
LLNL-CONF-480472

Performance and Performance
Engineering of the Community
Earth System Model

P. H. Worley, A. P. Craig, J. M. Dennis, A. A.
Mirin, M. A. Taylor, M. Vertenstein

April 14, 2011

Supercomputing 2011
Seattle, WA, United States
November 12, 2011 through November 18, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Performance and Performance Engineering of the
Community Earth System Model∗

Patrick H. Worley
Oak Ridge National

Laboratory
P.O. Box 2008

Oak Ridge, TN 37831-6173
worleyph@ornl.gov

Anthony P. Craig
National Center for

Atmospheric Research
P.O. Box 3000

Boulder, CO 80307-3000
tcraig@ucar.edu

John M. Dennis
National Center for

Atmospheric Research
P.O. Box 3000

Boulder, CO 80307-3000
dennis@ucar.edu

Arthur A. Mirin
Lawrence Livermore National

Laboratory
P.O. Box 808

Livermore, CA 94551
mirin@llnl.gov

Mark A. Taylor
Sandia National Laboratories

PO Box 5800
Albuquerque, NM 87185-0370

mataylo@sandia.gov

Mariana Vertenstein
National Center for

Atmospheric Research
P.O. Box 3000

Boulder, CO 80307-3000
mvertens@ucar.edu

ABSTRACT
The Community Earth System Model (CESM), released in
June 2010, incorporates new physical process and new nu-
merical algorithm options, significantly enhancing simula-
tion capabilities over its predecessor, the June 2004 release of
the Community Climate System Model. CESM also includes
enhanced performance tuning options and performance porta-
bility capabilities. This paper describes the performance
engineering aspects of the CESM and reports performance
and performance scaling on both the Cray XT5 and the
IBM BG/P for four representative production simulations,
varying both problem size and enabled physical processes.
The paper also describes preliminary performance results
for high resolution simulations using over 200,000 processor
cores, indicating the promise of ongoing work in numerical
algorithms and where further work is required.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Earth and at-
mospheric sciences; D.2.m [Software Engineering]: Mis-
cellaneous—performance engineering

General Terms
Performance

∗This work has been co-authored by contractors of the U.S.
Government under contracts No. DE-AC05-00OR22725 and
No. DE-AC52-07NA27344, and is released as LLNL Report
LLNL-CONF-480472. Accordingly, the U.S. Government re-
tains a nonexclusive, royalty free license to publish or repro-
duce the published form of this contribution, or allow others
to do so, for U.S. Government purposes.

1. INTRODUCTION
The Community Earth System Model (CESM) is the latest
in a series of climate models that have been developed by and
maintained at the National Center for Atmospheric Research
(NCAR), with contributions from external researchers funded
by the U.S. Department of Energy (DOE), National Aero-
nautics and Space Administration and National Science Foun-
dation [4]. CESM was released in June 2010. This was
the first major public release in 6 years, since version 3 of
the Community Climate System Model (CCSM3) in June
2004 [2]. In constrast to CCSM3, the CESM contains op-
tions for a terrestrial carbon cycle and dynamic vegetation,
atmospheric chemistry and aerosol dynamics, and ocean ecosys-
tems and biogeochemical coupling, all necessary for an earth
system model, as distinct from a purely physical model like
the CCSM3. (Version 4 of the CCSM (CCSM4) was released
in April, 2010, but this was primarily a prerelease of the new
CESM physical models and coupler infrastructure [12]. In
particular, CESM is a superset of the CCSM4 in that it can
be configured to run the same science scenarios as CCSM4.)

Investigating the impact of climate change is a computa-
tionally expensive process, requiring significant computa-
tional resources [22]. Climate is a statistical science and
a single experiment requires multiple realizations, typically
5 to 10. However, making progress on this problem still
requires achieving reasonable throughput rates for the in-
dividual realizations when integrating out to hundreds or
thousands of simulation years. Climate models employ time-
accurate numerical methods, and exploitation of significant
parallelism in the time-direction has yet to be demonstrated
in production climate models. For the CESM this leaves
functional parallelism between the component models, par-
allelizing over the spatial dimensions, and loop-level par-
allelism exploited within a shared-memory multi-processor
compute node or a single processor. The size of the spa-
tial computational grids that can be used and still achieve
the required throughput rates for long time integrations is
small compared to other peta- and exa-scale computational
science applications. As a consequence the maximum num-
ber of processors that can be applied in a typical (single

realization) production run is also relatively small. Parallel
algorithms need to be highly optimized for even a modest
number of computational threads to make best use of the
limited available parallelism.

High resolution exploratory science runs are also vital for
validating model extensions and for preparing for next gen-
eration production problem scenarios and next generation
computing architectures. Thus more traditional parallel scal-
ability out to very large thread counts is equally important.

Finally, CESM is a community code that is evolving con-
tinually to evaluate and include new science. Thus it has
been very important that the CESM be easy to maintain
and port to new systems, and that CESM performance be
easy to optimize for new systems or for changes in problem
specification or processor count [10].

In this paper we give an overview of the performance en-
gineering aspects of CESM, including description of perfor-
mance optimization options and overall performance opti-
mization methodology. We then describe performance re-
sults for four production-like simulations on the Cray XT5
system sited at Oak Ridge National Laboratory and the IBM
BG/P system sited at Argonne National Laboratory. Finally
we describe performance results for two experimental high
resolution simulations, one using the current default numer-
ical methods and one using a new, more scalable, numerical
method for the atmosphere that is expected to become the
default method in the near future.

2. CESM
CESM consists of a system of five geophysical component
models: atmosphere, land, ocean, sea ice, and ice sheet.
Two-dimensional boundary data (flux and state informa-
tion) are exchanged periodically through a coupler compo-
nent. The coupler coordinates the interaction and time evo-
lution of the component models, and also serves to remap
the boundary-exchange data in space [5]. The atmosphere
model is CAM, the Community Atmosphere Model [3, 21].
The ocean model is POP, the Parallel Ocean Program [11,
25]. The land model is CLM, the Community Land Model [8,
23]. The sea ice model is CICE, the Community Ice Code [1,
15, 16]. The ice sheet model is CISM, the Community Ice
Sheet Model [24].

CAM, POP, CLM, and CICE are all parallel models, sup-
porting both distributed memory (MPI) and shared mem-
ory (OpenMP) parallelism. The parallel implementations
are based for the most part on decompositions of the asso-
ciated spatial domains. CISM, the most recent addition to
CESM, is still a serial code and runs as a single process,
but with an interface that allows it to run concurrently with
the other components. The coupler is itself a parallel code,
supporting MPI, but not OpenMP, parallelism.

The ocean model can run concurrently with all of the other
geophysical component models. The sea ice and land models
can run concurrently with respect to each other, but for sci-
ence reasons they must run sequentially with respect to the
atmosphere model. This limits the fraction of time when all
CESM components can execute simultaneously. The cou-
pler runs both sequentially between components and con-

currently with components, depending on the work to be
done.

The frequency of atmosphere-land coupling and atmosphere-
sea ice coupling is relatively high, ranging from 48 to 96
times per simulation day for the simulations examined here.
In contrast, the atmosphere and ocean models exchange data
once per simulation day for the example production simula-
tions and 4 times per day for the high resolution simulations.
Currently the ice sheet model coupling is one-way, receiving
surface data from the land once per simulated day and not
returning anything.

In the first three versions of CCSM each component model
and the coupler were run as separate executables assigned to
nonoverlapping processor sets. As of CESM (and CCSM4),
the entire system is now run as a single executable and there
is greatly increased flexibility to select the component pro-
cessor layout. It is typical for the atmosphere, land, and sea
ice model to run on a common set of processors, while the
ocean model runs concurrently on a disjoint set of proces-
sors. This is not a requirement, however, and CESM can
now run with all components on disjoint processor subsets,
all on the same processors, or any combination in between.

3. PERFORMANCE
Each component model has its own performance character-
istics, and the coupling itself adds to the complexity of the
performance characterization [9]. The first step in CESM
performance optimization is to determine the optimized per-
formance of each of the component models for a number of
different processor counts for the given platform and prob-
lem specification. This performance information is then used
to determine how to assign processors to components to
maximize CESM throughput.

Each CESM component model is also a parallel application
code in its own right and was developed for the most part
independently from the other component models. In conse-
quence, each has its own approaches to performance engi-
neering. These are discussed in turn.

3.1 CAM
CAM is characterized by two computational phases: the
dynamics, which advances the evolutionary equations for
the atmospheric flow, and the physics, which approximates
subgrid phenomena such as precipitation processes, clouds,
long- and short-wave radiation, and turbulent mixing. Sep-
arate data structures and parallelization strategies are used
for the dynamics and physics. The dynamics and physics are
executed in turn during each model simulation timestep, re-
quiring that some data be rearranged between the dynamics
and physics data structures each timestep.

CAM includes multiple compile-time options for computing
the dynamics, referred to as dynamical cores or dycores. The
default dycore for use with CESM is a finite-volume method
(FV) formulated originally by Lin and Rood [18] that uses
a tensor-product longitude × latitude × vertical-level com-
putational grid over the sphere. CAM also supports less
structured but more uniform grids such as cubed-sphere and
icosahedral-like tesselations of the sphere and several dy-
cores which can use these grids are being evaluated in CAM.

The first of these to reach sufficient maturity for inclusion
in the CESM uses the spectral element (SE) method on a
cubed-sphere grid [7]. The SE dycore is included in our high
resolution performance experiments.

The parallel implementation of the FV dycore is based on
two-dimensional tensor-product “block” decompositions of
the computational grid into a set of geographically contigu-
ous subdomains. A latitude-vertical decomposition is used
for the main dynamical algorithms and a longitude-latitude
decomposition is used for a Lagrangian surface remapping
of the vertical coordinates and (optionally) geopotential cal-
culation. Halo updates are the primary MPI communica-
tions required by computation for a given decomposition.
OpenMP is used for additional loop-level parallelism.

CAM physics is based on vertical columns, and dependen-
cies occur only in the vertical direction. Thus computations
are independent between columns. The parallel implemen-
tation of the physics is based on the assignment of columns
to (MPI) processes, and then to (OpenMP) threads within a
process, representing a fine-grain longitude-latitude decom-
position.

Transitioning from one grid decomposition to another, for
example, latitude-vertical to longitude-latitude or dynamics
to physics, may require that information be exchanged be-
tween processes. If the decompositions are very different,
then every process may need to exchange data with every
other process. If they are similar, each process may need to
communicate with only a small number of other processes
(or possibly none at all).

The computational cost in the physics is not uniform over
the vertical columns, with the cost for an individual col-
umn depending on both geographic location and on simula-
tion time. A number of predefined physics decompositions
are provided that attempt to minimize the combined effect
of load imbalance and the communication cost of mapping
to/from the dynamics decompositions.

Common performance optimization options include [19, 20,
26]:

• the number of OpenMP threads per process;
• the number of processes to use in the dynamics latitude-

vertical decomposition, in the dynamics
longitude-latitude decomposition, and in the physics
longitude-latitude decomposition (these need not be
the same);

• for a given process count, the two-dimensional virtual
processor grid used to define a dynamics decomposi-
tion;

• the physics load balancing option (and decomposition);
and

• the MPI communication algorithms and protocols used
for each communication phase, e.g. halo update or po-
tentially nonlocal communication operators for map-
ping between decompositions.

The number of tuning options is relatively large for CAM,
but reasonable defaults have been identified for common sci-
ence scenarios, grid sizes, thread counts, and target archi-
tectures. Further optimization begins with these defaults.

3.2 CLM
CLM is a single column (snow-soil-vegetation) model of the
land surface, and in this aspect it is embarassingly parallel.
When using the FV dycore in the atmosphere model, CLM
typically uses the same horizontal computational grid as the
atmosphere. However, CESM supports the option of CLM
using a totally different grid.

Spatial land surface heterogeneity in CLM is represented as
a nested subgrid hierarchy in which grid cells are composed
of multiple landunits, landunits are composed of multiple
snow/soil columns, and snow/soil columns are composed
of multiple plant functional types [13, 14]. Grid cells are
grouped into blocks of nearly equal computational cost, and
these blocks are subsequently assigned to MPI processes.
When run with MPI-only parallelism, each process has only
one block. When OpenMP is enabled, the number of blocks
per process is by default set to the maximum number of
OpenMP threads available. This number can be overridden
at runtime.

A single load balancing algorithm is supported that has
proven to work well across a variety of computer architec-
tures and problem specifications. The common performance
optimization options are:

• the number of OpenMP threads per process;
• the number of grid cell blocks assigned to each process

The default of one block per computational thread is typ-
ically optimal. Moreover, for a fixed core count, MPI-only
often outperforms hybrid MPI/OpenMP runs. As described
later, support for OpenMP is still important when optimiz-
ing performance of CESM as a whole.

3.3 POP
POP approximates the three-dimensional primitive equa-
tions for fluid motions on a generalized orthogonal computa-
tional grid on the sphere. Each timestep of the model is split
into two phases. A three-dimensional“baroclinic”phase uses
an explicit time integration method. A “barotropic” phase
includes an implicit solution of the two-dimensional surface
pressure using a preconditioned conjugate gradient solver.

The parallel implementation is based on a two-dimensional
tensor-product “block” decomposition of the horizontal di-
mensions of the three-dimensional computational grid. The
vertical dimension is not decomposed. The amount of work
associated with a block is proportional to the number of
grid cells located in the ocean. Grid cells located over land
are “masked” and eliminated from the computational loops.
OpenMP parallelism is applied to loops over blocks assigned
to an MPI process. If specified at compile time, the num-
ber of MPI processes and OpenMP threads will be used to
choose block sizes such that enough blocks are generated for
all computational threads to be assigned work. The block
sizes can also be specified manually.

The parallel implementation of the baroclinic phase requires
only limited nearest-neighbor MPI communication (for halo
upates) and performance is dominated primarily by com-
putation. The barotropic phase requires both halo updates
and global sums (implemented with local sums and a call
to MPI Allreduce for a small number of scalars) for each

iteration of the conjugate gradient algorithm. The parallel
performance of the barotropic phase is dominated by the
communication cost of the halo updates and global sum op-
erations [17],

Two different approaches to domain decomposition are con-
sidered here: “cartesian” and “spacecurve” [25]. The carte-
sian option decomposes the grid onto a two-dimensional vir-
tual processor grid, and then further subdivides the local
subgrids into blocks to provide work for OpenMP threads.
The spacecurve option begins by eliminating blocks having
only “land” grid cells. A space-filling curve ordering of the
remaining blocks is then calculated, and an equipartition of
this one-dimensional ordering of the blocks is used to assign
blocks to processes.

The common performance optimization options are:

• the number of OpenMP threads per process;
• cartesian or spacecurve decomposition strategy; and
• the block size

3.4 CICE
The CICE sea ice model is formulated on a two-dimensional
horizontal grid representing the earth’s surface, typically us-
ing the same horizontal grid as POP. An orthogonal vertical
dimension exists to represent the sea ice thickness. Similar
to POP, the parallel implementation decomposes the hori-
zontal dimensions into two-dimensional blocks. The verti-
cal dimension is not decomposed. CICE exploits MPI and
OpenMP parallelism over the same dimension, namely grid
blocks. Currently the CICE decomposition is static and set
at initialization. Like POP, a block size will be picked based
on the total number of computational threads, or a block
size can be specified manually.

The relative cost of computing on the sea ice grid varies
significantly both spatially and temporally over a climate
simulation because the sea ice distribution is changing con-
stantly. This has a huge impact on the load balance of the
sea ice model in a statically decomposed model. In general
the load balance will be optimized if grid cells from varied
geographical locations are assigned to each process. CICE
also performs regular and frequent halo updates with a resul-
tant performance cost that also depends on the assignment
of grid cells to processes.

Optimal static load balance is achieved by balancing the
computational load imbalance and the communication cost
of halo updates. In this study we consider two decomposi-
tion algorithms: a simple two-dimensional cartesian decom-
position that groups together strips of neighboring gridcells
that span relatively large swaths of latitude, and a space-
filling curve approach similar to that used in POP but with
weights to identify where sea ice is more likely to occur [16].
We will again refer to these as “cartesian” and “spacecurve”,
respectively. If information is known about the likely dis-
tribution of sea ice, perhaps from an earlier simulation, this
information can be exploited to improve the performance of
the space-filling curve approach.

The common performance optimization options are:

• the number of OpenMP threads per process;

• cartesian or spacecurve decomposition strategy; and
• the block size

3.5 CISM
In current CESM configurations CISM uses a low resolution
computational grid, and the computational cost of CISM
is handled easily with one process. In this study CISM
plays little role in determining model performance. This will
change in the near future when more accurate, but more ex-
pensive, model formulations are introduced and when high
resolution grids and two-way, higher frequency coupling are
used. A parallel implementation of CISM is being developed
to handle this increased computational cost.

3.6 Coupler
The CESM coupler is responsible for several actions, includ-
ing rearranging data between different process sets, inter-
polating (mapping) data between different grids, merging
data from different components, flux calculations, and di-
agnostics. Many of the algorithms are trivially parallel and
require no communication between grid cells.

The coupler receives grid information in parallel at runtime
from all of the model components. Domain decompositions
are determined on the fly based upon the model resolutions,
the component model decompositions, and the processors
used by the coupler. Both rearrangement and mapping re-
quire interprocess communication, and the choice of MPI
communication algorithm and protocol used to implement
these affect performance. Performance is primarily deter-
mined by the number of processes assigned to the coupler,
but the process counts and the placements of these com-
ponents relative to the coupler processes can also have an
impact. The coupler is the one component that can not
reliably be optimized separately from the full CESM.

To summarize, the performance optimization options are:

• MPI communication algorithms and protocols used in
tranferring data to and from the geophysical compo-
nents; and

• number and layout of processes used for each compo-
nent.

Note that OpenMP parallelism has been introduced in a
development version of the coupler, but has not yet been
included in a CESM release and was not used in these stud-
ies. As performance of the other components benefited from
exploiting OpenMP parallelism on the multi-core node ar-
chitectures of the target systems, we expect similar perfor-
mance improvements in the coupler. With the possible ex-
ception of the largest simulation, coupler performance was
not however a limiting factor in the current study. The
qualitiative results described here should be unchanged af-
ter OpenMP parallelism is implemented in the coupler.

3.7 Parallel I/O
I/O is required for all components, and an efficient parallel
I/O subsystem is critical. To address this need for CESM,
a parallel I/O library called PIO has been developed and
included in the release [6]. Each component specifies the
number and location of I/O processes (starting process and

stride between processes using the component process order-
ing) and what“standard”I/O library to use (currently netcdf
or pnetcdf). PIO takes care of rearranging data to/from the
I/O processes.

Primary performance optimization options include

• for each component, number and layout of I/O pro-
cesses and underlying I/O library; and

• MPI communication algorithms and protocols used in
communication to/from the I/O processes.

3.8 CESM
The methodology for optimizing CESM performance is as
follows. For each problem specification and target archi-
tecture, generate a scaling curve or table of optimized per-
formance for each component (for some appropriate range
of computational threads). Based on an upper bound on
the total number of processor cores or on an upper bound
on total runtime, then choose a processor core count for
each component and a layout that should satisfy the re-
quirements. If successful, then try variants of this feasible
configuration, to see if performance can be further improved
without increasing the number of processor cores used, or
to see if performance can be maintained while decreasing
the processor core count. If unsuccessful, more conservative
initial configurations are examined until a feasible config-
uration is identified, if possible. As part of these empirical
investigations a resonable processor count and layout for the
coupler must also be determined.

Based on the timing dependencies between the models dis-
cussed earlier, we typically start with a configuration where
the ocean and the other components are assigned disjoint
sets of processors, where the sea ice and land are assigned
disjoint sets of processors, and where the atmosphere and sea
ice and the atmosphere and land share processors. However,
there can be problems with this layout on the current archi-
tectures. If components share multi-core processors, they
typically must use the same number of OpenMP threads
per processor or one of the components will leave processor
cores idle when running. This is the reason that OpenMP
is useful in CLM even when MPI-only is more efficient for a
given core count. When sharing multi-core processors with
the atmosphere, for which OpenMP can be very important,
processor cores would be idle when the land was running if
OpenMP threads were not used. Even if not as efficient as
MPI-only on all of the cores, the land is still faster when
using OpenMP in this situation than it would be if cores
were left idle.

Other problems can arise for very large problem sizes, where
components can not share processors because of memory
requirements. While the resulting fully concurrent layouts,
i.e. components not sharing processors, are inefficient, they
still allow the problem to be solved.

The above methodology will be demonstrated in the results
sections 5 and 6

4. TARGET PLATFORMS
CESM performance was evaluated on two Leadership Com-
puting Facility (LCF) platforms, the Oak Ridge LCF Cray

XT5 JaguarPF system and the Argonne LCF IBM Blue
Gene/P (BG/P) Intrepid system.

Each of the 18,688 compute nodes in the XT5 system con-
sists of two hex-core AMD Opteron 2435 (Istanbul) pro-
cessors running at 2.6 GHz, for a total of 224,256 cores.
Each compute node also has 16GB of DDR2-800, and nodes
are connected with Cray SeaStar 2+ routers in a three-
dimensional torus geometry.

Each of the 40,960 nodes in the BG/P system consists of
a quad-core processor, for a total of 163,840 cores. Each
core is 850 MHz PowerPC 450 32-bit microprocessor with a
64-bit dual-pipe floating point multiply-add unit. Compute
nodes are connected via six networks, four of which are of
importance to user applications: a three-dimensional torus,
a global collective network, a global barrier and interrupt
network, and 10 Gigabit Ethernet (between I/O nodes).

The experiments described in Section 5 took place in Septem-
ber and October, 2010. The first set of experiments in Sec-
tion 6 (for simulation IIIa) took place during the summer of
2010. The second and third experiments in Section 6 (for
the dycore comparison and for simulation IVa) took place
during February and March of 2011.

5. PRODUCTION RESOLUTION SIMULA-
TIONS

We begin with 4 relatively small problems, representing typ-
ical production simulations (for a single realization). We
examine performance for two different computational grid
resolutions for the atmosphere and land:

I) 1.9 × 2.5 degree resolution horizontal grid (144 × 96)
II) 0.94×1.25 degree resolution horizontal grid (288×192)

both coupled with ocean and sea ice using a 1 degree res-
olution horizontal computational grid (384 × 320) and 60
vertical levels for the ocean.

For each of these two grid resolutions we examine perfor-
mance for two problem scenarios:

a) B1850 CN: all active components, pre-industrial, with
CN (Carbon Nitrogen) in CLM

b) B1850 CAM5: all active components, pre-industrial,
“CAM5” physics

We will not attempt to describe the scientific differences be-
tween these two problems here. The significant performance-
related differences are as follows.

• The atmosphere computational grid has 26 vertical
levels in B1850 CN and 30 vertical levels in B1850 CAM5,
affecting the cost of both CAM dynamics and CAM
physics.

• The number of tracers advected in the atmosphere dy-
namics and communicated between the physics and
the dynamics during any data rearrangement is 3 in
B1850 CN and 25 in B1850 CAM5.

• In B1850 CAM5 as compared to B1850 CN, a number
of physical processes are computed more accurately
and new processes are represented. The computational
cost of column physics in B1850 CAM5 is 6-7 times
greater than that in B1850 CN on both the XT5 and
BG/P.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
im

ul
at

io
n

Y
ea

rs
 p

er
 D

ay

Processor Cores

Cray XT5
 Ia
 Ib
 IIa
 IIb

Figure 1: Best observed CESM performance for sim-
ulations Ia, Ib, IIa, IIb on the XT5

• Including the Carbon-Nitrogen cycle (B1850 CN) in-
creases the cost of the land model by approximately
40% on the XT5 and by 25% on the BG/P as com-
pared to B1850 CAM5.

Using the above enumerations, we refer to the 4 simulations
as Ia, Ib, IIa, and IIb.

Best observed performance for the four benchmark problems
for a range of processor core counts on the XT5 and BG/P
is portrayed in Figures 1 and 2, respectively. The metric is a
throughput rate, so larger is better. From these data a few
immediate results are obvious.

• The (7 times) more expensive CAM5 physics, residing
as it does in the embarrassingly parallel atmospheric
physics, degrades performance by less than a factor
of 2 at large processor core counts. The performance
difference would be even lower if the increase in the
number of tracers and number of vertical levels did
not increase the cost of the atmospheric dynamics as
well.

• The low latency and fast global reductions that char-
acterize the BG/P (as compared to the XT5) allows in-
creased performance scalability. However, this primar-
ily delays or eliminates performance “rollover” rather
than achieving any significant absolute performance
improvement. In particular, the BG/P performance
never catches up with that on the XT5 for these bench-
mark problems.

Figure 3 describes individual component scaling for the Ia
benchmark on the XT5 in terms of average number of sec-
onds per simulation day. A log-log scale is used because of
the large range in the data being plotted. Here the ocean is
the most expensive single component. However, what mat-
ters is the cost of the ocean relative to the combined times
for the atmosphere, the sea ice, and the coupler. Because
of this, the ocean is not necessarily the performance limiter
at scale. Note that in Fig. 3 the data for a given processor
core count is the minimum over all experiments that use this
number of cores, including possibly MPI-only or 1, 2, 3, or
6 OpenMP threads per process. Also, data for process core
counts for which performance is worse than that for smaller
processor core counts are not plotted except for the largest
core counts. Because nonoptimal processor core counts or

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
im

ul
at

io
n

Y
ea

rs
 p

er
 D

ay

Processor Cores

IBM BG/P
 Ia
 Ib
 IIa
 IIb

Figure 2: Best observed CESM performance for sim-
ulations Ia, Ib, IIa, IIb on the BG/P

OpenMP thread counts per process for a given component
may be useful when optimizing CESM performance, these
“omitted” data are still important in practice.

Figure 6 is a graph of the time spent in each geophysical
component for the CESM performance data for simulation
Ia in Fig. 1. Note that the x-axis is different from that in
Fig. 3. When optimizing CESM performance, the resources
allocated to a component may not increase monotonically as
a function of total CESM process core count. The goal is to
balance the ocean cost with that of the sum of atmosphere,
sea ice, and coupler costs. (Meaningful timing data for the
coupler is difficult to obtain directly and is omitted here.).

The following cartoon depicts the layout for the 2112 pro-
cessor core count configuration for simulation Ia on the Cray
XT5. The number of cores used is listed per component, as
well as the number of MPI tasks and number of OpenMP
threads per task (tasks×threads). The time direction indi-
cates the relative amount of time spent in each component,
and whether components run sequentially or concurrently
with each other. Note that the coupler will sometimes run
sequentially with the ocean, for example when the ocean
and atmosphere are communicating, and sometimes concur-
rently. The amount of time indicated for the coupler in-
cludes time in which the other components are waiting for
the ocean.

For comparison, Figures 4 and 7 are component performance
scaling for problem Ia on the BG/P and time spent in each

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 16 32 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

Cray XT5, Simulation Ia
 Atmosphere

 Ocean
 Sea Ice

 Land

Figure 3: Best observed component performance for
simulation Ia on the XT5

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 16 32 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

IBM BG/P, Simulation Ia
 Atmosphere

 Ocean
 Sea Ice

 Land

Figure 4: Best observed component performance for
simulation Ia on the BG/P

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 16 32 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

Cray XT5, Simulation IIb
 Atmosphere

 Ocean
 Sea Ice

 Land

Figure 5: Best observed component performance for
simulation IIb on the XT5

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

Cray XT5, Simulation Ia
 CESM Total

 Atmosphere
 Ocean

 Sea Ice
 Land

Figure 6: Component timing for best observed
CESM performance for simulation Ia on the XT5

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

IBM BG/P, Simulation Ia
 CESM Total

 Atmosphere
 Ocean

 Sea Ice
 Land

Figure 7: Component timing for best observed
CESM performance for simulation Ia on the BG/P

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

Cray XT5, Simulation IIb
 CESM Total

 Atmosphere
 Ocean

 Sea Ice
 Land

Figure 8: Component timing for best observed
CESM performance for simulation IIb on XT5

component for the CESM performance data for simulation Ia
in Fig. 2, respectively. Qualitatively there is little apparent
difference between these results and those on the XT5. The
curves simply appear to be shifted to the right. In particu-
lar, good configurations still balance ocean cost with that of
the atmosphere, sea ice, and coupler. The fact that the at-
mosphere and sea ice does not increase in cost at the largest
processor core counts allows performance to continue scaling
on the BG/P for this problem. For the CESM configuration
using 8,192 total cores, atmosphere used 6,656 (1664 × 4),
sea ice used 5,120 (1280×4), and ocean used 1,536 (385×4).
For the largest configuration, using 14,464 cores, atmosphere
was unchanged but sea ice now used 10,240 (2560 × 4) and
ocean used 3,840 (960 × 4).

In another comparison, Figures 5 and 8 are component per-
formance scaling for problem IIb on the XT5 and time spent
in each component for the CESM performance data for sim-
ulation IIb in Fig. 1, respectively. Here the atmosphere
is the most expensive component, as would be expected
from the larger grid and the 7 times more expensive atmo-
spheric physics. For the largest configuration examined, us-
ing a total of 11,712 processor cores, atmosphere used 11,520
(1920×6), sea ice used 9,216 (1536×6), and ocean used 192
(32 × 6). Overall CESM performance for simulation IVb
was determined largely by that of the atmosphere and sea
ice components.

6. HIGH RESOLUTION SIMULATIONS
We examine performance for 2 large simulations. The first
represents the finest resolution under consideration for use
with the FV dynamical core.

III) 0.23 × 0.31 degree resolution horizontal grid (1152 ×

768)

This is coupled with ocean and sea ice using a 0.1 degree
resolution horizontal computational grid (2400 × 3600) and
42 vertical levels for the ocean. We consider only B1850 CN,
and refer to this problem as IIIa. We also have data only
from the XT5, and only an approximate optimization of the
CESM configurations was attempted.

Figure 9 shows the component performance scaling for prob-
lem IIIa on the XT5. Figure 10 shows the time spent in each
component for the best observed CESM performance for a
given total number of processor cores. For the maximum
configuration (31,488 processor cores, achieving a through-
put rate of 2.7 simulated years per day) the atmosphere used
19,968 cores (3328×6), sea ice used 21,600 (3600×6, the first
19,968 shared with the atmosphere) and ocean used 9,120
(1520 × 6). Performance scalability is an issue for all of the
components except the land at these fine resolutions. Signif-
icant efforts are being applied to improve the performance
of all components, and alternative, more scalable, numerical
methods are being investigated. The atmosphere is the first
component for which a scientifically acceptable alternative
approach has been developed.

Figure 11 is a graph of throughput rates for CAM when us-
ing the FV dycore and when using a spectral element dycore
(SE) configured to run on a cubed-sphere grid. Unlike the
longitude-latitude grid used by the FV dycore, the cubed-
sphere grid does not cluster grid points at the poles. This

 8

 16

 32

 64

 128

 256

 512

 128 256 512 1024 2048 4096 8192 16384 32768

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

Cray XT5, Simulation IIIa
 Atmosphere

 Ocean
 Sea Ice

 Land

Figure 9: Best observed component performance for
simulation IIIa on the XT5

 16

 32

 64

 128

 256

 4096 8192 16384 32768

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

Cray XT5, Simulation IIIa
 CESM Total

 Atmosphere
 Ocean

 Sea Ice
 Land

Figure 10: Component timing for best observed
CESM performance for simulation IIIa on the XT5

allows for a number of numerical and parallel algorithm sim-
plifications that improve performance scaling. For example,
the parallel implementation of the SE dycore uses only a
single decomposition of the horizontal extent of the com-
putational grid. The data plotted in Fig. 11 are from a
standalone test of CAM that is similar, but not identical, to
the atmosphere component scalings presented in the previ-
ous figures. The SE grid ne120np4 has 777,602 grid points,
as compared to 884,736 for the 0.23 × 0.31 FV grid, and
is considered comparable in terms of the resulting solution
accuracy. As can be seen, the SE dycore performance and
performance scaling is much better than that of the FV dy-
core. The simpler communication requirements also maps
very well to the BG/P architecture, and CAM using the SE
dycore on the BG/P is as fast as on the XT5 at scale. This
is without the more expensive CAM5 physics, however.

Our final large simulation uses the SE dycore and an even
larger horizontal grid for the atmosphere:

IV) ne240np4 horizontal grid (3, 110, 402 gridpoints with
an approximately 0.125 degree resolution)

This is coupled with the same 0.1 degree ocean/sea ice grid
used before. We again consider only B1850 CN, and refer to
this problem as IVa. For this problem we have performance
data for a selection of processor core counts up to nearly the
full XT5 system size. Throughput rates for these runs are

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

S
im

ul
at

io
n

Y
ea

rs
 p

er
 D

ay

Processor Cores

Cray XT5
 SE ne120np4
 FV 0.23x0.31

IBM BG/P
 SE ne120np4
 FV 0.23x0.31

Figure 11: Best observed tmosphere performance
using FV and SE dycores for simulation IIIa on the
XT5 and BG/P

 0.5

 1

 1.5

 2

 2.5

 3

 0 50000 100000 150000 200000

S
im

ul
at

io
n

Y
ea

rs
 p

er
 D

ay

Processor Cores

Cray XT5
 IIIa
 IVa

Figure 12: Best observed CESM performance for
simulations IIIa, IVa on the XT5

 4

 8

 16

 32

 64

 128

 256

 32768 65536 131072

A
ve

ra
ge

 S
ec

on
ds

 p
er

 S
im

ul
at

io
n

D
ay

Processor Cores

Cray XT5, Simulation IVa
 CESM Total

 Atmosphere
 Ocean

 Sea Ice
 Land

Figure 13: Component timing for best observed
CESM performance for simulation IVa on the XT5

plotted in Figure 12. For comparison, the throughput rates
for simulation IIIa are also included.

While there is still work to do, solving problem IVa (with
its 4 times larger horizontal grid) with the SE dycore took
the same amount of time as solving problem IIIa with FV.
For 95,518 cores, the simulation achieved a rate of 2.3 sim-
ulated years per day, using 86,400 cores in the atmosphere
(14400× 6), 28,800 in sea ice (4800× 6), and 9,120 in ocean
(5120 × 6). For the largest configuration (204,407 cores,
achieving a throughput rate of 2.7 simulated years per day),
the atmosphere now used 172,800 cores (14400×12), sea ice
used 57,600 (4800× 12), and ocean used 31,608 (2634× 12).

The per component timing for the IVa CESM run is de-
scribed in Figure 13. From these experiments we have de-
termined that, in addition to ocean and sea ice, we need to
start looking seriously at additional performance optimiza-
tion in the coupler.

7. CONCLUSIONS
CESM supports a rich assortment of performance tuning
options that allow custom optimizations for different sci-
ence options, grid sizes, processor counts and target plat-
forms. Of particular utility compared to the predecessor
code CCSM3 is the ability for some components to share
processors and others to run on disjoint processor subsets.
On the XT5 and BG/P, performance and performance scal-
ability are acceptable even for relatively small problems, and
the ability to increase the cost of the physics from current
levels without seriously impacting parallel performance at
scale will accelerate research into improved physical process
modeling.

For high resolution studies, significant performance scaling
problems remain, but new numerical methods are being de-
veloped that show great promise in improving performance
at scale. The spectral element dycore in particular ad-
dresses many of the concerns about the atmosphere com-
ponent. Similar alternative algorithm work is now targeting
the ocean and sea ice. In the meantime, efforts to further
optimize performance of the existing ocean and sea ice com-
ponents continue.

8. ACKNOWLEDGMENTS
The work of A. Mirin and P. Worley was sponsored in part
by the Climate and Environmental Sciences Division of the
Office of Biological and Environmental Research and by the
Office of Advanced Scientific Computing Research, both in
the Office of Science, U.S. Department of Energy, under
Contract No. DE-AC52-07NA27344 with Lawrence Liver-
more National Security, LLC. and Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC, respectively. The work
of M. Taylor was supported by SciDAC grant 06-13194 from
the Office of Biological and Environmental Research, U.S.
Department of Energy. The work of A. Craig and M. Verten-
stein was supported by the Office of Biological and En-
vironmental Research, U.S. Department of Energy under
contracts DE-FC02-97ER62402 and DE-FC02-07ER64340.
Additional support for M. Vertenstein was provided by Na-
tional Science Foundation grant AGS-0856145. This work
used resources of the Oak Ridge Leadership Computing Fa-
cility, located in the National Center for Computational Sci-

ences at Oak Ridge National Laboratory, which is supported
by the Office of Science of the Department of Energy un-
der Contract DE-AC05-00OR22725. It also used resources
of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357.

9. REFERENCES
[1] C. M. Bitz and W. H. Lipscomb. An energy-conserving

thermodynamic model of sea ice. Journal of

Geophysical Research, 104:15669–15677, 1999.

[2] W. D. Collins, C. M. Bitz, et al. The Community
Climate System Model Version 3 (CCSM3). J.

Climate, 19(11):2122–2143, 2006.

[3] W. D. Collins, P. J. Rasch, et al. The Formulation
and Atmospheric Simulation of the Community
Atmosphere Model: CAM3. Journal of Climate,
19(11):2144–2161, June 2006.

[4] Community Earth System Model.
http://www.cesm.ucar.edu/.

[5] A. P. Craig, M. Vertenstein, and R. Jacob. A new
flexible coupler for earth system modeling developed
for CCSM4 and CESM1. Int. J. High Perf. Comput.

Appl., 2011. (accepted).

[6] J. M. Dennis, J. Edwards, et al. An application level
parallel i/o library for earth system models. Int. J.

High Perf. Comput. Appl., 2011. (accepted).

[7] J. M. Dennis, J. Edwards, et al. CAM-SE: A scalable
spectral element dynamical core for the community
atmosphere model. Int. J. High Perf. Comput. Appl.,
2011. (under review).

[8] R. E. Dickinson, K. W. Oleson, G. Bonan, F. Hoffman,
P. Thornton, M. Vertenstein, Z.-L. Yang, and X. Zeng.
The Community Land Model and its climate statistics
as a component of the Climate System Model. Journal

of Climate, 19(11):2032–2324, 2006.

[9] J. Drake, P. Jones, M. Vertenstein, J. White III, and
P. Worley. Software design for petascale climate
science. In D. Bader, editor, Petascale Computing:

Algorithms and Applications, chapter 7, pages
125–146. Chapman & Hall/CRC, New York, NY, 2008.

[10] J. B. Drake, P. W. Jones, and G. Carr. Overview of
the software design of the Community Climate System
Model. Int. J. High Perf. Comput. Appl.,
19(3):177–186, Fall 2005.

[11] J. K. Dukowicz, R. D. Smith, and R. C. Malone.
Implicit free-surface method for the
Bryan-Cox-Semtner ocean model. J. Geophys. Res.,
99:7991–8014, 1994.

[12] P. R. Gent, G. Danabasoglu, et al. The community
climate system model version 4. Journal of Climate,
2011. (accepted).

[13] F. Hoffman, M. Vertenstein, P. Thornton, K. Oleson,
and S. Levis. Community Land Model version 3.0
(CLM3.0) developer’s guide. Technical Report
ORNL/TM-2004/119, Oak Ridge National
Laboratory, Oak Ridge, TN, June 2004.

[14] F. M. Hoffman, M. Vertenstein, H. Kitabata, J. B.
White III, P. H. Worley, and J. B. Drake. Adventures
in vectorizing the Community Land Model. In R.
Winget and K. Winget, editor, Proceedings of the 46th

Cray User Group Conference, May 17-21, 2004,
Eagan, MN, 2004. Cray User Group, Inc.

[15] E. C. Hunke and J. K. Dukowicz. An
elastic-viscous-plastic model for sea ice dynamics. J.

Phys. Oceanogr., 27:1849–1867, 1997.

[16] E. C. Hunke and W. H. Lipscomb. CICE: the Los
Alamos Sea Ice Model documentation and software
user’s manual version 4.1. Technical Report
LA-CC-06-012, Los Alamos National Laboratory, Los
Alamos, NM, May 2010.

[17] P. W. Jones, P. H. Worley, Y. Yoshida, J. B. White
III, and J. Levesque. Practical performance portability
in the Parallel Ocean Program (POP). Concurrency

and Computation: Practice and Experience,
17(10):1317–1327, 2005.

[18] S.-J. Lin. A ‘vertically Lagrangian’ finite-volume
dynamical core for global models. Mon. Wea. Rev.,
132(10):2293–2307, 2004.

[19] A. Mirin and W. B. Sawyer. A scalable implemenation
of a finite-volume dynamical core in the Community
Atmosphere Model. Int. J. High Perf. Comput. Appl.,
19(3):203–212, Fall 2005.

[20] A. A. Mirin and P. H. Worley. Improving the
performance scalability of the community atmosphere
model. Int. J. High Perf. Comput. Appl., 2011.
(accepted).

[21] R. B. Neale, C.-C. Chen, et al. Description of the
NCAR Community Atmosphere Model (CAM 5.0).
NCAR Tech Note NCAR/TN-???+STR, National
Center for Atmospheric Research, Boulder, CO 80307,
June 2010.

[22] Office of Science, U.S. Department of Energy. A
Science-Based Case for Large-Scale Simulation.
(available from http://www.pnl.gov/scales/), July 30
2003.

[23] K. W. Oleson, D. M. Lawrence, et al. Technical
description of version 4.0 of the Community Land
Model (CLM). NCAR Tech Note
NCAR/TN-478+STR, National Center for
Atmospheric Research, Boulder, CO 80307, April
2010.

[24] I. C. Rutt, M. Hagdorn, N. J. R. Hulton, and A. J.
Payne. The Glimmer community ice sheet model.
Journal of Geophysical Research, 114:1–22, April 2009.
F02004.

[25] R. D. Smith, P. W. Jones, et al. The Parallel Ocean
Program (POP) reference manual: Ocean component
of the Community Climate System Model (CCSM).
Technical Report LAUR-10-01853, Los Alamos
National Laboratory, Los Alamos, NM, March 2010.

[26] P. H. Worley and J. B. Drake. Performance portability
in the physical parameterizations of the Community
Atmosphere Model. International Journal of High

Performance Computing Applications, 19(3):187–202,
August 2005.

