DECEMBER 1974 MATT-1097

THE DEFEAT OF SHEAR STABILIZATION
BY PEAKING OF THE DIAMAGNETIC
FREQUENCY PROFILE

BY

N. R. SAUTHOFF, M. OKABAYASHI,
AND J. M. SCHMIDT

PLASMA PHYSICS
LABORATORY

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

This work was supported by U. S. Atomic Energy Commission Contract AT-(11-1)-3073. Reproduction, translation, publication, use, and disposal, in whole or in part, by or for the United States Government is permitted.

DISTRIBUTION OF THIS DOCUMENT UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The Defeat of Shear Stabilization by Peaking of the Diamagnetic Frequency Profile

N. R. Sauthoff, M. Okabayashi, and J. A. Schmidt
Plasma Physics Laboratory, Princeton University,
Princeton, New Jersey 08540

The radial wave equation describing collisionless drift instabilities in plasma is solved including the effects of a peaked diamagnetic frequency profile. Radially localized fluctuations with no radial energy propagation are found in cases with sufficiently low shear and large peaking.

Recent estimates of prospects for the stabilization of trapped electron modes\(^1\) have been based on the assumption that the radial mode structure is determined by the shear of the magnetic field. In this note we show that in many present generation toroidal confinement devices the peaking of the diamagnetic frequency profile is sufficient to introduce reflections which prevent the radial propagation of wave energy. The analysis is done in slab geometry with the instability mechanism treated as an arbitrary perturbative quantity.

In the regime of the conventional trapped electron instability,\(^2\) neglecting ion temperature effects, the radial mode structure is determined by the equation
There are three major energy loss mechanisms in a tokamak: radiation loss; energy loss associated with fast neutrals as a result of the charge-exchange process; and the energy loss associated with charged particle diffusion and thermal conduction. The first two mechanisms occur somewhat uniformly throughout the surface of the plasma, while the charged particle loss should occur mainly at the limiters. In our experiment on the ATC tokamak [1] the energy losses to the limiters and through the plasma surface were monitored. The temperature of the limiters was measured by thermocouple and thermistor, from which the total energy loss to the limiters could be calculated. However, there was no time resolution of the energy deposition because of the high noise level at the limiters. To measure the radiation and the charge exchange losses a bolometer was devised out of a thick film flake thermistor, which had a time resolution on the order of 1 millisecond. Several points were concluded from our measurements: (1) the total loss from the plasma surface (radiation and charge-exchange) in a normal discharge with or without disruption was always less than 40% of the total energy input; (2) for a normal discharge (40-45 msec duration) or a discharge with a short life (5-10 msec) the absolute level of the surface energy losses was relatively constant, i.e., within a factor of 2. On the other hand, the limiters detected either a major portion of the input energy for a normal discharge or a negligible portion of the input energy for a short-lived discharge.
\[
\frac{d^2 \phi}{dx^2} = \left[k_y^2 + \frac{\Omega_i^2}{c_s^2} \left(1 - \frac{\omega_e}{\omega} - \frac{k_n c_s^2}{\omega^2} - \frac{i \gamma_L(x)}{\omega} \frac{\omega_e}{\omega} \right) \right] \phi
\] (1)

where \(k_y\) is the wave vector in the direction of symmetry (toroidal), \(\Omega_i\) is the ion gyrofrequency, \(c_s\) the ion sound speed, \(\omega\) the mode frequency, \(\omega_e\) the electron diamagnetic frequency, \(k_n\) the parallel wave vector, and the local growth rate \(\gamma_L(x)\) given by the electron response

\[
\bar{n}_e = \frac{n e \phi}{T_e} \left[1 - \frac{i \gamma_L(x)}{\omega} \frac{\omega_e}{\omega} \right].
\] (2)

Specializing to an even trapped electron mode, neglecting corrections to adiabaticity for all except the trapped electron and using the collision operator

\[
\frac{df}{dt}_{\text{collision}} = -\nu_t \left(\bar{f} + \frac{\bar{f}_0}{T} \right)
\] (3)

where \(\bar{f}\) is the perturbed distribution function and \(\nu_t\) the effective collision frequency we obtain

\[
\gamma_L(x) = -\frac{\omega_e^2}{\omega} \int d^3v_{\text{trapped}} \frac{J_{\text{O}}^2(k_n L_c)}{\pi^{3/2} v_T^3} \frac{-v^2/\nu_T^2}{(\omega - \omega_{Te})} e^{v^2/\nu_T^2} (\omega - \omega_{de} + i\nu_T)
\] (4)

where the Bessel function term gives the parallel orbit average effect, \(L_c\) being the connection length which is a function of pitch angle, \(v_T^2 = 2T_e/m_e\), and \(\omega_{Te}\) and \(\omega_{de}\) being generalized diamagnetic and curvature drift frequencies.

The character of the radial structure of the mode, as governed by Eq. (1), is determined by the radial dependences of \(\omega_e\), \(k_n\), and \(\gamma_L\). Treating the driving term as a perturbative quantity and approximating...
\[k_n = k_z + k_y \frac{x}{L_s} \]

(5)

and expanding \(\omega_* \) around its maximum

\[\omega_{*e} = \omega_{*o} + \frac{x^2}{2} \omega_*^2, \quad \omega_{*/o} < 0 \]

(6)

The nature of the solution changes at

\[\omega_{*/o}^2 + k_y^2 \frac{c^2}{\omega_s^2} \frac{L_s^2}{\omega_s^2} = 0 \]

(7)

The normal modes are given by

\[\phi_n = H_n [\alpha_n (x - x_n)] e^{-\alpha_n^2 (x - x_n)^2 / 2} \]

(8)

where

\[\alpha_n^2 (2n+1) = -k^2_y - \frac{\Omega_i^2 (1 - \omega_{*o} / \omega) \omega_{*/o}^2 + k_y^2 c^2 / \omega_s^2 L_s^2}{\omega_{*/o}^2 + k_y^2 c^2 / \omega_s^2 L_s^2} \]

\[\alpha_n^4 = -\frac{\omega_{*/o}^2}{c_s^2} (\omega_{*/o}^2 + k_y^2 c^2 / \omega_s^2 L_s^2) \]

(9)

(10)

\[x_n = -\frac{c_s^2 k_y k_z / \omega_s^2 L_s}{\omega_{*/o}^2 + k_y^2 c^2 / \omega_s^2 L_s^2} \]

(11)

and \(H_n \) is the Hermite polynomial of order \(n \).

If \(\omega_{*/o}^2 + k_y^2 c^2 / \omega_s^2 L_s^2 > 0 \) then \(\alpha_n^4 < 0 \) so that traveling waves result and the condition of outward energy propagation at \(|x| \to \infty \) gives the traditional damping due to shear.

On the other hand, if \(\omega_{*/o}^2 + k_y^2 c^2 / \omega_s^2 L_s^2 < 0 \) the solutions are undamped standing waves. In this case perturbation theory shows the overall growth rate is a weighted average of the local growth rate.
\[
\gamma_n = \frac{1}{\sqrt{\pi}} 2^n n! \int_{-\infty}^{\infty} dx \: \alpha_n e^{-\alpha_n^2(x-x_n)^2} H_n^2[\alpha_n(x-x_n)] \gamma_L(x). \tag{12}
\]

The stabilizing effect of ion Landau damping can be minimized by requiring that the mode be localized such that the parallel phase velocity does not pass through the ion thermal velocity, i.e., \(|\alpha_n L_s| > (a/\rho_i)(T_i/T_e) \) where \(a \) is the density scale length and \(\rho_i \) the ion gyroradius.

In summary, we have found that with sufficient peaking of the diamagnetic frequency profile the radial transport of wave energy, which is one of the conventional roles of shear, is eliminated and that the recent analyses which neglect this effect are not applicable to machines of moderate dimensions.

This work was supported by U. S. Atomic Energy Commission Contract AT(11-1)-3073.
REFERENCES

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.