Summative Mass Analysis of Algal Biomass – Integration of Analytical Procedures

Laboratory Analytical Procedure (LAP)

Issue Date: December 2, 2013

L. M. L. Laurens
Summative Mass Analysis of Algal Biomass – Integration of Analytical Procedures

Laboratory Analytical Procedure (LAP)

Issue Date: December 2, 2013

L. M. L. Laurens

Prepared under Task Nos. BB07.9H10 and BB07.9G10
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.
DISCLAIMER

The Standard Algal Biomass Analytical Methods (Methods) are provided by the National Renewable Energy Laboratory (NREL), which is operated by Alliance for Sustainable Energy, LLC (Alliance) for the U.S. Department of Energy (DOE). These methods were developed and written for commercial research and educational use only.

Access to and use of these Methods shall impose the following obligations on the user. The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute these Methods for any purpose whatsoever, except commercial sales, provided that this entire notice appears in all copies of the Methods. The user agrees to credit NREL/Alliance in any publications that result from the use of these Methods. The user also understands that NREL/Alliance is not obligated to provide the user with any support, consulting, training or any training or assistance of any kind with regard to the use of these Methods or to provide the user with any updates, revisions or new versions.

THESE METHODS ARE PROVIDED BY NREL/Alliance "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NREL/Alliance/DOE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THESE METHODS.
1. Introduction

1.1 This document guides the integration of laboratory analytical procedures (LAPs) to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in the algal biomass analytical field. By combining the appropriate LAPs, the goal is to break the biomass sample down into constituents that sum to as close to 100% by weight as possible. Some of these constituents are individual components, such as individual carbohydrates and lipids as total fatty acids, and some can be groups of compounds, such as extractable lipids. The goal of these analyses is to characterize all of the constituents in the sample, but we recognize that with the current state-of-the-art methods the summative mass accounting does not achieve 100%, and the degree to which biomass can be described is highly dependent on the origin, strain, and cultivation conditions of the algae. This document covers the summative mass balance measurements for algal biomass only. These methods have been extensively applied to a variety of different strains of algae, but as of the publication of this document, the measurements for carbohydrates and protein have not been optimized. The work is ongoing and will be incorporated in future versions after being published.

1.2 This document is designed to help with the complete analysis of the constituents of algal biomass samples by providing the rationale for each of the methods and corresponding calculations. The integrated data reporting and summative calculations with reporting of measurement quality control (QC) should follow the format of a designated spreadsheet to ensure consistent data reporting. A National Renewable Energy Laboratory (NREL) version of the spreadsheet is available upon request.

1.3 This overall mass balance analysis integration takes into account the detailed procedures established and described in the following individual LAPs:

1. Determination of Total Solids and Ash in Algal Biomass [1]
2. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification [2]
3. Determination of Total Carbohydrates in Algal Biomass [3]
4. Calculation of N-to-Protein Conversion Factor [4][5][6]
5. Starch analysis (Megazyme procedure) [7]
Figure 1: Illustration of summative algal biomass analysis and reference to individual LAPs for analysis details. Numbers in boxes refer to individual LAPs identified in section 1.3.

2. Scope

2.1 This procedure for analytical method integration is developed and optimized specifically for microalgal biomass using a combination of the methods for ash, protein, lipids, and carbohydrates (storage and structural). The purpose of the integration LAP is to provide the background and connectivity information on the individual procedures.

3. Terminology

3.1 Oven Dry Weight (ODW) – The weight of algal biomass mathematically corrected for the amount of moisture present in the sample at the time of weighing, or the weight of glass or porcelain apparatus dried in a 105°C ± 5°C drying oven to a constant weight.

3.2 Lipids – Based on the definition of lipids as “fatty acids and their derivatives” [8], lipid determination as total FAME is an accurate reflection and quantification of the “biofuels potential” of algal biomass. In the context of algal biofuels, the total FAME content is a good approximation; however, it is known that with the presence of polar lipids, such as glyco- and phospholipids, the total FAME content is an underestimation.
of the lipid content [9]. Alternatively, lipids can be extracted with organic solvents, and gravimetric determination of the extracted fraction can give an approximation of the lipid content. However, it is necessary to state that an extraction-based determination of lipids can include non-fuel-relevant components, such as pigments, hydrophobic amino acids, and an array of other compounds, which will contribute to the gravimetric yields and will reflect a high bias of the biofuels potential of the algal biomass; because of the lack of standardization, this procedure will not be included in future work. In addition, extraction-based lipid quantification may also be incomplete, as has been demonstrated in *Chlorella* sp., where the biomass becomes more recalcitrant to extraction and the majority of the lipids remain associated with the residual biomass [9].

3.3 *Transesterification* – The process of exchanging the organic group of an ester in lipid molecules with the organic group of an alcohol.

3.4 *Fatty Acid Methyl Esters* – The result of the transesterification of lipids, where a methyl group from methanol forms an ester bond with a fatty acid.

3.5 *Structural Carbohydrates* – The hydrolysable fraction of monomeric sugars after analytical acid hydrolysis with an inorganic acid (such as sulfuric acid), this fraction will also include monosaccharides derived from storage polysaccharides, such as starch. This value should be subtracted from the reporting of total structural carbohydrates.

3.6 *Storage Carbohydrates* – The fraction of monomeric glucose measured after enzymatic hydrolysis of algal biomass with an enzyme cocktail of α-amylase and amyloglucosidase. This fraction of storage carbohydrates is referred to as starch and reflects any portion of α-1,4 linked glucose polymer in algal biomass.

3.7 *Protein* – Sum of monomeric soluble and structural amino acids entrained in biomass and measured as either total amino acids by acid hydrolysis or as elemental nitrogen multiplied by a conversion factor calculated based on the ratio of proteinaceous and non-proteinaceous nitrogen in the biomass.

4. **Preparation of Algal Biomass prior to Analysis**

4.1 Algal biomass samples for compositional analysis are typically frozen and freeze dried immediately upon harvesting from the culture to preserve the sample and biochemical integrity and avoid degradation of the constituents by residual enzyme activities. The moisture content of the biomass sample after freeze drying will be affected by the atmospheric moisture content and thus the accurate measurement of total solids for normalization of the measurements should be performed.

4.2 The biomass should be finely ground (particle size <100 µm ideally, but less than 1 mm is acceptable) and homogenized prior to analysis, because most of the measurements require the dispensing of small quantities of biomass (~10 to 20 mg), and the aliquot of biomass should accurately reflect the composition of the larger sample.
5. Determination of Total Solids

5.1 Due to the high variability of moisture content in algal biomass feedstocks, all biomass compositional analysis results are reported on a dry weight basis. This allows for comparison of biomass samples on a consistent basis. At several points in the compositional analysis suite, a “% total solids” determination is required. The LAP Determination of Total Solids and Ash in Algal Biomass [1] details appropriate procedures for such determinations. The LAP describes drying by convection oven at 60°C at atmospheric pressure or 40°C vacuum oven. Due to the large fraction of volatiles in algal biomass, moisture determination for algal biomass should not be performed with an infrared (IR) balance. Data obtained by this procedure did not correspond with the longer procedure of solids and moisture determination at 60°C at atmospheric pressure or 40°C vacuum.

5.2 The sample aliquot used for drying at 60°C has been exposed to elevated temperatures and oxygen environment and should not be used in further analyses (e.g., lipid degradation can be considerable after atmospheric pressure drying at 60°C), with the exception of determining ash content.

5.3 The sample’s ODW should be calculated as follows and carried through to all further biomass measurements:

\[
ODW_{\text{sample}} = \frac{(\text{Weight}_{\text{air, dried sample}} \times \% \text{ Total Solids})}{100}
\]

6. Determination of Ash

6.1 Inorganic materials are present in algal biomass samples. In addition to contributing significantly to total mass closure, inorganic material may interfere with acid hydrolysis. The LAP Determination of Total Solids and Ash in Algal Biomass [1] describes two methods for the determination of % ash in biomass. The LAP provides instructions for ash determination using a muffle furnace set to 575°C with prior preignition of the biomass in crucibles over an open flame, and describes the use of a ramping muffle furnace with no preignition.

6.2 Calculation of the sample’s ash content should be performed as follows (expressed on an ODW basis):

\[
\%_{\text{Ash}} = \frac{\text{Weight}_{\text{crucible-ash}} - \text{Weight}_{\text{crucible}}}{ODW_{\text{sample}}} \times 100
\]

7. Determination of Protein

7.1 Conversion of elemental nitrogen to protein

Algal biomass can contain a significant amount of protein (up to 40% ODW); therefore,
accurate analysis is imperative for summative mass balance analysis. Measurement of protein in biomass is performed indirectly by measurement of nitrogen content and use of a nitrogen-to-protein conversion multiplier. A factor of 4.78 from the literature [4] is generally applicable and has been confirmed by amino acid determination in biomass. Ideally, the calculation of a conversion factor for each individual algal strain should be carried out and is typically done by measurement of total amino acid content in the biomass and calculating the conversion factors according to reference [5]. Data indicated in preliminary testing that total nitrogen determination via combustion or Kjeldahl determination provides equal data, so either method can be applied.

Protein content through nitrogen-to-protein conversion is calculated as:

\[
\% \text{Protein} = \% N \times N_{\text{factor}}
\]

where \%N is elemental nitrogen content determined by combustion or Kjeldahl methods, and N_{\text{factor}} is the specific conversion factor determined for algae (4.78).

7.2 Protein determination as amino acids

There are published methods [6] that explicitly describe a standard amino acid measurement for acid stable amino acids. It may be necessary in some instances to report the concentration of individual amino acids for biomass.

8. Determination of Lipids

8.1 Lipids as FAME by \textit{in situ} transesterification

With this method, lipids are determined as FAME after direct, \textit{in situ} transesterification of algal biomass with an acid catalyst – hydrochloric acid in methanol [2]. This measurement accurately reflects the total biofuels potential of algal biomass and is not influenced by the efficiency of a solvent extraction step. The challenge with accurate lipid quantification as FAME is the utilization of a gas chromatograph (GC) calibration that includes most, if not all fatty acids typically found in algae. The LAP \textit{Determination of Total Lipid as Fatty Acid Methyl Esters (FAME) by in situ Transesterification} [2] describes a suggested standard to be used for these analyses and an approach to quantify a selection of unknown fatty acids by transferring response factors from known calibration compounds.

Lipids as total FAME are calculated from the sum of the FAME concentration determined by GC and after normalization for the surrogate present in the reaction as described in the LAP:

\[
\% \text{Total FAME} = \frac{\text{Total FAME}_{\text{Cl3 normalized}}}{ODW_{\text{sample}}} \times 100
\]
9. Determination of Storage and Structural Carbohydrates

9.1 Determination of starch in algal biomass

Starch determination is relevant for whole biomass analysis because of the often major contribution of storage carbohydrates to the total carbohydrate content and the need to distinguish these carbohydrates from the total acid-soluble carbohydrate determination described in section 9.2. The procedure used to determine starch in algal biomass is substantially similar to and based on the method distributed by Megazyme for the K-TSTA enzyme cocktail mixture of amyloglucosidase and α-amylase and can be found online [7]. The released glucose after enzymatic degradation can be measured using three different methods, two spectrophotometric assays (glucose oxidase-peroxidase, GOPOD [7] and 3-methyl-2-benzotheazolinonehydrazone [MBTH] [10]) and one high-performance liquid chromatograph (HPLC)-based method.

The measured monomeric glucose concentration should be corrected back to anhydrous polymeric starch using a factor of 0.9 \(\frac{\text{glucose in polymeric glucan (MW = 162)}}{\text{monomeric glucose (MW = 180)}} = 0.9 \), and the measurement should be corrected for the recovery of a QC starch sample included in the assay set as shown in the calculation below:

\[
\% \text{Starch} = \left(\frac{\text{Glucose (mg/ml)} \times \text{Vol (ml)} \times 0.9}{\% \text{Recovery}_{\text{QC Starch}} \times \text{ODW}_{\text{sample}}} \right) \times 100
\]

When this measurement is performed in addition to the total carbohydrate determination, the starch content should be subtracted from the total carbohydrate content prior to reporting mass balance analysis data.

9.2 Determination of total carbohydrates in algal biomass

Total carbohydrates in algal biomass are determined as monosaccharides present after inorganic acid hydrolysis of the complete biomass. The hydrolyzate is neutralized, filtered and the monosaccharide concentration is quantified either by HPLC or high-performance anion exchange chromatography (HPAEC) [11] or a suitable spectrophotometric method (such as MBTH [10]) as described in the LAP Determination of Total Carbohydrates in Algal Biomass [3].

\[
\% \text{Carbohydrates} = \left(\frac{\text{Total Monosaccharides (mg)}}{\text{ODW}_{\text{Sample}}} \right) - \% \text{Starch} \times 100
\]

10. Calculations

10.1 Each of the respective measurements is reported on an ODW biomass basis and should be summed to provide the summative mass analysis (assuming that the total carbohydrate measure is corrected for starch content as described in section 9.2):
\[
Total \text{ Mass}_{(\% \text{ODW})} = Ash_{(\% \text{ODW})} + Protein_{(\% \text{ODW})} + Total \text{ FAME}_{(\% \text{ODW})} \\
+ Starch_{(\% \text{ODW})} + \text{Carbohydrates}_{(\% \text{ODW})}
\]

10.2 The integrated data reporting and summative calculations with reporting of measurement QC should follow the format of a designated spreadsheet to ensure consistent data reporting.

10.3 To report or calculate the root mean square deviation (RMS) or the standard deviation (STDEV) of the samples, use the following calculation:

\[
RMS = x_m = \text{mean} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}
\]

\[
RMS_{\text{deviation}} = \sigma = \text{stddev} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x_m)^2}{n}}
\]

where:
- \(x_m\) = the root mean square of all x values in the set
- \(n\) = number of samples in set
- \(x_i\) = measured value from the set

11. Report Format

11.1 Report the results on the appropriate basis (e.g., as per ODW) as specified in individual LAPs and in the space provided in the standardized accompanying spreadsheet.

11.2 For the summative mass accounting, a dedicated mass analysis spreadsheet is available that includes the capture of the respective primary data along with QC of the data (e.g., calibration statistics).

11.3 For replicate analyses of the same sample, report the average and the standard deviation for each measurement as detailed in the summary spreadsheet and keep track of historical data using control charts to observe the instrument and analysis trends of a standard biomass sample.

12. Precision and Bias

12.1 Precision and bias of the summative mass analysis will follow the precision of the individual measurements and will need to be determined by a round robin experiment using standard method verification biomass. The target relative standard deviation and relative percent difference (RPD) should be less than 10%.
12.2 Improper sample preparation and/or storage may bias the results low due to the degradation of oxygen or heat-sensitive lipids.

12.3 When the respective measurements are summed to investigate the whole biomass analysis, the sum should not exceed 100%. If it is noted that the sum exceeds the maximum, there is either significant interference in the measurement chemistry (possible in the spectrophotometric carbohydrate analyses and the nitrogen conversion) causing the individual measurements to be biased high, or the measurements are not selective and double counting of constituents could be the case. Either case should be investigated in more detail, and summative mass analysis data exceeding 100% should not be reported.

13. Quality Control

13.1 Reported Results – Report results with two decimal places. Report the average, standard deviation, and %RPD.

13.2 Replicates – Run all analytical procedures on replicate biomass aliquots as described in the respective LAPs.

13.3 RPD Criteria – Refer to respective LAPs for the analytical procedures for quality and precision limits.

13.4 Sample Size – A total of between 380 and 600 mg of dried, homogenized biomass is sufficient for mass analysis using the approximate amounts shown in Figure 1.

13.5 Quality assurance/QC material should be included and periodically control charted to verify reproducibility and highlight trends and bias in the data.

14. Appendices

14.1 Analytical instrumentation needed for all LAPs

- Analytical balance (0.1 mg accuracy)
- Spectrophotometer
- Combustion N-analyzer
- Automated solvent extraction system – e.g., Dionex ASE
- Nitrogen-solvent evaporator compatible with extraction vials
- Furnace (575°C) + porcelain crucibles
- Convection drying oven (capable of temperature range between 40-105 ºC)
- Vacuum oven (40°C)
- GC (split/splitless injection, with flame ionization detector (FID) or mass spectrometry (MS) detection, capillary column with PEG-phase – e.g., WAX column)
- HPLC (with RI detection and Shodex sugar SP0810 or Dionex PA-1 anion exchange or equivalent column)
- Autoclave
• Dry block
• Consumables as detailed in the procedures

14.2 Revisions/Updates

• Distribution of May 16, 2013, DRAFT version as part of ATP³, Algae Testbed Public Private Partnership Consortium analytical harmonization effort.
• July 26, 2013: Updated to remove extractable lipid references and flowchart
• December 2, 2013: Updated with NREL-relevant text and updated references for publication

15. References

