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Abstract

We have performed molecular dynamics simulations of 1
2 〈111〉{112} screw dislocation motion as a func-

tion of temperature and stress to obtain mobility relations suitable for mesoscale computational tech-

niques. We find two dynamic regimes governed by different mechanisms of motion. Consistent with

experimental evidence, at low stresses and temperatures the dislocations move by thermally activated

nucleation and propagation of kink pairs. At a critical stress, a temperature dependent transition to a

viscous linear regime is observed. Critical output from the simulations, such as threshold stresses and

the stress dependence of the kink activation energy, are compared to experimental data and other atom-

istic works with generally very good agreement. Additionally, we find that the viscous drag coefficient

is nearly temperature independent. Contrary to some experimental interpretations, we find that glide

on {112} planes is only apparent, as slip always occurs by elementary kink pair nucleation/propagation

events on {110} planes. This is mediated by a dislocation core transformation from compact to dissociated

identified above room temperature. We discuss the relevance and applicability of our results and provide

a closed-form functional mobility law based on physical behavior extracted from the MD simulations.

Keywords: Screw dislocations, Fe plastic behavior, dislocation mobility, molecular dynamics

1. Introduction1

The low temperature yield behavior of α-Fe single crystals has been well characterized over the years2

in numerous experimental works [1, 2, 3, 4]. Tensile tests in high-purity specimens reveal a strongly3

temperature-dependent strain rate behavior and flow stress [5, 6]. This is known to be a consequence of4

the thermally-activated nature of 1
2 〈111〉 screw dislocation motion in body-centered cubic (bcc) metals.5

Because lattice friction in such crystals is typically quite high, at moderate to low stresses, plastic flow6

can be reduced to the individual motion of screw dislocations, which are known to display much lower7

mobilities than non-screw dislocations. Consequently, by studying single screw dislocation properties8

and mobilities, many useful insights can be gained into the plastic behavior of Fe and other bcc crystals.9

However, experimental measurements concerning single dislocation properties are exceedingly diffi-10

cult, and only recently have experimental techniques reached a level of resolution capable of isolating11

individual dislocation behavior [7, 8], particularly in bcc Fe [9]. Consequently, a wealth of atomistic sim-12

ulation studies have been performed over the last decade or so in an attempt to shed light on dislocation13

structure and core properties and energetics [10, 11, 12, 13, 14]. In particular, the stress dependence of14

the kink-pair (KP) nucleation enthalpy has been the subject of much study [15, 16, 17, 18]. Nevertheless,15
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despite these and other significant advances in our understanding of 1
2 〈111〉 screw dislocation properties16

at the atomistic level, their true impact on plasticity on a more global scale can only be assessed by way of17

models operating at the mesoscale, e.g. dislocation dynamics or phase fields. Indeed, screw dislocation-18

controlled plasticity in α-Fe has been the subject of several dislocation dynamics (DD) works [19, 20]. The19

fundamental input to DD simulations is the so-called mobility function [21, 22, 23], which couples forces20

acting on dislocation segments to their velocity response. On a more simplistic level, the mobility func-21

tion relates applied stresses to dislocation velocities, and may be a function of several factors, including22

temperature, pressure, dislocation character, and internal microstructure.23

In extracting this information directly from experimental observations it is typically exceedingly diffi-24

cult to subtract out the effect on mobility of the surrounding dislocation environment, although notable25

exceptions exist [9]. Conversely, if used carefully, atomistic simulations can be invaluable in providing dis-26

location mobility behavior under well-controlled conditions [24, 25]. In this paper we present a molecular27

dynamics (MD) study of 1
2 〈111〉 screw dislocation motion in bcc Fe as a function of stress and tempera-28

ture. At low temperatures, screw dislocations are known to move as straight lines, which suggests that29

only one KP exists at a given time. This is the basis of the so-called smooth glide identified in ref. [26].30

Such a regime is then governed by KP nucleation, as kink motion proceeds at comparatively high speeds.31

These are precisely the conditions for which we have designed our simulations, as will be shown below.32

However, this is no longer the case at higher temperatures, where kink nucleation and propagation can be33

of the same order of magnitude. This is the prelude to the famed phonon drag regime that sets in when34

kink nucleation is no longer the rate limiting step.35

This paper is organized as follows, first we perform a careful study of the simulation geometry. Second,36

we present the MD data and provide the theoretical framework to justify the fitting functions used to37

produce analytical mobility laws. This is followed by an analysis of the proposed mobilities and the38

implications for crystal plasticity. Our calculations are performed with the parallel MD code LAMMPS39

[27] using the EAM potential for Fe developed by Mendelev et al. [28]. The literature on screw dislocation40

core properties [29, 13, 30, 14], Peierls energy and stress [14, 31], kink structure and formation energies41

[30, 17, 31, 18], to name but a few, using this potential is quite abundant, and here we simply note that42

this potential yields the symmetric core structure (at 0K) predicted by electronic structure calculations43

[13, 14, 32].44

2. Methodology45

Dislocation mobility calculations require long simulation times to allow for a steady state to be reached46

under each set of conditions. This means that setups such as those employed by Domain and Monnet [13]47

or Chaussidon et al. [30], which result in finite dimensions along the glide direction (referred to by the48

authors as ‘free boundaries’), cannot be used here. Instead, we use periodic boundary conditions along49

the dislocation line and glide directions, and traction boundaries along the glide plane normal direction.50

This imposes certain restrictions on the computational box dimensions Lx , Ly, and Lz, each one governed51

by a specific physical process. Next, we discuss the criteria chosen for the design of each dimension of52

the supercell on the basis of the relevant physical phenomena.53
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2.1. Line direction.54

At low temperatures and stresses, 1
2 〈111〉 screw dislocations move by nucleation/propagation of kink55

pairs. These KPs display a stress and temperature dependent characteristic separation length that must56

be contained entirely within the dislocation line. Marian et al. [26] showed that short dislocation segments57

result in 2D dynamics, not representative of dislocation motion at low T. In addition, recent work by58

Ventelon et al. [17] suggests that single kinks in Fe have widths of the order of 20b in the 〈111〉 direction59

at 0K. Despite the fact that the calculations by Ventelon et al. concern only single, isolated kinks, and thus60

neglect the interaction between the two kinks of a KP, which could indeed alter this value, here we use61

a lower bound length of 40b for our screw dislocation lines, where b = a0

√
3

2 ≈ 0.25 nm is the Burgers62

vector and a0 = 0.27 nm is the lattice parameter for bcc Fe.63

An upper bound is obtained by considering the conditions under which the KP mechanism results64

in linear, smooth glide as defined in Ref. [26]†. As shown there, when the dislocation line is too long,65

the simulation limitations inherent to MD result in multiple kinks on multiple glide planes, leading to66

cross kinks. This so-called rough regime results in self-pinning and is not representative of plasticity at67

moderate to low stresses and temperatures. Following the arguments provided by Marian et al. [26],68

ensuring that only one KP occurs simultaneously requires that the kink mean-free-path X be at least as69

large as the dislocation length L. X is defined as:70

X = 2

√

vk

Jk
(1)

where vk is the kink velocity and Jk is the KP nucleation rate:71

Jk =
vk

a2
exp

(

−HKP(σ)

kT

)

, (2)

where a is the average kink separation distance within the KP and HKP (σ) is the formation enthalpy of a

KP at a stress σ. Equating X to L yields:

L = a exp

(

HKP(σ)

2kT

)

For HKP(σ) one can use the phenomenological expression due to Kocks, Argon and Ashby [33]:72

HKP(σ) = H0

(

1 −
(

σ

σP

)p)q

(3)

where H0 is the KP formation enthalpy at zero temperature and stress, σP is the Peierls stress, and p and73

q are fitting parameters. Using H0=0.65 eV [14], τP=1200 MPa [30], and the values predicted by linear74

elasticity p=0.5 and q=1.25, one can use the values of a at different stresses calculated by Ngan et al. [34]75

with which to estimate L from eq. 3. On the basis of these simulations we found a value of Ly = 80b ≈ 19.876

nm to be sufficient for the temperature and stress ranges of interest in this work.77

†Also termed the ‘single kink-pair’ regime by Chaussidon et al. [30].
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2.2. Plane normal direction78

In the conventional picture of α-Fe plasticity, supported by a myriad of experimental studies (cf. 1), slip79

takes place on {110} planes across the entire temperature range when they are the most highly stressed80

planes. However, for the potential employed here, this maximum resolved shear stress (MRSS) plane is81

also the glide plane only in a narrow range of (low) temperature and stress. Indeed, Domain and Monnet82

[13] and Chaussidon et al. [30] have shown that consistent {110} slip is only attainable under dynamic83

conditions when free boundaries are used along the glide direction. As pointed out above, these boundary84

conditions are not suitable for the type of dislocation mobility calculations that we are concerned with85

here. As the applied stress and simulation temperature increase, screw dislocations are seen to deviate86

from {110} planes and rotate to glide planes that approach {112}. MD simulations have confirmed that87

despite gliding on effective {112} planes, slip proceeds as a succession of elementary kink nucleation88

episodes on non-MRSS {110} planes [26, 30].89

Therefore, here we have chosen to study dislocation motion on {112} planes, with stress applied to90

a skin layer consisting of three atomic planes at the top and bottom of the simulation box. These layers91

can relax in-plane but are fixed along the z-direction (glide plane normal). Although these boundary92

conditions are known to introduce non-glide stresses [30], they provide repulsive image forces [35], which93

result in stable glide conditions. Temperature control is also only applied to atoms in the skin region via94

a Langevin thermostat. Once the dislocated crystallites have been generated at the desired temperature,95

stress-controlled simulations are performed without any kind of temperature control in the bulk region96

of the computational box.97

The dimension along the 〈112〉 direction is obtained on the basis of the following arguments:98

(i) When stress is initially applied, a shear stress wave traveling at the speed of sound is generated at99

each of the skin layers. These waves cross the sample and reflect off the opposite boundaries with100

inverted sign, which cancels the effect of fresh stress waves coming from the surface. This makes the101

dislocation stop until these elastic waves reverberate again at the original boundary and restore their102

sign. This process repeats itself until the waves are suppressed by viscous damping and scattering.103

As we shall see (e.g. cf. Fig. 3), this results in a transient period during which dislocation mobility104

is highly scale dependent. With Lz too small, every reflection is only dampened very slightly, which105

could then cause the movement of dislocations to be too intermittent for a steady state to be reached106

within reasonable MD time scales.107

(ii) As we have indicated above, the rigid boundaries where the stress is applied, create repulsive forces108

on the dislocation that stabilize it on the glide plane corresponding to the center of the box. However,109

because the presumed mechanism of motion on MRSS {112} glide planes is still by complementary110

KP nucleations on the {110} planes bordering at ±30◦, the image forces must be sufficiently small111

to not interfere with this natural mechanism. This suggests a z dimension as large as possible.112

On the basis of these considerations, a reasonable size was found to be 58.7 nm or Lz = 84
√

6a0. Stress113

was always applied so as to create a Peach-Köhler force in the twinning sense.114

2.3. Glide direction115

The physical consideration to keep in mind when designing the dimension Lx along the periodic glide116

direction 〈110〉 is local heating after each dislocation passage. Fast-moving dislocations leave a ‘hot’ trail117
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in their wake in the regime governed by viscous drag. In contrast to dislocations moving in an effective118

infinite medium, which see only a ‘fresh’ crystal ahead, in MD simulations the dislocation re-enters the119

box after each passage (we emphasize again that single-passage simulations are not acceptable for our120

dynamic mobility simulations). The residual heat remaining locally on the glide plane dissipates at a121

given rate that depends on temperature, material properties, and dissipation direction. If the dislocation122

encounters a hot glide plane after each passage the resulting velocity would not be representative of the123

simulation temperature, and, thus, the computational box must be sufficiently large in the glide direction124

to ensure that the dislocation travels through a thermalized glide plane on every passage.125
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Figure 1: Evolution of the initial temperature in a computational cell after connecting the skin region to a heat reservoir at 100K. For

all the initial temperatures, a decay time constant of ≈ 7 ps is found.

To obtain a first order estimate of Lx , we set up a small 10× 10× 10a0 box in which a central region of

atoms was initialized at different temperatures greater than 100K and a skin region was kept at a constant

temperature of 100K. The temperature decay profile of the central region was then fitted to the inverse

exponential solution to Newton’s law of cooling:

T(t) = T∞ + a exp(−bt),

where, in the simulations, T∞ is the final target temperature, a and b are fitting constants that represent,126

respectively, the initial temperature difference between the central atoms and the skin region at T∞, and127

the decay constant. We are particularly interested in the latter, as it gives an idea of how fast heat is128

evacuated from atoms that are not subjected to temperature control. For the tests performed in Fig. 1129
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with T∞ = 100K, we obtain an average value of b ≈ 0.55 ps−1, corresponding to a time constant of 1.8 ps.130

As the figure shows, at t ≈ 7 ps all the curves have decayed to the temperature of the heat bath. Then,131

assuming a maximum dislocation velocity equal to the shear wave velocity of ≈3400 m·s−1 in Fe [28], the132

minimum box size along the glide direction is approximately 24 nm. Therefore we choose a box with133

Lx = 60
√

2a0 = 24.3 nm. Before performing dislocation mobility simulations under applied stress, the134

box is equilibrated at the desired temperature during 20 ps using a Langevin thermostat. After applying135

stress, the total box temperature was never seen to increase more than 10% above the temperature of the136

heat bath.137

Thus, to summarize this section, we have designed an orthogonal computational box with axes z ≡138

1
2 [111], y ≡ [112̄], and x ≡ [1̄10] corresponding to the line, plane normal, and glide directions, respectively,139

with dimensions Lz = 19.9 nm (80b), Ly = 24.3 nm, and Lx = 58.7 nm. This configuration contains140

in excess of 2.4 million atoms, which results in nominal strain rates of 1.7 × 106∼7 s−1 for velocities141

between 10 and 100 m·s−1. Figure 2 shows a schematic diagram of the computational box employed. The142

simulations were run on massively-parallel platforms (>500 processors) at Virginia Tech and Lawrence143

Livermore National Laboratory. The approximate computational cost of the simulations was 3.5 × 10−5
144

seconds per time step per atom.145

3. Results.146

3.1. Raw MD data.147

The simulations are run for relatively long times to overcome any transients and develop statistically-148

meaningful behavior. Configuration data were extracted every picosecond regardless of the applied stress149

and the temperature. At 300 and 500K, each configuration is quenched off-line only for a few time steps150

to eliminate the thermal noise and facilitate the identification of the dislocation core. This is done using151

the centrosymmetry deviation parameter analysis employed in many other studies. From the position152

of the core, velocities are extracted as the derivative of the displacement-time curves for each case. The153

processed output of the simulations at 300K is shown in Fig. 3. Results for all the other temperatures154

are qualitatively identical. At each temperature, the stress is applied in roughly 50 MPa intervals from155

zero to the point of ‘shear melting’. This phenomenon occurs when the screw dislocation moves too fast156

for the local heat generated on the glide plane to dissipate. Under such conditions, successive reentries157

through the periodic boundary heat the atomic layers around the glide plane above the melting point of158

the crystal. This causes the material to literally flow along the glide plane, locally removing any notion of159

crystallinity and dislocation structure. This is the case for the black curve in Fig. 3, corresponding to an160

applied stress of 1150 MPa. In addition, the threshold stress for dislocation motion within MD timescales,161

which we term σ0, is measured (194 MPa in Fig. 3 for the 300K case). σ0 is defined as the stress at which162

the dislocation moves within the first 100 ps, and is therefore an upper bound on the true threshold stress,163

imposed by the short MD timescales.164

The velocities are measured from the slope of linear fits to the displacement-time curves at each (T, σ)165

condition. As mentioned earlier, the fits are only carried out after the finite-size reflections have subsided166

and the dislocations move in a smooth manner. By way of example, in Fig. 3 we show the fit for the 630-167

MPa simulation, which yields a velocity of 244 m·s−1. The velocities obtained in this fashion are plotted168

in Figure 4 for the four temperatures considered in this study: 100, 200, 300, and 500K. Hereon, we refer169
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Figure 2: The simulation set-up used to measure the velocity response of a 1
2 〈111〉 screw dislocation to applied stress at finite

temperature. The shaded plane corresponds to the dislocation glide plane.

to the applied stress generically as σ, noting that the actual stress that the dislocation suffers may not be170

exactly identical to σ in view of the finite size effects described in Section 2.2.171

Two regimes can be visually identified in Fig. 4, more ostensibly at lower temperatures. Initially, at172

low applied stresses, an exponential regime is clearly recognized, while at higher stresses the behavior is173

clearly linear. The dynamic transition is sharp at 100 and 200K, but becomes considerably more blurred at174

300K, and particularly so at 500K. The inset to the figure shows the same data points on a logarithmic scale175

in an attempt to facilitate the identification of the dynamic transition, which is seen to occur at decreasing176

stresses with increasing temperature. These transition stresses are denoted by σ∗. Mathematically, σ∗ is177

computed as the inflection stress, i.e. that at which the v(σ) function transitions from convex to concave178

(in other words, when the local derivative of the v-σ curve starts to decrease). At 500K, this occurs over a179

stress range, more than at a specific value, but, acknowledging this ambiguity in the definition, here we180
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Figure 3: Dislocation displacement vs. time at 300K for all stresses considered here. The curves display an initial serrated behavior,

follow by a steady state characterized by smooth glide. A linear fit to the smooth section of the 630-MPa curve is shown, yielding a

velocity of 244 m·s−1.

have taken σ∗(500K) as the first value in that stress range. The values of σ0 and σ∗ are given in Table 1181

and plotted in Fig. 5 as a function of temperature.

Table 1: Calculated values of all temperature-dependent coefficients.

Temperature [K] 100 200 300 500

Threshold stress [MPa] σ0 650 400 194 104

Transition stress [MPa] σ∗ 797 770 633 312

Friction coefficient [×10−4 Pa·s] B 2.5 2.4 2.7 2.9

Transition velocity [m·s−1] v∗ 419 515 324 167

182

The exponential regime corresponds to the thermally activated mechanism of motion governed by KP183

nucleation, whereas the linear regime is the manifestation of some type of viscous motion. It is unclear184

if this corresponds to the classic phonon drag mechanism, as its onset occurs at stresses < σP, although,185

due to the displayed linearity, the theoretical treatment will be applied as if it was. In this context, σ∗(T)186

has the meaning of a temperature-dependent transition stress, above which the free energy landscape is187

flat and the dislocation does not need to overcome any effective energy barrier. This is akin to the Peierls188

stress at 0K, which is approximately 1200 MPa for the potential employed here. We shall come back to189
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Figure 4: Dislocation velocities against applied stresses for all the temperatures considered here. The inset shows the same data in

logarithmic scale, which allows for a better identification of the dynamic transition.

these issues in Section 4.190

3.2. Mechanism of motion191

Next, we describe some aspects of the mechanism of motion for σ < σ∗. Several workers have demon-192

strated the kink-pair mechanism in 3D dynamic simulations of 1
2 〈111〉 screw dislocation motion for the193

Mendelev potential [30, 18], and we do not discuss it further here. Rather, we focus on the relationship194

between KP nucleation and glide plane.195

As pointed out earlier, in conditions where a {112} plane is the MRSS plane, the two {110} planes196

bordering it at ±30◦ are equally stressed with a Schmid factor of
√

3/2. At the same time, the elastic197

energy of a KP can be written as [36]:198

H0(h, w) =
µb2

2π

[

h

(

1

1 − ν
log

h

ρ
− 1

)

− h2 (1 + ν)

4w (1 − ν)

]

(4)

where h and w are the kink’s height and width and w ≫ h is assumed. ν and µ are Poisson’s ratio199

and the shear modulus, respectively, and ρ is the elastic cutoff. With w ≫ h and h ≈ ρ, the only non-200

negligible term in eq. 4 is that which is linear in h‡. Then, assuming a variation of HKP with stress201

‡h{110}/h{112} = 1/
√

3.
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Figure 5: Evolution of the transition and threshold stresses with temperature. Also shown is the fit proposed by Wen and Ngan for

σ∗ [16], which provides very reasonable agreement with the MD data.

according to eq. 3, and σP
{110} and σP

{112} equal to, respectively, 1200 and 1300 MPa [30], we have202

HKP
{110} . 0.58H

{112}
KP , i.e. kink pairs on the adjacent {110} planes are still more energetically favorable203

than their {112} counterparts. Again, when coupled with the repulsive image forces discussed in Section204

2.2, this picture favors alternating jumps between both {110} planes in our simulation setup.205

As a consequence, at low stress and temperature, {112} glide is only effective, i.e. the overall glide206

plane observed from length scales far above the atomistic one is {112}, while it actually occurs by a207

succession of {110} slip events observable only at the atomic level. At higher temperatures and stresses,208

one could expect significant deviations from this alternating slip mechanism as thermal fluctuations smear209

the (repulsive) effect of the traction boundaries. However, in analyzing the dislocation core carefully, we210

have seen that it undergoes a structural transformation from compact to dissociated between 350 and211

400K, as clearly illustrated in Figure 6. This radically changes the available transition pathways for screw212

dislocation motion, as the dislocation can now only proceed in a manner consistent with pencil glide [16].213

The combination of reduced transition paths and Peach-Köhler force direction prompt the dislocation to214

again follow an effective {112} glide plane.215

The mechanisms of motion described here are in disagreement with the interpretation by some work-216

ers that, under certain conditions, slip takes place by KP production directly on {112} planes [45, 3].217
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(a) 350K (b) 400K (c) 500K

Figure 6: Screw dislocation core structure at finite temperature illustrated using differential displacement maps [44]. The core

suffers a transformation from compact to dissociated between 350 and 400K. Core configurations have been obtained by averaging

the atomic positions over 1 ps.

3.3. Mobility functions218

3.3.1. Thermally activated regime.219

Within the kink-diffusion model, the velocity of a screw dislocation in the thermally-activated kink220

nucleation regime can be written as [38]:221

vth = hXJk, (5)

where X, and Jk are defined as in Section 2.1. Replacing X with eq. 1 in eq. 5:

vth = 2h
√

Jkvk,

and inserting eq. 2:222

vth =
2hvk

a
exp

(

−FKP(σ)

2kT

)

, (6)

where a is the kink translational distance, vk is the kink velocity, and FKP is the stress dependent free-

energy of a KP. If one further assumes that the kink velocity follows Einstein’s kinetic relationship:

vk =
2Dk

a
sinh

(

σbha

2kT

)

,

and that the mechanical work σbha ≪ 2kT, then:223

vk ≈ Dk
σbh

kT
, (7)

where Dk is the kink diffusivity. Equation 6 then becomes:224

vth = 2Dk
σbh2

akT
exp

(

−FKP(σ)

2kT

)

(8)

Experimental studies have have shown that the formation entropy SKP is only a small fraction of the total

free energy [39]. This is substantiated by recent atomistic calculations of the vibrational entropy of finite

screw dislocation segments [40]. Equation 8 can be written as:

vth = 2Dk
σbh2

akT
exp

(

−HKP(σ)

2kT

)

.
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For its part, the kink diffusivity is typically written as Dk = ν0a2 exp (−Wm/kT), where ν0 is an attempt225

frequency and Wm is the kink migration energy. It is commonplace to assume kT & Wm on the basis that226

‘edge’ type segments such as kinks undergo little or no lattice friction, so that their mobility is controlled227

by phonon scattering. However, kinks in α-Fe are known to have non-negligible widths, of the order of228

6b [15] to 20b [17], which could result in significants deviations from pure edge character, and, thus, here229

we leave the explicit dependence on Dk.230

When the kink pair expansion is limited by a finite line length L, the above expression needs to be231

corrected by a factor L
L+X . However, owing to the geometry constrains imposed in Section 2.1, it is232

reasonable to assume X ≈ L so that:233

vth =
σbh2ν0a

kT
exp

(

−HKP(σ)

2kT

)

(9)

where we have further assumed that Wm ≪ HKP/2. For the stress dependence of HKP we again use eq. 3.234

In principle, p = 0.5 and q = 1.25 can be fixed to the values predicted by linear elasticity theory. However,235

in a periodic box the activated state becomes distorted by the periodic image interactions (in the low stress236

limit) or by kink spreading (in the limit of stress approaching Peierls threshold). Therefore, we leave p237

and q as fitting parameters to be obtained from the MD data.238

Equations 9 and 3 form a closed functional mobility law for screw dislocations for thermally activated239

motion. Next, the objective is to devise a global fitting procedure that retains only the stress and temper-240

ature dependence, i.e. a universal mobility function that can be used in the entire T and σ range. To this241

end, we first reduce the explicit stress dependence in eqs. 9 and 3 for numerical convenience to a non-242

dimensional form described by s(T) = σ/σ∗(T). Additionally, we condense all the physical parameters243

in eqs. 9 into a single fitting constant A. The reduced expression is:244

vth = Aβs exp
(

−0.5βH0 (1 − sp)q) (10)

where β = (kT)−1 is the reciprocal temperature. In eq. 10, we fix H0 = 0.65 eV, which is the value245

obtained by molecular statics for the potential employed here [17]. Experimental estimates for H0 from246

stress relaxation measurements in Fe give values in the 0.8∼1.0 eV range [41, 42, 43, 45]. At this point,247

eq. 3 needs to be modified to account for the fact that, although here we are concerned with 1
2 〈111〉{112}248

mobilities, eq. 3 refers to kink pair formation on {110} planes. As shown in Section 3.2, glide on the (112̄)249

plane proceeds via successive nucleation of KP on alternate (011̄) and (101̄) planes forming 30◦ with the250

MRSS plane. The Schmid factor on these two planes is
√

3/2 and, therefore, s must be multiplied by it to251

ensure that the correct stress for KP formation and propagation is considered.252

Using eq. 10 and the transition stresses in Table 1, we perform a collective least-squares fit to the data

in Fig. 4 and obtain values of: A = 7.4 ± 0.6 eV·m·s−1, p = 1.1 ± 0.2, and q = 1.99 ± 0.2. As Fig. 7

shows, the resulting mobility function provides a very good fit for the velocities corresponding to the

thermally activated regime, particularly at 100 and 200K. The overall fitting error is approximately 5%. It

is worth mentioning that we have also performed a fit using the thermally activated mobility law used

by Naamane et al. [46], which does account for both forward and backward jumps and assumes p = 0.5

and q = 1. Nevertheless, the resulting fit provides slightly worse agreement with the MD data than the

primary one used here. The mobility function in numerical form is thus:

vth(s, β) = 7.4βs exp

{

−0.32β
(

1 − 0.85s1.1
)2

}

.
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To fully close the mobility law, one must provide the temperature dependence of σ∗ through some
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Figure 7: Comparison between the fitted mobility laws and the MD data at each temperature. We note that the mobility is not

continuous at σ∗ , and that an appropriate ‘stitching’ between the mobilities in each regime must be performed prior to their use in

DD simulations. The orange lines represent the individual fits according to eq. 14.

suitable analytical law. Following Ngan and Wen [34], the relation between σ∗ and T can be described by:

T ∝

(

1 − σ∗

σP

)2

,

where we have made use of the equivalence between activation energy and temperature at constant strain253

rate proposed experimentally (e.g. H/kT ≈ 27 at 1.7 × 10−4 s−1 [47]). Then we fit the σ∗-T data points in254

Table 1 to a law of the type:255

σ∗ = σP − C
√

T (11)

The fit, which yields a value of C = 36.1 ± 2.4 MPa·K−1/2, is also shown in Fig. 5. Incidentally, the above256

expression predicts a value of ≈1100K as the temperature at which the transition stress vanishes. The257

final mobility function in the thermally activated regime is then:258

s =
σ

1200− 36
√

T

vth(s, β) = 7.4βs exp

{

−0.32β
(

1 − 0.85s1.1
)2

} (12)

13



which gives the screw dislocation velocity for each (σ, T) pair.259

3.3.2. Linear regime.260

At shear stresses above σ∗, the dislocations clearly transition into a linear velocity regime governed by261

some kind of viscous motion. In principle, one could use a universal fitting function of the type:262

vl(T) = ds + e (13)

where d and e are also temperature-dependent constants. d is inversely proportional to the friction coeffi-263

cient B and thus should scale with temperature as ∼ T−1. For its part, e should be related to the velocity264

corresponding to σ∗, i.e. the transition velocity v∗. However, because we have no a priori information265

about the temperature dependence of these constants, we first fit each linear mobility data set in Fig. 4266

individually using the standard viscous law:267

vl =
σb

B(T)
− v∗(T), (14)

In this fashion, we compute B and v∗ for each T to gain insights into their temperature dependence. The

results of the fit are shown in Fig. 7 as orange lines. The values for B and v∗ are given in Table 1. As the

data show, B displays virtually no temperature dependence, while that of the transition velocities is not

clear at first glance. In searching for a suitable temperature dependence for v∗, we note that v∗ is zero

both when σ∗ = 0 and when σ∗ = σP. This is because those are the two instances when there is no longer

need for thermally-activated KP nucleation to attain dislocation motion. In terms of temperature, these

two limits correspond, respectively, to the temperature at which the dislocation free energy is equal to

the Peierls barrier (not precisely known from the simulations, but estimated from eq. 11 at approximately

1100K), and 0K. v∗ is plotted as a function of σ∗ and T in Figure 8, where the temperature scale follows

eq. 11. To ensure v∗(σ∗ = 0) = 0, we fit the data shown in the figure to a third-degree polynomial of the

type:

v∗ = σ∗
(

c2σ∗2 + c1σ∗ + c0

)

,

which results in c0 = −4.4 × 10−2, c1 = 2.2 × 10−2, and c2 = −1.8 × 10−6 (we omit the units of the fitting268

constants for clarity). The fitted polynomial is also shown in Fig. 8. The dependence with temperature is269

trivially obtained by substituting σ∗ = 1200− 36
√

T into the fitted polynomial:270

v∗(T) = 0.079T
√

T − 5.456T + 93.9
√

T + 3.5 (15)

where the sensibility of the fit to the number of significant figures taken for each coefficient is noted.271

With the functional dependencies established above, we are now in a position to expand eqs. 13 and

14 into a mobility law for the linear regime:

vl(s, T) = as + bs
√

T − 0.079T
√

T + 5.456T − 93.9
√

T − 3.5

Fitting to the data given in Fig. 4 for all temperatures yields values of a = 1370 ± 36 and b = −46 ± 2.272

From the value of a = σPb/B, an average B ≈ 2.2 × 10−4 Pa·s can be extracted, in good agreement with273

the tabulated values for the individual fits given in Table 1. The final mobility function in the linear274

regime is therefore:275

vl(s, T) = 1370s− 46s
√

T − 0.079T
√

T + 5.456T − 93.9
√

T − 3.5 (16)
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The results of this fit are also shown in Fig. 7.276

Thus, a closed-form mobility function for 1
2 〈111〉 screw dislocations in α-Fe gliding on {112} planes in277

the twinning sense as a function of stress and temperature is proposed based on MD simulations:278

v(s, T) =

{

8.6 × 105sT−1 exp
{

−3.8 × 103T−1
(

1 − 0.85s1.1
)2
}

, for s ≤ 1

1370s − 46s
√

T − 0.079T
√

T + 5.456T − 93.9
√

T − 3.5, for s > 1
(17)

where s = σ
1200−36

√
T

.279

4. Discussion and conclusions280

In this paper, we have carried out simulations of 1
2 〈111〉(112̄) screw dislocation motion as a function281

of stress and temperature in order to fit functional mobility laws to be used in mesoscale methods. Below282

we discuss several aspects related to the validity of our approach and the applicability of the mobility283

functions proposed.284

Let us start by discussing the validity of MD simulations for this task, vis a vis the high attendant285

strain rates. Dislocation motion simulations can be run prescribing the strain rate [13] or, alternatively,286

the applied stress [26, 30]. If one chooses the former, the velocity of the dislocation is also prescribed,287

and the corresponding stress is extracted as the output of the simulations. Because the strain rates for288

dislocations to have a noticeable motion within MD time scales have to be exceedingly high, it is difficult289

to argue against the statement that MD strain rates are often excessively above realistic experimental290

ones. However, if one performs stress-controlled simulations, it is the velocity that is the output, not the291

strain rate. Velocities are related to the strain rate trough Orowan’s equation (ε̇ = ρdvb, where ρd is the292

dislocation density). However, for a fixed dislocation line length, one can obtain converged mobilities293
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above a certain box size. What this means is that the measured velocity does not change even if the box294

dimensions (except the line length) are increased arbitrarily, i..e ρd is decreased arbitrarily. Then, the only295

certainty is the σ-v correspondence, which is, following this argument, independent of the strain rate.296

Next, the adequacy of the fitting functions given in eq. 17 is discussed. Equation 10, describes the297

relation between v and σ and T in the thermally activated regime. The functional form for HKP, eq.298

3, although phenomenological in nature, is known to provide a good linkage between H0 and zero as a299

function of the applied shear stress, and has been widely used in the literature [19, 31, 32]. The exponents p300

and q obtained here are somewhat larger than the expected values predicted by linear elasticity, and other301

calculations. However, the validity of our fit is best assessed by comparing against existing experimental302

measurements and atomistic calculations. To remove the dependence on the quantitative differences303

between experiments and atomistics, on the one hand, and different interatomic potentials, on the other,304

of the Peierls stress and KP Nucleation energy, we compare in Figure 9 the ratio HKP/H0 obtained as305

function of σ/σP from several sources. The figure includes experimental data from Aono et al. [47] and306

Quesnel et al. [48] and atomistic results obtained here and from Wen and Ngan [16]. As shown, our307

fit with p=1.1 and q=2 provides excellent agreement both with experimental data and our own static308

calculations. In particular, the good agreement between the MD and static calculations performed in this309

work is encouraging in light of all the assumptions that enter eq. 10.
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Figure 9: Variation of the normalized KP formation energy with normalized stress. Data from two molecular statics calculations are

shown: our own, and Wen and Ngan’s [16]. Experimental data points by Aono et al. [47] and Quesnel et al. [48] are also shown for

comparison. The fit obtained in this work, with p=1.1 and q=2, and that used by Naamane et al. [46], with p=0.5 and q=1, are given.

310

For the linear regime of motion, some ad hoc assumptions have been made. First, we have neglected311

any temperature dependence of the viscous drag coefficient B. This was established on the basis of312

independent linear fits to the MD values, which revealed no discernible temperature dependence. Second,313
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we have assumed a polynomial form for the variation of the transition velocity v∗ with temperature,314

although a physical justification for the temperatures (stresses) at which v∗ should vanish does exist.315

Even though the third-degree polynomial used was chosen for numerical convenience, it manages to316

provide a reasonable fit to the data given in Fig. 8, as also seen in Fig. 7. The highest discrepancy is317

observed for the simulations at 500K, which is precisely the temperature at which B is highest (cf. Table318

1) and most different from the average value extracted from eq. 16.319

Next, let us analyze the issues associated with {112} glide. As was stated in Section 1, slip in bcc320

materials is known to proceed principally on {110} planes. However, while, at low temperatures and321

stresses, the potential used in this work predicts screw dislocation glide on {110} planes [30], we have322

shown that above 350K the dislocation core loses its compact structure and adopts a more extended struc-323

ture. This has two immediate effects: first, the transition stress decreases; and second, the dislocation then324

glides on multiple slip planes in the twinning zone (akin to the so-called ‘pencil glide’). This mechanism325

notwithstanding, slip proceeds always by way of elementary {110} episodes of KP formation, regardless326

of what the effective glide plane is seen to be. This is why, when properly constrained, the dislocation can327

be made to make successive jumps on the two {110} planes adjacent 30◦ above and below to a twinning328

{112} plane so as to appear to glide on that {112} plane. These are precisely the conditions under which329

this study has been carried out.330

Because of the above argument, the critical and transition stresses measured here pertain to KP for-331

mation on {110} planes and can be compared directly with other calculations and experimental data332

associated with {110} slip. Figure 10 shows the temperature dependence of the critical glide stress, σ0,333

obtained here compared to the dynamic data obtained by Domain and Monnet [13], and the static results334

of Wen and Ngan (using a different interatomic potential) expressed in kT space [16]. In addition, experi-335

mental data from Kuramoto et al. [5] and Brunner and Diehl [6] are also shown. Both of these experiments336

were carried out under conditions that favor glide on {110} planes at strain rates < 10−4 s−1. As in Fig. 9,337

to remove the effect of the discrepancy observed in σP between experiments and atomistic simulations, we338

plot the ratio σ/σP as a function of temperature. As the figure demonstrates the agreement for T < 300K339

between our data and both experiments and atomistic calculation is excellent. However, at higher temper-340

atures, the MD calculations deviate from the static values in that they appear to saturate or decline more341

slowly to their zero value. Future studies will determine the temperature at which the threshold stress342

vanishes for the Mendelev potential.343

Of course, the ultimate objective of works such as the present one is to generate mobility laws that344

can be elevated to higher temporal and spatial scales by being integrated into models of higher statistical345

level, e.g. dislocation dynamics, phase field, etc. In this sense, we note that our work, which provides346

mobilities for a given slip system, is only one step in such a direction, and that more calculations on other347

slip systems, perhaps using other interatomic models, must be carried out before a full mobility law can348

be produced. In any case, our simulations provide non-linear laws that represent an improvement over349

uniform, character-independent variants (known as ‘BCC0’) used in several studies [49]. Other workers350

have used non-linear expressions similar to eq. 9 that are typically fitted to experimental data or molecular351

statics calculations [19, 20, 46], i.e. not obtained in a self-consistent fashion as in this paper§. In any case,352

§This is not to say that they are not satisfactory, in several regards they might be better suited for DD calculations than the ones

presented here.
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a unified mobility function, apt for use in DD, must be continuous and differentiable in the entire stress353

and temperature ranges. Thus, the numerical usefulness of eq. 17 for dislocation dynamics calculations354

hinges on an appropriate ‘stitching’ of the thermal and linear mobilities presented here. This can be355

achieved using suitable splines or via harmonic averaging [50]. However, this belongs to the realm of356

functional analysis and is not elaborated on further. With regard to range of applicability of eq. 17, the357

very definition of s imposes a limit of T=1100K for our mobility function. Evidently we stand by our358

explored temperature interval of 100<T<500K, but it is unclear if the functions supplied here are valid359

beyond it. It is important to emphasize that vl in eq. 16 is only meaningful for s > 1.360
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