LOS ALAMOS SCIENTIFIC LABORATORY of the University of California
 LOS ALAMOS - NEW MEXICO

Numerical Simulation of a Cold Trap for Sodium Purification

by
B. C. Goplen
J. C. Biery
C. C. McPheeters*

Present address: Atomics International, Canoga Park, California.

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NUMERICAL SIMULATION OF A COLD TRAP FOR SODIUM PURIFICATION

by

B. C. Goplen, J. C. Biery, and C. C. McPheeters

Abstract

The dynamic behavior of a sodium system cold trap was numerically simulated on a digital computer. The simulation accounted for mixing in the hold tank, delay times in pipes, temperature variation with distance in the cold trap, impurity buildup on the walls of the cold trap, and simultaneous precipitation and dissolution of the impurity in different portions of the cold trap. The main purpose of the simulation was to generate mass transfer coefficients from experimental data taken from an experimental sodium loop. The program can also help in the design of sodium systems containing cold traps.

I. Introduction

A common means of purifying liquid metal systems is the low-temperature precipitation of impurities. The process is referred to as cold trapping. To study the kinetics of cold trap behavior, a series of experiments was performed at the Los Alamos Scientific Laboratory (LASL). ${ }^{1}$ Because of the complexity of the cold trap system a numerical simulation program, VASSAR, was written in FORTRAN for the IBM 7030 computer to help analyze the experimental results.

Basically, the two purposes for a program of this type are (1) to calculate mass transfer coefficients, both for precipitation and dissolution, by the direct simulation of experimental data; and (2) to assist in designing sodium systems by testing the effectiveness of various cold traps in the particular system being considered. This report is concerned only with the first purpose.

The VASSAR program uses the Lagrangian coordinate system and finite difference techniques to solve the steady-state heat transfer and unsteady-state mass transfer differential equations.

II. The Experimental System

The sodium test system considered was a closed, forced convection circuit with partial flow through the
cold trap. The test loop, shown in Fig. 1, consisted of (1) a large volume ballast tank to provide a suitable time delay in the circuit; (2) an electromagnetic sodium pump;
(3) a vacuum distillation sampler; (4) a plugging meter; (5) a removable cold trap section provided with a NaK

Fig. 1.
Isometric view of cold trap test loop.
alloy cooling circuit consisting of an expansion tank, a NaK-to-air heat exchanger, an electromagnetic pump, a flowmeter, and a diffusion cold trap; (6) two emf liquid metal oxygen meters, one upstream from the cold trap and one downstream; (7) an expansion tank containing the main system heat input and an impurity addition device; (8) two sodium system flowmeters, one immediately upstream from the cold trap, and the other in the plugging meter section; and (9) valving and piping to isolate the cold trap section from the large tank section while maintaining pump flow through the cold trap section.

The system flow is illustrated schematically in Fig. 2. In the primary system, flow proceeded from the ballast tank through the pump to a pipe cross where it divided to go to the vacuum distillation analytical sampler, the plugging meter, and the cold trap. Flow through the distillation sampler was returned to the main stream between the expansion tank and the ballast tank. Flow through the plugging indicator was returned to the ballast tank. Flow to the cold trap passed through the main system flowmeter, oxygen meter No. 1, the cold trap, the expansion tank, oxygen meter No. 2, and returned to the ballast tank.

Fig. 2.
Flow diagram of cold trap test loop.

A cutaway view of the cold trap is shown in Fig. 3, with NaK and sodium flows as illustrated. Packing was eliminated to simplify the geometry of the nucleation surfaces. A helical winding of tubing in the NaK annulus provided uniform flow distribution. Six thermocouples in a well in the annulus measured bulk temperatures in the sodium.

III. Calculational Technique

The computer program, VASSAR, uses a Lagrangian coordinate system to follow a "slug" or element of fluid in its routing through the system; the associated impurity concentration is continually recalculated. Thus, the entire physical system is divided into a large number of elements with a "node" number associated with each location in the system.

The simulation program takes into account all aspects of the system including the delay time in pipes, the mixing characteristics of the tank, and the precipitation and dissolution characteristics of the cold trap. Three surfaces on which precipitation can occur in the cold trap are the inner and outer surfaces of the annular space which the sodium contacts as it moves down the cold trap and the cylindrical surface that it contacts as it moves upward out of the cold trap.

Fig. 3.
Cutaway view of cold trap.

Because the impurity concentration at which precipitation occurs is a function of the cold trap surface temperature, a complete temperature calculation is required in the cold trap The rest of the system is considered to be isothermal The NaK annulus, the incoming sodium annulus, and the outgoing sodium cylinder are desıgnated, respectively, as regions $\mathrm{A}_{\mathrm{NaK}}$, B_{Na}, and C_{Na} The law of conservation of energy in each region provides three differential equations, Eqs (1) through (3), that are solved simultaneously in finite difference by relaxation Boundary conditions are imposed by specifying the NaK and sodium inlet temperatures

$$
\begin{gather*}
\frac{d T_{a}}{d x}=\frac{h_{1-} h_{1+}+\pi d_{1}}{\left(h_{1^{-}}+h_{1+}\right)\left(m c_{p}\right)_{a}}\left(T_{b}-T_{a}\right) \tag{1}\\
\frac{d T_{b}}{d x}=\frac{h_{1_{1}-h_{1+}+\pi d_{1}}^{\left(h_{1}+h_{1+}\right)\left(m c_{p}\right)_{b}}\left(T_{a}-T_{b}\right)}{} \\
\quad+\frac{h_{2_{2}-h_{2+}+\pi d_{2}}^{\left(h_{2^{-}}+h_{2+}\right)\left(m c_{p}\right)_{b}}\left(T_{c}-T_{b}\right)}{} \tag{2}
\end{gather*}
$$

and
$\frac{d T_{c}}{d x}=\frac{h_{2-} h_{2+} \pi d_{2}}{\left(h_{2-}+h_{2+}\right)\left(m c_{p}\right)}\left(T_{b}-T_{c}\right)$
Following solution for the bulk temperature in each region, the wall temperatures for the surfaces of precipitation may be calculated directly As an option, the code user may input a specific bulk temperature distribution for sodium in Region B In this case, the code ignores Eq (2), then Eqs (1) and (3) become analytic, and the surface temperatures are calculated as usual

In the LASL experıments, ${ }^{1}$ oxygen was considered to be the man precipitation impurity Oxygen solubility data were obtaned from the Rutkauskas oxygen solubility relatıonshıp ${ }^{2}$ A semılogarithmic function of degree three, Eq (4), was used to fit the data points rather than the traditional I/T fit because the data appear to diverge from linear I / T line in the lower temperature region, which is the primary region of interest. Insertion of the wall temperature distribution into Eq (4) produces the equilibrium oxygen impurity concentration distribution in the cold trap

$$
\begin{equation*}
\log _{10} \mathrm{C}_{\mathrm{e}}=\mathrm{DA}+\mathrm{ET}+\mathrm{FT}^{2}+\mathrm{GT}^{3} \tag{4}
\end{equation*}
$$

with $\quad \mathrm{D}=317871 \times 10^{-1}$
$\mathrm{E}=-599152 \times 10^{-3^{3}}$,
$\mathrm{F}=267916 \times 10^{-5}$,
$G=187669 \times 10^{-8}$
The differential mass transfer of the impurities to and from the collection surface in the cold trap can be expressed as

$$
\begin{equation*}
\frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{kaA}_{\mathrm{p}}\left(\mathrm{C}-\mathrm{C}_{\mathrm{e}}\right) \tag{5}
\end{equation*}
$$

where $\mathrm{dm} / \mathrm{dt}$ is the rate of mass precipitation or dissolution, ka is the mass transfer coefficient, A_{p} is the area of precipitation, C is the sodium oxide concentration, and C_{e} is the equilibrium concentration as determined by a solubility curve for the impurity precipitating in a sodium system

Equation (5) apphes for each element of surface However, to obtan the overall effect on the sodium flowing through the trap, the mass of impurities transferring into and out of an element of moving fluid must be accounted for The mass balances for elements flowing through Regions B and C are written as

$$
\begin{align*}
\frac{\mathrm{DC}_{\mathrm{b}}(\mathrm{x}, \mathrm{t})}{\mathrm{Dt}}= & \frac{-4 \times 10^{6}}{\left(\mathrm{~d}_{1}{ }^{2}-\mathrm{d}_{2}{ }^{2}\right)} \frac{\mathrm{ka}}{\rho_{\mathrm{b}}} \\
& \left\{\mathrm{~d}_{1}\left(\mathrm{C}-\mathrm{C}_{\mathrm{e}_{1}}\right)+\mathrm{d}_{2}\left(\mathrm{C}-\mathrm{C}_{\mathrm{e}_{2}}\right)\right\} \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{DC}_{\mathrm{c}}(\mathrm{x}, \mathrm{t})}{\mathrm{Dt}}=-4 \times 10^{6} \frac{\mathrm{ka}}{\mathrm{~d}_{2} \rho_{2}}\left(\mathrm{C}-\mathrm{C}_{\mathrm{e}_{2}}\right) \tag{7}
\end{equation*}
$$

The use of Eqs (6) and (7.) allows the calculation of oxygen concentration in the trap as a function of both time and position The equations were solved simultaneously in finite difference form along with tank mixing and delay functions to generate the impurity concentrations

The mass precipitated (or dissolved) is related to the concentration change by the elemental volume A running account is kept of the mass distribution on the wall Such mass is, of course, free to reenter the system should concentration at the point fall below equilibrium

Various components of the system are considered in terms of their mixing or delay effects In the expansion and storage tanks, partial mixing may be in effect In this case, a certain percentage of the volume is considered to mix perfectly, governed by the relation

$$
\begin{equation*}
\frac{\mathrm{dC}}{\mathrm{dt}}=\frac{\mathrm{m}_{\mathrm{b}}}{\rho_{\mathrm{b}} \mathrm{~V}_{\mathrm{m}}}\left(\mathrm{C}_{1 \mathrm{n}}-\mathrm{C}\right) \tag{8}
\end{equation*}
$$

The remainder of the volume in the hold tank is considered in terms of a time delay, as are the volumes in the pipes and other small elements in the system Time delays in the program are provided by storing an element's concentration and introducing it to the appropriate component after a suitable time lapse

The time step used in the program is determined by the mass flow rate and selection of the size of the element
of fluid as indicated by

$$
\begin{equation*}
\Delta \mathrm{t}=\frac{\Delta \mathrm{V} \rho_{\mathrm{b}}}{\mathrm{~m}_{\mathrm{b}}} \tag{9}
\end{equation*}
$$

In general, the mass transfer coefficient, ka, is assumed to be a function of temperature

$$
\begin{equation*}
\mathrm{ka}=a \mathrm{e}^{\left(\frac{-\Delta \mathrm{E}}{\mathrm{RT}}\right)} \tag{10}
\end{equation*}
$$

Further, the coefficients for dissolution and precipitation are considered to be different In practice, the energy, $\Delta \mathrm{E}$, is assigned some value and the program is run iteratively to determine the quantity by comparing the computed results with the experimental data after a specified period of time The quantity a is then revised according to

$$
\begin{equation*}
a=a^{\prime}\left(\frac{\mathrm{C}_{\mathrm{calc}}}{\mathrm{C}_{\mathrm{exp}}}\right)^{\mathrm{n}} \tag{11}
\end{equation*}
$$

where acceptable values of the exponent n are generally found between 10 and 13 Satisfactory convergence was normally obtained within five iterations

The program is versatile in that various types of experimental runs can be duplicated For example, it is possible to calculate a precipitation run immediately followed by a dissolution run, that is, the precipitation run is calculated as usual and is followed by a temperature recalculation The masses deposited on the walls of the cold trap as well as the concentrations remaining in the system are unchanged, or if desired, a suitable time delay can be introduced The dissolution run then follows in which the sodium oxide is reintroduced into the system

IV Numerical Results

The mass transfer coefficient has generally been considered a function of temperature, however, experımental data and numerical correlations have indicated that the temperature dependence is very slight This condition is equivalent to stating that the quantity $\Delta \mathrm{E}$ is generally much less than the quantity RT, see Eq (10) Also, recent data ${ }^{3}$ show no sigmificant difference between the precipitation coefficient and the dissolution coefficient This result was verified in our work by numerical simulation of both types of experımental runs

Both precipitation and dissolution occur in a typical precipitation run As sodium oxide precipitates in the cold trap, the overall oxygen concentration is decreased below the saturation concentration in the warmer portions of the cold trap When this condition occurs, the oxide dissolves from the cold trap surfaces into the sodium and becomes available for precipitation further down the cold trap in the low-temperature regions This
effect is complicated by the condition that inner and outer surfaces of the sodium annulus may exist at different temperatures Hence, mass may be simultaneously precipitating from and dissolving into a single fluid element The general effect is clearly illustrated in Fig 4, which shows the computed sodium oxide distribution on the outer surface of the cold trap annulus As time increases, the sodium oxide is dissolving off the leading edge at the warmer portions of the cold trap and is precipitating in the colder zones Thus, the precipitation zone becomes significantly smaller as the sodium oxide is completely removed from the warmer areas

The general effect of the cold trap on system concentration is shown in Fig 5 The two curves represent the oxygen concentration in the sodum entering the cold trap and that in the sodium leaving the cold trap The discontinuities in the curves are due to an arbitrary introduction of sodium oxide This oxide introduction feature was added because of experimental evidence that sodium oxide actually breaks loose from portions of the cold trap and is carried back into the sodium system where it redissolves and appears as an addition to the system This experimental effect, as well as the computer simulation, is illustrated in Fig 6 The value of the mass transfer coefficient given was determined with the previously described iterative technique

An attempt was made to gan an analytic solution by defining the term "concentration factor " ${ }^{1}$ This is the area-weighted difference between system and equilibrium concentration throughout the cold trap Use of the concentration factor allows defintion of the effective precipitation driving potential in terms of the oxygen concentration in the bulk sodium as it leaves the cold trap and the equilibrium concentration at the coldest point in the trap Calculated values of the concentration factor and its variation in time are shown in Fig 7 The upper curve is illustrative of precipitation areas only, whereas

Fig 4
Computed $\mathrm{Na}_{2} \mathrm{O}$ mass distributtons on outer wall of cold trap as a function of time

CONCENTRATION CHANGE IN A PRECIPITATION RUN

Fig. 5.
Computed oxygen concentrations in cold trap test loop as a function of time.

Fig. 6.
Computed and experimental oxygen concentrations as a function of time for runs 1-20 in cold trap test loop.
the lower curve considers the transfer area of the entire cold trap.

The results of the experimental program are shown in Fig. 8 where the change in mass transfer coefficient with Reynolds number is presented. These coefficients were generated by using the simulation program.

Fig. 7.
Concentration factor as a function of time as computed by the simulation program.

Fig. 8.
Mass transfer coefficient as a function of Reynolds number for packless trap in cold trap test loop.

V. Summary and Conclusions

The computer program, VASSAR, has sufficient versatility to adequately describe the precipitation and dissolution processes that occur in the experimental system. Numerical correlation with experimental data has been successful, and has allowed the generation of mass transfer coefficients.

The program also can assist in the design of cold traps for sodium systems of this type. With the knowledge of mass transfer coefficient as a function of Reynolds number, the rate of system cleanup as a function of cold trap physical parameters and modes of operation can be studied with the simulation program. By reformulation of the mathematical model, the effects of packing can also be studied.

Nomenclature

$\mathrm{A}_{\mathrm{NaK}}$ Annular region in cold trap through which NaK flows.
$A_{p} \quad$ Area on which impurity precipitation occurs, cm^{2}.
$\mathrm{B}_{\mathrm{Na}} \quad$ Annular region in cold trap through which sodium flows.

C Concentration of oxide impurity in sodium stream, ppm
$\mathrm{C}_{\text {calc }}$ Calculated concentrations in hold tank at some specified time, ppm.
$\mathrm{C}_{\mathrm{e}} \quad$ Impurity saturation concentration, ppm
$\mathrm{C}_{\text {exp }}$ Experimental concentration in hold tank at some specified time during run, ppm.
C_{in} Concentrations entering perfectly mixed volume, ppm.
C_{Na} Cylindrical region in cold trap through which sodium flows.
$\mathrm{C}_{\mathrm{p}} \quad$ Specific heat, cal/g/ ${ }^{\circ} \mathrm{C}$.
D/Dt Substantial derivative; change within a flowing fluid element with respect to time.
d Diameter, cm.
h Heat transfer coefficient, $\frac{\mathrm{Btu}}{\mathrm{hft}^{2}{ }^{\circ} \mathrm{F}}, \frac{\mathrm{cal}}{\sec \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}}$.
$\mathrm{ka} \quad$ Mass transfer coefficient, g impurity $/\left(\mathrm{cm}^{2}-\mathrm{h}-\mathrm{ppm}\right.$ of impurity) or lbs impurity/($\mathrm{ft}^{2}-\mathrm{h}-\mathrm{ppm}$). (First rate constant $\times 2.06=$ second rate constant.)

Mass of impurity precipitating or dissolving, g .
$\dot{\mathrm{m}} \quad$ Sodium mass flow rate, $\mathrm{g} / \mathrm{sec}, \mathrm{lb} / \mathrm{h}$.
n Exponent in iteration process used to correct a as indicated in Eq. (11).

T Temperature, ${ }^{\circ} \mathrm{C}$.
t Time, h.
$\mathrm{V}_{\mathrm{m}} \quad$ Volume in which perfect mixing occurs, cm^{3}.
$x \quad$ Axial distance along cold trap, cm .

Subscripts

a Region $A_{N a K}$ in cold trap; annular region through which NaK flows.
b Region B_{Na} in cold trap; annular region through which sodium flows into trap.
c Region C_{Na} in cold trap; cylindrical region through which sodium flows out of trap.

1 Outer surface of annular space containing sodium.
2 Inner surface of annular space containing sodium.
1- NaK side of outer surface.
$1+\quad$ Sodium side of outer surface.
2- Annular sodium side of inner surface.
2+ Cylindrical sodium side of inner surface.

Greek Symbols

a Constant in mass transfer coefficient temperature function, Eq. (10).
$a^{\prime} \quad$ Constant adjusted by Eq. (11) to produce the best a to fit experimental data.
$\Delta \mathrm{E} \quad$ Activation energy, in Eq. (10), cal/(mole $\left.{ }^{\circ} \mathrm{K}\right)$.
$\Delta t \quad$ Time increment used in numerical integration, h.
$\Delta \mathrm{V}$ Incremental volume of liquid used in numerical simulation, cm^{3}.
$\rho_{\mathrm{b}} \quad$ Density of sodium, $\mathrm{g} / \mathrm{cm}^{3}$.

References

1 C C McPheeters, "Mass Transfer of Oxygen in Sodium Cold Traps," LA-3936, Los Alamos Scientific Laboratory (May 1968)

2 V J Rutkauskas, "Determination of the Solubility of Oxygen in Sodium by Vacuum Distillation," LA-3607-MS, Los Alamos Scientific Laboratory (September 1968)

3 C C McPheeters and J C Biery, 'Oxygen Transport in Sodium," Proceedings of the International Conference on Sodium Technology and Large 「ast Reactor Design, ANL-7520, Pt I, pp 471-477, Argonne National Laboratory (November 1968)

APPENDIX

COLD TRAP SIMULATION PROGRAM (VASSAR)

I. Input Data

Card Number
$-13-0$

1

2

3

4

5

Data Description
Format

A tag to adjust dissolution mass transfer coefficient in the E13.6 iteration process. $\pm 10=$ Adjust, $00=$ No adjust

Tag, $+1.0=$ all Δx nodes in cold trap will be used, $0.0=$ all Δx nodes above C_{o} saturation temperature will be discarded

Precipitation rate constant, $\mathrm{lbs} /\left(\mathrm{h}-\mathrm{ppm}-\mathrm{ft}^{2}\right)$.
Constants a and ΔE in Eq (10) for calculation of dissolution mass transfer coefficient $\mathrm{lb} /\left(\mathrm{h} \cdot \mathrm{ft}^{2}-\mathrm{ppm}\right)$ and $\mathrm{cal} / \mathrm{mol} /{ }^{\circ} \mathrm{K}$

Initial concentration of impurity in hold tank, ppm
Number of Δt calculations before a printoutI5
Number of increments on 1 - and $2+$ surfaces and length of increment, inGallon/mın of NaK flow, gal/mın of sodıum flow2E13.6
Tank mıxing factor $=$ fraction of tank perfectly mixed E13.6Temperature of NaK entering cold trap, and temperature of2E13 6sodium entering cold trap, ${ }^{\circ} \mathrm{C}$.

Maxımum time of run, h E13.6

Number of iterations to adjust mass transfer coefficients I5

Time at which $\Delta \mathrm{C}$ ppm of impurity is added to system.2E13.6

Time at which number of Δt calculations per printout is E13.6, I5

Card Number

$16,17,18$, and 19

20

21

22

Data Description
Temperatures in Region B_{Na}. Read in from cold to hot end. Each temperature at center of Δx.

Experimental concentration and time measured. (Used in mass transfer coefficient iteration process.)

Exponent, n , for adjusting mass transfer coefficient. Used in Eq. (11).

Tag to indicate whether or not to adjust precipitation mass transfer coefficient, $\pm 1.0=$ yes, $0.0=$ no.

Format
6E13.6

2E13.6

E13.6

E13.6
II. Program Printout

```
C VASSAR IS A FINITE DIFFERENCE TRANSIENT MASS
C TPANSFER CODE FOR COLD TRAP ANALYSIS.
C
C
C THIS PARTICULAR VERSION CONSIDERS THE TYPE OF
C
C
C
C
DIMENSIGN DX(50),TA(50),TE(50),TC(50),AA(50), AC(50),
ICA(50),CC(50),T(100),CE(50),C(1000),XM(50),XK(50),AKT(50),CO(50)
2,A(50),TW(50), TWC(50), TTC(50), CEC(50), AAC(50), AKTC(50),
3XMI(50), COO(50), CONC(50), XMC(50), CECC(50), AKTCC(50),
4XMM(50), XNMI(50), XNNC(50),
5XKD(50), XKOC(50), AKTD(50), AKTCD(50), AKTCDC(50), XKDCC(50),
GXKCC(50)
C
C
C
    1 FORMAT(1HO,1O(F8.3,2X))
    2 FORMAT(1H1)
    3 FORMAT(53HIRESULTS OF TENPLRATURE CALCULATION. T(A), T(B), T(C))
    4OFORMATIGGHIEQUILIBRIUN CONCENTRATION AND WALL TEMPERATURE, PPM AND
        l DEGREES FI
    5 FORMAT (15HOREGIUN B ONLY.)
    6 FORMAT(IHO)
    7 FORMAT(10(2X,E10.3))
8 OFORMAT(GGHOAVERAGE CONC. DIFF. (PPM),NO. GF NODES ACTIVE, AND AVG.
    1 COINC. FACTOR)
9 FORMAT(IH, 22X, E13.6, 22X, I5, 22X, El3.6)
10 FORMAT(6E13.6)
11 FORMAT(43HODIMENSI ONLESS EXP. CONC. AND TIME OF CCNC.I
12 FORMAT(47HIPPTN K, INIT. CONC., PPM, TIME INC., HR., ADIS)
13 FORMAT(37HOVOLUMES, IN3, NODE, TANK, LEGI, LEG2)
14 FOKMA「(2IHONO. OF ITERATIONS = , I5)
```

15 FORMAT(21HIDT, TIMAX, TIME, HRS)
16 FORMAT(27HONA CONC. IN COLD TRAP, PPM)
17 FORMAT(34HONA CONC. IN LEG1, TANK, LEG2, PPN)
18 OFGRMAT(58HO TANK CONC., TANK DIM. CONC.. TINE, XMASS(LB), XCMASSIL 1B))
19 FORMAT(29HOPPTD. MASS IN COLE TRAP(LBS))
20 FORMAT(26HOFRACTION OF TANK NIXED $=, F 8.51$
21 FORMAT(14HOREGION C ONLY)
22 OFORMAIITOHUAVG. CUNC. DIFF., NO. PPTN. ZONES, CONC. FACTOR INCLUDI ING DISSOLUTIONI
23 FORMAT(23HOCONC. IN REGICN C, PPM)
24 FORMAT(43HOMASS PRECIPITATED ON INSIDE OF LONE B, LBSI
25 FORMAT(33HOMASS PRECIPITATED IN LONE C, LBS)
26 FGRMAT(39HOOXIDE IN SYSTEM, LBS., INITIAL AND NOWI
2.7 FORMAT(5IHOEQUIL. CONC. IN ZONE C, XKCC, XKCCC, AKTCC, AKTCDCI

28 FORMAT(34HOPPTN. CONSTANT, LB/HR/FT2/PPM, $=$, E13.6)
29 FORMAT(22HOINITIAL CONC., PPN = E13.6)
30 FORMAT(5I5)
31 FORMAT(26HONO. (3F LOUPS PER PRINT $=$, 15)
32 FORMAT(215, E13.6)
33 (ORMAT(RHOJAMX = , $15,9 H$ JCMX $=$, 15 , 15H OEL X, IN, $=$, E13.6)
34 FORMAT(BHOGPNI = E13.6, OH GPM2 = , E13.61
33 FORMAT(I2HOTINA, $C,=, E 13.6,13 H$ TINB, $C,=, E 13.6)$
36 FORMAT(15HOTIMAX, HR., $=$, E13.6)
37 FORMAT(3OHOEXP. TEMPS. IN LONE B, DEG. C)
38 FGRMAT(36HONO. OF ITER. LGOPS TO CHANGE XKO $=$, 151
39 FORMAT(11HIRLN NO. $=$, F6.3)
40 FGRMAT(32HODIM. CONC. EXITING COLD TRAP $=$, E13.6)
41 FORMAT(16HOAT TIME, HR, $=$, E13.6, $13 H$ INC. PPM $=$, E13.6)
42 FORMAT(42HOSIGNAL FOR TEMP. CHANGE $1=$ YES $0=N O=$, E13.6)
43 FORMAT(1GHOAT TIME, HR, = E13.6,21H CHANGE NPRINT TO = , 151
44 FORMAT(E13.6, I5)
45 OFGRMATIGTHOEQN. FACTOR BASED ON ACIIVE PPN. NODES ANO 3 ZONES OF P 1PN. AREA $=$, E13.61
46 OFGRMATIT7HOEQN. FACTGR BASED ON ACTIVE PPN. AND CIS. NUDES AND 32 1ONFS OF OXIDE AREA $=$, E13.6)
47 OFGRMATI50HOK DISS. AS FNC. OF TEMP., LB/HR FT2 PPM, $\triangle D I S$, $=$, 1E13.6, 23H DELTA ENLRGY, KCAL = E13.6)
48 TURMAT(33HOK DIS. FUR ZONE R, LB/HR FT 2 PPMI
49 FORMA (1 HO, (9E13.6))
50 FOKMAT(33HOK UIS. FOR LONE C, LB/HR FT2 PPM)
51 OFORMATIGGHOTAG TO INDICATE IF ADIS CONSTANT TO BE ADJUSTED, $0=$ NO $1,1=Y E S,=$, E13.61
52 FORMAT(48HOTAG TO ADJLST XKO FUR PPN., $0=$ NO, $1=Y E S$, $=$, E13.6)
53 FORMAT(39HUEXPGNENT FGR ADJUSTING XKO AND ACIS $=$, E13.6)
54 OFGRMAT(48HIMASS OXYGEN, LBS, ON 00 OF ANNULUS INITIALLY $=1$, 1(9E13.6))
55 OFOFMAT(48HOMASS OXYGEN, LBS, ON ID OF ANNULUS INITIALLY = 1 , (19E13.6))
56 OFORMAT(52HOMASS OXYGEN, LBS, OiN ID OF INSIDE PIPE INITIALLY = , 1/, (9E13.6))

THIS IS THE INPUT SECTION.

```
    NCA SE=1
    NTEMP =1
    PPMASI =0.0
    SIG1 = 0.0
    OO 300 J=1,50
    XM(J)=0.
    XMI(J) = 0.0
    XMC(J) = 0.0
300
    CONTINUE
    READ(10,10)(XM(J), J=1, 36)
    READ(10,10)(XMI(J), J=1, 36)
    READ(10,10)(XMC(J), J = 1, 12)
    WRITE(Э,54)(XM(J),J = 1, 36)
    WRITE(9,55)(XMI(J), J = 1, 36)
    WRITE(9,56)(XMC(J):J = 1:12)
200 CONTINUF
    DO 201 J = 1,50
    XMM(J)= XM(J)
    XMMI(J) = XMI(J)
    XMMC(J) = XMC(J)
201 CONTINUE
    READ(10,10)RUNNO
    WRITE (9,39)RUNNO
    REAI:(10,10)DISTAG
    WRITE(9,51)DISTAG
    READ(10,10)SIGTEM
    WRITE(9,42)SIGTEM
    READ(10,10)XKO
    WRITE (7,28)XKO
    READ(10,10)ADIS, DELENO
    WPI TE (9,47)ADIS,DELEND
    REAL(10,10)CS
    WRITE (9,29)CS
    READ(10,30)NPRINT
    WRITE (9,31)NPRINT
    EPST=.001
    READ(10,32) JAMX, JCMX, DXX
    WRITE (9,33)JAMX, JCMX, DXX
    D1 = 3.75
    D2=2.
    HNU1=4.35
    HNUZ=4.35
    HNU3=4.35
    HNU4=4.35
    HKl=14.3
    HK2 = 46.0
    CP1 = 0.215
    CP2 = 0.315
    ROL = 51.0
    RO2 = 56.0
    READ(10,10)GPML,GPM2
    WRITE(9,34)GPM1,GPM2.
    VLEG1=117.5
    VI_EG2=185.
```

```
    VTAMKK=13318.
    REAC(10,10)TANKFR
    WRITE (9,20)TANKFR
    VLEGI = VLEG1 + (1.O-TANKFR) VTANK
    VTANK = VTANK*TANKFR
    READ(10,10)TINA,TINB
    WRITE(9,35)TINA,TINB
    TINA = TINA*(9./5.)+32.
    TINB = TINB*(9./5.)+32.
    REAO(10,10)TIMAX
    WRITE (9,36) TIMAX
    READ(10,30)NOITP1
    WRITE(9,38)NOITPI
    READ(10,10)CHTIME,DELPPM
    WRITE(9,41)CHTIME,DELPPM
    READ(10,44)CHTIM2,NPRIN2
    WRITE (9,43)CHTIM2,NPRIN2
    REAL(10,10)(TB(I),I = 1, JAMX)
    WRITE(9,37)
    WKITE (9,6)
    WRITE(\vartheta,7)(TB(I), I = 1, JAMX)
    READ(10,10)REFCON, REFTIM
    WRITE(7,11)
    WRITE(9,10) REFCON,REFTIM
    READ(10,10)ADJEXP
    WRITE(9,53)ADJEXP
    KEAO(10,10)PPNTAG
    WRITE (9,52)PPNTAG
    DO1000J=1,JAMX
    UX(J) = [)XX
    1000 CONTINUE
C
C ENO OF INPUT.
C
C
    JBMX=JAMX-JCNX
    JA =JBMX+1
    JR=JCMX+1
NK=0
D1=01/12.
D2=02/12.
PI=3.14159
PI4=3.14159/4.
AL=PI4*(01**2)
A2=PI4*([12**2)
H1=HNUL*HK1/D1
H2 = HNU2*HK2/DL
H3 = HNU3*HK2/O2
H4=HNU4*HK2/D2
C
C
DO1010J=1, JAMX
TA(J)=465.
TC (J) =465.
```

```
    DX(J)=0X(J)/12.
    AA(J)=PI*O1*[OX(J)
    AC(J)=PI*D2*UX(J)
    CA(J)=(H1*H2)*AA(J)/(H1+H2)
    CC(J)=(H3*H4)*AC(J)/(H3+H4)
    1010 CONTINUE
    VNODE = (A1-A2)*DX(JAMX)*1728.
C
C THE TIME STEP IS BASED UPGN THE JAMX NOCE.
C
    DT=VNODE/IGPM2*60.*231.1
C
    Wl=RO1*GPM1*231.*60./1728.
    W2=RO2*GPM2*231.*60./1728.
    CWI=2.*CP1*W1
    CW2=2.*CP2*W2
    II=IFIX(VLEGI/VNODE)
    I2 = IFIX(VLEG2/VNOUE)
C
C
C. TEMPERATURE ITERATION LGOP. LFLAG=O WILL EXIT.
C
C REGION B
C
C
C NTEMP=0 INDICATES ANALYTICAL SOLUTION IN REGION B.
C INPUT TB(J) IN DEGREES C..
C
    1012 IF(NTEMP)1015,1020,1015
    1015 CONTINUF
C
C
    DO1165J=1, JAMX
    TB(J)=(9./5.)*TR(J)+32.
    1165 CONTINUE
    TOUT=(TB(JBMX)+TB(JA))/2.
    LFLAG=0
    GOTOLO85
C
C
    1020 TIN=TINB
    LFLAG=0
    C01050J=1,JCNX
    I=JAMX+I-J
    TP=(CA(I)*TA(I)+CC(I)*TC(I)+CW2*TIN)
    1 /(CA(I)+CC(I)+CW'2)
    E=ABS(TP-TB(I))
    IF(E-EPST) 1040,1030,1030
    1030 LFLAG=1
    1040 TB(I) =TP
    TIN=2.*TP-TIN
1050 CONTINUE
    TOUT=TIN
C
```

```
    DO1080J=JB,JAMX
    I=JAMX+1-J
    TP=(CA(I)*TA(I)+CW2*TIW)/(CA(I)+CW2)
    E=ABS(TP-TB(I))
    IF(E-LPST)1070,1060,1060
    1060 LFLAG=1
    1070 TB(I)=TP
    TIN=2.*TP-TIN
    lcgo continuF
C
C REGION C
C
    1085 TIN=TOUT
    DO1110J=JA,JAMX
    TP=(CC(J)*TB(J)+CW2*TIN)/(CC(J)+CW2)
    E=ABS(TP-TC(J))
    IF(E-EPST)1100,1090,1090
    1090 LFLAG=1
    1100 TC(J)=TP
    TIN=2.*TP-TIN
    1110 CONTINUE
C
C
C REGIONA
C
    TIN=TINA
    DOl140J=1,JAMX
    TP=(CA(J)*TB(J)+CW1*TIN)/(CA(J)+CW1)
    E=ABS(TP-TA(J))
    IF(E-EPST)1130,1120,1120
    1120 LFLAG=1
    1130 TA(J)=TP
    TIN=2.*TP-TIN
    1140 CONTINUE
C
c CONVERGENCE
C
C
    IF(NTEMP)1150,1142,1150
C
    1142 IF(LFLAG)1145,1150,1145
    1145 LFLAG=0
    GOT01020
    1150 WRITE(9,3)
    DO1160J=1,JAMX
    WRITE(9,1)TA(J),TB(J),TC(J)
    1160 CONTINUE
C
C CALCULATE WALL TEMPERATURES IN REGION B.
C
    CO1170J=1,JANX
    TW(J)=TB(J)-(CA(J)/(H2*AA(J)))*(TB(J)-TA(J))
    1170 CONTINUE
c. Calculate wall temp in region c
```

DO $1171 \mathrm{~J}=1, \mathrm{JAMX}$
1171 TWC(J) = TP(J)-CC(J)/(H3*AC(J))*(TB(J)-TC(J))
C this cgmpletes the tenperature calculation.
C DISCARD ALL NODES IN WHICH THE TEMPERATURE IS ABOVE C That associated with initial system concentratign.
C CS AND to are initial concentration and associatec
C TEMPERATURE.
$N K=N K+1$
DO1190J=1, JAMX
$I=J A M X+1-J$
CEPR $=-1.87669 E-08$
CEPC $=-1.87669 E-08$
$C E P R=C E P R * T W(1)+2.67916 E-05$
CEPC $=$ CEPC *ThC(I) $+2.67916 E-05$
CEPR $=$ CEPR *Th(I)-5.99152E-03
CEPC $=$ CEPC $*$ TWC (II $-5.99152 E-03$
CEPR = CEPR * TW(I) +0.317871
CEPC=CEPC\#TWC(I)+0.317871
CEPR $=10 . * *$ CEPR
CEPC $=10 . * *$ CEPC
IF(SIGTEM) 1180,1181,1180
1181 IF(CEPC-(S)1180,1190,1190
$1180 \mathrm{~K}=\mathrm{K}+1$
$A(K)=A A(I)$
$T(K)=T W(I)$
CE (K) =CEPR
$A A C(K)=A C(I)$
TTC $(K)=$ TWC(I)
CEC $(K)=C E P C$
1190 CONTINUE
KMAX $=K$
KBMX $=$ KMAX $-J B M X+1$
DO $1191 \mathrm{~J}=$ KBMX, KMAX
1191 AAC(J) $=0.0$
[FISIG1 11192,1193,1192
1193 A(KMAX) $=A(K M A X)+A 1$
$12=12+J A N X-K M A X$
AI2 = I2
VLEG2 = VNODE*AI2
AJAMX = JAMX
SMASSU $=(V T A N K+V L E G 1+V I E G 2+V N O D E * A J A M X * 1.33) * C S * R O 2 * 1.0 E-06 / 1728 . ~$
1192 CONTINUE
SIGI $=1.0$
C regions b and c are incllded.

```
C
    WRITE (9,4)
    WRITE (9,5)
    0O1200K=1,KNAX
    WRITE(9,1)CE(K),T(K)
1200 CONTINUE
    WRITE(9,4)
    WRITE(9,21)
    DG 1202 K = 1, KMAX
1202 WRITE(9,1)CEC(K), TTC(K)
    NOKIT = 0
1201 CONTIINUE
    DO 1203 J = l, 50
    XM(J) = XMM(J)
    XMI(J) = XNMI(J)
    XMC(J) = XNMC(J)
1203 CONTINUL
    K1=1
    K2 = KMAX
    K3=K2+1
    K4=K3+11-1
    K5=K4+2
    KG=K5+I2-1
    K7=K4+1
    K8 = K2 - JBMX
    WRITE(9,12)
    WRITE(9,10) XKO,CS, DT, ADIS
    WRITE (9,6)
    WRITE (9,13)
    WRI TE (9,7) VNODE,VTANK,VLEG1,VLEG2
    D(2000J=K1,K6
    C(J)=CS
2000 CONTINUF
    00 2300 J = 1, K8
    CONC(J) = CS
    COO(J)=CS
2300 CONTINUE
    D02005J=K1,K2
    CO(J)=CS
    XK(J)=XKC
    XKD(J) = ADIS*EXP(-DELENC/1.987/(T(J)+459.0)*1.80)
    XKDC(J) = ADIS*EXP(-DELEND/1.987/(TTC(J)+459.)*1.80)
    AKTD(J) = (1.E+06)*XKC(J)*A(J)/W2
    AKTCD(J) = (1.OE + O6)*XKDC(J)*AAC(J)/W2
    AKT(J)=(1.E+06)*XK(J)*A(J)/W2
    AKTC(J) =(1.OE+06)*XK(J)*AAC(J)/W2
    DIFXK = XK(J) - XKD(J)
    IF(DIFXK)2006,2007,2007
2006 XKD(J) = XK(J)
2007 CONTINUF
    DIFXKC = XK(J) - XKDC(J)
    IF(DIFXKC)2008,2009,2004
2008 XKDC(J) = XK(J)
2009 CONTINUE
```

```
2005 CONTINUE
    WRITL (9,48)
    WRITE(9,49) (XKD(J), J = 1, K2)
    WRITE(9,50)
    WRITE(9,49)(XKDC(J), J = 1, K2)
    II = 0
    DO 2241 J = K1, K8, 3
    I = KB - J
    IF(I-1)2241,2245,2245
2245 II = II + I
    CECC(II) = CEC(I)
    AKTCC(II) = AKTC(I)*3.0
    AKTCDC(II) = AKTCD(I)*3.0
    XKDCC(II) = XKDC(I)
    XKCC(II) = XK(I)
2241 CONTINUE
    KMAXC = II
    WRITE(9,27)
    DO 2243 J = 1, KMAXC
    2243 WRITE(9,10) CECC(J), XKCC(J), XKUCC(J), AKTCC(J), AKTCDC(J)
C
C this completes the calculatien in the cold trap.
C
C
C BEGIN TRANSIENT ANALYSIS.
C
    TIME=0.
    I TER=0
    NPR =0
    Nl=K3-1
    N2=K5-1
2010 ITER=ITEP+1
    NPR =NPR+1
    Nl=N1+1
    N2=N2+1
    IF(N1-K4)<030,2030,2020
2020 N1=K3
2030 IF(N2-KG)205C,2050,2040
2040 N2=K5
2050 CONTINUE
    TIME=TIME+DT
C
C START AT THE MIXING TANK.
C
    CIN=C(N2)
    C(N2)=C(K7)
    C(K7)=(C(K7)*(VTANK-VNOUE) +VNOUE*C(N1))/VTANK
C
C gO to the cold trap. Cin has beEN SET.
C
    XMASS=0.
    0O2140J=K1,K2
    DELTA = CIN-CE(J)
    IF(DELTA)2060,2061,2061
```

```
    2061 XKK= XK(J)
    AKKT = AKT(J)
    GO 「O 2062
    2060 XKK = XKD(J)
    AKKT = AKTD(J)
2062 CONTINUE
    DELTAC = CIN - CEC(J)
    IF(DELTAC)2063,2064,2064
2064 XKKC= XK(J)
    AKKTC = AKTC(J)
    GO TO 2065
2063 XKKC = XKOC(J)
    AKKTC = AKTCD(J)
2065 CONTINUF
    C(J) =(AKKT*CE(J)+2.0*CIN+AKKTC*CEC(J))/(AKKT+AKKTC+2.0)
    DM = XKK*A(J)*(C(J)-CE(J))*DT
    UMI = XKKC*AAC(J)*(C(J)-CEC(J))*DT
    XMII = XMI(J)
    IF(DMI)2111,2131,2131
2111 IF(DMI+XMI(J))2121,2131,2131
2121 DMI = -XMI(J)
    C(J)=(-DMI*1.OE+06/(W2*UT)+2.*CIN+AKKT*CE(J))/(2.+AKKT)
    DM= XKK*A(J)*(C(J)-CE(J))#UT
2131 XMI(J) = XMI(J) + UMI
    IF(UM)2110,2130,2130
2110 IF(DM+XM(J))2120,2130,2130
2120 DM=-XM(J)
    C(J)=(-DM*1.0E+06/(W2*DT)+2.0*CIN+AKKTC*CEC(J))/(2.0+AKKTC)
    OMI = XKKC*AAC(J)*(C(J)-CEC(J))*DT
2130 XM(J)=XM(J)+DM
2112 IF(-DMI+XMII) 2122,2132,2132
2122 DMI = -XMII
2132 XMI(J) = XMII + DMI
    C(J) = CIN - (DM+DMI)/(2.0*W2*DT*1.0E-06)
    CINP=CIN
    CIN=CO(J)
    Co(J)=2.*C(J)-CINP
    XMASS=XMASS+XM(J)+ XMI(J)
C
    2140 CONTINUE
C CALCulate precipitation and transfer in zone c
    XCMASS = 0.0
    DO 2242 J = 1, KMAXC
    UELTCC = CIN- CECC(J)
    IF(DELTCC) 2250,2251,2251
2251 XKKCC = XKCC(J)
    AKKTCC = AKTCC(J)
    GO TO 2252
2250 XKKCC = XKDCC(J)
    AKKTCC = AKTCDC(J)
2252 CONTINUE
    CONC(J) = (AKKTCC*CECC(J)+2.C*CIN)/(AKKTCCC+2.0)
    DMC = 2.0*(CIN-CONC(J))*W2*DT*1.0E-06
    IF(DMC)2210,2230,2230
```

```
2210 [F(OMC+XMC(J))2220,2230,2230
222.) DMC = - XMC(J)
    CONC(J) = CIN - DMC/(2.0*W2*CT*1.0E-06)
    2230 XMC(J) = XMC(J) + DMC
    CINP = CIN
    CIN = COC(J)
    Cog(J)=2.0*CONC(J)-CINP
    XCMASS = XCMASS + XMC(J)
    2242 CONTINUF
    CKAT=(C(K7)-CE(K2))/(CS-CE(K2))
C StORE CGLT trap OUTFLOW IN THE firSt leg.
c
    C(NI)=CIN
    DCACT = (C(N1) - CE(K2))/(CS-CE(K2))
C
C PRINT ANO EXIT ROUTINE.
C
C
C CALCULATE AVERAGE CONCENTRATION FACTOR
    NOACT = KMAX
    NOPPNL = KMAX
    AVCDI = 0.0
    AVCDP = 0.0
    D(2141 J = Kl, K2
    CDI = C(J) - CE(J)
    IF(XM(J))2144,2144,2145
2144 NOPPNZ = NOPPNZ - 1
    GO TO 2146
2145 AVCDP = CDI + AVCDP
2146 CONTINUE
    IF(CDI ) 2142,2143,2143
2142 NOACT = NOACT - 1
    GO T0 2141
2143 AVCDI = CDI + AVCDI
2141 CONTINUE
    ANOACT = NOACT
    AVCDI = AVCDI /ANOACT
    AVCDP = AVCDP/ANOACT
    CONFAC = AVCDI /(C (KMAX)-CE(KMAX))
    CONFAP = AVCDP/(C(KMAX) - CE(KMAX))
    NOACTC = NOACT - JBMX
    ANGACC = NUACTC
    AREA = ANOACT*AA(4) + ANCACC*AC(4)*2.0 + Al
    PPMASS = XMASS + XCMASS
    DIFTIM = TIME - TIMI
    DIFPPN = PPNASS - PPMASI
    PPMASI = PPMASS
    TIMI = TIME
    DMDT = DIFPPN/DIFTIM
    IF(DISTAG)2147,2148,2147
2148 XKZ= XK(KMAX)
    GO To 2149
2147 XKL = XKD(KMAX)
2149 CONTINUE
```

```
    EQNFAC = DMDT/(XKZ*AREA*(CONC(KMAXC)-CE(KMAX)))
    NOPPLC = NOPPNL - JBMX
    ANOPPL = NOPPNZ
    ANOPLC = NOPPZC
    AREAP = ANOPPZ*AA(4) + ANOPZC*AC(4)*2.0 + Al
    EQNFAP = DMDT/(XKL*AREAP*(COAC(KMAXC)-CE(KMAX)))
    NOIT = NOITP1 - L
    IF(NOKIT - NOIT)2160,2153,2153
    2153 CONTINUF
    IFINPR-NPRINTI2160,2150,2150
    2150 NPR=0
    WRITE (9,15)
    WRITE(9,1)OT, TIMAX,TINE
    WRITE(9,16)
    WRITE(9,1)(C(J),J=Kl,K2)
    WRI TE(9,23)
    WRITE(9,1)(CONC(I),I=1, KMAXC)
    WRITE (9,6)
    WRITE (9,17)
    WRITE(9,1)(C(J),J=K3,K6)
    WRITE (9,6)
    WRITE(9,18)
    WRITE(9,7)C(K7),CRAT,TIME,XMASS, XCMASS
    WRITE(9,40)DCACT
    WRITE (9,6)
    WRITE (9,19)
    WRITE (9,7)(XN(J),J=K1,K2)
    WRI TE (9,24)
    WRITE (9,7)(XMI(I), I = K1,K2)
    WRITE(9,25)
    WRITE(9,7)(XMC(I),I= 1, KMAXC)
    SMASS = 0.0
    0O 2151 I = 1, K6
2151 SMASS = SMASS + VNODE*RO2*C(I)*1.OE-06/1728.
    SMASS = SMASS + (VTANK*RO2*C(K7)*1.0E-06)/1728.
    DO 2152 I = 1, KMAXC
2152 SMASS = SMASS + VNODE*RO2*CONC(I)*1.OE-06/1728.
    SMASS = SMASS + XMASS + XCMASS
    WRITE(9,26)
    WRITE(9,10)SMASSO, SMASS
    WRI TE (9,8)
    WRITE(9,9) AVCDI,NOACT,CONFAC
    WRITE (9,22)
    WRITE (9,9) AVCDP,NOPPNL,CONFAP
    WRITE(9,45)EQNFAC
    WRITE (9,46) EGNFAP
    2160 CONTINIJE
C ADJUST PRECIPITATION K FACTOR
    IF(TIME-REFTIM)2164,2161,2161
    2161 [F(PPNTAGI2167,2168,2167
2167 XKO1 = XKO
    XKO = XKOL#(CRAT/REFCON) **ADJEXP
2L68 CONTINUE
```

```
            IF(UISTAG)2166,2165,2166
    21F,6 ADISI = ADIS
    ADIS = AOISI*(CRAT/REFCON) **ADJEXP
    2165 CONTINUF
    WRITE(9,12)
    WRITE(9,10)XKO,CS,DT,ADIS
    NOKIT = NOKIT + 1
    WRITE(9,14)NOKIT
    IF(NOKIT - NOITP1) 2162,2163,2163
    2163 REFTIM = TINAX + 1.0
    GO 10 21A4
    2162 GG rO 1201
    2164 CONTINUE
    IF(TIME-CHTIME)2173,2171,2171
    2171 CHTIME = TINAX + 1.0
    U(3 2172 I = 1, K6
    2172 C(1) = C(I) + DELPPM
    2173 CONTINUE
    IF(TIME-CHTIM212174,2175,2175
    2175 CHTIM2 = TIMAX + 1.0
    NPKINT = NPRIN2
    2174 CONTINUE
    IF(TIME-TIMAX)2170,2170,2180
    2170 COTO2U10
    2180 CONTINUE
    GO TG 200
C
C 1012 WILL BUY A NEW TEMPERATURE CALCULATION.
c 200? WILL BUY ONLY A RESET OF CS, C(J), XKO.
C
C
2200 CONTINUF
    END
```


[^0]: LEGAL NOTICE
 This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behali of the Cormmiaelon:
 A. Makee any warranty or representation, expressed or implisd, with respect to the accuracy, completeneas, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or procese disclosed in this report may not infringe privatoly owned righta; or
 B. Assumes any liabilities with respect to the use of, or for damagea resulting from the of any information, apparatua, metbod, or proceas disclosed in this report.
 Ab ubed in the above, "person acting on becialf of the Commisoion" includes any omAB used in the above, "person acting on bebalf of the Commisbion" includes any our-
 ployee or contractor of the Commiesion, or exployee of such contractor, to the extent that auch employee or contractor of the Commision, or employee of such contractor prepares, disseminates, or provides access to, any information puranant to bis employment or contract with the Commission, or his employment with such contractor

