OAK RIDGE NATIONAL LABORATORY
Operoted by
UNION CAREIDE NUCLEAR COMPANY Division of Usion Carbide Corporotion

UCE

Post Office Box X
Oak RIdgy, Tonnessee

DATE:
Jume 2, 1959
SUBJEC7:
ORIC R-F Model III Progress Report

TO:
Distribution
FROM:
R. E. Worsham and S. W. Mosko

Distribution

\author{

1. R. H. Bassel
 2. B. C. Behr
 3. R. S. Bender
 4. C. J. Borkowiki
 5. G. L. Broyles
 6: J. A. 组kins
 7. J. L. Hamilton
 8. C. S. Harrizl
 9: F. T. Howard
 10. E. D. Hudison
 11. R. J. Jones
 12: R. S. Livingeton
 13. R. S. Lord
 24. J. E. Mann
 15. F. W. Manning
 16: M. B. Marshall
 17. J. A. Martin
 18. H. L. Morgan
 19-28 S. W. Mosko (10)
 31. A. H. Ritkola
 32. J. A. Russell
 33: L. B. Schneider
 34. W. R. Smith
 35: A. H. Snell
 36: I. A. Swartout
 37-39: H. K. Walker (3)
 40. A. M. Welpberg
 41. T. A. Welton
 42: W. H. White, Jr.
 43. H. N. Wilson
 4 $4-53$: R. E. Worsham (IO)
 54. N. F. Zinegler
 55. A. Zacker
 56. G. J. Berts
 57. T. E. Bridge
 58. B. R. Cloak
 59. P. P. Febbo
 29: M. E. Ramaey
 60. H. H. Hassiepen
 30. E. G. Richardson, Jr. 62-62, F. J. Knoll(2)
}

notice

This decpment contains informatien of a preliminary naiure and wat preparad primarily for internal use at the Oak Ridge National Loboratory. It is eubjest to r申vision or eorrection ond therefiore doest net represent a final raport. Tha information la no1 ts be absifacted, reprinted or otherwise given puble ditetmination withoul tha apprevol of the ORNL patant braneh, Legal and Informothon Control Dapartmant.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ORIC R-F MODEL III PROGRESS REPORT
R. E. Worshaill and B. W. Mosko

The ORIC (Oak Ridge Relativistic Isochronous Cyclotron) rediofrequency system for which Model III represents the resonator is the third system which has received enough consideration to warrant construction of a model. The purpose of the model is to check the calculations for the frequency range and excitation power of the resonator. After an introductory description of the $\mathbf{r}-\mathrm{f}$ system and model, the detailed calculations of the properties of the model will be given followed by the date from measurements of the model characteristics.

The general specifications whing with the r-f system must fit are listed in Table I.

Tsble I: General Specifications for ORIC R-F Syatem

Frequency range	7.5 to $22.5 \mathrm{Mc} / \mathrm{s}$, cont. adj.
Frequency atability	1 part in $10^{5}, \mathrm{~min}$.
Voltage gain/turn	200 kev (for singly-charged iona).
Orbit diameter	$63 \mathrm{in}$.
Dee aperture	1.875 in.
Dee-to-liner clearance	$1.5 \mathrm{in.}, \mathrm{max}$.
Maximum beant power	75 kw.
Regulation of dee voltage	1 part in 10^{3}, tentative.

1 part in 10^{3}, tentative.

In addition to these requirements, the inside of the liner, because of valley coils and circular triming windings, should be flat allowing no additional dee-to-liner clearance in the valleys. Further, the time permitted for changing the r-f frequency should be, at most, a few minutes, alnce the cyclotron is designed for variable energy and because of the operating cost which makes a maximum innage essential.

Originally, in the $r-f$ design, the voltage gain/turn was arbitrarily set at 400 kev . With increasing knowledge of the beam deflection mechanism and orbit properties in general, the threshold voltage has since been estimated as $137 \mathrm{kev} / \mathrm{tum}^{(1)}$; therefore, the value of $200 \mathrm{kev} /$ turn would appear to be adequate and makes possible a simpler resonator with lower power loss, lower stored energy, apparentiy aimpier mechanical construction, and, aitogether, greater reiability than the earlier r-P systeme considered for ORIC.

The dee-to-liner clearance was chosen as 1.5 in., a apacing wich is capable of holding a peak r-f voltage of 100 kv reliably under operating conditions. Sections through the magnetie gap are shown in Pigis. 1 and 2. On these drawinge most of the dimenaions are tentative and will be revised as necessary with progress in design.

Finally, consider Model III; a drawing showing the top and slde View with the principel dimensions is shown in Fig. 3. Photographs of the model are Figs. 4 and 5. The model, which is quarter ascale, is constructed from wood covered with 4-mil copper foil on all inner surfaces. The outer tube in which the shorting plane travela was made, because of
$\mathrm{I}_{\text {H. G. Blosser, }}$ ORNL_CF-59-5-59.

Fig. 1. Horizontal Section with Assigned Dimensions.

UNCLASSLFIED
ORNL-LR-DWG, 30818.R

Fig. 2. Spacing of Dee and Liner in Magnetic Gap.

Fig. 3. Top and Side Views of Model III.

Fig. 4. R-F Model III.

Fig. 5. R-F Model III.
availability, of an 18-1n. OD stainless steel pipe. Copper foil was then cemented to the inside of the tube. For electrical contact, the shorting plane inner and outer edges were lined with finger stock. An item not included on the model, but planned for the full-scale machine is plates which would allow motion of the in er adjacent to the dee stem. This variation of stem characteristic impedance would be used for mediumcoarse tuning.

Computation of Characteristic Impedance

The characteristic impedance of a lossless tranamission line is given by

$$
z_{0}=\sqrt{\frac{L}{C}},
$$

where L is the serifes inductance per unit length, and C is the shunt capacity per unit length of line.

The velocity of propagation in a lossless tranamigalon line is

$$
v=\frac{1}{\sqrt{\overline{\mathrm{LC}}}} .
$$

In air or vacuum, vis 3×10^{8} meters/sec. Thus:

$$
\begin{aligned}
& v^{2}=\frac{1}{I C} \\
& L=\frac{1}{v^{2} C}
\end{aligned}
$$

If we gubstitute this in the impedance equation, we get

$$
z_{0}=\frac{l}{v C} .
$$

Now we can find the characteristic impedance for a transmission line if we know the shunt capacity per unit length.

The dee and the flat sections of the dee stem appear as a center plate in a parallel plate condenser. The capecity of a perallel plate condenser, neglecting fringing, may be found from

$$
c=\frac{\epsilon_{0} \times A}{\delta},
$$

where C is capacity in farads, A is the plate area in metera ${ }^{2}$, 6 is the distance between platea in meters, and $\epsilon_{0}=10^{-9} / 36 x$ farads/meter. Since there are two dee and Iiner durfaces, the capacity for a given section will be:

$$
C=2 \frac{8.85 \times A}{8} \mu \mathrm{f}
$$

When the dee and dee stem are treated as a transmission line, the capacity per meter length c / m will be:

$$
\mathrm{c} / \mathrm{M}=\frac{8.85 \times(2 A)}{\delta l}
$$

ℓ is the length of the section along the center axis of the transmisaion line.

Fringing

Before proceeding with the computation of Z_{0}, we must account for the increased capacity of the dee and stem caused by the fringing field. According to Smythe (2) the fringing causes an apparent incresse in the width of the center plate of a threemplate condenaer given by

$$
\Delta y=\frac{2}{x}\left[B \ln \left(\frac{2 B-A}{B-A}\right)-A \ln \left(\frac{A(2 B-A)^{1 / 2}}{B-A}\right)\right]
$$

where ΔY is the apparent inerease in width of the center plate, $2 A$ is the thickness of the center plate, and $2 B$ is the separation of the outer plates.

In Fig. 6, the dotted line outside the perimeter of the dee and stem encloses the apporent surface area which is used in computing Z_{0}. In the

[^0]

Fig. 6. Dee and Stem Showing Fringing Area and Sections of Non-Unfform Line.
section from $d-d^{t}$ to the dee tip, the fringe is $1.6-1 n$. wide. For the remaining flat gection of the dee stem, the fringe is 1.7-in. wide.

Computationa

The constanta which have been computed for several sections of the dee stem are show in Table II. The characteristic impedance data are plotted in Fig. 7.

Table II: Constants of the Sections of Dee and Stem

Section (See Fig. 6)	(Total Area) $2 \mathrm{~A}(\mathrm{In} .)^{2}$	$\begin{gathered} (\text { Separation }) \\ \delta(\text { in. }) \end{gathered}$	$\begin{gathered} \text { (Length) } \\ (1 n .) \end{gathered}$	$\begin{gathered} c / m\left(\text { hunf }^{\prime} /\right. \\ \text { meter }) \end{gathered}$	Average Z_{o} for section $Z_{0}(\Omega)$
A-a;	1522	1.5	11.6	775	4.30
b-b'	2160	1.5	10.0	684	4.87
e-c ${ }^{\text {l }}$	842	1.5	10.0	497	6.71
d $-\alpha^{\text {d }}$	863	1.5	13.0	393	8.48
e-e'	477	1.5	7.2	391	8.48
$\mathrm{f}^{-1}{ }^{+}$	1598	1.5	24.0	393	8.48

The characteristic impedance of the dee atem in the region following section $f f^{\prime \prime}$ is somewhat uncertain. If the stem-to-liner clearance remains constant at 1.5 in. In this region, Z_{0} will decrease as the cross section perimeter of the dee stem increases. A minimum value of Z_{0} occurs at the point where the dee sten becomes fully cylindrical. This minimam vaiue of z_{0} may be eatimated from the equation for the

UNCLASSIFIED
ORNL-LR-DWG 38662

Fig. 7. Characteristic Impedance Along Dee ana Stem.
characteristic impedance of a coaxial line.

$$
\begin{aligned}
\mathrm{U}_{\mathrm{O}} & =60 \ln \frac{D}{\mathrm{~d}} & & D=\text { outside conductor } \mathrm{ID} . \\
& =60 \ln \frac{33}{30}=5.72 \Omega . & & d=\text { inside conductor } \mathrm{OD} .
\end{aligned}
$$

The remainder of the dee stem and the liner is cylindrical and coaxial with a diameters ratio of $\frac{70}{30}$.

$$
\mathrm{z}_{0}=60 \ln \frac{70}{30}=50.8 \Omega .
$$

The characteristic impedance of the region within a few inches of the shorting plane will be considerably less than 50.8 d , however.

Voltage Standing Waves and Current Standing Waves
The standing wave a along the dee stem mast be known to find the required position of the shorting plane; they are also needed for computing power losses. The standing waves may be computed from the trenamiasion lines equations:

$$
\begin{aligned}
& v_{R}=v_{s} \cos \frac{2 \pi s}{\lambda}+j I_{s \delta_{0}} \sin \frac{2 \pi g}{\lambda} \\
& I_{R}=I_{B} \cos \frac{2 \pi g}{\lambda}-\frac{v_{B}}{j Z_{0}} \sin \frac{2 \pi a}{\lambda} .
\end{aligned}
$$

$v_{R}=$ voltage at point of interest along line.
$\mathrm{v}_{\mathrm{g}}=$ voltage some distance " s " down line.
$I_{R}=$ current at point of interest.
$I_{s}=$ current some distance " g " down the line.
$\lambda=$ wave length of the standing wave $=\frac{\mathbf{c}}{\mathbf{f}}$.
In computing the magnitude of the standing waves at various frequencies,
it is assumed that the syatem ia in resonance, and that the voltage on the dee 1.3200 kv peak or 70.7 kr (rme). Since the characteristic impedance of the line is not unfform, the YSW and CSH must be determined at geveral fincremental distances glong the line. The voltage and current standing-wave data for the reaonator are ahown for aeveral frequencies in Table III.

The position of the ahorting plane required for a given frequency is found as follows: when the ahorting plane is very close to the forward end of the cylinder, the length of line in the eylindrical region is approximately eguai to the difference in liner and stem radif, or a length of 20 inches. The characteristic impedance of the region will depend upon the clearance between the shorting plane and the end of the cylinder. At the upper end of the resonator's frequency range, we may solve for the shorting plane position by assuming $S=20 \mathrm{in}$. in the VSW equation and solving the equation for Z_{0}. The voltage node should be located near the outer edge of the shorting plane. The distance between the shorting plane and the front end of the cylinder will be approximately that diatance which will give the required Z_{o}.

At low frequencies, when the shorting plane is near the rear of the eylinder, the cylindrical section behaves like a 50 -ohn comxial line. Fringing will cause low inpedance at the ahorting plane, so that ita electrical length between the center and outer conductor will appear to be very ahort. When the roltage standing wave equation is solved for S in the cylindrical region, 3 will be the reguired aistance from the ahorting bar to the front end of the cylinder. A curve of frequency va shorting-plane position is shown in Fig. 8. The shorting plane position

Table III: Computed Vaines of the Voltage, and Current Standing Waves

$\begin{gathered} \text { Frequency } \\ \mathrm{Mc} / \mathrm{s} \\ \hline \end{gathered}$	Distance from Dee Tip (in.)	$\begin{gathered} \mathrm{V} \\ \text { (iv) } \end{gathered}$	$\begin{gathered} \mathrm{I} \\ (\mathrm{k} a) \end{gathered}$	$\begin{aligned} & z_{0} \\ & (n) \end{aligned}$	Shorting Plane Distance from Front End of Cylinder (in.)
22.5	0.0	70.7	0.00	-	
	10.0	70.1	2.00	4.30	
	20.0	68.3	3.78	4.75	
	30.0	64.9	5.09	6.20	5
	70.0	37.8	8.18	8.25	
	76.0	32.8	8.50	8.25	
	95.0	17.4	9.37	7.00	
18.0	0.0	70.7	0.00	-	
	10.0	70.3	1.57	4.30	
	20.0	69.2	2.99	4.75	
	30.0	67.1	4.05	6.20	
	76.0	46.5	7.13	8.25	
	95.0	36.7	8.23	7.00	
13.0	0.0	70.7	0.00	-	24
	30.0	69.2	3.29	5.10	
	76.0	57.2	5.75	8.25	
	95.0	51.5	6.78	7.00	
7.5	0.0	70.7	0.00	-	78
	95.0	65.7	4.49	5.74	

Fig. 8. Resonant Frequency vs Shorting Bar Position.

Ia given by its distance from the front end of the cylindrical line section.

Power Loges

The I^{2} R power logs may be determined if we know the current densities at every point in the resonant system. The total current at a point along the dee stem may be found on the GSW curve. The current distribution at any point may be found by considering the geometry of the cross section of the dee stem perpendicular to the current path.

Dove to skin effect, the current will be concentrated on the conductor surface. Also, the current will tend to concentrate in the regions of highest capacity. Thus, for the typical cross section in Fig. 9, the current will be assumed to be concentrated in cross sectional area of $(\overline{\mathrm{ab}}+\overline{\mathrm{cd}}+\overline{\mathrm{e}} \mathrm{f}+\overline{\mathrm{gh}}) \cdot \overline{\delta / 2}$, where δ is the akin depth.

Fig. 9

The maximum power lass will occur at the maximum operating frequency, since the current densities in the shorting plane region increase with frequency. The effects of longer line length at lower frequencies are more than offset by the decrease in current and increase in skin depth.

Power Loss Computations

The voltage and current atinding waves are plotted in Fig. 10, and the effective cross section and resistance is plotted in Fig. 11. The data from these curves are tabulsted for several imerements of length in Table IV.

The power losa in each incremental area $15 I^{2} R$. The average value of I^{2} is approximated by the formaia

$$
I^{2}=\frac{I_{1}^{2}+2 I_{2}^{2}+\ldots I_{n}^{2}}{2(n-1)}
$$

where I_{1} and I_{n} are end points, and I_{2} and $I_{3} \ldots \ldots I_{n-1}$ are taken at equally spaced intervals. The valuea required for computation are:

Resistance of copper $=1.72 \times 10^{-8}$ ohm-meter
The skin depth for copper $=\delta=\frac{6.62 \times 10^{-2}}{\sqrt{f}}$ meters.
Therefore, at $22.5 \mathrm{Mc} / \mathrm{s}$, the resistance of a section of the dee or stem is given by
$1.214 \times 1.0^{-3} \frac{(\text { length })}{(\text { width })}$ ohme
According to Table IV, the total I^{2} R power loss to be expected when the reanant aystem operates at $22.5 \mathrm{Mc} / \mathrm{s}$ and 100 kv on the dee is approxfmately 180 kw . This figure is based on uniform current diatribution in the transition region where the dee stem cross section changes from eliciptical to cylindrical. Since the r-f current in this region is quite high, non-uniform current distribution would cause a considerable increase in power loss. Consequently, a study of current distribution was made to determine what power loss increase should be expected.

Fig. 10. VSW and CSW at $22.5 \mathrm{Mc} / \mathrm{sec}$.

Fig. 11. Effective Cross Sectional Area of Current Path.

Table IV: Computation of Power Loasea

	Distance from Dee T1p (In.)	$\begin{gathered} \text { Croge Bection/ } \\ 8 \\ \hline \end{gathered}$	Resiatance per 10 in. length (ohms $\times 105$)	$\begin{gathered} \text { Average } I^{2} \\ (\mathrm{ka})^{2} \end{gathered}$	Power (Ku)
Stem	10	116	10.46	4.1	0.429
	20	95	12.78	14.1	1.800
	30	60	20.23	26.0	5.26
	40	60	20.23	37.2	7.53
	50	60	20.23	47.7	9.65
	60	60	20.23	57.8	11.69
	70	60	20.23	66.5	13.45
	80	68	17.84	75.8	13.52
	90	85	14.28	84.8	12.11
	100	96	12.64	90.4	11.43
	110	170	7.14	94.4	6.74
Liner	110	218	5.57	94.4	5.26
	100	170	7.14	90.4	6.45
	90	92	13.19	84.8	37.19
	80	70	17.34	75.8	13.24
	70	60	20.23	66.5	13.45
	60	60	20.23	57.8	11.69
	50	60	20.23	47.7	9.65
	40	60	20.23	37.2	7.53
	30	60	20.23	26.0	5.26
	20	95	12.78	24.2	1.80
	10	116	10.46	4.1	0.429

Total Power Lobs: 179.5 kw

Study of Churrent Diatribution

An approximate pattern of current distribution at various points along the transition region wes obtained by studying the two dimensional flux pattern of electrodes with similar cross section to that of the stem and liner. The flux density at any point on the electrode surface is proportional to the current density at a corresponding point on the dee-stell cross section.

The flux patterns were obtained from an Analog Field Plotter ${ }^{(3)}$; they are illustrated in Fig. 12.

The Flux Plotter data were used for plotting equipotential innes. Flux lines can easily be determined, since it is known that the flux density along a path perpendicular to the equipotential lines is inversely proportional to the clearance between the equipotential lines. Values of flux for ineremente of cross section were tabulated in Trable V.

The expected power loss for a system with uniform current distribution is proportionsl to the square of the average value of incremental flux. The actual power loss is proportional to the average of the squares of the values of imcremental flux. The increase fin power loss reaulting from non-uniform current distribution can be determined from

According to Table V, the power loas increase for the three erobs sections considered would be:

UNCLASSIFIED
ORNL $=$ R R-OWG. 38975

F1g, 12a. One-Fourth Cross Section Flux Path at Beginning of Prencition Region 80 in. From tip of Dee.

FYg. 12b. Flux Plot, $1 / 4$ Cross Section Midale of Transition Region.

Fig．12e．One－Fourth Cross Section Flux Plot Near End of Transition Region 87 in．Path Length Fron THp of Dee．

Table V: Data from Flux Plots

a) 23%
b) 45%
c) 53

When the reaonator is operating at its maximum frequency, the current enters the ahorting plane from the dee atem in two concentrated regions. The lowest impedance path from the dee stem to the liner is in a radial direction along the ahorting plane. Consequently, the current in the shorting plane probably remains concentrated in two paths as show in Fig. 13. The power Iosa increase in the shorting plane would then be aimilar to that in the nearest section of the tranaition region, or about 50%.

Referring back to Table IV, it can be seen that more than half the total power loss in the resonator occurs in the region near the shorting piane. A 50% increage in the power loss of this region would, therefore, increase the total power loss of the resonator by more than 25%. Therefore, a power loss of 230 kw should be expected when the resonator is operating at $22.5 \mathrm{Mc} / \mathrm{s}$ and 100 kv peak dee voltage.

ORNL-LR-DHG, 38973

Fig. 13. Current Diatribution in Shorting Plane.

OBBERVED MODEL-III CHARACTERTSITCs ${ }^{(4)}$

Tuning Range

A grid dip meter was used for measuring the resonant frequency at various ahorting-plane positions. These data are shown on the curve in Fig. 14. When the plane is $1 / 8-1 n$. from the front end of the cylindrical section, the resonant frequency of the model is $90 \mathrm{Mc} / \mathrm{s}$, which corresponda to a full-scale freq̧uency of 22.5 Mc with the ahorting plane $1 / 2 \mathrm{in}$. from the front end. A reaonant frequency of $30 \mathrm{ke} / \mathrm{s}$ occurs when the shorting plane is 20 in . from the front end. This corresponds to a full-scale resonant frequency of 7.5 Nc with the ahorting plane located 80 nn . from the front end.

A set, of fine-tuning condensers was installed along the periphery of the dee. These trimers can be moved from a position with clearance of approximately 2 in. to a position with complete contact with the dee periphery. The gysten may be tuned from 88.5 to $90 \mathrm{Mc} / \mathrm{s}$ by moving the trimmers from 1/4-1n. clearance to 1-1/2-in. clearance.

Measurement of VSH
Several holes were cut in the liner so that a WMM probe could be inserted at points along the dee. The data obtained by VPMM measurements are plotted in Fig. 15 to show the VSW on the dee when the aystem is operating at $90 \mathrm{kc} / \mathrm{s}$. The voltage on the accelerating edge of the dee

[^1]

Fig. 14. Measured and Computed Frequency vs S.P. Position.

Fig. 15. VSW on Model III.
varies from 100 kv at large radius to about 98.5 kv at the center.
In FIg. 16, the observed VSW data are plotted along with the predicted VSW data. The deviation from the predicted curve shows that the maximum frequency of the model is lower than that which was expected.

Direct Power Input Measurement

Direct power input measurements were made on the model by placing In the input loop a directional-coupler type wattmeter which had been callbrated at a power level of 7.4 watts with a voltmeter and known load resistor. The wattmeter can read either forward or reflected power. The difference of the two readings is equivalent to the power loss in the resonator. The following data were obtained in a typical power measurement:

$$
\begin{aligned}
& \text { Frequency }=89.0 \mathrm{Mc} / \mathrm{s} \\
& \text { Dee voltage }=248 \mathrm{volts} \mathrm{rms} \\
& \text { Power loss }=7.89 \mathrm{watts} .
\end{aligned}
$$

The power loss on the full-scale machine operating at $100-\mathrm{kv}$ peak dee voltage and a frequency of $22.3 \mathrm{Mc} / \mathrm{s}$ can be found by the relation:

$$
P_{(\text {full scale })}=\left(\frac{P_{\text {model }}}{2}\right)\left(\frac{V_{\text {full scale }}}{V_{\text {model }}}\right)^{2} .
$$

The factor 2 enters because the model operates at four times the full-scale frequency, and skin depth varies with the square root of Prequency. Thus the power loss in the full-scale machine, as predicted by that in the model, is 320 kw .

An earlier power measurement was made by the above method; however, a full-scale power loss of 470 kw was predicted. This high value was blamed on excessive use of solder in the fabrication of the model. A

Fig. 16. Measured and Predicted VSw.
new dee was fabricated by improved soldering techniques; the effect on power requirements can readily be aeen.

Conclusion

The power loss in the model is neariy 50% greater than the predicted loss of 230 kw . Some extra lose is due to poor contact and solder fointa. The discrepancy between the predicted and observed VSW curves, however, shows that the characterietic impedance in the dee region is somewhat lower than the predicted value. Consequently, the current density in the shorting-plane region would be higher than the predicted value, and some increase in power loss will reault.

Trprovementa in the transition-region geometry will improve current distribution, and increase the resonator frequency range. Some reduction of Z along the alifiptical section of the dee atem will help reduce the shorting-plane current. With these corrections, it ahould be possible to approach the predicted power loss of 230 kr .

[^0]: ${ }^{2}$ Smythe, W. R., Static and Dymaie Electricity, lst Edition, MeGraw-Hilil, Hew York, p. 104.

[^1]: The data of this section were obtained from the model as shown in
 Figs. If and 5.

