS FOR LOADING LOADING//	- iū	26.
	26 POINT (JAN CALCULATINES TOL COMLERS) 16401 8//1	- iii	
	27 704541 (181)	- ju	N e
		14	372

	2862889*81 248775	. –	
	TREALLY BLACKE (BPB, J-4)	41-2	-/3
	32 12 33 (0, 33 (0, 10), 3. (10)	ASH	3.8
	CONDS ITTEL, INSL. COL, FATE, IS, IS, FIST, I.8, 137, 61, 60, 18, 12	,1,22	•
	146, 0FRs (6), at, 281, 14, 180, 1201, 2767, 2767, 5767, 57, 57, 47, 17, 77, 77, 177		•
	202LTAP,50VI,613,606	÷ 21	
	L, 31, 54, 513 , 3CD, 3CSI, 51, 10, 512, 5 4, 512, 511	¥23	41
	6, 517, 515, 587, 76, 26, 17 NG, 76, 71, 71, 71, 73, 30 8: ,2 G ,3 6:, via , vi., via ?	- E	-49
	5, 72,8 1, 56, e 1, 17, x 81, x 32, x 82P	. S 3	40
C			
	5 715 70, XR, 7, 600 5, 618, So, 58, 58, 50, 1830, 60	÷59	13
	FF TE123	\ 58	12
	P3197 14	12	1.
	PRIME 11. 19. T. COLT. C II. SR. SL. IN	123	16
	14+18+2.	6 E9	15
	1 b=10° 2.	A 98	20
	3592.	- 58	22
			22
	1 3dm (6687-613) /h.	1.00	34
r			
	9 - 003561 0405610 19 1843 300839.335		
			34
	5 UT 05	134	30
	• 3 • 35(±) (#0 /2.7	15H	34
	3-5301-25	1.9	••
	5 P=11ESS	198	•2
	8211+.78%+>3+E+L	4.53	
	d 21 4=624 32 • 8• 3• 1 • 2	1 SK	86
	z 51+, 7+5= ×, 4+2+4+ ×, ,2+2 ;2+2+2+2+2+	158	
	521+921/43	1 23	50
		19	54
	502=562A5	153	
		1.48	-
		100	
		3 34	
	163 · 66 · (C · m /2.	638	
	365 i • 461 • (F - 5)/4.	A 30	
	3= (C-X Q)/a, -6 1	1 M	
	# = \$\$\$ 1 1	450	70
	#8=.7 9 %** 18 * 28* 1	1	72
	112 - 8-	6.SH	7.
	96 - 10 ¹ - 2	A 20	76
	1 D= (D +, 5= 61) = H	1.8	76
	12 (1961-/C-D/11/2) 481	198	90
		1.	64
		ASS	40
		A 18	
	81/47 14 <u>. 26. 8811.8911</u> 489 45.1 471	1.60	
	ετ τοιττΣταβ ΨρΦφτ Α Βλ τΩΡ 9Α		
-			
5	19 73431 WWI, KUP48WF, PAS-885, 364142631		44
			190
	4 47= ((8/if)=*4 (* (-)* ()	A 90	102
	\$\$ 1= (([/] 1] == 2] = (1, 74=11 = [[-1] /2./(2==3])	1.5M	
	500 = 50+ 591	A SI	106
	غطة ((1/2 الم) مع في) • (1. كمه طاله • (1- ٩) /٤ ./ (٩٠٠ ٦))	18	100
	↓\$↓• ((\$/?#) ** \$) * (1. 78*846 * (C+ 1) /↓./(3** }))	ASI	112
	P2:57 78	A 30	114
	/25JT 19	A SH	11 •
	7 e6 »? 2(, st,201,242,542,548	1 SP	110
	* 3-*14/2.	5 3 0	110
	\$L+13/1.	153	140
		1 2	W1
	217936	AR	14.
2		Å	Ma
-	16 FAIRLE 17214-5-1		U.

. . I

11 FG254T (186) 12 FJ396T (1668 1 625 1)6 1)2 1)6 1)6 1)8 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 138 1.30 R T 5# 34 1 SR 13 737847 (7715-5/A 14 735967 (7198 458 đC 8211 112 Ta בל ב 177 541 122 91 . 1.98 197 567 15 /03341 (1972)5.0// 16 /069341 (3972)5.0// 16 /03925 (39) 16 /03925 (39) 16 /03925 (39) 16 /03925 (37) 16 /05925 (36) 16 /05925 (36) 16 /05925 (36) 16 /05925 (36) 16 /05925 (36) 16 /05925 (36) 17 /05925 (36) 16 /05925 (36) 17 /05 150 236 8-351 165 1 3 3 **4.5**0 ASSE COR STRESS HER ALISE ALEGA // A 58 57 51F 5=1 22 158 158 158 3 150

	553:062.52 Fast	715	
C	THIS SUBBUTIES IS CALLED CELT IF SAID + 2.4.6	716	÷.
	[29 LICL : 4141 (/+*, (+4)	-1-2	1-75
	\$211351J4 58 (%, 10) 46 (10)	713	-
	TR روز دور (در باده دکتر دو ۲۵ (د) مرتو وار ۵۵ و ۲۵ مهرو و۵ تک و) ۲۰۵۰ رو ۲۱ (۱ (۲۰ د ۲۶۰۶)	.116	٠
	الات ، ٢٢٠ من من من المعاني ، ٢٢٠ من من ٢٠ ٢٠ من ٢٠ ٢٠ ٢٠ من ٢٠ م	,1:3	•
]J][]], 0107, 615, 766	716	WA.
	ا، ۲۵، ۲۵، ۲۵، ۲۳، ۲۵، ۵۰، ۲۵، ۵۰، ۲۵، ۵۰، ۵۰، ۲۲، ۲۵، ۲۳، ۲۵، ۲۳،	115	100
	4, 5; F, 5, #, 56 F, 7C, 2C, ; FI4, Y4, Y1,; 7, 7, 7 8; 6, 50P; , 5G, 5G, 5G, 5G, 5G; 5G;	713	160
	1, ¥4, ¥ 7, 52, 4 6, 52, 2K 1, 2X4, 2X4P	14	152
1			
	t و تو ر د ا می مدور د کار ۲۵٫۵۶ و در ۲۵٫۵۵٬۵۵۶ و ۵۵٬۵۵۶ و ۲۵٫۵۵ و ۱۵۶ و L ۲۵۶ و L ۲۵۶ و L ۲۵۶ و L ۲۵۶ و ۲۵	,715	12
	1782,777.,782,162	15	19
	F8237 22	113	10
	\$7187 24, 25122, 71, sty, 73, 389, 351, 16	16	10
	PFIF 21	713	20
	1885° at, 74,86,66,76,7623,822	115	22
	76577 30	715	2.
	7=17; 27, 37,187,188,188,182,182,152	115	20
	<	716	28
	50 10 (1,1,40,2,36,2), talt	13	20
	1 @F#>{T}+7F#>{T}/#F6A	113	72
	4787 (2) 427 (3) 41 (3) 41 (3)	716) •
	4422 = 272 = 472 × 272 / 72 2 2 72 .	153)
	əfilifə (fb5 (f)	155	36
	ədinin qf nis P	16	••
	J\$7.57.047.8 € [1]	713	•2
	4 [lada (] 46 7	766	-
	J 79-12 ~ JPH 3 (9)	76	••
	4:#6+42 #6 #	113	
	************	716	50
	597	113	- 92
	-50 ? * 43	716	>
		16	- 50
	TT * * TR	14	- 58
	* ***	T 14	••
	ETP-32	14	•2
	* ** 177	116	••
	52670P=66178	14	••
	883+2,+74+76+7m,5+86185	111	•#
	T 87+ i 8	16	70
	8884	713	72
	۱ ۳۰ هن	16	78
	1 JPF 14 GPH 1 10 / 2 9CA	7 66	76

......

ية م. 1

	15 KG # 0 FH 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2	FL3	78
	2.84467677287768666	F 1.6	
	a = BREZ	PL3	\$2
		F 6	34
	21日本書品	F 1.6	36
	APG = 181 + 191 + 64 + 92 PR -	2.69	
	PEPSES	PIC	
-			
		القيزة ال	- 72
	18-1281 TZZ 2088 518	*11	-
	j= (XJ0+Xj]) /2.	2 LG	- 76
	The start start starts	r 🛶	
	0CT=T^/13CPT61	PLC.	130
	262 * 407 (264 1-22)		102
	ini= ((`-+) /	P14	13 a
	」とす SJとせんアガン	7 🕰	- 10-
		*: 6	138
	LE (8473-5) 5,5,4	F LG	110
	1577 - 155 - 2007 - 61 - 11		
-	21 E 1 - 2 F 3 - 7 (30- 60)		
	- GG TJ 6	716	- 11+
÷.	1801 - 1811 SZRA		
3	ALE 1-92 112 20 20	r 6	
	QF2_+CE17+(VEE/VEE2)	71.5	110
,-			
	ብ ነት የክስ ለሚጠ ከቀመው ለም ር በመለከት (1)	7 16	40
	∋2 ≈552 • JF2 • HG •kG • KCF2 • CF2 2	112	127
	the states of a state of the st		
	H= {i= {u+t}/2+}/2+	716	- 124
	17 P=1C-(100F)/(-)/2-	F14	124
			-
	to= K+R+JJ)/2.	TL3	- 12 #
	45 PH 4 PH 4 PH - 2148 4 7	810	1 34
	こしぐえたす。785年 486人で1	113	132
	a 7 4 = 8 t 4 (t + \ f t)= f= 10= EEA X F0 + 7 0 = 7 0 = 4 (t + 1 t + 1 t + 2 t + 8 2 t + 1 t +	T Lo	
	17 ARATE-50 Harry 7	716	114
	+2:3 = #1 + CUPA L+ ({{G 1/#G+3F1+ (#C+4G}) + G+6+4F1+8+8+8+{E(F+4C)}+P	715	- 1,40
	Ga 10 9	116	18.0
	#23=#1+C07%LF#(((G1VHH-QP1+(HT-HG)+QPP1+(HTP-HG))+GP-J+(QP1+B+B+(HD	-716	- 162
	THE TABLE IN ADDRESS AND AND AND ADDRESS		1
	an she was man marked by a second		
- +	₩↓C=₩2E-{CP3G/3E+CEkGP/8G} +P #8G/01	1 I G	- 196
	*F /#271-5A 11 11 10		- 10.4
		·	
16		113	150
	SU 10 Ta	716	- 12 2
11	「W/D # #1 = A) 14 は927 1 1 A #17 A #17 A #1 + 1 + 4 = 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 2		15 A
14	17 (TATI-D) 14,14,19	.716	120
11	- 2 = 2) 1/) #8 10/1	1716	154
	1↓1/uZ)=↓?FX I= {{↓G∠/H↓=↓FZ= {F? =HG}} = ↓F∠=L= {H L=XL}} = C= { L _FH↓/		- 10 3
	IN THE FUT FOR THE FEET ALLAS IT FOR THE DESCRIPTION STATES AND THE AND THE ADDR THE	7714	16.7
	s a state of a state of the sta		
	- MARE	716	- 16 4
	de 10 11		
		هيز 🔻	199
-14	╶╶┙╏═╶{Q「┛╱╱╱}╺┡╙╿╺(╶╿ _┙ ╱┙╔) ╺{╶╴┎┶╡┹┹╝┷╝┷╝╔╡╩╔╺╙╔╡╙╡┥╝╝╔┍╧╔┾╺╖╖╝╸	(716	16.8
	↓↓↓/↓↓↓ = UFA ~ {{{{{{{{{{{{}}}}}}}}}}} ~ {{{{}}}}} ~ {{{}}}} ~ {{{}}}} ~ {{{}}}	- 1 6	770
	237) ቀጋዮር 2ቀ 6ዮ ቀር ዮና (የደርቀ - 512 እን እን «የቀዎክሚበ ቀር የፈርዮክሬ ለናሪ» ቀደን የ / 6 / 2» ቀደ አራዲው / ምርጫ	71:	172
	⇒↓▼ F×/▼ F×∠FF ▼F▼#€∕६♂ ↓↓?₩6▼₽₽⊾3K▼ (▼F∕YF2)+&?#6 F™0% ↓?₩₽₹\$₹\$/\$₽`\$2}}.	/ T 1.G	- 17 4
	w)2	F1.2	174
17	50 10 p.C. 10, 40, 1 m/ 40, 10], 76 10	755	176
10	P37 57 24	PIC	5 B. M
	▶ U ■ 単 単	763	- 182
17	P2141 29	V 1.4	144
• 3			
	FO TO TY	713	- 186
1.4			344
10		T 147	
- 14	PAINT 21	715	- 190
	DATES AS THOMATES INTO THE TRANSPORT AND AND THE MEN MEN MEN		1
	┍╓╷╱╸╶╕┙┲╶┊╵╦╘┇┲╬┲╫╝┇┲╅┇╇╚┍╅┇┇┲╅╝┇┲┇┇╔┇┇┇┇┲╡	F 1-0	172
	P#_31 33	716	196
	francista vitro, vitro, vitro, robolo ing tro francis	r 16	- 770
	PEIST IN	812	104
	PP137 35, XL6,AP,C,Y6,Y62,80	7 LG	200
	LOT WT DA	1 1 2	- 10 -
	F = A V = PT	r La	- au 4
	Prist 37, VJ, 160, 965, YG, YG2,26	713	- 20=
			10- 4
	ETB THE STATE OF	7 LW	4448
	P2257 34	113	20A
			3
	ビボム ひょう コマターボ する ちびる たて してする あいるひ 古田	7 66	_ <u> </u>
	2273T 60	P 16	210
		7 🖵	- 212
	385483-825	PIG	21 .

			184
			234
			210
)	فيج ٣	220
	[vd] _ = v 1 − d _	FLG	22.2
	2011: 41, 201,100,000,000,000	Pig -	424
	2 i = bi (/ 17	ت ا	22.0
	5 hz h _ 1 £ / h]	71 4	228
		211	214
			313
		r 53	330
			234
	2615; 43, 36,52,36,75,366	FLi	430
	PEIST 47	F 16 -	2.362
	- 47 FORMAT(//OX,"INCTIAL AKE #ESICHAL NOTESIS #FTEP THOUGHAN PARASE	27 * . ? 12 - /	2368
		713	2.56
		714	214
		813	2.3
		r 63	244
		F 5.6	
	1 X % = 4 % = 46 + • M ; + 47 + (4 + H + H > (- 4 + 2 + 4) +4 ; - (- 6 + 5 + 1	1.10	A •
		713	2+6
	X R2=X 2+X6+. 7+5++P+ (3+3+X++(6+6+6+3++)+x 1+5+6+R4)	P LG	278
	FELST 44, 121,1322,1540,2720,2820,432	P 16	250
	11) 54 = 1,239 BC + 7 45 00 FP 15 ID 2 70 8 7 2 6 (0) - 52 + 52 + 55 + 57 - 69 - 4 + 52	PII	752
		*16	Xa
		F L.W	
		F 4.5	
	23172 45, 122 BP,182CF,1822	7 L i	270
ς.	؟ هڏ ٢٢ بال ۽ ڀا لاري لادي ته ۽ ڏهي ڀُڪ اي ڀُٽ کي نان ۽ ڀڙ 1 ۽ ڀُلا ۽ ۽ نان ٿه ٿا ۽ ڀا لائ ۽ پار لاءِ ۽ پار	766	
C	1 at, HTF, BC, HCF, CCFAL	P LS	262
С	19 WALE (//WELL-W/ EEL-9)	P LG	264
5	20 22157 40	7 13	260 8
	20 COSTINE	P 1.3	2668
	2778.23	716	24
~	•••••	#12	274
•	1 HALMAN 2769, 5767 MA 5, 7697 MA		373
			414
		176	419
		قبذ ا	276
	23 Fustat (1608 Vu VG Ed	TPLC	278
	13 FACE FAE)	P 1.5	280
	49 709362 (1006 W1 CF IPP	TITLE	2#2
	14 TP2 T62 1	716	28 4
	25 PORTAL (127-15-4)	P 7.3	226
	26 FUSH12 FIL6:14.46	FIG	24.0
	27 403454 (1) 7(15-0/0	813	240
	THE REAL AND A DECK STRATE STRATES AND A DECK OF S		267
	A TOPPET PARTY AND THE PARTY A		474
	24 FOFTAS (523 FLARES JL. R. BSL. DOL. CRASEE WE IS AFFL.25	LUGHTLE	270
	15, INTEGER TO INTEGER PAIR //)	716	278
	DO POERAT (BOB FLAGE JOINT BULT LOSS CRASSE DUE TO APPLIED	1.0 5 P f ini)))
	15, SLIND 10 INTERED PAIR //)	P 1.3	JQ2
	JI TOBBAT (SOR PLANGE JOIST GIDE CEE (PRINED WANDE TEES)	/† 16	35 • 6 .
	1	713	36
	A PORTAL OTH UNDER TO BLAND, THE CONTRACT OF A STRUCTURE ALL B. 74 AN	12 17 L.	MA
			110
			11.2
			204
	as traver form traver onthe over the fustation for are travely	// 16	114
		716	310
	54 PORTAT (178 ECT. 367)	تا ۲	31.0
	- 35 FORMAT (148 - BOLT LEBGTHA UPK12.4, 1.8 - 2017 Li Ener 12.4, 148 - dui	s cipig	, 1 9
	1=cL_=21c_=4/1cd TE=k12.4,134 TEd=k12.4,134	• • E 17 👪	342
	42.4/)	شيد ۲	324
	36 FULTAT (163 GASKET)	1 LG	326
	17 POBERT (40 10 +1P212-0,70 806 +12-0.78 162 +1	P 13	12.6
			110
	1 16 1,12,4,121 162 123 16 12 1, h A		
	FTG 1,14.4,128 TG4 1214.4,08 LG 1214.4/)	P 10 9 17	14.3
	TTG TLIGGTLIG TLIG TGA TGA TGA TGA TGA TGA TGA TGA TGA TG		332
	T TG T, 12, 4, 12π TG = 12, 4, 0π EG = 12, 4, 7 34 208 45 (168 i iCADING/) 39 208 45 (23π ISITIK i EGIC ICAD+ 12712, 4, 131 6057 ΓΙΝΥ. + 14, 4, 4 38 252 25 25 25 25 25 25 25 25 25 25 25 25	715 715 138 715	334
	1 YG 128 YG YG 128 YG YG <td>PLS PLS ION PLS IET TPLG</td> <td>))2))4)]4</td>	PLS PLS ION PLS IET TPLG))2))4)]4
	TYG *(12,4,12) TG4 *212,4,00 EG *212,4,0 34 PUB *61 (10) i CAUINGU/) 39 POB *61 (23) ISITIA EULO LGAD* 12712, 4,138 EOLO TENY,*114,4,4 1 FLANGE UNE I PFF+E12,4,209 PEASO* 160 100P+*12,4/158 wash 22 TFF+E12,4,98 i ELTA+212,4,104 DELTFF+E12,4,118 racessus.*	716 715 104 715 107 7716 112 9713))2 334 336 336
	1 YG *212.0,08 EG *212.0,18 *212.0,18 *212.0,18 *212.0,18 *212.0,18 *212.0,18 *212.0,18 *212.0,18 *212.0,128	F LG F LG 104 F LG 12. 4F LG F LG	334 336 336 336 330
	1 YG <	FLG FLJ IJH FLJ IET TFLG IET TFLG ILG IJS/)FLG	332 334 336 336 330 340 340
	TYG TYG TYG EG EG <th< td=""><td>F 16 F 15 107 F 15 12. 4F 15 F 16 105/) F 16 .12. 4F 15</td><td>))2 334 336 338 338 390 392 344</td></th<>	F 16 F 15 107 F 15 12. 4F 15 F 16 105/) F 16 .12. 4F 15))2 334 336 338 338 390 392 344

```
: COMOL MED. NE -E 12.4)
                                                         711
                                                             300
42 PO3261 1/198 di- 126- 12612. 4, 98 01-020-612. 4, 48 01-02-612. 4, 98 713
                                                             350
 1 61-828-512.0,91 81-82= 212.4
                                                         215
                                                              352
ما 101211 1/10 - فتقريرة= 1312.0,55 - مكاني المراه المتراف المراه المراه المراه المراه المراه المراه المراه الم
                                                              øð.
 1020/01=112.4, st 02/01=012.4)
                                                              356
                                                         216
MC+214.9,713
                                                              350
 169 726-512.4,54 22-812.4)
                                                         713
                                                              360
362
                                                         716
715
                                                              3.4
                                                              366
  153
                                                         113
```

```
5987807 WE LISE (A, F, SF, # 5, 6, 1, 27, 27, LTEMP, LEPE, MET, MET, 12, 127, 128,
                                                                             10064021
                                                                             em (1) (1) 2
     1
                       ()()
      INPLICI: SEALPS (4-8,0-2)
                                                                             L # 2 42A
      913285108 \(#1,#) .8(P#,#
                                                                             + Cos 200 3
      $13285408 LTE ## (1), L## (1), L#C (1)
                                                                             8 Ches CB4
C
                                                                             4 004 400 5
C ST04797194 1192
                                                                             30162006
C [ICE 90%4
                                                                             a (344) 637
                                                                             1004100
•
C SUBDOTIBLE CALLER - HORE
                                                                             80344689
C
                                                                             50162010
C THE S BOTTLES SOLVES THE MATER REPARTOR ARASSO OF MALLING & GLAR THE SOLADIT
8 JOB 64 61 2
                                                                             30543013
C CORFFICE. BOTH & AND & ARE EXSTRATED.
                                                                             4 Chol 614
                                                                             8 CR64 CI 5
C THIS SOUTINE IS RECORDERED FOR THE SOLUTION OF STRULT-WE AND LINEAR
                                                                             40043014
C LOULTIONS.
                                                                             a Child 017
                                                                             10061018
C
C THE RETROD CONSISTS OF CARESIAN ELINIBATICS FOLLOWED BY MICH
                                                                             10044019
C SUBSTITUTIOTS, THIS S HOLE LIPICILUS THAN SOLUTION BY SATA IL
C INVINSION FRANKLESS OF THE NUMBER OF COLUMNS IN 5. BOTH ADMS AND
                                                                             10144 628
                                                                             10164021
C COLUMBS ARE SEARCHER PCE PARTPAL FIVORS. INTERCOMPETE OF AUUS OF
                                                                             20044622
C CELEANS OF A 15 AVOIDIE. CHAPTER 1 OF 2.1. STILFLE, IS JUNCTION TO
                                                                             1044(2)
  NURBAICAL RETURNATION, ACADERIC PERSS, N. T., 1963, SECOLD OF RELEPOL IS
                                                                             30162024
C
C FOLLOW NO THE CODE.
                                                                             a 8844 825
                                                                             30461026
  THE CALLEDG POOSSAN BEST SET A, B, DR, EPS, B, R, NS, LIMP CO-
                                                                             3016 1027
2
                                                                             1044228
C
¢
      A-PRE COEFFICIENT WATBIE
                                                                             3 096 1029
                                                                             C
      F-THL OPDIS OF A
                                                                             3016 1031
C
                                                                             30464632
€.
      FE-THE PUPPER OF SCIENCE PROFILIE AND LACE COLUMN OF
                                                                             8 (0) 64 623
C
          A IN THE CALLING PROGAN
                                                                             4 00 4 40 3 0
C
                                                                             8 69 64 63 5
C
      205-A DOB-BLGSTIVE BURGES DEICH ELCH PI WOT IN THE CLIME MATLON
                                                                             A CO 44 836
C
           PLOCESS IS A EQUIRED TO EXCEED IS AD SOLUTE VALUE ACUSTOMABLET
                                                                             10161037
¢
È
                                                                             1 CP 64 CJ 8
           22.40)
                                                                             30163039
r
                                                                             50162010
      S-THE CONSTANT TERE RATAILS
¢
                                                                             10041
C
                                                                             3 004 304 2
      R-THE BUSBER OF COLUMNS OF B
C
C
                                                                             8 0944 (93)
¢
          2 IN THE CALLING PROGLAM
                                                                             50063004
                                                                             3 044 1045
      TR-THE BUTSLE OF METSS OF STORAGE PROVIDEL FOR LACA COLUMN OF
C
                                                                             C
      LITRP-A BLOCK OF MI LEAST & WOLDS OF TEREGRAPY ISTUDIE SEVERAL
                                                                             8 0s4 10s 7
C
```

ايار الدي والانتجاب فالمعام المعطم الحاد بعاليات فالت

C 8 Ch 64 Ch 8 C IN ADDITION TO OVERALITIES & WITH THE ADULTION SERVER A, MAN ADDIESE 3006309 C SAIS IERA, MET, SHE N, FE N, LEF, AND LPC TO 1016 2050 8 CD68 Co1 c C 2 17 50 COLUMNS OF I ADE TOUGH, THE SLEEPARTOD PORCESS Lite 3 0mm 205.2 C BELSE BATTED BECAUSE THE CUTHER: PINOR PALLS TO ALCELD 8 Dec 653 C 197 In ALGRITURE 10 14.20Sa C 3 016 4055 --t if all clubbs of a sta fund, at 1900se seine seine 5 88 Ĉ 46 44467 BET-PLUS OF BIDDE THE PIOLOGY OF THE UNDERLY OF BLAN IN STRADING 6 Co44 (5 a C 30162059 C 219955 6 CP44 0 10 c serverses, rear a cost fations and an action and an actions C 3 (Data and 1) 64 (K) I C 40 4 (744) (763) C 214-1PF CORTENT 5 3001 3064.4664 c LIP-THE PLAST BEEN POSITICAS LIST THE FIRST AND INDIANS IN ANALY C 4 Cada (b) 5 OF USLA VECTOR OF ARESTR 3 C 38 6 4 Ch44 657 C LPC-TAL FIRST BREV POSSILGES LLST THE FIVET COLORD INCCCS IN c 101610 10 ABOLL OF USE, 2 VECTCA OF LEPHTA 3 J (D) 63 (B) 7 C 4 CH44 C78 C t if the silvention process is nelled t-intrucey gets mention, then toposty (THE DATE DETT, " T, LIE, LOC, RM EL BELOWL IS CINCLES IS THE DEDLETING & CHARGE? C C CHISE JE THE THORE ... IF THE PHOTESS 43.3 TO COMPLETE CA THEF AVEN. 39464073 C TIT SHOULD be INE SETENTIAN OF P.PTV BILL SE THE FTH PLOT, 640 525 30161079 4 CHAL 675 3 846 8876 C AND LOC LIST ALL SIDES FOSTICIOL C C BO ISITIALI MATICAS 0 CP44 077 30062078 C 1 IZ39+0 30461079 8 0144 CB0 D11=1. 0.004.404.1 10 2 Is La L73 (2) =I d C244 882 8 8942843 2 LPC(I)+I ----21613 SLINISHTIGS FFCCESS ŝ, 30064046 C 90 10 62-1,5 20542007 ***** ¢ C SELECT PLYOT • C3 65 898 C 3 055 100 1 217-9. # CP 64 C92 2C . K+57,3 8 C+64 C73 I =L76 (2) 4 **2**54 **1**87 5 80 0 L+57.3 0 6068 695 J=LPC(L) IF(9465(4(1,4)-EAUS(PIT)) 4,3,3 • JJ 2 97 L J ##17+R 3 69 66 69 8 LPIV=L 3 846 1877 1919-1 8 Brah 100 60++131 37:7=3 2174 (I ,J) 30001102 A CONTINUE # 0044 10 J 3**0**065104 .C C BEDATE DETERMART ARE FINDT FOR AND COUNTS LISTS # CO && 105 ć 8 Cont 100 90464107 DUI=DUI=/IV 4 JO 64 10 8 17278+154 (87) L F & (# F) =L ; = (K PIV) 50065109 3010 110 しきょくおやこ りっこ ことやま 40444 111 17287+170(57) LAC (14) +1 PC (1714) 10461112 LN: (LP: 1) +1 1273 4 JOBA 113 C # 6++ A 11+ # 0++A 115 C LAIT IF PIPOT TOC SPAIL 1006A116 C L1811178 1/(205-0143(810)) 4,7,7

133

```
7 SEE. - 2
                                                                                 ##164.11#
                                                                                 ----
      11.14
-
                                                                                 90163120
C PERIPT FUTOT JOH OF & 250 & (ELERUFTS IN NURSERT OF FRETINGS PLANE
C COLONES JF I LIFE STIPPED
                                                                                 30168121
                                                                                 ----
                                                                                 10161123
c
    d It($2-$43,11,5
                                                                                 106444
                                                                                 JOhna 125
    9 382+88+1
                                                                                 10164126
       00 10 L+557,5
                                                                                 30003 127
       J=LRC (1)
                                                                                 60164 12 0
   10 2 (17:4,3) -- 2 (#:4,3)/?!*
   11 80 12 3=1,3
                                                                                 10061129
   12 3 (2717,3 +-> (1717,3)/117
                                                                                  6 8 6 6 1 1 3 0
                                                                                  -
C
C SHELTY SOM-MENCE HENS OF A AND & (ELEMENTE IN PARSENT AN PARTIANS
                                                                                 10001132
     FINDE JENS OF CELUPSE ARE SPEPFER
                                                                                  30441)]
C
                                                                                  ----
C
   [f($P~5)13,16,13
13 30 17 E=367,8
[+1,76(E)
                                                                                  3 Ches 135
                                                                                  80-64 1J6
                                                                                  3000A137
                                                                                  J0163 136
       7227=8 (L., JPI *)
       17(:535) 10, 17, 10
                                                                                  3064139
                                                                                 10162 100
50162 101
30162 102
#0162 103
    14 30 15 L=###,#
      J=LPC (L)
    15 1 (I,J)+1(I,J)+1(I II+,J)+IEM
      30 16 J=1 ,8
                                                                                  .....
    % a(I,J)=L(I,J)+2(IFI4,J)*TE%
                                                                                  -----
    17 208 22 582
    16 CONTINUE
                                                                                  3006A767
C
C 250 ELEST NOTION RECENTS
                                                                                  5 CH (4 TH 5
                                                                                  8 (144 70 9
C
C DO MACH SUDSTITUTIONS
                                                                                  30161150
                                                                                  80005 151
C
                                                                                  3064152
       30 23 J=1,8
                                                                                  3014153
       DO 21 8-2,5
                                                                                  .....
       TE=5+E+1
                                                                                  3646 A 155
       I=LFP (KR)
                                                                                  10564 154
       30 21 L+2 ,K
                                                                                  8 69 6A 157
       11+3-2+2
                                                                                  30001150
       11-17+(11)
                                                                                  8 CH44 159
       JJ=UC (LL)
                                                                                  ----
    21 3(1,J)=1(1,J)+2(1,J)+1(1,J)
                                                                                  30064767
    23 20511 562
                                                                                  8 0044 162
9 006 4 16 3
C
C UNSCRAMES HOUS OF SOLUTION RATELY AND ADJUST HIGH OF DETAIL NEW
C
                                                                                  80164 754
                                                                                  3044165
       10 20 J+1,1
                                                                                  3496 4 166
       1=179 (1)
    24 LTESP (1) + LPC (1)
                                                                                  .....
                                                                                  3046A168
       90 28 2=1,5
                                                                                  80168 169
    25 K+LTESFG)
                                                                                  3044 178
       17(1-8)26,24,26
                                                                                  1046 177 1
    26 DET=-DeT
                                                                                  8 4468 172
       00 27 3=1,5
                                                                                  1046 A 17 J
       1211-0(1,3)
       $ (I,J) = (h,J)
                                                                                  8 63 64 174
    27 B(K,J)+TESF
                                                                                  8046A175
       LT297(I)=LTEBS()
                                                                                  3 896 A 176
                                                                                  d Ches 177
       LT2 NF (8) = R
       60 TO 25
                                                                                  30461178
                                                                                  3 0944 179
    28 CONTENNE
        46.995
                                                                                  .....
                                                                                  5 006 A 10 1
       2.50
```

ι

and the second se

C

ماه ما العديم عند العديد مع ملاكات المالية العام العام مع معالمه الدين المالية الإليانية الإليانية الإليانية

- MOSOGIISE COPEIS INFLICIT SEALPS (A-1,0-2) CENT 213285.68 5(6,14), SC(14) 34Th \$7199.4 :00013 CO2233 ITTE 2, 1908 L, KOBL, ALTE, 12, 13, 14, PFES, 165, 409, 51, 40, 18, 18, 14, 14 5 • N., M., S., M., 11, 191, 192, S.E. (... 10 + 4 IF(MATELLE &) IT=ITWE 10 10(1, ., 1),1: 1 K + K + 1 .C28(1) IF(K.C.) 00 10 99 18 (% 18.51.1) 831 W +3 7315T 50 37 = 18 20 • 84 • 1,3 60 70(5,6,7),94 5 97297 53 CCIALS 60 **10** 4 6 P5137 54 50 **20** 8 7 PLINE 55 9 30 29(12,13),10 14 PELNT 00, 55 Mi, 1), 1=1,50) 200828 33 **70** 4 1) PELST 60, (3 (MA+3,1), 1-1,88) . CONTINUE IF (417.29.1) 66 16 99 00 9 1-1, 34 30 20(12, 11), 30 CODIN 10 SC(2) + S(1,2)* SH26/XP1+S(2,2) + S(3,3) S0 70 9 11 \$\$ (1) + \$\$,1)+372/381+ \$ (5,1) + \$ (6,3) 9 CONTINUE 30 20 (00,01),IC 0 PEIPT 50, IR2F 30 70 02 01 PEIPT 50, IR2 01 PEIPT 50, IR2 :01015 42 PEINT 66, (SC (1), 1-IF (MAIL.EQ.)) 6C TC 55 1-1,55) IF(IT-DQ-IT2) GO TO 1 IF(%12.14.4) 6C 2C 2 IF(RATE_ZO.m) 00 10 95 2 IC + IC + 1 IP(IC.G.) 60 70 49 IF (MA 12.51.1) \$51 07 49 PPSPT 51 **PE = 12** 3014 ML + 1,3 60 TO (15, 16, 17),SA CONDID 15 PRIFT SJ 60 10 18 % PFIN 54 30 70 18 17 PAL 97 55 10 30 10 (22,23),IC : ORBID 22 76107 01, (5 (54, 3, 1-1,00) 30 1014 23 P3107 61, (5 (84+2,2), 1+1,00) TO COSTERE IT (# 16.29.1) GC 10 99 9019 1=1, # 30 70 (20,21),IC 104919 20 SC(1) + S(1, I)* 30 27/841 46 (2, I) + S(3, I) 10 TO 19 21 SC(1) + S(0,1)*321/381+ S(5,2) + S(0,1) TO CONTINUT 10 10 (41,44),10 :0191#

43 25137 54, X32F 39 73 45 40 71157 56, 152 as pathe ale (Sell), 1=1,59) 17 (4) 12.22.2 40 10 45 IF(IT,Eg. IT2) to The 17(3AT2.30.0) 60 30 95 1 + 51 + 31 (IF(SATE.J. 1) PEINT 45 P31 47 52 #5 = 7 80 24 944 1,2 13 10(25,20),M 200818 25 75185 57 30 79 28 24 241 37 54 24 27157 62, 15 (RA, 1), I= 1,88) 26 26521382 IF(SATE.20.1) GC 7C 99 60 29 J=1,55 £(1) + \$(1,1)+N2/#1 + \$(2,1) 19 COSTINUE PAINT 50 , 82 PAINT 62, (SC (L), 1+1,86) 60 TO(1,2), MYPE CGEBIS 63 921 41 ad \$E7223 •9 POESAT (181; 50 POARAI (/508 51 POARAI (/508 52 POARAI (/5)8 TAALBEE MITE PLANCE 1 STAATER? 375 FLANGE n BLING PLANGS 1) 53 POLEAT (504 CARCULATIONS POR MONENT LONDING IN 54 POSTAT (50 8 CALCULATIONS POR PRESSURE INAU INS IN 15 PGesi 1 (500 CANCULATIONS FOR TEMPERATURE LONDING //) So POREATI SOR CANCULATIONS FOR COMPLEXE LOAD 26, Re Di SAR POR ITT 1P2=1 03 2, 03 105 171P2=3, = 17212.4 //) 57 POLRAI (SON CALCULATIONS PCA BELT LOLEISE //) 60 POLRA? (78 SLSON T E12.0,78 SLSIN 212.0,78 SCSUE E12.0,70 SCSUE E17AP 900 12. 4//7# SLL0+E12.6,7# SLL +L12.4,7# SCL0+E12.6,7# SCL2+L12.6//2# 27# STH=E12.6,7# SIF=E12.6,7# S3# L12.6,7# 32#+12.4//5# 27# 962 -### 272. 4, 58 2C+E1;. 4, 38 UPNG #212.4, 58 TC+E12.4, 54 TT+112.4, 68 28 996 198 412124 4812.4/) 240 01 PURTAL (78 S150=17212.0,78 SLSI=214.0,78 SCGD=112.0,78 SCSI=1518 12.0//78 S28=12.0,78 STP=12.0,78 SIM=12.0,78 SCF=12.0,78 822 420 258 264212.0, 9 20+214.0, 78 QPRG+212.0,58 W=E14.0,88 INELA-21578 426 1.0/ 5 18 20 362 62 PORMAT (7 H SORT= TELLA, 7H SUA 4212.0, 7H STEELLA, 74 508=81365 SUT=112.4,78 SAT=112.4//94 2C=112.4//) 111 12.4,78 239

136

С

10 701 4 4 4 5 4 5 1 M R
5 34 = 54 + 1
+ 50 TO (1, 4, 3), ITWE
1 5 (%1,1) + 5150
S(M,2) = SLEL
5 (14, 2) + SC30
\$[4,4] + \$25
5 (34, 5) = 544
\$[32,6) = 3411
S (11, 7) + SCL3
5(36,0) * 3614
3(74,14) - 36F 6/31 9% - 481
5 (12 1/1 + 55 F
C/11 13 = 76
\$(31.16) • \$
5 (34. 150 + JFUS
5 (24.14) = 10
5 (24, 17) + 11
5(94, 14) = 21
viu 73 52
2 3 (%1,1) = 515C
\$ (\$1, 2) = \$L\$I
\$(11,) + \$\$
3 (34, 6) + 3031
\$(%L,3) * 31H
3(14,7) = 3FH 6/8: A 1 = 65 B
2 (20) 2 1 - 21 (20) 2 2 2
5(81.11) + 2785
S (74. 14) = 10
\$(%,,1) = 122%
60 70 50
] 5(34,1) = 5CP:
5 (74,2) = 565
\$(34,3) + \$\$1
S(Ti, u) = SCB
\$(%,5) + 27
5 (Ti, 6) 4 56T
3(74,7) * 6 . A. 8 7 737
747
9 L.A.

3 13 ú E