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Abstract 
  

Proton imaging is commonly used to detect electric and magnetic fields in laser-
produced plasmas with high spatial and temporal resolution. However, the analysis 
methods for this diagnostic can be cumbersome, the typical approach being to 
numerically ray trace a very large number of protons through assumed fields.  Presented 
here is a set of compact analytic equations for proton imaging that relate the observed 
distribution of protons in the image plane to the electric and magnetic fields in the object. 
Inversion of the images is considered. Smooth electric and magnetic field structures are 
seen to produce sharp features in the image plane (analogous to optical caustics) if the 
fields are sufficiently strong. Characteristic features of the intensity distribution near the 
caustics are discussed.  Limitations on the spatial and temporal resolution are assessed. A 
set of analytical models suitable for helping in the interpretation of experimentally 
obtained images and for code benchmarking is described. Results presented can serve as 
a starting point for accelerated analysis of proton imaging results, providing an efficient 
approach that can be extended to additional characteristic shapes in the future. 
 

I. INTRODUCTION 
 

Point-projection proton imaging (also known as proton radiography or proton 
deflectometry) is established as a highly useful technique for the diagnosis of high-
energy-density laboratory plasmas [Li 2010, Cecchetti 2009, Li 2009, Romagnani 2008]. 
A weakly divergent, polyenergetic proton beam suitable for radiography can be produced 
by irradiating a thin metal foil by a short laser pulse [Borghesi 2004, Mackinnon 2004, 
Roth 2011, Borghesi 2008]. Alternatively, one can use the laser-driven implosion of a D-
3He capsule, which produces an essentially spherically-symmetric, short pulse of protons 
at stagnation [Li 2010, Li 2009]. The proton energy is typically 5 – 50 MeV in the first 
approach and 14.7 MeV in the second approach. Sending the protons through the object 
of interest makes images of electromagnetic and density structures with exquisite spatial 
resolution (few-micron scale) and very good temporal resolution (10 ps scale).  

For mm-scale plasmas with densities in the range of 1017-1021 cm-3 (areal 
densities in the range of 1016-1020 cm-2), where collisional scattering of the proton beam 
can be neglected, proton radiography may be the only diagnostic technique available 
today that is capable of high-performance imaging of electromagnetic fields over a wide 
range of field strengths [Roth 2011]. This application will be the main subject of our 
paper. 
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Our study was motivated by experiments on collisionless shocks [Ross 2012, Park 
2012, Loupias 2009, Gregory 2010, Kuramitsu 2011, Constantin 2009], where significant 
electric and magnetic fields are expected to be generated in the zone of the intersection of 
two high-velocity plasma jets. Our numerical examples will be mostly related to this type 
of the experiment. On the other hand, the general derivations and resulting equations are 
of a broader use and can be applied to other systems as well. We aim at producing simple 
analytical relations to assist in the interpretation of experimental results, as guidance for 
more detailed numerical analyses and for rough evaluation of the 
applicability/inapplicability of proton radiography in any specific setting.  

A schematic of a typical proton imaging experiment is shown in Fig. 1. The 
proton source is located a distance l from a three-dimensional electric or magnetic field 
structure of a characteristic size (in both the transverse and longitudinal directions) 
2a<<l. We introduce a coordinate frame (x, y, z) with the origin situated somewhere 
within the object, and axis z passing through the proton source. We call the plane z=0 “an 
object plane” for the following reason: although the perturbations forming the object are 
three-dimensional, they are nevertheless localized near this plane. What is important in 
further derivations is the assumption that the distance l is large compared to the object 
size (a paraxial model). We will consider a variety of characteristic plasma structures, 
such as the Gaussian “blob” of electrostatic potential shown in Fig. 2, and calculate the 
proton images that they produce, some of which are shown in Fig. 3. In a real plasma, 
one is likely to encounter several structures close to each other, a case that is illustrated in 
Fig. 4. It should be noted that the deflection from multiple structures is in general non-
linear, i.e. not merely a superposition of the individual deflections. This can result in 
strangely shaped image features with morphologies that bear little resemblance to the 
parent structure in the object plane. 

We start under the assumption that the proton source is a point source and later 
discuss effects related to its finite size. We assume that the electromagnetic fields of the 
disturbance can be regarded as static during the proton transit time (less than about 20 ps 
for 2a < 1 mm and ≈ 10 MeV protons). The detector, typically one or more sheets of 
radiochromic film [Roth 2011, Hey 2008], is located in the image plane at a distance 
L>>l from the object plane. Higher order corrections to these approximations are 
considered in Sec. VI.  

Our paper is organized as follows. First, we show the general mapping of protons 
from the object plane to the image plane, which can be used to calculate synthetic proton 
images from arbitrary disturbances. Second, we present an efficient inversion technique 
for the case of a modest intensity variation, Third, we introduce the concept of optical 
caustic formation, and develop the mathematics for identifying such caustics from both 
electric and magnetic perturbations. Finally, we present examples of the images from 
some specific types of perturbations, like ellipsoidal-shape perturbations, strongly 
elongated 2D perturbations, and perturbations with sharp fronts (like the ones that are 
anticipated in the presence of shocks). Some more lengthy calculations are presented in 
the Appendices. 
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II. THE BASIC MAPPING 
 
Let us start by considering the basic optics of point projection imaging. We use 

the intersection point of a particular proton beamlet (“ray”) with the object plane, x0, y0, 
as a tag for this beamlet. There are two, generally independent, small parameters in our 
problem.  

The first is the paraxiality parameter, a/l. It is typically in the range of 0.1.  One 
can restate the presence of this small parameter in terms of the ratios x0/l and y0/l which 
both need to be much less than 1. The position of the same beamlet in the image plane is 
denoted by x,y (no subscript).  

The second small parameter is the deflection angle α of the beamlet passing 
through the electromagnetic perturbations; deflections in the x and y directions are 
characterized by the angles 

! 

"x (x0,y0) and 

! 

"y (x0,y0), respectively. As we see in the 
numerical examples of the further sections, these angles are also small, typically less than 
or comparable to a/l.  

In evaluating deflection, we retain only terms up to the leading essential order in 
the parameters a/l  and α. The higher-order terms would create small corrections (see 
Sec.VI). In the leading essential order, the point x0, y0 in the object plane will be mapped 
to the points 

! 

x = x0 +
x0
l
L +"xL,        (1) 

! 

y = y0 +
y0
l
L +"yL,        (2) 

in the image plane. Note that we approximate sinα = tanα = α. The lateral displacement 
of the beam during the interaction with the object is neglected here, as it is of the order of 
αa<<αL. In other words, the main contribution to the image formation comes from the 
angular deflection, not from a small lateral displacement of the proton in the interaction 
zone. To find a synthetic image, one must therefore find 

! 

"x (x0,y0) and 

! 

"y (x0,y0).  
 To have a significant magnification of the object, one places the image plane 
much further from the object than the distance between the object and the proton source, 
L>>l. Typically, L is 10-30 times greater than l. In such a case, one can neglect the first 
term in the right-hand-side of Eqs. (1), (2) compared to the second term, thereby arriving 
at the simplified equations 

x = L x0
l
+!x

!

"
#

$

%
& ,        (1’) 

y = L y0
l
+!y

!

"
#

$

%
& .        (2’) 

In this limit, the distance L scales out of the final shape of the image and is responsible 
only for the size of the image. 

The presence of the functions 

! 

"x (x0,y0)and 

! 

"y (x0,y0) in the mapping (1), (2) 
means that in the image plane the object is not only magnified but also distorted, as 
illustrated in Fig. 4.  In this respect, the situation is different from contrast radiography 
with no deflection (α = 0), where the object is just magnified, with magnification being M 
= 1 + L/l . The sensitivity of imaging to deflection angle in our case is important: to 
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generate qualitatively correct non-linear images of the type that are characteristic of 
strong proton deflection, as well as to make accurate quantitative statements about the 
size and shape of the electromagnetic disturbances observed by proton imaging, one must 
take care to include the deflection term α ≠ 0 when making calculations. We will return to 
this topic later in the paper. 

The surface element dS0 in the object plane is mapped to the surface element dS in 
the image plane, and the two are related via the Jacobian determinant: 

 dS = !(x, y)
!(x0, y0 )

dS0 .        (3) 

The “rays” (protons) passing through the surface element dS0 then pass also through the 
surface element dS meaning that the intensity in the image plane is proportional to the 
intensity in the object plane, multiplied by (dS0/dS). The intensity distribution in the 
image plane can therefore be represented using the reciprocal of the Jacobian 
determinant: 

I = I *
!(x, y)
!(x0, y0 )

+!

,        (4) 

where I*  is the intensity distribution in the object plane (essentially uniform) and ε > 0 is 
a small parameter that limits the intensity in the image plane; its origin can be related to 
the finite brightness of the probe beam and/or finite resolution of the radiochromic film. 
Equation 4 can be used to generate synthetic proton imagery once one has identified the 
functional form of the deflection angles α(x0, y0). Later in this paper, we will derive these 
deflection angles for protons moving through electric and magnetic potentials of the type 
that might be found in laser-produced plasmas.  
 For the transformations (1) and (2), the Jacobian acquires the form 

!(x, y)
!(x0, y0 )

= 1+ L
l
+
!!x

!x0
L

"

#
$

%

&
' 1+

L
l
+
!!y

!y0
L

"

#
$

%

&
'( L2

!!x

!y0

!!y

!x0
   (5) 

In the most interesting case of a strong magnification, when simplified equations (1’), 
(2’) are valid, one can use the following relation 

!(x, y)
!(x0, y0 )

= L2 1+ l !!x

!x0
+
!!y

!y0

"

#
$

%

&
'+ l2

!!x

!x0

!!y

!y0
(
!!x

!y0

!!y

!x0

"

#
$

%

&
'    (5’) 

Thus far we considered the images created by a point source and large 
magnification, i.e. l<<L. The projection by a parallel set of rays can also be of some 
interest (if not for experiments, then for theory models and simulations). It would 
formally correspond to an opposite limiting case l>>L. In this case, one can still use Eqs. 
(1), (2), but would have to drop the second term in the r.h.s. of these equations. 
Therefore, the shape of the image for the projection by a parallel beam depends on the 
distance L between the object and the film. For large-enough L, such that αL>>a, the 
mapping again becomes scale-invariant with respect to L. The shape of the images, 
however, becomes quite different from that determined by the point projection, l<<L.  
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III. WEAK AND STRONG INTENSITY VARIATIONS 
 

When analyzing Eq. (4), one has to distinguish between two qualitatively 
different cases: the first, where deflection angles are so small that the Jacobian only 
slightly differs from unity, and the second, where deflection angles are larger, so that the 
Jacobian may turn zero at some points, meaning a significant increase of intensity at 
these points in the image plane. The points of high intensity usually form lines in the 
image plane (see below).   These lines are intersections of the image plane with so called 
caustic surfaces [Nye 1999]. We consider these two cases consecutively in this section.  
 Before doing that, we identify a dimensionless parameter whose magnitude 
determines which case we are dealing with. If the deflection is created by an 
electromagnetic perturbation of a spatial scale a, and the characteristic deflection angle is 
α, the spatial derivatives of α that enter Eq. (5’) can be estimated as α/a. Then, the term 
proportional to l in Eq. (5’) can be estimated as !! / a . We denote this dimensionless 
parameter as µ: 
 µ = !! / a .         (6) 
If this dimensionless parameter is much smaller than 1, the relative spatial variation of 
the Jacobian (5’) is also small. Conversely, if this parameter becomes of order 1, the 
variation becomes significant, and non-linear features such as caustics or strange shapes 
can appear. 
 In the case where µ is small, one can neglect the second-order terms in Eq. (5’); 
likewise, one can neglect the small parameter ε in the denominator of Eq. (4). This gives 
rise to the following expression for the intensity distribution in the image plane: 

I = I0 1! l
"!x

"x0
+
"!y

"y0

#

$
%

&

'
(

)

*
+

,

-
.        (7) 

The coefficient I0 is the intensity in the image plane in the absence of any perturbations. 
We consider it as being uniform over the size of the image.  

Note that a weakly varying intensity in the image plane does not mean that the 
electromagnetic fields in a plasma are weak with respect to plasma dynamics: they can in 
particular correspond to strongly nonlinear plasma waves. Nevertheless, the observed 
intensity perturbations can still be weak because of a high probe beam proton energy W. 

The intensity in Eq. (7) is expressed in terms of the coordinates x0, y0 in the object 
plane, whereas the observation is made in the image plane. To express the intensity in 
terms of x,y, one has to use the mapping (1’), (2’). Here, in the limit of µ<<1, one can 
neglect the terms proportional to α, and use the mapping  

x = L
l
x0; y = L

l
y0 ,        (8) 

In this case, the magnification is uniform over the object and equal to M=1+L/l. 
 If the parameter µ approaches or exceeds unity, one has to use the full set of 
equations (1’),  (2’), (4) and (5’). For the known functions 

! 

"x (x0,y0)and 

! 

"y (x0,y0) this 
set of equations yields an intensity distribution I(x,y) in the object plane via the 
parametric dependence x=x(x0, y0), y=y(x0, y0),  provided by the mapping (1’), (2’).  

The condition  
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D(x0, y0 ) !
"(x, y)
"(x0, y0 )

= 0        (9) 

defines one-dimensional manifolds (lines) on which the intensity reaches high values, 
limited, as mentioned above, by the finite brightness of the source and finite resolution of 
the detector. In some exceptional cases the lines may degenerate into points.  

Mathematically, caustics correspond to the situation where dS in Eq. 3 is zero, 
signifying a high (formally, infinite) intensity in the image plane. In our model, the finite 
resolution parameter ε prevents the intensity from actually becoming infinite; this 
parameter can be neglected at some (small) distance from the caustic. 

These singular lines are a manifestation of a more general phenomenon, the 
formation of the caustic surfaces that are well known in optics (e.g. [Nye 1999]). The 
intersection of the image plane with a caustic surface is the aforementioned singular line. 
For brevity, we call these lines themselves “the caustics.” The caustics, if formed, make a 
“skeleton” of the overall image and carry important information about the perturbation, 
as discussed below. Note that the condition µ~1 can still be compatible with a small-
angle deflection approximation if a<<l, as we assume. In our analysis we see non-linear 
features appearing for 1 < µ < 2.  

Finding a caustic in our case consists of the following two steps. First, we solve 
Eq. (9) and find an implicit equation D(x0, y0 ) = 0 for the projection of the caustic onto 
the object plane. Note that since there is no real caustic in the object plane, the intensity 
there is essentially uniform. The projection of the line D(x0, y0 ) = 0 to the object plane 
along the rays (1’), (2’) yields an actual caustic. This is the second step in finding the 
caustic in the object plane: moving along the curve D(x0, y0 ) = 0 and projecting each 
point on this curve to the image plane. In a general case, this is a rather cumbersome 
exercise. Some examples are given in Sec. VI. 

If a caustic is formed, the intensity variation in the direction normal to the caustic 
in the image plane has a universal shape. Indeed, in the vicinity of the line D(x,y)=0 the 
function D varies linearly with the distance ξ in the direction normal to the caustic, so 
that on the caustic itself  (ξ =0) the function D becomes zero. One can note that the 
requirement that the normal derivative is zero, so that the expansion of D starts from the 
term ~ξ2

, would define a point and is therefore of less interest. So, the intensity variation 
across the caustic has a universal form, 

I
I0
!

1
C |! |+"

,         (10) 

with C being a constant (which may vary along the caustic). For a good-enough 
resolution, the parameter ε is small, and there exists a range of ξ in which the intensity 
varies as 1/|ξ|. At larger distances, this distribution merges with smooth, ~1, variations of 
intensity.  In order for the presentation (10) to have some range of applicability, the 
intensity contrast between the caustic and surrounding areas must be large, by a factor of 
a few. 

This paper deals with the objects that contain a few arbitrarily located, possibly 
overlapping, field structures, so that every beamlet “sees” not too many of them on its 
way through the object. If the structures become very small in size, and are randomly 
distributed in space, their cumulative effect on the beamlet becomes different from that 
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described in this paper, and the interaction of the beamlet with these random fields then 
has to be described in terms of a small-angle scattering. The emerging beamlet is then not 
only deflected, but also broadened. The broadening may smear out fine features of the 
type that are characteristic of caustics. The broadening itself, on the other hand, would 
carry information about small-scale random fields. We leave the analysis of the 
superposition of these two effects for future work.  
 
 
IV. DEFLECTION BY AN ELECTROSTATIC FIELD 
 

A. General expression 
 

Small deflection angles can be found by the perturbative technique. The 
deflection angle αx,y is given by the (small) acquired transverse velocity vx,y, divided by 
the approximately constant forward velocity v = vz. To illustrate, the x-component of the 
deflection can be found from 

dvx
dt

= !
e
m
"!
"x

,         (11) 

where e and m are the proton charge and mass, respectively, and φ is the electrostatic 
potential. The right-hand side is taken at the instantaneous position of the particle on the 
unperturbed trajectory. To obtain vx, we make use of the fact that dz = vz dt to remove the 
time dependence and find that 

vx = !
e
mvz

"!(x0, y0, z0 )
"x0!#

+#

$ dz0 .      (12) 

We write here a subscript “0” to emphasize that the action occurs in the object location. 
One then has: 

!x = !
e
2W

"
"x0

"
!#

+#

$ (x0, y0, z0 )dz0; !y = !
e
2W

"
"y0

"
!#

+#

$ (x0, y0, z0 )dz0 ,  (13) 

where W = ½ mvz
2

 is the proton beam energy. When making these calculations, we 
neglect terms of higher order in the parameters a/l and α. In particular, the trajectory 
along which integration is performed is approximated by a line parallel to the z axis, a 
good assumption in the (small) region where φ ≠ 0. Retaining the higher-order terms 
would have led to the appearance of small corrections to Eq. (13), of a magnitude ~ αa/l, 
α2, etc (See Sec. VI for more details).  
 The lateral spatial displacement acquired during the passage of the proton through 
the object can be found by integrating vx,y over time. This displacement is ~ αa. Adding it 
to the r.h.s. of Eqs. (1’), (2’) leads to an insignificant correction to the mapping: this 
correction is much smaller than even already neglected terms x0, y0~a. The condition for 
neglecting the proton displacement may be more restrictive in the case where the 
potential distribution has two significantly different spatial scales. This can be, for 
example, the case of a shock structure with an overall size a, but with the thickness 
h<<a. We discuss this situation in Sec. IV C. 
 

B. Inversion problem for small intensity variation 
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In the case of a small intensity variation, one can invert an intensity map and 
obtain a spatial (2-dimensional) distribution of a quantity  

!(x0, y0 ) " !
#$

+$

% (x0, y0, z0 )dz0        (14) 

that is related to the electrostatic potential. Finding the potential itself is impossible 
without making some additional assumptions about the potential variation along z.  

The possibility of finding Φ stems from the form of expression (7) which, by 
taking account of Eq. (13), can be presented as a 2-dimensional Poisson equation for a 
“potential” Φ: 

!2" = #4!$ ,         (15) 
where a “charge density” Ρ (upper-case rho) is expressed in terms of a measured intensity 
distribution: 

 ! = "
W
2e!

I
I0
"1

#

$
%

&

'
(         (16) 

 Note that the integral of P over an area extending beyond the area occupied by 
perturbations is zero, so that there is no “net charge” corresponding to the r.h.s. of Eq. 
(16). This fact is clear from the structure of Eq. (15), which, if integrated over dx0dyo, 
would yield the derivatives of the deflection angles outside the perturbation area, these 
derivatives being zero together with the deflection angles themselves. With that notion in 
mind, one can write a standard 2D solution of the Poisson equation [Jackson? Smythe?]: 

!(r0 ) = 2 P( "r0 )# ln C
r0 $ "r0

%

&
''

(

)
**d

2 "r0 ,      (17) 

where r and r’ are two-dimensional vectors. The constant C is an arbitrary constant: it 
drops out of the result, given the condition of the zero net charge. It is convenient to 
choose C to be equal to a scale-length a of the perturbations.  
 Another technique for solving Eq. (15) can be the use of a Fourier transform of 
Eq. (15). In both cases the background I0 has to be corrected (for possible unrelated 
fluctuations and smooth variations) in such a way as to make the “net charge” zero, so 
that 

I0 =
1
S

I dS!           (18) 

where the integration is performed over the area that covers (with some margin) the 
intensity perturbation.  
 

C. Spherically-symmetric “blob” 
 

1. General equations 
 
Electrostatic perturbations are usually related to the ambipolar effects that 

maintain quasineutrality in a non-uniform plasma. If the electrons are strongly collisional 
and thereby Maxwellian, the potential variations are related to the density variations via 
the Boltzmann relation, n! exp(e! /Te ) . So, a positive potential would correspond to a 
density bump, whereas a negative potential would correspond to a density depression. 
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Accordingly, the presence of a localized density perturbation would manifest itself as a 
potential “blob” of a positive or negative sign.  

A spherically-symmetric blob allows for a thorough analytical treatment and helps 
in identifying key effects in the formation of images. For this reason, we consider it in 
some detail. 

 For a spherically-symmetric perturbation, with ϕ=ϕ(r), the deflection occurs in 
the plane passing through the unperturbed “ray” and the center of the sphere and can be 
characterized by a single angle α, which depends on the impact parameter r0, the distance 
between the center and the unperturbed ray. It is easy to show that the angular deflection 
in this case can be represented as 

!(r0 ) = !
4er0
W

dr
r2 ! r0

2
r0

"

# d"
dr

,       (19) 

and the mapping to the image plane (in the limit L>>l) is given by 

 r = L r0
l
+!(r0 )

!

"
#

$

%
&         (20) 

For a focusing potential, α is negative, so that r in Eq. (20) may formally become 
negative as well. This just means that the ray hits the image plane at the opposite side of 
the z axis. In particular, if a caustic is formed at a formally negative r, its radius will be an 
absolute value of r evaluated from Eq. (20).  

As the surface element in the axisymmetric case is dS = 2!rdr , the intensity in 
the image plane will be 

I = I *
r
r0
dr
dr0

+!

         (21) 

Equations (19)-(21) solve the imaging problem for a spherically-symmetric blob. We 
now consider two specific potential distributions: a Gaussian potential distribution and a 
flat-top distribution with sharp edges. The latter distribution may represent a two-scale 
potential (density) profile that may arise in the case of shocks with steep jumps in density 
(potential).  
  

2. A Gaussian “blob” 
 
 Assume that the potential distribution is Gaussian, 

 ! =!0 exp !
r0
2

a2
"

#
$

%

&
'  .        (22) 

Performing the elementary integration in Eq. (19), we find that   

! =
e"0
W

#
r0
a
exp ! r0

2

a2
"

#
$

%

&
' .       (23) 

 An explicit expression for the derivative dr/dr0 is      
dr
dr0

=
L
l
1+ l d!

dr0

!

"
#

$

%
&=

L
l
1+µ 1' 2 r0

2

a2
!

"
#

$

%
&exp '

r0
2

a2
!

"
#

$

%
&

!

"
#

$

%
&  ,    (24) 

where  
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µ ! !
e"0
W

l
a

  .        (25) 

Equation (25) is a quantitative analog of Eq. (6).  
 For µ ~ 1 or µ > 1, the intensity variations can be large and are given by 
combining Eqs. (21) and (24), as discussed in Appendix A. For µ<<1, the intensity 
variations are weak, and an analog of Eq. (7) becomes: 

I
I0
!1= !2µ 1! r0

2

a2
"

#
$

%

&
'exp !

r0
2

a2
"

#
$

%

&
' ,      (26) 

and r0 = rl / L . For the focusing potential, the intensity in the central area, r0 < a , 
increases, whereas the intensity at the periphery decreases. For the defocusing potential, 
the situation is opposite. Some examples of weak and strong focusing by spherical 
Gaussian blobs are shown in Fig. 3.  
 When |µ| increases, caustics are formed. According to Eq. (21), the position of the 
caustic corresponds to conditions of either r=0, or dr / dr0 = 0 . The first one corresponds 
to the less interesting solution of a point focus – a possibility characteristic of a purely 
spherical case. We therefore concentrate on the condition dr / dr0 = 0 . We then obtain 
from Eq. (24) the following equation for the radius of the caustic in the object plane: 

1+µ 1! 2 r0
2

a2
"

#
$

%

&
'exp !

r0
2

a2
"

#
$

%

&
'= 0 .       (27) 

 The caustic appears at some critical value of the parameter µ (i.e., at some critical 
value of the potential ϕ0).  For the focusing (negative) potential the caustic appears at  

e |!0 |
W

>
a

l "
! 0.56 a

l
.       (28) 

For the defocusing (positive) potential the caustic appears at  
e!0
W

>
e3/2

2 "
a
l
!1.26 a

l
.        (29) 

The position of the caustics in the object plane (Eq. (27)) vs. µ (the dimensionless 
potential) is presented in Fig. 5. The structure of the caustic in the image plane is 
considered in Appendix A.  

As an example, we make numerical estimates for the case where a = 0.3 mm, 
l=10 mm, and the proton beam energy W=10 MeV. We find that for the focusing 
potential the caustic would appear at |ϕ0|>168 kV, whereas for the defocusing potential 
they appear at ϕ0>378 keV. These potentials seem to be too high to be realistic in 
collisionless shock type experiments [Ross 2012, Park 2012, Loupias 2009, Gregory 
2010, Kuramitsu 2011, Constantin 2009]. So, if caustics appear in the experiment, this 
may indicate formation of structures with sharp potential variation (like shock waves) 
that are discussed in the next sub-section.  

 
3. Flat-top potential with sharp edges. 

 
 The formation of step-wise potential distributions is possible in the presence of 
shock waves. We consider a model of a spherical structure which is flat inside a sphere of 
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a radius a and then sharply changes to zero beyond this radius. In other word, the radial 
electric field will be present only in a narrow layer near r0=a.    

If one entirely neglects the structure of this transition, one finds a delta-function 
electric field, and Eq. (19) yields: 

! =
4e"0
W

r0
a2 ! r0

2
, r0 < a

! = 0, r0 > a
       (30) 

Here, obviously the radial derivative of α can be made arbitrary large near the blob 
surface. Actually, the finite width of a transition makes this derivative finite. An analysis 
of the effect of the final width is presented in Appendix A.  

For comparison purposes, we introduce a parameter µ defined identically to Eq. 
(25). As was mentioned in Sec. IV.B2, it is small under realistic conditions. Therefore, 
dr/dr0=0 can be satisfied only for the rays passing near the surface, at ξ≡a-r0<<a. In this 
zone,  

! !
2 2e"0
W

a
#
= 2µ 2

$
a
l

a
#

      (31) 

 
V. IMAGING OF MAGNETIC  STRUCTURES 

  
A. General 

 
The analysis that was presented in Sec. IV.A can be used almost directly to assess 

images of magnetic structures, with only a few modifications.  The only assumption we 
make is that the field is weak enough, relative to the proton beam energy, to allow for the 
use of a perturbation technique associated with the integration of the perpendicular force 
along the unperturbed straight trajectory. [We should use uniform notations, say x0, y0 in 
the evaluation of deflection]. 

The direction of the unperturbed trajectory is z, with x and y being the transverse 
coordinates. One has:  

 F! =
e
c
v"B          (32) 

so that 

!p" =
e
c
[v#B

$%

+%

& ]dt         (33) 

where the integration is carried out along the unperturbed trajectory. 
Introducing the vector potential A of the magnetic field, one has 
B =!" A .         (34) 

For the field created by a localized system of currents, one can always choose the vector 
potential that would be zero at large distances from the current system [Landau 2008]. 
We will use this gauge below. One has (for a constant velocity v)  

v!"! A="(v # A)$ (v #")A       (35) 
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Integration over time is taken along the unperturbed trajectory, i.e., x and y are constant, 
and dt=dz/v. Substituting Eq. (35) in Eq. (33) and writing the x component of the 
resulting equation (the y component is treated analogously), one finds: 

!px =
e
c
"
"x

Az
#$

+$

% (x, y, z)dz# e
c

"Ax (x, y, z)
"z#$

+$

% dz       (36) 

The latter integral is obviously zero for our gauge, so that we end up with results that are 
remarkably close, up to notation, to Eq. (13):  

!x =
e

c 2mW
!
!x

Az
"#

+#

$ (x, y, z)dz ,  !y =
e

c 2mW
!
!y

Az
"#

+#

$ (x, y, z)dz    (37) 

They basically tell us that all the results of the previous calculations for electrostatic field 
can be used to evaluate the effect of magnetic perturbations by making the following 
substitution:  

!!"
v
c
Az = "

2W
m
1
c
Az         (38) 

A key difference between electric and magnetic perturbations is the scaling of deflection 
with the proton energy W. Comparing Eqns. (37) and (13), we see that  

!x !
1
W

 (electric),  !x !
1
W

  (magnetic)    (39)  

This difference can be used to distinguish between electric and magnetic perturbations, 
especially for experiments with polyenergetic proton beams that yield multiple 
radiographs at different proton energies [Roth 2011]. 
 For a magnetic perturbation of a single scale a, one has A~aB, so that a deflection 
angle evaluated from Eq. (37) is α~a/ρP , where ρP is a proton beam gyro-radius in a field 
B. Then, the condition for the caustics formation µ>1, with µ defined by Eq. (6), 
becomes, by an order of magnitude, ρP >l. For l~1 cm and W~10 MeV this requires a 
magnetic field exceeding 0.5 MG. 
 The inversion procedures discussed in Sec. IV.B can be directly applied to 
magnetic perturbations, with the substitute  (38). If both electrostatic and magnetostatic 
perturbations are present, the inversion would recover an integral 

!!(x0, y0 ) " !(x0, y0, z0 )#
v
c
Az (x0, y0, z0 )

$

%&
'

()#*

+*

+ dz0 .    (40) 

Our analysis in this paper focuses on static perturbations. In Section VII below we 
discuss the effect of slow time-variations that might cause some “blurring” of the images. 
Another effect of the time variation is that it may produce a vortex component of the 
electric field. Here we assess conditions under which such an effect is subdominant and 
can be ignored. The vortex electric field can be evaluated as Evort ~ (a / c! )B , where τ is 
the characteristic time of the magnetic field variation, and a is the spatial scale of 
magnetic and electric features. One can compare this field with an electrostatic, curl-free 
component, which is ~ϕ/a. The second is much greater than the first if ! >> a2B / c" . 
The electrostatic potential typically scales as an electron temperature, ! ~ Te / e . Our 
criterion then becomes: 

! >> a2 / (cTe / eB)         (41) 
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Interestingly, the factor in the denominator is a Bohm diffusion coefficient (without a 
1/16 factor).  Numerically, Eq. (41) reads as ! (ps)> [a(µm)]2B(T ) /Te(eV ) . For B=10 T, 
a=100 µm, and Te=1 keV the constraint is τ>100 ps. For a weaker magnetic field, a much 
faster evolution is allowed. 
 

B. Imaging the magnetic field of current filaments 
 
In some models of electromagnetic instabilities in counterstreaming plasmas [Kato 2008, 
Medvedev 1999, Moiseev 1963], current filaments parallel to the direction of the streams 
are expected to be formed. It turns out that such structures do not produce any substantial 
deflection of the beam in the linear approximation that we have used thus far. Indeed, the 
straight current filament produces a field that has only an azimuthal component. The 
beam crossing this field structure along a straight line (an approximation used to evaluate 
the acquired momentum) experiences mutually compensating kicks in whatever direction 
it crosses the filament. So, the deflection in this approximation becomes zero. The net 
deflection may appear due to the deviation of the filament from a straight line, or due to 
the variation of the filament thickness along its axis, or due to non-linear terms (i.e., with 
the account of the deviation of the proton trajectory from an unperturbed straight line). 
The former effect is considered in Appendix D, whereas the latter effect is evaluated in 
the next section.   
 

VI HIGHER-ORDER CORRECTIONS 
 

In the previous sections, we evaluated the angular deflection to the lowest order in 
the parameters a/l (the paraxiality) and α (deflection angle). Although both are small 
under the conditions of the experiments discussed earlier, it is worthwhile to evaluate 
second-order corrections in order to have a better understanding of the applicability 
conditions.  

We characterize a particular ray by the coordinates x0, y0 of its intersection with 
the object plane in the absence of the perturbation. In the presence of the perturbation, the 
ray that leaves the interaction zone in the vicinity of the object plane is a straight line, 
whose direction has changed with respect to the unperturbed one and whose intersection 
with the object plane has changed with respect to x0, y0 , (Fig. 6) and became some x’0, 
y’0.  

 
To perform further analysis, it is convenient to make a coordinate frame 

transformation. By rotating the frame around the axis z (Fig. 1) one can always make 
y0=0, so that the initial ray would lie in the (x,z) plane. After that, by shifting the frame 
along axis x and rotating it around the axis y, one can make the axis z to coincide with the 
direction of the unperturbed beam (Fig. 6). We will denote the coordinates in this new 
frame as ξ (for x), η (for y) and ζ (for z). As mentioned, the coordinate ζ  is directed 
along the unperturbed beamlet. The transformation from the new frame to the old one 
reads as:  



 14 

x = !l +" x0
x0
2 + l2

+ x0;

y =#;

z = !! x0 +" l
x0
2 + l2

.

        (42) 

In this frame, the protons approach an object (a plasma) along a line ! = 0," = 0 , with a 
velocity v0 directed along the axis ζ.  The electric field in the new frame is localized near 
ζ=0, so that the protons experience the effect of the electric field only in this narrow 
zone. The electric field is a function of !,",#  : E! (!,",# ) = !"$(!,",# ) /"! , and 
analogously for the other two components. In the course of interaction with the electric 
field, the protons deviate from the initial straight line.  
 Calculations of the proton trajectory up to the terms of the second order in the 
electric field, without an assumption of the paraxiality, is presented in Appendix E. The 
final results for the position of the proton intersection with the image plane reads as  

x = x0 + L
l tan!x + x0
l ! x0 tan!x

,       (43) 

where the parameter tanαx is given by Eq. (E10).  The displacement along the y axis is 
evaluated analogously. With the second-order terms omitted, one recovers Eq. (1).  
Equation (43) generalizes Eq. (1’) in two respects: there is no assumption of the 
paraxiality, and the second-order terms are retained in the expression for α. Assuming 
x0<<l and !x <<1 , one recovers Eq. (1’).   

VII. SPATIAL RESOLUTION 
 

The spatial resolution of the images depends on several factors: the finite 
resolution of the radiochromic film used to reveal the images, the finite source brightness, 
and temporal variation of the object. Discussing the properties of the film goes well 
beyond the scope of this paper; we will focus therefore on the limitations caused by the 
temporal effects and finite source brightness. We will limit ourselves to the practically 
most important case of modest density variations (no caustics), which is adequately 
described by Eqs. (7), (8).  

The proton beam traverses the object of a scale a within the time a/v. The images 
produced by protons of varying energy are separated in time by the time-of-flight 
stretching on the way from the source to the object. For the relative velocity variation 
over the pulse, ! = !v / v , the time between the fastest and the slowest particles to reach 
the object is !l / v . For the beam velocity of 4×109 cm/s, l=1 cm, and η=0.3 this time is ~ 
75 ps. In other words, if the shape of the object changes significantly over the time 
shorter than 75 ps, the faster and slower protons probe essentially different objects. This 
effect is often used for the assessment of the time evolution of the object [Roth 2011], if 
the energy bins in the detection system are much narrower than the 2!W , where W is an 
average beam energy. Note that the further temporal spreading of the proton pulse on the 
segment L of its trajectory does not affect the image, as the proton beam at this segment 
propagates ballistically and does not change its energy or angular distributions. 
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In this discussion we assumed that the proton pulse is produced within a time that 
is shorter than the time-of-flight dispersion, !l / v .  Under conditions of a typical 
radiography experiment the generation time is indeed shorter, on the order of the laser 
pulse length (10 ps to less than 1 ps). 

Consider now an effect of a finite source size, or, more generally, an effect of a 
non-zero phase-space volume occupied by the beam. In our earlier assessment we 
assumed that the beam is produced in a point source, with a smooth angular distribution 
over the angle within the field of view. The latter assumption is important, as otherwise, 
even in the absence of any perturbing object, the intensity distribution in the image plane 
would be spotty.  

To imitate the finite source size, we consider an image produced by the identical 
source but displaced tangentially by a distance ξ with respect to the first one. This would 
obviously cause the displacement of the image by the distance ξL/l. On the other hand, 
the size of the image is aL/l, where a is the size of the object. So, in order to resolve an 
object of a size a, one has to have a source of the size ξ<<a. If the object contains 
features of different spatial scales, ξ has to be smaller than the smallest feature. Stated in 
terms of the angular source size θ = a/l, we must have ξ << θl  

In this discussion we tacitly assumed that each piece of a finite-size source 
produces a divergent stream of the protons. This is true for the imploding D3He pellet [Li 
2010], but may not necessarily be the case for the electrostatically-accelerated protons. In 
the latter case, the shape of the plasma cloud from which the protons are extracted will 
affect the angular distribution. The shape can be defocusing or focusing, this producing 
an equivalent source situated either further from or nearer to the object (Fig. 1). It seems 
that the former option has been realized in some of the experiments [Borghesi 2004], this 
meaning that the parameter l may be somewhat larger than the nominal distance between 
the proton target and the object. In the experiment described in [Borghesi 2004], the 
proton emission area of roughly 100 µm diameter was inferred to be equivalent to a much 
smaller (~5 µm diameter) virtual source originating approximately 0.5 mm farther away 
from the object that was being imaged.   

 
VIII. SUMMARY AND DISCUSSION 
 

Our study has been focused on the practically most important systems with a large 
magnification, L>>l. In such systems, the main contribution to the position of the ray on 
the image plane is determined by the deflection angle α: the displacement of the ray in 
the image plane scales as αL and grows linearly with L. Conversely, the shift of the ray 
on its way through the perturbation does not depend on L.  This leads to significant 
simplification of the projection equations.  

As shown in this paper, there exist two very different regimes of the proton 
imaging: that of a small deflection, when the intensity variations are modest, below 25-30 
percent compared to the average intensity, and that of a stronger deflection, where the 
caustics are formed, and intensity variations can be in the factors of 10 and more. The 
transition from the first to the second regime occurs at characteristic deflection angles 
~a/l, where a is the size of a feature and l is the distance between the proton source and 
the object.  
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 Note that, for a practically important case of a<<l, the deflection angles 
corresponding to the caustic formation are small, so that the analytic “machinery” 
developed in Sec. II – III for the evaluation of the deflection angle and based on the 
paraxial approximation still works. A remarkable feature of a model of small deflection 
in a paraxial system is that it establishes a simple correspondence between the deflection 
caused by electrostatic and magnetostatic fields (Sec. V A).  

The case of small intensity variations (far from formation of caustics) is 
interesting in that it allows for a simple reconstruction of the line-integrated potential (or 
vector potential) from the radiographic image (Sec. IV B). 
 For an object with a smooth distribution of the electric field, which can be 
characterized by a single spatial scale a, the transition to the caustic regime corresponds 
to the electrostatic potential of order (W/e)(a/l), where W is the proton energy. For 
a/l~1/30, and the proton energy of 10 MeV, this corresponds to quite high potential 
variations in a plasma, ~300 kV. If, on the other hand, there exists a potential distribution 
with sharp transitions of a small scale (e.g., shock waves) then caustics can be generated 
by much smaller potentials.  

For the magnetic field structures of a scale a, the caustics are formed at the 
magnetic field for which !P < l , where !P < l  is a proton gyro-radius for this field. For a 
10 MeV probe beam and the distance l of 1 cm, this corresponds to a field of 0.5 MG. A 
significant difference with respect to the electrostatic case appears in the effect of shock 
waves. The ambipolar electric field on the shock front is determined by the 
quasineutrality constraint, and the electrostatic potential varies in concert with the 
density. So, the density jump leads to a potential jump, whence to a very high electric 
field within the front. Conversely, a shock propagating in the magnetic field produces a 
jump in the magnetic field strength, not a narrow (delta-function-like) peak of the field. 
So, a magnetic shock structure wouldn’t necessarily generate caustics by the same 
mechanism as the one that is at work in an ambipolar electric field.  

The spatial resolution of the images, aside from the resolution of the radiochromic 
film, is determined by the effective size of the proton source and temporal variation of 
both the object and the source (Sec. VII).  
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Appendix A. Caustics for a spherically-symmetric Gaussian blob 
 

It is instructive to relate the radius of the caustic in the image plane and the size of 
the blob a. One has from Eqs. (20), (23) and (27): 

r = r0
L
l
1+µ exp !

r0
2

a2
"

#
$

%

&
' = r0

L
l

2(r0
2 / a2 )

2(r0
2 / a2 )!1

,     (A.1) 

where we have used Eq. (27) to express µ in terms of a caustic radius in the image plane. 
We introduced an absolute value sign per discussion after Eq. (20). Eqs. (A.1) and (27) 
provide a parametric representation for the dependence r(µ), with r0 being a parameter. 
Instead of r, one can plot the ratio r/a. This parameter depends on µ and is different from 
the parameter L/l, which characterizes magnification for the contrast imaging. The plot of 
the ratio of the two, 

(r/a)(l/L)≡M          (A.2) 
is shown in Fig. 7 as a function of the dimensionless potential µ. Proton images produced 
by spherically symmetric Gaussian blobs are shown in Fig. 3.  

For the defocusing potential, the parameter M is close to 2 in a relatively broad 
range of parameters. This means that the size of the object is roughly 2 times smaller than 
a simple estimate a=rl/L. For the focusing potential, the situation is more complex: the 
object can be both larger and smaller than an estimate a=rl/L. What could help in the 
interpreting the image, is the dependence of the image size on the proton energy: 
changing the energy W changes the parameter µ without changing a and ϕ0. 

 
 
 A feature of Eq. (A.1) which may seem paradoxical is the divergence at  
r0 = a / 2 . In fact, this feature just shows that, for a very large value of the potential, 

such that |µ|>>1, one of the caustics has to be situated near the radius r0 = a / 2 , which 
corresponds to a zero derivative dα/dr0. At a large value of potential, the deflection angle 
is large leading to large r in the image plane. Therefore, there is a singularity in the 
dependence of r vs r0 at r0 = a / 2 . The presence of the singularity just tells us that, to 

have a caustic at r0 ! a / 2 , one has to have a very high potential and, respectively, a 
very high deflection angle.   
 
 
The intensity in the image plane is determined by Eq. (21) which, according to Eqs. (20), 
(23) and (24) can be rewritten as: 

I = I0
L
l
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   (A.3) 

Equations (A.1) and (A.3) provide a parametric representation of the intensity 
distribution in the image plane I(r). A characteristic intensity distribution in the image 
plane for µ=1 (defocusing) is shown in Fig. 8.  
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Appendix B. A spherical potential “blob” with a sharp edge 
 
Here we consider the same problem as that discussed in Sec. IV.C.3, but with 

account for the final width of a blob boundary. Specifically, instead of using a delta-
function distribution of the electric field, as in Sec. IV.C.3, we now assume that near the 
boundary 

Er =
!0h

" r0 ! a( )2 + h2"
#

$
%

        (B.1) 

with h<<a. In the vicinity of the boundary, at | r0 ! a |<< a , by making an approximation 
r2 ! r0

2 " 2a(r ! r0 )  one can obtain the following expression for the deflection angle: 

!(r0 ! a) =
2ea"0
W 2ah

F r0 ! a
h

"

#
$

%

&
'        (B.2) 

where F is the following dimensionless function of a dimensionless argument: 

F(! ) = 2
"

d#
#2 +!( )

2
+1!"

"

#        (B.3) 

Switching to integration in a complex plane η, one notices that there are two first-order 
zeros of the denominator in the upper half plane. Closing the integration contour in the 
upper half-plane and taking residues in these two poles, one finds: 

F(! ) = ! 2 +1!!
! 2 +1

        (B.4) 

The plot of this function and its derivative is given in Fig. 9. The derivative has two 
extrema that correspond to the first appearance of the caustic when the absolute value of 
the potential in the blob increases. In the focusing case (ϕ0<0) the caustic appears at ξ=-
1.25 and in the defocusing case (ϕ0>0) at ξ=0.3. The required potential amplitude is 

e!0
W

> 3.7 ah
l

        (B.5) 

and  
e |!0 |
W

>1.1 ah
l

,        (B.6) 

respectively. If h is significantly smaller than the global scale a of the perturbation, the 
caustics would appear at a smaller value of the potential than for a smooth “blob” (Eq. 
(27)). This can be the case if h is a shock thickness or a Debye sheath thickness. 
 
 Of interest is also a characteristic intensity distribution in the case of a small 
potential, when the caustics are not present and one can use Eq. (7). The distribution has 
a characteristic shape. For a focusing potential, intensity is higher inside the blob, and a 
narrow ring with a much lower intensity is formed around the blob. In the defocusing 
case, the situation is opposite.  
 

Appendix C. An ellipsoidal Gaussian “blob” 
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We consider a Gaussian potential distribution, with equipotentials being nested 
ellipsoids. If the ellipsoid axis coincides with axis z, this distribution can be presented as  

! =!0 exp !
x0
2 + y0

2

a2
!
z0
2

b2
"

#
$

%

&
' .       (C.1) 

One can also account for a possible tilt of the ellipsoid with respect to the axis z, as 
shown in Fig. 2. The tilting by an angle θ is achieved by turning the system around the 
axis x by that angle:   x0 à x0, y0 à y0 cosθ – z0 sinθ, z0 à y0 sinθ + z0 cosθ.  The 
potential distribution then becomes 

! =!0 exp !
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 z1 = z0 + y0 sin! cos!
b2 ! a2( )
d 2

,      (C.3) 

 d ! a2 cos2! + b2 sin2! .       (C.4) 
 
Here φ has been put in a form that will permit the convenient integration of Eq. (10) via 
table lookup. 

Performing the standard integration over z1 (related to z0 by Eq. (13)) one finds: 
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so that  
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The derivatives that enter Eq. (6) can be presented as: 
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 Consider the case of a small intensity variation (small deflection angles). Equation 
(7) yields:  
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where x0 and y0 have to be expressed in terms of x, y (the coordinates in the image plane) 
by Eqns. (8). One sees that for the positive (defocusing) potential blob, the intensity 
decreases near the center of the image and increases at the periphery, before returning to 
the unperturbed level at infinity. For the negative (focusing) perturbation the situation is 
opposite.  Equation (5) gives us the intensity in the image plane: 
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Fig. 3 shows Eq. C.12 plotted (with the technique described in Appendix F) for several 
values of positive and negative µ. 
 
Long, filamentary potential perturbations correspond to b>>a. The perturbations in this 
case can become essentially one-dimensional, as shown in Fig. 10. 
 

Using Equations (5’), (9), (C.9) and (C.10), one finds the following equation for 
the caustics for the ellipsoidal blob:   
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Several characteristic shapes of the caustic curves at the object plane are shown (in the 
units of a) in Fig. 11, for various ratios of d/a. Note that even one, very simple object, a 
spherical potential well, can produce two caustics. Note also the appearance of 
characteristic cusps (self- intersections) in some cases. The tilting of the deflecting 
potential structure in the plane of a figure would produce tilted images.  

Caustics are formed for the defocusing potentials as well—they just require 
higher potential for their formation. A couple of examples of the caustics produced by the 
defocusing potential are shown in Fig. 12.  
 
   
 

Appendix D. An ellipsoidal magnetic “blob” 
 

Here we present a model magnetic field structure that represents a Gaussian 
“blob” of a magnetic field as shown in Fig. 13. We consider an axisymmetric structure 
and describe it in cylindrical coordinates with an axis z’ coinciding with rotation axis. We 
use “primes” here to distinguish these coordinates from the ones in Section II, where the 
axis z was chosen to coincide with the direction of a probe beam proton. We later allow 
for arbitrary tilts of the “blob” axis, which (tilting) can be accomplished by a simple 
coordinate transformation.  
 

The magnetic field has a ϕ’ component, whereas the current that generates it has 
z’ and r’ components: 
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The current streamlines are defined by the equation 
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and are shown in Fig. 13 . The vector potential for this field can be chosen as 

A !z =
B0a
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The vector potential can also be written in a Cartesian “primed” system: 

A !z =
B0a
2
exp "

!x 2 + !y 2
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( ,   A !x = A !y = 0     (D.6) 

Now we perform the transformation of tilting the axis in the y-z plane of Fig. 1. 
The tilt in the xy plane will lead to a trivial effect of turning the image around the probe 
beam axis. The tilt angle will be denoted by γ and will be measured from the direction of 
the probe beam. In other words, γ=0 corresponds to the blob axis aligned with the probe 
beam, whereas γ=π/2 corresponds to the blob axis normal to the beam. One has: 

!x = x
!y = ycos! " zsin!
!z = ysin! + zcos!

        (D.7) 

and 
Ax = A !x = 0
Ay = A !y cos! + A !z sin! = A !z sin!
Az = "A !y sin! + A !z cos! = A !z cos!

      (D.8) 

According to Sec. B, we need only the z component of the vector potential in our 
“master” frame of Fig. 1. Substituting Eqs.(D.7) into Eq. (D.6) and using the last of Eqs. 
(D.8), we find 

Az =
B0acos!
2

exp !
"x 2 + "y 2

a2
!
"z 2

b2
#

$
%

&

'
(=

B0acos!
2

exp !Q( )
    (D.9) 

where    
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Having in mind that, according to Eq. (37), we have to perform an integration over z, it is 
convenient to represent Q in the equivalent form: 
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d 2
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2 d 2

a2b2
,       (D.11) 

 z1 = z+ ysin! cos!
b2 ! a2( )
d 2

,       (D.12) 

 d ! a2 cos2 ! + b2 sin2 ! .       (D.13) 
Performing an elementary integration over dz, one recovers Eqs. (C.9)-(C.12), with the 
only difference that f now is defined as: 
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Appendix E. Evaluating the higher-order corrections. 

 
To find an angular deflection of the protons after their traversal of the object, one has to 
iteratively solve a set of equations 

! !!" = a" (",#,$ ) ,        (E.1) 
etc., where 
  a=(e/mp)E,          (E.2) 
and the right hand side is evaluated for the instantaneous positions of the proton, 
! (t),"(t),# (t) . Since the position along ζ and the ζ component of the velocity are single-
valued functions of time, one can equivalently characterize the r.h.s. of Eq. (42) in terms 
of coordinate ζ  related to the time by 

d!
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= v! (! ) .          (E.3) 

Then one has (exactly): 
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Now we start iterations, assuming that the velocity variation is small compared to v0. In 
the zeroth-order approximation, one has ! (0) ="(0) = 0 , v!

(0) = v"
(0) = 0 , v!

(0) = v0 . The 
first-order velocity perturbation is found by substituting the zeroth-order solution to the 
r.h.s. of Eq. (E.4): 
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The point ξ=0, η=0 corresponds to the point x0, y0 of the initial coordinate frame.   
By performing one more integration, one finds the first-order displacement: 
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Second-order velocity perturbations are:  
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To find the displacement in the ξ,η plane (i.e., in the direction perpendicular to 
that of the initial beamlet), one has to perform one more integration. For example, for ξ  
up to the terms of the second order, one has (Cf. Eqs. (E.5) and (E.6)):  
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An expression in the square brackets is zero in the zone outside the plasma, i.e., at large 
|ζ|. Using this circumstance and integrating by parts in Eq. (E.7), one finds that outside 
the interaction zone 
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This is a very helpful representation of the perpendicular displacement, as it separates, in 
a formal way, the contribution related to the tilt of the beam (the first term, growing 
linearly with the distance) and a constant displacement that occurs during the beam 
transit through the plasma.  Both are generally present, but for L>>a (as is the case in 
real situations), the second term is very small compared to the first one (~a/L, unless 
some improbable cancellations make the first term zero). It is natural to use a notation 
tanαx to designate an integral in the first term, although now, compared to Sec. II, it 
contains second-order effects and is not based on the paraxial approximation:  

tan!x = Q" ( !# )d !#
"#

#

$ .        (E.10) 

 Taking into account this circumstance and neglecting the last term, we see that, 
according to Eq. (42), the intersection of the beamlet with the image plane occurs at 

! =
L l2 + x0

2

l ! x0"x

.        (E.11) 

At this point, according to Eq. (E.9), with the last term neglected, 
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! =" tan#x =
L l2 + x0

2

l ! x0 tan#x
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so that, according to Eq. (42), the coordinate x of the intersection point is: 

x = x0 + L
l tan!x + x0
l ! x0 tan!x

.       (E.13) 

 
Appendix F. Procedure for generating synthetic proton images 
The images shown in Figures 3, 4, 10, and 11 were made using the following technique. 
First, the object type and potential of interest was identified, e.g. the ellipsoidal Gaussian 
blob discussed in Appendix C. Second, the Mathematica® computational software was 
used to construct the image. This required tabulating the image plane quantities (x, y, 
I/I0), all of which are functions of the object plane coordinates (x0, y0), over a rectangular 
grid in (x0, y0) that was at least a few times larger than the object size a. The Mathematica 
function ListDensityPlot was used to plot the image intensity I/I0 at the specified points 
(x, y). This produced grayscale images that were then log compressed to approximate the 
response of actual film to proton dose [Hey 2008] and auto-scaled for easier viewing. 

For simple cases (e.g. Figures 3 and 11) one can calculate the image plane 
quantities by using the “ready-made” equations that we provide in this paper. For more 
complicated cases (e.g. Figure 4, which is a linear combination of Gaussian blobs) we 
started from an equation for the potential and then used Mathematica to symbolically 
integrate and then differentiate as required to obtain expressions for the deflection angles 
α. Once the angles α were obtained, further differentiation was performed to construct the 
Jacobian and then we proceeded with the image generation as described above.
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Fig. 1 (Color online) The geometry of a typical laser-plasma experiment where a point 

source of protons is used to image three-dimensional electric and magnetic field 
structures of size 2a in a plasma of interest. The proton source and the plasma are 

separated by a distance l.  
 

 
 

Fig. 2 (Color online) A three-dimensional ellipsoidal Gaussian blob with a 
contour at the 0.5φ0 equipotential surface. The aspect ratio b/a = 2, and the 

axis of the ellipsoid is tilted about the x0-axis by an angle θ = 45° with 
respect to the z-axis. 
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Fig. 3. Some characteristic images formed by spherically symmetric (a=b) Gaussian 
blobs of electric potential. Strong variations in intensity can be observed even without a 
caustic being formally generated. Shown here is a progression of proton images from the 

weak to the strong deflection regimes, for positive (upper panel) and negative (lower 
panel) electric fields. At low normalized potentials (µ < 1) the behavior is linearly 
defocusing (focusing) for positive (negative) fields. Caustics form in the strongly 

nonlinear intermediate regime (µ > 1). In the very strongly deflecting regime (µ ≈ 10, not 
shown) the caustics formed by positive and negative electric fields become 

indistinguishable, as is suggested by the increasing similarity of the images as a function 
of µ (e.g. compare the right-most panel). Parameters l, L, a, and Ware common for all 

cases shown here.  
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Fig. 4. Random constellations of four spherical Gaussian blobs of defocusing (positive) 
electric potential as seen in the image plane. To produce interesting images, the origins of 
the four blobs are scattered about with a Gaussian distribution over the interval {-2a, 2a}, 
and the size a is randomized ± 50%, resulting in a corresponding variation in µ. The non-

linear nature of proton imaging and caustic formation can be seen in two features: the 
curved distortion at the image margins from α  ≠ 0 (left panel) and the strange shapes 

produced by the overlap of multiple caustics (right panel). These shapes cannot be 
created by a linear superposition of deflections from spherically symmetric fields.  
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Fig. 5. The position in the object plane (normalized to the radius a) of a caustic from a 
spherical Gaussian blob, plotted parametrically in r0 (Eq. 27) vs. the dimensionless 
potential µ.  For a focusing potential µ<0, the caustic appears as a point, which then 
grows into a ring. For a defocusing potential, the caustic appears as a ring of a finite 
radius, which then splits in two rings. No caustic occurs in the object plane within the 
shaded region Grayscale images for these cases are shown in Fig. 3, projected to the 
image plane.  
 
 
 
 

 
 
Fig. 6 (Color online). Illustration of the geometry of the higher-order corrections. 
 
 
 
 

 
 



 29 

Fig. 7. Normalized magnification parameter M vs the dimensionless potential µ, plotted 
parametrically in r0 (Eqns. A.1 and 27). A focusing potential corresponds to negative 
values of µ.  
 
 

  
Fig. 8. The intensity distribution in the image plane at a potential amplitude insufficient 
for caustic formation.  
 
 

 
 

 
 

Fig. 9 The function F (solid line) and its derivative F' 
(dashed line) as a function of the distance ξ to the 
boundary, normalized to the width parameter h. 
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Fig. 10. Sequential rotation of a very ellipsoidal (aspect ratio b/a = 10) Gaussian electric 
potential blob from the end-on view (θ = 0°) to the side-on view (θ = 90°) in the weak 

deflection regime (µ = +0.12) The side-on view approximates an infinite cylinder with a 
radially Gaussian profile, for the narrow field of view shown here. 

 
 
 

            
Fig 11. Several characteristic shapes of the caustics for the focusing potential (i.e., 
negative in case of ions). The left-most curve corresponds to a spherically-symmetric 
potential; the second curve corresponds to a/d=0,9; the third curve corresponds to 
a/d=0.6; the fourth curve corresponds to the same a/d, but larger absolute value of the 
potential. 

 
 

  
Fig. 12. The shape of caustics for the defocusing potential. The first picture corresponds 
to a spherically-symmetric blob, the second corresponds to a blob elongated along the y 
axis. The absolute value of the potential is 1.8 times higher than in the first four panels in 
Fig. 11.  
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 Fig. 13. Streamlines of the current density for a Gaussian magnetic blob. The 
magnetic field has only an azimuthal component, and the vector potential can be chosen 
so as to have only an axial component.  
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