Numerical Simulation of a Cold Trap for Sodium Purification

by

B. C. Goplen
J. C. Biery
C. C. McPheeters*

Present address: Atomics International, Canoga Park, California.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
NUMERICAL SIMULATION OF A COLD TRAP FOR SODIUM PURIFICATION

by

B. C. Goplen, J. C. Biery, and C. C. McPheeters

ABSTRACT

The dynamic behavior of a sodium system cold trap was numerically simulated on a digital computer. The simulation accounted for mixing in the hold tank, delay times in pipes, temperature variation with distance in the cold trap, impurity buildup on the walls of the cold trap, and simultaneous precipitation and dissolution of the impurity in different portions of the cold trap. The main purpose of the simulation was to generate mass transfer coefficients from experimental data taken from an experimental sodium loop. The program can also help in the design of sodium systems containing cold traps.

I. Introduction

A common means of purifying liquid metal systems is the low-temperature precipitation of impurities. The process is referred to as cold trapping. To study the kinetics of cold trap behavior, a series of experiments was performed at the Los Alamos Scientific Laboratory (LASL). Because of the complexity of the cold trap system a numerical simulation program, VASSAR, was written in FORTRAN for the IBM 7030 computer to help analyze the experimental results.

Basically, the two purposes for a program of this type are (1) to calculate mass transfer coefficients, both for precipitation and dissolution, by the direct simulation of experimental data; and (2) to assist in designing sodium systems by testing the effectiveness of various cold traps in the particular system being considered. This report is concerned only with the first purpose.

The VASSAR program uses the Lagrangian coordinate system and finite difference techniques to solve the steady-state heat transfer and unsteady-state mass transfer differential equations.

II. The Experimental System

The sodium test system considered was a closed, forced convection circuit with partial flow through the cold trap. The test loop, shown in Fig. 1, consisted of (1) a large volume ballast tank to provide a suitable time delay in the circuit; (2) an electromagnetic sodium pump; (3) a vacuum distillation sampler; (4) a plugging meter; (5) a removable cold trap section provided with a NaK...
alloy cooling circuit consisting of an expansion tank, a NaK-to-air heat exchanger, an electromagnetic pump, a flowmeter, and a diffusion cold trap; (6) two emf liquid metal oxygen meters, one upstream from the cold trap and one downstream; (7) an expansion tank containing the main system heat input and an impurity addition device; (8) two sodium system flowmeters, one immediately upstream from the cold trap, and the other in the plugging meter section; and (9) valving and piping to isolate the cold trap section from the large tank section while maintaining pump flow through the cold trap section.

The system flow is illustrated schematically in Fig. 2. In the primary system, flow proceeded from the ballast tank through the pump to a pipe cross where it divided to go to the vacuum distillation analytical sampler, the plugging meter, and the cold trap. Flow through the distillation sampler was returned to the main stream between the expansion tank and the ballast tank. Flow through the plugging indicator was returned to the ballast tank. Flow to the cold trap passed through the main system flowmeter, oxygen meter No. 1, the cold trap, the expansion tank, oxygen meter No. 2, and returned to the ballast tank.

A cutaway view of the cold trap is shown in Fig. 3, with NaK and sodium flows as illustrated. Packing was eliminated to simplify the geometry of the nucleation surfaces. A helical winding of tubing in the NaK annulus provided uniform flow distribution. Six thermocouples in a well in the annulus measured bulk temperatures in the sodium.

III. Calculational Technique

The computer program, VASSAR, uses a Lagrangian coordinate system to follow a "slug" or element of fluid in its routing through the system; the associated impurity concentration is continually recalculated. Thus, the entire physical system is divided into a large number of elements with a "node" number associated with each location in the system.

The simulation program takes into account all aspects of the system including the delay time in pipes, the mixing characteristics of the tank, and the precipitation and dissolution characteristics of the cold trap. Three surfaces on which precipitation can occur in the cold trap are the inner and outer surfaces of the annular space which the sodium contacts as it moves down the cold trap and the cylindrical surface that it contacts as it moves upward out of the cold trap.

![Flow diagram of cold trap test loop.](image1)

![Cutaway view of cold trap.](image2)
Because the impurity concentration at which precipitation occurs is a function of the cold trap surface temperature, a complete temperature calculation is required in the cold trap. The rest of the system is considered to be isothermal. The NaK annulus, the incoming sodium annulus, and the outgoing sodium cylinder are designated, respectively, as regions A^1_B, B^1_C, and C^1_A. The law of conservation of energy in each region provides three differential equations, Eqs (1) through (3), that are solved simultaneously in finite difference by relaxation. Boundary conditions are imposed by specifying the NaK and sodium inlet temperatures.

\[
\frac{dT_a}{dx} = \frac{h_{1-} + \pi d_1}{(h_{1-} + h_{1+})(m c_p)_a} (T_b - T_a) ,
\]

\[
\frac{dT_b}{dx} = \frac{h_{1-} + h_{1+} + \pi d_1}{(h_{1-} + h_{1+})(m c_p)_b} (T_a - T_b) + \frac{h_{2-} + h_{2+} + \pi d_2}{(h_{2-} + h_{2+})(m c_p)_b} (T_c - T_b) ,
\]

and

\[
\frac{dT_c}{dx} = \frac{h_{2-} + h_{2+} + \pi d_2}{(h_{2-} + h_{2+})(m c_p)_c} (T_b - T_c) ,
\]

Following solution for the bulk temperature in each region, the wall temperatures for the surfaces of precipitation may be calculated directly. As an option, the code user may input a specific bulk temperature distribution for sodium in Region B. In this case, the code ignores Eq (2), then Eqs (1) and (3) become analytic, and the surface temperatures are calculated as usual.

In the LASL experiments, oxygen was considered to be the main precipitation impurity. Oxygen solubility data were obtained from the Rutkauskas oxygen solubility relationship. A semilogarithmic function of degree three, Eq (4), was used to fit the data points rather than the traditional I/T fit because the data appear to diverge from linear I/T line in the lower temperature region, which is the primary region of interest. Insertion of the wall temperature distribution into Eq (4) produces the equilibrium oxygen impurity concentration distribution in the cold trap.

\[
\log_{10} C_e = DA + 2\pi E + FT^2 + GT^3 ,
\]

with

- $D = 3.17871 \times 10^{-1}$
- $E = -5.99152 \times 10^{-3}$
- $F = 2.67916 \times 10^{-5}$
- $G = 1.87669 \times 10^{-8}$

The differential mass transfer of the impurities to and from the collection surface in the cold trap can be expressed as

\[
\frac{dm}{dt} = kA_p(C - C_e) ,
\]

where dm/dt is the rate of mass precipitation or dissolution, k is the mass transfer coefficient, A_p is the area of precipitation, C is the sodium oxide concentration, and C_e is the equilibrium concentration as determined by a solubility curve for the impurity precipitating in a sodium system.

Equation (5) applies for each element of surface. However, to obtain the overall effect on the sodium flowing through the trap, the mass of impurities transferring into and out of an element of moving fluid must be accounted for. The mass balances for elements flowing through Regions B and C are written as

\[
\frac{DC_B(x,t)}{dt} = -4 \times 10^6 \frac{ka}{(d_1^2 - d_2^2)} \rho_b \left\{ d_1 (C - C_{e1}) + d_2 (C - C_{e2}) \right\}
\]

and

\[
\frac{DC_C(x,t)}{dt} = -4 \times 10^6 \frac{ka}{d_2 \rho_2} (C - C_{e2})
\]

The use of Eqs (6) and (7) allows the calculation of oxygen concentration in the trap as a function of both time and position. The equations were solved simultaneously in finite difference form along with tank mixing and delay functions to generate the impurity concentrations.

The mass precipitated (or dissolved) is related to the concentration change by the elemental volume. A running account is kept of the mass distribution on the wall. Such mass is, of course, free to reenter the system should concentration at the point fall below equilibrium.

Various components of the system are considered in terms of their mixing or delay effects. In the expansion and storage tanks, partial mixing may be in effect. In this case, a certain percentage of the volume is considered to mix perfectly, governed by the relation

\[
\frac{dC}{dt} = \frac{m_b}{\rho_b V_m} (C_{in} - C)
\]

The remainder of the volume in the hold tank is considered in terms of a time delay, as are the volumes in the pipes and other small elements in the system. Time delays in the program are provided by storing an element's concentration and introducing it to the appropriate component after a suitable time lapse.

The time step used in the program is determined by the mass flow rate and selection of the size of the element.
of fluid as indicated by
\[\Delta t = \frac{\Delta V \rho_b}{m_b} \]
\[(9) \]

In general, the mass transfer coefficient, \(k_a \), is assumed to be a function of temperature
\[k_a = a e^{-\frac{\Delta E}{RT}} \]
\[(10) \]

Further, the coefficients for dissolution and precipitation are considered to be different. In practice, the energy, \(\Delta E \), is assigned some value and the program is run iteratively to determine the quantity by comparing the computed results with the experimental data after a specified period of time. The quantity \(a \) is then revised according to
\[a = a' \left(\frac{C_{\text{calc}}}{C_{\text{exp}}} \right)^n \]
\[(11) \]
where acceptable values of the exponent \(n \) are generally found between 1.0 and 1.3. Satisfactory convergence was normally obtained within five iterations.

The program is versatile in that various types of experimental runs can be duplicated. For example, it is possible to calculate a precipitation run immediately followed by a dissolution run, that is, the precipitation run is calculated as usual and is followed by a temperature recalculation. The masses deposited on the walls of the cold trap as well as the concentrations remaining in the system are unchanged, or if desired, a suitable time delay can be introduced. The dissolution run then follows in which the sodium oxide is reintroduced into the system.

IV Numerical Results

The mass transfer coefficient has generally been considered a function of temperature, however, experimental data and numerical correlations have indicated that the temperature dependence is very slight. This condition is equivalent to stating that the quantity \(\Delta E \) is generally much less than the quantity \(RT \), see Eq (10). Also, recent data\(^a\) show no significant difference between the precipitation coefficient and the dissolution coefficient. This result was verified in our work by numerical simulation of both types of experimental runs.

Both precipitation and dissolution occur in a typical precipitation run. As sodium oxide precipitates in the cold trap, the overall oxygen concentration is decreased below the saturation concentration in the warmer portions of the cold trap. When this condition occurs, the oxide dissolves from the cold trap surfaces into the sodium and becomes available for precipitation further down the cold trap in the low-temperature regions. This effect is complicated by the condition that inner and outer surfaces of the sodium annulus may exist at different temperatures. Hence, mass may be simultaneously precipitating from and dissolving into a single fluid element. The general effect is clearly illustrated in Fig 4, which shows the computed sodium oxide distribution on the outer surface of the cold trap annulus. As time increases, the sodium oxide is dissolving off the leading edge at the warmer portions of the cold trap and is precipitating in the colder zones. Thus, the precipitation zone becomes significantly smaller as the sodium oxide is completely removed from the warmer areas.

The general effect of the cold trap on system concentration is shown in Fig 5. The two curves represent the oxygen concentration in the sodium entering the cold trap and that in the sodium leaving the cold trap. The discontinuities in the curves are due to an arbitrary introduction of sodium oxide. This oxide introduction feature was added because of experimental evidence that sodium oxide actually breaks loose from portions of the cold trap and is carried back into the sodium system where it redissolves and appears as an addition to the system. This experimental effect, as well as the computer simulation, is illustrated in Fig 6. The value of the mass transfer coefficient given was determined with the previously described iterative technique.

An attempt was made to gain an analytic solution by defining the term "concentration factor". This is the area-weighted difference between system and equilibrium concentration throughout the cold trap. Use of the concentration factor allows definition of the effective precipitation driving potential in terms of the oxygen concentration in the bulk sodium as it leaves the cold trap and the equilibrium concentration at the coldest point in the trap. Calculated values of the concentration factor and its variation in time are shown in Fig 7. The upper curve is illustrative of precipitation areas only, whereas...
CONCENTRATION CHANGE IN A PRECIPITATION RUN

Fig. 5.
Computed oxygen concentrations in cold trap test loop as a function of time.

Fig. 6.
Computed and experimental oxygen concentrations as a function of time for runs 1-20 in cold trap test loop.

The results of the experimental program are shown in Fig. 8 where the change in mass transfer coefficient with Reynolds number is presented. These coefficients were generated by using the simulation program.

Fig. 7.
Concentration factor as a function of time as computed by the simulation program.

Fig. 8.
Mass transfer coefficient as a function of Reynolds number for packless trap in cold trap test loop.
V. Summary and Conclusions

The computer program, VASSAR, has sufficient versatility to adequately describe the precipitation and dissolution processes that occur in the experimental system. Numerical correlation with experimental data has been successful, and has allowed the generation of mass transfer coefficients.

The program also can assist in the design of cold traps for sodium systems of this type. With the knowledge of mass transfer coefficient as a function of Reynolds number, the rate of system cleanup as a function of cold trap physical parameters and modes of operation can be studied with the simulation program. By reformulation of the mathematical model, the effects of packing can also be studied.

Nomenclature

A_{NaK} Annular region in cold trap through which NaK flows.

A_p Area on which impurity precipitation occurs, cm^2.

B_{Na} Annular region in cold trap through which sodium flows.

C Concentration of oxide impurity in sodium stream, ppm.

C_{calc} Calculated concentrations in hold tank at some specified time, ppm.

C_e Impurity saturation concentration, ppm

C_{exp} Experimental concentration in hold tank at some specified time during run, ppm.

C_{in} Concentrations entering perfectly mixed volume, ppm.

C_{Na} Cylindrical region in cold trap through which sodium flows.

C_p Specific heat, $cal/°C$.

D/Dt Substantial derivative; change within a flowing fluid element with respect to time.

d Diameter, cm.

h Heat transfer coefficient, $Btu/h ft^2°F$, $cal/sec cm^2 °C$.

ka Mass transfer coefficient, g impurity/(cm2-h-ppm of impurity) or lbs impurity/(ft2-h-ppm). (First rate constant $x 2.06 =$ second rate constant.)

m Mass of impurity precipitating or dissolving, g.

n Sodium mass flow rate, g/sec, lb/h.

T Temperature, $°C$.

t Time, h.

V_m Volume in which perfect mixing occurs, cm^3.

x Axial distance along cold trap, cm.

Subscripts

a Region A_{NaK} in cold trap; annular region through which NaK flows.

b Region B_{Na} in cold trap; annular region through which sodium flows into trap.

c Region C_{Na} in cold trap; cylindrical region through which sodium flows out of trap.

l Outer surface of annular space containing sodium.

2 Inner surface of annular space containing sodium.

$l-$ NaK side of outer surface.

$1+$ Sodium side of outer surface.

$2-$ Annular sodium side of inner surface.

$2+$ Cylindrical sodium side of inner surface.

Greek Symbols

α Constant in mass transfer coefficient temperature function, Eq. (10).

α' Constant adjusted by Eq. (11) to produce the best α to fit experimental data.

ΔE Activation energy, in Eq. (10), $cal/(mole °K)$.

Δt Time increment used in numerical integration, h.

ΔV Incremental volume of liquid used in numerical simulation, cm^3.

ρ_s Density of sodium, g/cm^3.
References

2 V J Rutkaskas, "Determination of the Solubility of Oxygen in Sodium by Vacuum Distillation," LA-3607-MS, Los Alamos Scientific Laboratory (September 1968)

APPENDIX

COLD TRAP SIMULATION PROGRAM (VASSAR)

I. Input Data

<table>
<thead>
<tr>
<th>Card Number</th>
<th>Data Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>-13 - 0</td>
<td>Mass of precipitate on each Δx of cold trap wall surface</td>
<td>6E13.6</td>
</tr>
<tr>
<td></td>
<td>Surface areas 1+, 2-, and 2+. Masses read into program in direction of sodium flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(This input is used only if a precipitation run preceded the present run.), lbs.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Run Number.</td>
<td>E13.6</td>
</tr>
<tr>
<td>2</td>
<td>A tag to adjust dissolution mass transfer coefficient in the iteration process.</td>
<td>E13.6</td>
</tr>
<tr>
<td></td>
<td>± 1 0 = Adjust, 0 0 = No adjust</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tag, + 1.0 = all Δx nodes in cold trap will be used, 0.0 = all Δx nodes above C_saturation temperature will be discarded</td>
<td>E13.6</td>
</tr>
<tr>
<td>4</td>
<td>Precipitation rate constant, lbs/(h-ppm-ft²).</td>
<td>E13.6</td>
</tr>
<tr>
<td>5</td>
<td>Constants a and ΔE in Eq (10) for calculation of dissolution mass transfer coefficient lb/(h-ft²-ppm) and cal/mol/°K</td>
<td>2E13.6</td>
</tr>
<tr>
<td>6</td>
<td>Initial concentration of impurity in hold tank, ppm</td>
<td>E13.6</td>
</tr>
<tr>
<td>7</td>
<td>Number of Δt calculations before a printout</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Number of increments on 1- and 2+ surfaces and length of increment, in</td>
<td>215, E13.6</td>
</tr>
<tr>
<td>9</td>
<td>Gallon/min of NaK flow, gal/min of sodium flow</td>
<td>2E13.6</td>
</tr>
<tr>
<td>10</td>
<td>Tank mixing factor = fraction of tank perfectly mixed</td>
<td>E13.6</td>
</tr>
<tr>
<td>11</td>
<td>Temperature of NaK entering cold trap, and temperature of sodium entering cold trap, °C.</td>
<td>2E13.6</td>
</tr>
<tr>
<td>12</td>
<td>Maximum time of run, h</td>
<td>E13.6</td>
</tr>
<tr>
<td>13</td>
<td>Number of iterations to adjust mass transfer coefficients</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>Time at which ΔC ppm of impurity is added to system.</td>
<td>2E13.6</td>
</tr>
<tr>
<td>15</td>
<td>Time at which number of Δt calculations per printout is changed</td>
<td>E13.6, 15</td>
</tr>
</tbody>
</table>
II. Program Printout

C VASSAR IS A FINITE DIFFERENCE TRANSIENT MASS
C TRANSFER CODE FOR COLD TRAP ANALYSIS.
C
C THIS PARTICULAR VERSION CONSIDERS THE TYPE OF
C COLD TRAP INITIALLY DESIGNED BY MCPHEETERS.
C
C BEGIN WITH A STEADY STATE HEAT TRANSFER SOLUTION.
C
DIMENSION DX(50), TA(50), TB(50), TC(50), AA(50), AC(50),
CA(50), CC(50), T(100), CE(50), C(1000), XM(50), X(50), AKT(50), C0(50)
2, A(50), TW(50), TWC(50), TTC(50), CEC(50), AAC(50), AKTC(50),
3XM(50), C0(50), CONC(50), XM(50), CECC(50), AKTCC(50),
4XMM(50), XM(50), XMMC(50),
5XXCD(50), XCD(50), AKTCD(50), AKTCDC(50), XKDCC(50),
6XKCC(50)
C
1 FORMAT(1HO,10(F8.3,2X))
2 FORMAT(1HI)
3 FORMAT(53H1RESULTS OF TEMPERATURE CALCULATION, T(A), T(B), T(C))
4 FORMAT(66H1EQUILIBRIUM CONCENTRATION AND WALL TEMPERATURE, PPM AND
1 DEGREES F)
5 FORMAT(15H1REGION B ONLY.)
6 FORMAT(1HO)
7 FORMAT(10(2X,E10.3))
8 FORMAT(69H1AVERAGE CONC. DIFF. (PPM), NO. OF NODES ACTIVE, AND AVG.
1 CONC. FACTOR)
9 FORMAT(1H , 22X, E13.6, 22X, I5, 22X, E13.6)
10 FORMAT(6E13.6)
11 FORMAT(43H1DIMENSIONLESS EXP. CONC. AND TIME OF CONC.)
12 FORMAT(47H1PPN K, INIT. CONC., PPM, TIME INC., HR., ADIS)
13 FORMAT(37H1VOLUMES, IN3, NODE, TANK, LEG1, LEG2)
14 FORMAT(21H1NO. OF ITERATIONS = , I5)
15 FORMAT(21H1DT, TIMAX, TIME, HRS)
16 FORMAT(27H0NA CONC. IN COLD TRAP, PPM)
17 FORMAT(34H0NA CONC. IN LEG1, TANK, LEG2, PPM)
18 FORMAT(58H0 TANK CONC., TANK DIM. CONC., TIME, XMASS(LB), XCMASS(LB))
19 FORMAT(29H0PTD. MASS IN COLD TRAP(LBS))
20 FORMAT(26H0FRACTION OF TANK MIXED = , F8.5)
21 FORMAT(14H0REGION C ONLY)
22 FORMAT(70H0AVG, CONC. DIFF., NO. PPTN. ZONES, CONC. FACTOR INCLUDING DISSOLUTION)
23 FORMAT(23H0CONC. IN REGION C, PPM)
24 FORMAT(43H0MASS PRECIPITATED ON INSIDE OF ZONE B, LBS)
25 FORMAT(33H0MASS PRECIPITATED IN ZONE C, LBS)
26 FORMAT(39H0OXIDE IN SYSTEM, LBS., INITIAL AND NOW)
27 FORMAT(51H0EQUIL. CONC. IN ZONE C, XKCC, XKCCC, AKTCC, AKTCDC)
28 FORMAT(34H0PTTN. CONSTANT, LB/HR/FT2/PPM, = , E13.6)
29 FORMAT(22H0INITIAL CONC., PPM = , E13.6)
30 FORMAT(5I5)
31 FORMAT(26H0N. OF LOOPS PER PRINT = , 15)
32 FORMAT(2I5, E13.6)
33 FORMAT(8H0H0JAMX = , 15, 9H JCMX = , 15, 15H DEL X, IN, = , E13.6)
34 FORMAT(8H0GPM1 = , E13.6, 9H GPM2 = , E13.6)
35 FORMAT(12H0TINA, C, = , E13.6, 13H TINB, C, = , E13.6)
36 FORMAT(15HTIMAX, HR., = , E13.6)
37 FORMAT(30H0EXP. TEMPS. IN ZONE B, DEC. C)
38 FORMAT(36H0N. OF ITER. LOOPS TO CHANGE XK0 = , 15)
39 FORMAT(11HI1RN NO. = , F6.3)
40 FORMAT(32H0DIM. CONC. EXITING COLD TRAP = , E13.6)
41 FORMAT(16H0TIME, HR, = , E13.6, 13H INC. PPM = , E13.6)
42 FORMAT(42H0SIGNAL FOR TEMP. CHANGE 1 = YES 0 = NO = , E13.6)
43 FORMAT(16H0TIME, HR, = , E13.6, 21H CHANGE NPRINT TO = , 15)
44 FORMAT(13.6, 15)
45 FORMAT(67H0EQN. FACTOR BASED ON ACTIVE PPN. NODES AND 3 ZONES OF PIP. AREA = , E13.6)
46 FORMAT(77H0EQN. FACTOR BASED ON ACTIVE PPN. AND DIS. NODES AND 3 ZONES OF OXIDE AREA = , E13.6)
47 FORMAT(50H0DISS. AS FNC. OF TEMP., LB/HR FT2 PPM, ADIS, = , 1E13.6, 23H DELTA ENERGY, KCAL = , E13.6)
48 FORMAT(33H0DISS. FOR ZONE B, LB/HR FT2 PPM)
49 FORMAT(10H0, (9E13.6))
50 FORMAT(33H0DISS. FOR ZONE C, LB/HR FT2 PPM)
51 FORMAT(69H0TAG TO INDICATE IF ADIS CONSTANT TO BE ADJUSTED, 0 = NO 1, 1 = YES, = , E13.6)
52 FORMAT(48H0TAG TO ADJUST XK0 FOR PPN., 0 = NO, 1 = YES, = , E13.6)
53 FORMAT(39H0EXponent FOR ADJUSTING XK0 AND ADIS = , E13.6)
54 FORMAT(48H0MASS OXYGEN, LBS, ON OD OF ANNULUS INITIALLY = , /, 1(9E13.6))
55 FORMAT(48H0MASS OXYGEN, LBS, ON ID OF ANNULUS INITIALLY = , /, 1(9E13.6))
56 FORMAT(52H0MASS OXYGEN, LBS, ON ID OF INSIDE PIPE INITIALLY = , 1/, (9E13.6))

THIS IS THE INPUT SECTION.
NCASE = 1
NTEMP = 1
PPMAS1 = 0.0
SIG1 = 0.0
DO 300 J = 1, 50
 XM(J) = 0.
 XMI(J) = 0.0
 XMC(J) = 0.0
CONTINUE
READ(10,10)(XM(J), J = 1, 36)
READ(10,10)(XMI(J), J = 1, 36)
READ(10,10)(XMC(J), J = 1, 36)
WRITE(9,54)(XM(J), J = 1, 36)
WRITE(9,55)(XMI(J), J = 1, 36)
WRITE(9,56)(XMC(J), J = 1, 12)
CONTINUE
DO 201 J = 1, 50
 XMM(J) = XM(J)
 XMMI(J) = XMI(J)
 XMMC(J) = XMC(J)
CONTINUE
READ(10,10)RUNN0
WRITE(9,39)RUNN0
READ(10,10)DISTAG
WRITE(9,51)DISTAG
READ(10,10)SIGTEM
WRITE(9,42)SIGTEM
READ(10,10)XK0
WRITE(9,28)XK0
READ(10,10)ADIS, DELEN
WRITE(9,47)ADIS, DELEN
READ(10,10)CS
WRITE(9,29)CS
READ(10,36)NPRINT
WRITE(9,31)NPRINT
EPST = .001
READ(10,32)JAMX, JCMX, DXX
WRITE(9,33)JAMX, JCMX, DXX
D1 = 3.75
D2 = 2.
HNU1 = 4.35
HNU2 = 4.35
HNU3 = 4.35
HNU4 = 4.35
HK1 = 14.3
HK2 = 46.0
CP1 = 0.215
CP2 = 0.315
R01 = 51.0
R02 = 56.0
READ(10,10)GPM1, GPM2
WRITE(9,34)GPM1, GPM2
VLEG1 = 117.5
VLEG2 = 185.
VTANK=13318.
READ(10,10)TANKFR
WRITE(9,20)TANKFR
VLEGl = VLEGl + (1.0-TANKFR)*VTANK
VTANK = VTANK*TANKFR
READ(10,10)TINA,TINB
WRITE(9,35)TINA,TINB
TINA = TINA*(9./5.)+32.
TINB = TINB*(9./5.)+32.
READ(10,10)TIMAX
WRITE(9,36)TIMAX
READ(10,30)NOITP1
WRITE(9,38)NOITP1
READ(10,10)CHTIME,DELPMM
WRITE(9,41)CHTIME,DELPMM
READ(10,44)CHTIM2,NPRINT2
WRITE(9,43)CHTIM2,NPRINT2
READ(10,10)(TB(I), I = 1, JAMX)
WRITE(9,37)
WRITE(9,6)
WRITE(9,7)(TB(I), I = 1, JAMX)
READ(10,10)REFCON,REFTIM
WRITE(9,11)
WRITE(9,10)REFCON,REFTIM
READ(10,10)ADJEXP
WRITE(9,53)ADJEXP
READ(10,10)PPNTAG
WRITE(9,52)PPNTAG
DO1000J=1,JAMX
DX(J) = DXX
1000 CONTINUE
C END OF INPUT.
C
JBMX=JAMX-JCMX
JA=JBMX+1
JI=JCMX+1
NK=0
DL=D1/12.
D2=D2/12.
PI=3.14159
PI4=3.14159/4.
A1=PI4*(DL**2)
A2=PI4*(D2**2)
H1=HNU1*HK1/D1
H2=HNU2*HK2/D1
H3=HNU3*HK2/D2
H4=HNU4*HK2/D2
C
DO1010J=1,JAMX
TA(J)=465.
TC(J)=465.
\[DX(J) = DX(J)/12. \]
\[AA(J) = PI \cdot D1 \cdot DX(J) \]
\[AC(J) = PI \cdot D2 \cdot DX(J) \]
\[CA(J) = (H1 \cdot H2) \cdot AA(J) / (H1 + H2) \]
\[CC(J) = (H3 \cdot H4) \cdot AC(J) / (H3 + H4) \]

1010 CONTINUE

\[VN0DE = \left(A1 - A2 \right) \cdot DX(JAMX) \cdot 1728. \]

C
THE TIME STEP IS BASED UPON THE JAMX NOCE.

C
\[DT = VN0DE / (GPM2 \cdot 60 \cdot 231.) \]

C
\[W1 = R01 \cdot GPM1 \cdot 231 \cdot 60 \cdot 1728. \]
\[W2 = R02 \cdot GPM2 \cdot 231 \cdot 60 \cdot 1728. \]
\[CW1 = 2 \cdot CP1 \cdot W1 \]
\[CW2 = 2 \cdot CP2 \cdot W2 \]
\[I1 = IFIX(VLEGR/VN0DE) \]
\[I2 = IFIX(VLEGR2/VN0DE) \]

C
C
TEMPERATURE ITERATION LOOP. LFLAG=0 WILL EXIT.

C
REGION B

C
NTEMP=0 INDICATES ANALYTICAL SOLUTION IN REGION B.

C
INPUT TB(J) IN DEGREES C.

C
1012 IF(NTEMP)1015,1020,1015

1015 CONTINUE

C

D01165J=1,JAMX
\[TB(J) = \left(9 / 5 \right) \cdot TB(J) + 32. \]

1165 CONTINUE

\[TOUT = (TB(JAMX) + TB(JA)) / 2. \]

LFLAG=0
GOT01085

C

1020 TIN=TINB
LFLAG=0

C01050J=1,JCMX
I=JAMX+1-J
\[TP = (CA(I) \cdot TA(I) + CC(I) \cdot TC(I) + CW2 \cdot TIN) \]
\[1 \cdot (CA(I) + CC(I) + CW2) \]
\[E = ABS(TP - TB(I)) \]
\[IF(E-EPS1)1040,1030,1030 \]

1030 LFLAG=1

1040 TB(I) = TP
TIN=2.*TP-TIN

1050 CONTINUE

TOUT=TIN

C
D01080J=JB,JAMX
I=JAMX+1-J
TP=(CA(I)*TA(I)+CW2*TIN)/(CA(I)+CW2)
E=ABS(TP-TB(I))
IF(E-LPST)1070,1060,1060
1060 LFLAG=1
1070 TB(I)=TP
TIN=2.*TP-TIN
1080 CONTINUE
C
C REGION C
C
1085 TIN=TOUT
D01110J=JA,JAMX
TP=(CC(J)*TB(J)+CW2*TIN)/(CC(J)+CW2)
E=ABS(TP-TC(J))
IF(E-EPST)1100,1090,1090
1090 LFLAG=1
1100 TC(J)=TP
TIN=2.*TP-TIN
1110 CONTINUE
C
C REGION A
C
TIN=TINA
D01140J=1,JAMX
TP=(CA(J)*TB(J)+CW1*TIN)/(CA(J)+CW1)
E=ABS(TP-TA(J))
IF(E-EPST)1130,1120,1120
1120 LFLAG=1
1130 TA(J)=TP
TIN=2.*TP-TIN
1140 CONTINUE
C
C CONVERGENCE
C
C
IF(NTEMP)1150,1142,1150
C
1142 IF(LFLAG)1145,1150,1145
1145 LFLAG=0
G0T01020
1150 WRITE(9,3)
D01160J=1,JAMX
WRITE(9,1)TA(J),TB(J),TC(J)
1160 CONTINUE
C
C CALCULATE WALL TEMPERATURES IN REGION B.
C
D01170J=1,JAMX
TW(J)=TB(J)-(CA(J)/(H2*AA(J)))*(TB(J)-TA(J))
1170 CONTINUE
C
C CALCULATE WALL TEMP IN REGION C
C
DO 1171 J = 1, JAMX

1171 TWC(J) = TB(J) - CC(J)/(H3*AC(J))*(TB(J)-TC(J))

C
C THIS COMPLETES THE TEMPERATURE CALCULATION.
C
C DISCARD ALL NODES IN WHICH THE TEMPERATURE IS ABOVE
C THAT ASSOCIATED WITH INITIAL SYSTEM CONCENTRATION.
C
C CALCULATE EQUILIBRIUM COEFFICIENTS.
C
CS AND TO ARE INITIAL CONCENTRATION AND ASSOCIATED
C TEMPERATURE.
C
C REGION B.

2002 K=0
NK=NK+1
DO1190 J=1,JAMX
I=JAMX+1-J
CEPR =-1.87669E-08
CEPC =-1.87669E-08
CEPR=CEPR*TW(I) + 2.67916E-05
CEPC=CEPC*TWC(I)+2.67916E-05
CEPR=CEPR*TW(I)-5.99152E-03
CEPC=CEPC*TWC(I)-5.99152E-03
CEPR=CEPR*TW(I)+0.317871
CEPC=CEPC*TWC(I)+0.317871
CEPR =10.**CEPR
CEPC =10.**CEPC
IF(SIGTEM) 1180,1181,1180

1181 IF(CEPC-CS)1180,1190,1190

1180 K=K+1
A(K)=AA(I)
T(K)=TW(I)
CE(K)=CEPR
AAC(K) = AC(I)
TTC(K) = TWC(I)
CEC(K) = CEPC

1190 CONTINUE
KMAX=K
KBMX = KMAX- JBMX + 1
DO 1191 J = KBMX, KMAX

1191 AAC(J) = 0.0
IF(SIG1)1192,1193,1192

1193 A(KMAX) = A(KMAX) + A1
I2 = I2 + JAMX - KMAX
AI2 = I2
VLEG2 = VN0DE*AI2
AJAMX = JAMX
SMASSO = (VTANK+VLEG1+VLEG2+VN0DE*AJAMX*1.33)*CS*R02*1.0E-06/1728.

1192 CONTINUE
SIG1 = 1.0
C REGIONS B AND C ARE INCLUDED.
C
WRITE(9,4)
WRITE(9,5)
DO 1200 K = 1, KMAX
WRITE(9,1) CE(K), T(K)
1200 CONTINUE
WRITE(9,4)
WRITE(9,21)
DO 1202 K = 1, KMAX
1202 WRITE(9,1) CE(K), TTC(K)
NOKIT = 0
1201 CONTINUE
DO 1203 J = 1, 50
XM(J) = XM(J)
XMI(J) = XMI(J)
XMC(J) = XMC(J)
1203 CONTINUE
K1=1
K2=KMAX
K3=K2+1
K4=K3+1-1
K5=K4+2
K6=K5+1-1
K7=K4+1
K8 = K2 - JBMX
WRITE(9,12)
WRITE(9,10) XK0, CS, DT, ADIS
WRITE(9,6)
WRITE(9,13)
WRITE(9,7) VN0DE, VTANK, VLEG1, VLEG2
DO 2000 J = K1, K6
C(J) = CS
2000 CONTINUE
DO 2005 J = K1, K2
C0(J) = CS
XK(J) = XK0
XKD(J) = ADIS*EXP(-DELEN/D*T(J)+459.0)*1.80
XKDC(J) = ADIS*EXP(-DELEN/D*TTC(J)+459.0)*1.80
AKTD(J) = (1.E+06)*XKD(J)*A(J)/W2
AKTD(J) = (1.E+06)*XKD(J)*A(J)/W2
AKTC(J) = (1.E+06)*XK(J)*AAC(J)/W2
DIFXK = XK(J) - XKD(J)
2006 XKD(J) = XK(J)
2007 CONTINUE
DIFXKC = XK(J) - XKDC(J)
IF(DIFXKC)2008,2009,2009
2008 XKDC(J) = XK(J)
2009 CONTINUE
CONTINUE
WRITE(9,48)
WRITE(9,49) (XKD(J), J = 1, K2)
WRITE(9,50)
WRITE(9,49) (XKDC(J), J = 1, K2)
II = 0
DO 2241 J = K1, K8, 3
 I = K8 - J
 IF(I-1)2241,2245,2245
2245 II = II + 1
CECC(II) = CEC(I)
AKTCC(II) = AKTC(I) * 3.0
AKTCDL(II) = AKTC(II) * 3.0
XKDCC(II) = XKDC(I)
XKCC(II) = XK(I)
CONTINUE
KMAXC = II
WRITE(9,27)
DO 2243 J = 1, KMAXC
2243 WRITE(9,10) CECC(J), XKCC(J), XKDCC(J), AKTCC(J), AKTCDC(J)
C
C THIS COMPLETES THE CALCULATION IN THE COLD TRAP.
C
C BEGIN TRANSIENT ANALYSIS.
C
TIME=0.
ITER=0
NPR=0
N1=K3-1
N2=K5-1
ITER=ITER+1
NPR=NPR+1
N1=N1+1
N2=N2+1
IF(N1-K4)2030,2030,2020
2020 N1=K3
2030 IF(N2-K6)2050,2050,2040
2040 N2=K5
2050 CONTINUE
TIME=TIME+DT
C
C START AT THE MIXING TANK.
C
CIN=C(N2)
C(N2)=C(K7)
C(K7)=(C(K7) *(VTANK-VNODE)+VNODE*C(N1))/VTANK
C
C GO TO THE COLD TRAP. CIN HAS BEEN SET.
C
XMASS=0.
DO 2140 J=K1,K2
DELTA = CIN-CE(J)
IF(DELTA)2060,2061,2061
2061 XKK = XK(J)
AKKT = AKT(J)
GO TO 2062
2060 XKK = XKD(J)
AKKT = AKTD(J)
2062 CONTINUE
DELTAC = CIN - CEC(J)
IF(DELTAC)2063,2064,2064
2064 XKKC = XK(J)
AKKTC = AKTC(J)
GO TO 2065
2063 XKKC = XKDC(J)
AKKTC = AKTCD(J)
2065 CONTINUE
C(J) = (AKKT*CE(J)+2.0*CIN+AKKTC*CEC(J))/(AKKT+AKKTC+2.0)
DM = XKK*A(J)*(C(J)-CE(J))*DT
DMI = XKKC*AAC(J)*(C(J)-CEC(J))*DT
XMII = XMI(J)
IF(DMI)2111,2131,2131
2111 IF(DMI+XMII(J))2121,2131,2131
2121 DMI = -XMII(J)
C(J) = (-DMI*1.0E+06/(W2*DT)+2.0*CIN+AKKT*CE(J))/(2.0+AKKT)
DM = XKK*A(J)*(C(J)-CE(J))*DT
2131 XMII(J) = XMII(J) + DMI
IF(DM)2110,2130,2130
2110 IF(DM*XMI(J))2120,2130,2130
2120 DM = -XMII(J)
C(J) = (DM*1.0E+06/(W2*DT)+2.0*CIN+AKKT*CEC(J))/(2.0+AKKT)
DMI = XKKC*AAC(J)*(C(J)-CEC(J))*DT
2130 XMII(J) = XMII(J) + DMI
2112 IF(DMI+XMII(J))2122,2132,2132
2122 DM = -XMII(J)
2132 XMII(J) = XMII(J) + DMI
C(J) = CM - (DM+DMP)/(2.0*W2*DT*1.0E-06)
CINP = CIN
CIN = C(J)
C0(J) = 2.0*C(J) - CINP
XMASS = XMASS + XM(J) + XMII(J)
C
2140 CONTINUE
C CALCULATE PRECIPITATION AND TRANSFER IN ZONE C
XCMASS = 0.0
GO 2242 J = 1, KMAXC
DELTCC = CIN - CECC(J)
IF(DELTCC)2250,2251,2251
2251 XKKCC = XKCC(J)
AKKTCC = AKTCC(J)
GO TO 2252
2250 XKKCC = XKDCC(J)
AKKTCC = AKTCD(J)
2252 CONTINUE
C0NC(J) = (AKKTCC*CECC(J)+2.0*CIN)/(AKKTCC+2.0)
DMC = 2.0*(CIN-C0NC(J))*W2*DT*1.0E-06
IF(DMC)2210,2230,2230
IF(DMC+XMC(J))2220,2230,2230
DMC = - XMC(J)
CONC(J) = CIN - DMC/(2.0*W2*DT*1.0E-06)
XMC(J) = XMC(J) + DMC
CINP = CIN
CIN = C00(J)
C00(J) = 2.0*CONC(J)-CINP
XCMASS = XCMASS + XMC(J)
CONTINUE
CRAT = (C(K7)-CE(K2))/(CS-CE(K2))
C STORE COLT TRAP OUTFLOW IN THE FIRST LEG.
C
C = C(N1) - C(K2)/(CS-CE(K2))
C
C PRINT AND EXIT ROUTINE.
C
C CALCULATE AVERAGE CONCENTRATION FACTOR
NOACT = KMAX
NOPPNZ = KMAX
AVCDI = 0.0
AVCDP = 0.0
D0 2141 J = K1, K2
CDI = C(J) - CE(J)
IF(XM(J))2144,2144,2145
NOPPNZ = NOPPNZ - 1
GO TO 2146
2145 AVCDP = CDI + AVCDP
2146 CONTINUE
IF(CDI) 2142,2143,2143
2142 NOACT = NOACT - 1
GO TO 2141
2143 AVCDI = CDI + AVCDI
2141 CONTINUE
ANOACT = NOACT
AVCDI = AVCDI /ANOACT
AVCDP = AVCDP/ANOACT
CONFAC = AVCDI /(C(KMAX)-CE(KMAX))
CONFAP = AVCDP/(C(KMAX) - CE(KMAX))
NOACTC= NOACT - JBMX
ANOACC = NOACTC
AREA = ANOACT*AA(4) + ANOACC*AC(4)*2.0 + A1
PPMASS = XMASS + XCMASS
DIFTIM = TIME - TIM1
DIFPPN = PPMASS - PPMASS1
PPMASS1 = PPMASS
TIM1 = TIME
DMDT = DIFPPN/DIFTIM
IF(DISTAG)2147,2148,2147
2148 XKZ = XK(KMAX)
GO TO 2149
2147 XKZ = XKD(KMAX)
2149 CONTINUE
```
EQNFAC = DMDT/(XKZ*AREA*(CONC(KMAXC)-CE(KMAX)))
N0PPZC = N0PPNZ - JBMX
AN0PPZ = N0PPNZ
AN0PPZC = N0PPZC
AREAP = AN0PPZ*AA(4) + AN0PPZC*AC(4)*2.0 + A1
EQNFAP = DMDT/(XKZ*AREAP*(CONC(KMAXC)-CE(KMAX)))
N0IT = N0ITP1 - 1
IF(NUKIT = N0IT)2160,2153,2153
2153 CONTINUE
IF(NPR=NPRINT)2160,2150,2150
2150 NPR=0
WRITE(9,15)
WRITE(9,1)0T,TMAX,TIME
WRITE(9,16)
WRITE(9,1)C(J),J=K1,K2
WRITE(9,23)
WRITE(9,1)CONC(I), I = 1, KMAXC
WRITE(9,9)
WRITE(9,17)
WRITE(9,1)C(J),J=K3,K6)
WRITE(9,9)
WRITE(9,18)
WRITE(9,7)C(K7),CRAT,TIME,XMLASS, XCMASS
WRITE(9,40)DCACT
WRITE(9,9)
WRITE(9,19)
WRITE(9,7)(XM(J),J=K1,K2)
WRITE(9,24)
WRITE(9,7)(XM(I), I = K1,K2)
WRITE(9,25)
WRITE(9,7)XMC(I), I = 1, KMAXC)
SMASS = 0.0
DO 2151 I = 1, K6
2151 SMASS = SMASS + VN0DE*R02*C(I)*1.0E-06/1728.
SMASS = SMASS + (VTANK*R02*C(K7)*1.0E-06)/1728.
DO 2152 I = 1, KMAXC
2152 SMASS = SMASS + VN0DE*R02*CONC(I)*1.0E-06/1728.
SMASS = SMASS + XMASS + XCMASS
WRITE(9,26)
WRITE(9,10)SMASS0, SMAX
WRITE(9,8)
WRITE(9,9)AVCDI,N0ACT,CONFAC
WRITE(9,22)
WRITE(9,9)AVCDP,N0PPNZ,CONFAP
WRITE(9,45)EQNFAC
WRITE(9,46)EGNFAP
2160 CONTINUE
C ADJUST PRECIPITATION K FACTOR
IF(TIME-REFTIM)2164,2161,2161
2161 IF(PPTAG)2167,2168,2167
2167 XK01 = XK0
XK0 = XK01*(CRAT/REFCON)**ADJEXP
2168 CONTINUE
```
IF(DISTAG) 2166, 2165, 2166
2166 ADIS1 = ADIS
ADIS = ADIS1*(CRAT/REFCGN) * ADJEXP
2165 CONTINUE
WRITE(9,12)
WRITE(9,10) XK0, CS, DT, ADIS
NOKIT = NOKIT + 1
WRITE(9,14) NOKIT
IF(NOKIT - NOKIT1) 2162, 2163, 2163
2163 REFTIM = TIMAX + 1.0
GO TO 2164
2162 GO TO 1201
2164 CONTINUE
IF(TIME-CHTIME) 2173, 2171, 2171
2171 CHTIME = TIMAX + 1.0
DO 2172 I = 1, K6
2172 C(I) = C(I) + DELPPM
2173 CONTINUE
IF(TIME-CHTIM2) 2174, 2175, 2175
2175 CHTIM2 = TIMAX + 1.0
NPRINT = NPRIN2
2174 CONTINUE
IF(TIME-TIMAX) 2170, 2170, 2180
2170 GO TO 200
2180 CONTINUE
GO TO 200
C
C 1012 WILL BUY A NEW TEMPERATURE CALCULATION.
C 2002 WILL BUY ONLY A RESET OF CS, C(J), XK0.
C
C 2200 CONTINUE
END