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Abstract

This is the ion depletion model used in HYDRA’s LZR package.
It derives from a formulation due in large part to Dr. Manoj Prasad
(circa 2002).

1 Model Equations

The algorithm used for ion energy depletion in HYDRA is used within the
context of the LZR package with ray_trace_order = 1, ie. straight line tra-
jectories.

We solve the following depletion equation for Ej, the energy/nucleon
(KeV), along these trajectories:
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The terms in this equation for the energy loss %ﬁ are given by
oo NE
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with Ap the energetic ion atomic weight.
The ionization state of energetic ions is computed as

Zy = Zno(1 — exp ™ B%)



where Zy is the energetic ion atomic number,

Betz = CBetz V /61? + ﬁeZ

CBetz = ]./OéZbgg

and « is the fine structure constant.

3, and 3. are the light speed normed velocities of the energetic ion and
thermal electrons given by 82 = 1 — 1/92 and 2 = 1 — 1/42 with v, =
1+ Ey/M, and v, = 1 + T,/ M,.

The quantity Rgp, the ratio of bound to free electrons is

and

Regr=2/7* -1

where Z and Z* are the background (target) effective and average charge
state averaged over the mass fractions of the ionic (target) mix. Note that
at full ionization Z* — Z so Rgr — 0 and the bound electron contribution
vanishes, while for vanishing ionization, since n, ~ Z* the bound electron
contribution varies as neRgp ~ Z — Z*.

Defining the (small) ratio Rg = ./, we write the coefficient of the ion
energy loss due to free electrons C¢ as

Cg = 1/(1 — Rp(.1263R5(.1195 — 1.5075R;))).

This derives from an expansion of G(z) = erf(z) — z erf'(z) for z >> 1. The
remaining terms Ap and Ag, the Coulomb logarithms for bound and free
collisions, are given as

Ap =In(1 + 2M,?B32/T) + In~2 — B2 = In(1 4 10220082/ Z) + Inv; — B;

and 376.X10'
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where I = Z/102200 is the average ionization potential for bound electrons
and In~v2 — 32 is a relativistic correction factor in both Coulomb logarithms.
The depletion equation is initialized at E, = Ejyo for each energetic ion
beamlet and tracked until Ey < Epfioor, at which point all the remaining
energy is deposited (ie. in the Cell where this condition first occurs).

)+ .5(lnv; — B7).



