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1 Objectives of this project

In this project, the collective efforts of all co-PIs aim to address three current limitations in modeling
stochastic systems: (1) the inputs are mostly based on ad hoc models, (2) the number of independent
parameters is very high, and (3) rare and critical events are difficult to capture with existing

algorithms.
To overcome these problems, we propose research on the following three topics: (1) development

of certified low-dimensional models for effective reduction of dimensionality, (2) development of a
scalable sensitivity-based hierarchical uncertainty quantification approach, and (3) development of

algorithms for real-time anomaly detection and rare events prediction.
The Brown PI has focused primarily on topic (1). The main idea is to formulate new petabyte

data-reduction techniques based on fundamental extensions of the proper orthogonal decomposition
(POD) to include nonlinearity and stochasticity. Here in the final report we summarize and compare

two very promising low-dimensional methods for time evolving systems, which they can be thought
of as a combination of POD and polynomial chaos as they have the best features of both. The
mathematical formulations are slightly different but equivalent as we discuss next.

A new approach, called Dynamically Orthogonal (DO) method, was developed in [1]; the idea
is to represent the solution in a more general expansion, i.e.,

u(x, t; ω) = ū(x, t) +

N∑
i=1

Yi(t; ω)ui(x, t),
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where Yi(t; ω) are stochastic processes, ui(x, t) orthonormal fields and ū(x, t) is the mean. The time

dependence on both the stochastic coefficients and the basis fields makes the above representation
very flexible for the representation of strongly transient, non-stationary responses. However, this

same property makes the representation redundant and the derivation of well-posed equations
for all the quantities involved is not a straightforward problem. In [1] it was illustrated how

this redundancy can be overcome by adopting a natural constraint: the dynamical orthogonality

condition. It was shown that using this condition a set of evolution equations for the Yi(t; ω), ui(x, t)

and ū(x, t) can be derived. These derived field equations are consistent with existing methods such
as proper orthogonal decomposition method (POD) and PC.

In addition, we formulate an alternative approach, Bi-Orthogonal (BO) method [2]; the idea is
the same as DO where we have time-dependence on both the stochastic coefficients and the basis
fields. The difference between DO and BO is that we impose in BO both the stochastic coefficients

and the basis to be orthogonal in time while, in DO, only the basis maintains the orthogonality
in time. We derive the corresponding BO evolution equations in which the inner product of the

basis (or the stochastic coefficients) and its time derivatives under the underlying measure can be
explicitly expressed in terms of the differential operator, the basis and the stochastic coefficients.

We also demonstrate that DO and BO are equivalent through the matrix ordinary differential
equation that gives an one-to-one mapping between BO and DO components. BO can replace DO

in the aforementioned hybrid method to overcome the singularity.

2 An overview of the DO equations and a hybrid DO-PC method

We consider the following SPDE:

∂u

∂t
= L(u(t, x; ω)), x ∈ D, ω ∈ Ω (1a)

u(t0, x; ω) = u0(x; ω), x ∈ D, ω ∈ Ω (1b)

B[u(t, x; ω)] = h(t, x; ω), x ∈ ∂D, ω ∈ Ω, (1c)

where L is a differential operator and B is a linear differential operator. D is a bounded domain in
R

d where d = 1, 2, or 3.

2.1 Definitions

Let (Ω,F , P ) be a probability space, where Ω is the sample space, F is the σ-algebra of subsets of

Ω, and P is a probability measure. For a random field u(x, t; ω), ω ∈ Ω, the expectation operator
of u is defined as

ū(x, t) = E[u(x, t; ω)] =

∫
Ω

u(x, t; ω)dP (ω).

The set of all continuous and square integrable random fields , i.e.,
∫
D

E[u(x, t; ω)Tu(x, t; ω)]dx <

∞, where u(x, t; ω)T is the transpose of u, for all t ∈ T and the bi-linear form of the covariance
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operator

Cu(·,t;ω)v(·,s;ω)(x, y) = E[(u(x, t; ω) − ū(x, t))′(v(x, s; ω) − v̄(x, s))], x, y ∈ D,

form a Hilbert space that will be denoted by H [3,4]. For u(x, t; ω), v(x, t; ω) ∈ H, the spatial inner
product is defined as

< u(·, t; ω), v(·, t; ω) >=

∫

D

u(x, t; ω)T v(x, t; ω)dx.

We define the projection operator ΦS of a field u(x, t), x ∈ D to an m-dimensional linear subspace
S spanned by the orthogonal basis S = {wi(x, t; ω)}m

i=1, x ∈ D as follows:

ΦS [u(x, t; ω)] =
m
∑

i=1

< wi(·, t; ω), u(·, t; ω) > wi(x, t; ω)

2.2 DO representation

Using a time-dependent generalization of the Karhunen-Loeve (KL) expansion [1], we have that
every random field u(x, t; ω) ∈ H at a given time t can be approximated by a finite series of the
form

u(x, t; ω) = ū(x, t) +
N
∑

i=1

Yi(t; ω)ui(x, t), (2)

where ui(x, t) are the eigenfunctions, and Yi(t; ω) are zero-mean stochastic processes whose variance
E[Y 2(t; ω)] is equal to the corresponding eigenvalue λi(t) of the eigenvalue problem of the Karhunen-
Loeve decomposition:

∫

D

Cu(·,t)u(·,t)(x, y)ui(x, t)dx = λi(t)ui(y, t), y ∈ D. (3)

We define the linear subspace VS = span{ui(x, t)}N
i=1 as the linear space spanned by the N de-

terministic eigenfields associated with the N largest eigenvalues. Note that both the stochastic
coefficients Yi(t; ω) and the orthogonal basis ui(x, t) are time-dependent (and they are evolving ac-
cording to the system dynamics) unlike other methods such as the standard PC where the stochastic
coefficients are time-independent. In [5], a similar expansion with time evolving PC basis is pre-
sented but the time-depended basis is obtained according to the PDF of the solution; in DO it is
obtained through an evolution equation as we explain next.

2.3 DO field equations

All quantities ū(x, t), ui(x, t), Yi(t; ω), i = 1, ..., N in the representation (2) are time-dependent and
hence there exists some redundancy in the representation. Therefore, additional constraints need
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to be imposed in order to formulate a well posed problem for the unknown quantities. As first
proposed in [1], a natural constraint to overcome redundancy is that the evolution of the basis
{ui(x, t)}N

i=1 be normal to the space VS ; this can be expressed through the following condition:

dVS

dt
⊥ VS ⇔

〈

∂ui(x, t)

∂t
, uj(x, t)

〉

= 0 i, j = 1, ..., N. (4)

This condition is referred to as the dynamically orthogonal (DO) condition. Note that the DO
condition preserves orthonormality of the basis {ui(x, t)}N

i=1 since

∂

∂t
< ui(·, t), uj(·, t) >=<

∂ui(·, t)

∂t
, uj(·, t) > + < ui(·, t),

∂uj(·, t)

∂t
>= 0, i, j = 1, ..., N.

It is proved in [1] that the DO condition leads to a set of independent and explicit evolution
equations for all the unknown quantities. Next, we state the DO evolution equations without
proof:

Theorem 1. Under the assumptions of the DO representation, the original SPDE (1a)-(1c) is
reduced to the following system of equations

∂ū(t, x)

∂t
= E[L[u(·, t; ω)]], (5a)

dYi(t; ω)

dt
= < L[u(·, t; ω)] − E[L[u(·, t; ω)]], ui(·, t) >, i = 1, ..., N (5b)

N
∑

i=1

CYi(t)Yj(t)
∂ui(t, x)

∂t
=

∏

V ⊥
s

E[L[u(·, t; ω)]Yj ], j = 1, ..., N, (5c)

where the projection in the orthogonal complement of the linear subspace is defined as
∏

V ⊥

S
F (x) =

F (x) −
∏

VS
F (x) = F (x) −

∑N
k=1 < F (·), uk(·, t) > uk(·, t) and the covariance of the stochastic

coefficients is CYi(t)Yj(t) = E[Yi(t; ω)Yj(t; ω)]. The associated boundary conditions have the form

B[ū(ξ, t; ω)]|ξ∈∂D = E[h(ξ, t; ω)],

B[ui(ξ, t)]|ξ∈∂D = E[Yj(t; ω)h(ξ, t; ω)]C−1
Yi(t)Yj(t)

,

and the initial conditions for the DO components are given by

ū(x, t0) = E[u0(x; ω)],

Yi(t0; ω) = < u0(·, ω) − ū(x, t0), vi(·) >,

ui(x, t0) = vi(x),

for all i = 1, ..., n, where vi(x) are the eigenfields of the covariance operator Cu(·,t0)u(·,t0) defined by
the following eigenvalue problem for t = t0 :

∫

D

Cu(·,t0)u(·,t0)(x, y)vi(x)dx = λi(t)vi(y), y ∈ D. (6)
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Remark 1. The DO evolution equations (5a)-(5c) are derived by using the DO conditions and DO
representation. It is shown in [1] that by imposing suitable restrictions on the DO representation
the equations for methods such as Polynomial Chaos or Proper Orthogonal Decomposition (POD)
can be recovered from the DO evolution equations. For example, PC can be recovered by setting
Yi(t; ω) = Ψi(ξ(ω)), where Ψi(ξ) is an orthogonal polynomial in terms of ξ.

Remark 2. From the DO representation, the moments can be readily computed. For example, the
first moment, i.e., the mean, appears in the DO representation as ū(x, t) while the second moment
is directly computed as follows:

V ar[u] = E[(u − ū)2] = E





(

N
∑

i=1

uiYi

)2


 =
N
∑

i,j=1

ui(x, t)E[YiYj ]uj(x, t).

As the DO representation at any fixed time t can be seen as Karhunen-Loeve decomposition,
there is a relationship between the eigenpairs for the covariance matrix of Yi(t; ω), i = 1, ..., N and
the eigenpairs for the covariance operator of u(x, t; ω). For the covariance matrix C whose (i, j)-th
element is Cij = CYi(t)Yj(t), we have a set of eigenvalues and eigenvectors that satisfies the following
eigenvalue problem

C(t)φk(t) = ρkφk(t), k = 1, ..., N, (7)

where φk(t) = (φk1(t), · · · , φkN (t))T . Similarly, for the covariance operator for u(x, t; ω), there
exists a set of eigenvalues and eigenfields for Cu(x, y) through the Karhunen-Loeve decomposition
such that

∫

D

Cu(x, y)vk(x, t)dx = λkvk(y, t), (8)

where Cu(x, y) = E[(u(x, t; ω)− ū(x, t))(u(y, t; ω)− ū(y, t))]. In order to relate the eigenvalues and
eigenvectors for Yi with those for u(x, t; ω), we substitute the DO representation of u into Cu(x, y)
and compare Equations (7) and (8) to obtain the following relations:

λk = ρk ; vk(x, t) = φkl(t)ul(x, t).

This shows that the stochastic coefficients Yi together with the modes ui provide the necessary
information to describe both the shape and magnitude of the uncertainty that characterizes a
stochastic field but also the principal directions in H over which this stochasticity is distributed.

2.4 Hybrid method: combining PC with DO

In Theorem 1, it is assumed that the initial condition for the SPDE is random from which the
corresponding initial conditions for DO components are derived. However, in practice in many
cases the initial condition for the SPDE is deterministic while the randomness comes from other
sources such as random coefficients or random forcing. Then Yi, i = 1, ..., N at the initial time
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becomes zero, which makes the covariance matrix for Yi singular. Although the singular limit for the
DO equations exist, the transition to finite covariance creates numerical issues. Most importantly,
in such a case it is not clear what is the optimal choice to initiate the stochastic subspace. For
such problems we propose a hybrid approach of Polynomial Chaos (PC) and DO methods in
order to avoid the aforementioned problems. Specifically, for PC we employ the probabilistic
collocation method (PCM) or multi-element PCM (ME-PCM), which was found to effectively deal
with problems exhibiting low regularity in parametric space as well as for long-term integration [6].
We first use PCM or ME-PCM from the initial time t0 up to some time, say ts, provided that the
stochasticity is sufficiently developed, and then switch over to the DO method at ts and employ
the KL decomposition to initialize ū, {Yi} and {ui}.

First, we construct the covariance matrix Cu(·,ts)(x, y)

Cu(·,ts)(x, y) = E [(u(x, ts) − ū(x, ts)) (u(y, ts) − ū(y, ts))] ,

where u and ū at t = ts are known from PC computations. Then, we compute the eigenpairs for
Cu(·,ts)(x, y) by solving

∫

D

Cu(·,ts)(x, y)φ(x)dx = λφ(y).

By setting

ui(x, ts) =
φi(x)

||φi||
and Yi(ts, ω) =< u(x, ts; ω) − ū(x, t), ui >,

we initialize the DO components at t = ts and we are ready to solve the DO evolution equations.
This procedure is summarized in Algorithm 1.

Algorithm 1 Hybrid approach of PC and DO method

1: Run PCM or ME-PCM up to t = ts from t = 0.
2: At t = ts, use the KL decomposition for the solution:

u(x, ts; ω) = ū(x, ts) +
N
∑

i=1

Yi(ts; ω)φi(x, ts).

From the KL decomposition, we can initialize ū(x, ts), {Yi(ts; ω)} and {ui(x, ts)} for DO method.
3: Switch over to the DO method up to time t = tf .

We will illustrate how the DO evolution equations are used for solving two SPDEs: (i) advection
equation in this section and (ii) Burgers equation in the next section. Both are assumed to have
deterministic initial conditions to illustrate the advantages of the proposed hybrid approach.
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3 Bi-Orthogonal condition and field equations

We introduce a slightly different representation from DO and present corresponding evolution equa-
tions [2]. The KL expansion [1] is bi-orthogonal since the stochastic coefficients Yi are orthogonal
in the probability space while the eigenfunctions ui are orthogonal in the spatial space. This gives
the best approximation to the original process in the sense that it minimizes the total mean-square
error. We introduce the bi-orthogonal representation (BO) that has the same form as DO but as-
sumes bi-orthogonality of the stochastic coefficients and the basis in time, instead of DO conditions,
and derive its evolution equations. In other words, we have the following conditions:

< ui(·, t), uj(·, t) >= λi(t)δij , E[YiYj ](t) = δij , i, j = 1, ..., N, (9)

where {λi, ui} is the eigenpair of the covariance operator in the KL decomposition. This condition
is referred to as the bi-orthogonal (BO) condition. Note the difference between the DO and BO
condition; the basis in the DO condition evolves normal to the space Vs, which maintains the basis
to be orthogonal in time, while both the basis and the stochastic coefficients in the BO condition
are orthogonal in time in the associated space, respectively. There is a slight difference between
the DO and BO representation; the stochastic coefficients carry the eigenvalue of the covariance
operator in the DO representation while the basis carry the eigenvalue of the covariance operator
in the BO representation.

Remark 3. Both the basis and the stochastic coefficients change in time while maintaining the
orthogonality. Define the matrix S and M whose entries are

Sij = < ui,
∂uj

∂t
>, (10)

Mij = E[Yi
dYj

dt
]. (11)

Then, by taking derivative for the first term in equation (9) with respect to time, we have < ∂ui

∂t
, uj >

+ < ui,
∂uj

∂t
>= 0 for i 6= j and < ∂ui

∂t
, ui >= 1

2
dλi(t)

dt
for i = j or Sij = −Sji for i 6= j and

Sii = 1
2

dλi(t)
dt

. Similarly, we have Mij = −Mji for i 6= j and Mii = 0. Note that M is skew-
symmetric. It will be shown later that the matrices S and M , i.e. the rate of how the basis and the
stochastic coefficients change in time, have explicit form.

Next we formulate the BO evolution equations.

Theorem 2. Under the assumptions of the BO representation, the original SPDE (1a)-(1c) is
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reduced to the following system of equations

∂ū(t, x)

∂t
= E[L[u]], (12a)

λj
dYj(t; ω)

dt
= −

N
∑

i=1

SjiYi + hj , j = 1, ..., N, (12b)

∂uj(t, x)

∂t
= −

N
∑

i=1

Mjiui + pj , j = 1, ..., N, (12c)

where the entries for the matrix G, M and S and the vectors h and p are given as follows:

Gij = < E[L[u]Yj ], ui > (13a)

Mij =

{

Gij+Gji

−λi+λj
, if i 6= j

0, if i = j
(13b)

Sij =

{

Gij + λiMij , if i 6= j

Gii, if i = j
(13c)

hj = < L[u] − E[L[u]], uj(·, t) > (13d)

pj = E[L[u]Yj ]. (13e)

Proof. First we insert the BO representation to the SPDE(1a) to obtain

∂ū

∂t
+

N
∑

i=1

dYi

dt
ui +

N
∑

i=1

Yi
∂ui

∂t
= L[u]. (14)

By applying the mean value operator we obtain the first equation of the theorem (12a). By taking
the inner product of the evolution equation (14) with each of the fields {uj(x, t)}N

j=1 we have

<
∂ū

∂t
, uj > +

N
∑

i=1

< ui, uj >
dYi

dt
+

N
∑

i=1

Yi <
∂ui

∂t
, uj >=< L[u], uj > .

Now, we define the matrix S that has the entries Sij =< ui,
∂uj

∂t
> and employ one of the BO

conditions < ui, uj >= λjδij and the evolution equation for ū to obtain

λj
dYj(t; ω)

dt
= −

N
∑

i=1

SjiYi+ < L[u] − E[L[u]], uj > .

Hence, the equation for Y will take the final form (12b). The fact that S is equivalent to (13c) will
be proved later.
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We multiply equation (14) with Yj and apply the mean value operator to get

∂ū

∂t
E[Yj ] +

N
∑

i=1

E[
dYi

dt
Yj ]ui +

N
∑

i=1

E[YiYj ]
∂ui

∂t
= E[L[u]Yj ]

By defining the matrix M whose entries are Mij = E[Yi
dYj

dt
] and using the BO condition we have

∂uj

∂t
= −

N
∑

i=1

Mjiui + pj

which is exactly the evolution equation (12c).
Now we prove that the two matrices S and M defined as the above are the same as those given

in equations (13c) and (13b), respectively. Indeed, by multiplying Yk on the both sides in equation
(12b) and then taking the expectation we get

λjMkj = −
N
∑

i=1

SjiE[YiYk]+ < E[L[u]Yk], uj > (15)

where we use E[(L[u] − E[L[u]])Yk] = E[L[u]Yk] because of the linearity of the expectation and
E[Yk] = 0. By applying the BO condition we have

λjMkj = −Sjk + Gjk. (16)

Interchanging the indices k and j yields

λkMjk = −Skj + Gkj . (17)

This holds for k 6= j. For j = k, we have Sjj = Gjj since the diagonal entries of M are zero.
Summing up the last two equations and using skew-symmetric properties for S for nondiagnoal
elements and M yield

Mjk =

{

Gjk+Gkj

−λj+λk
, if j 6= k

0, if j = k
(18)

and substituting it back into equation (16) we get the explicit form for S

Sjk =

{

λk

−λj+λk
Gjk +

λj

−λj+λk
Gkj , if j 6= k

Gjj , if j = k.
(19)

This completes the proof.
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Remark 4. The evolution equations (12a) − (12c) can be recasted into matrix form with u =
(u1, ..., uN ),Y = (Y1, ..., YN ) and Λ = diag(λ1, ..., λN ) as follows:

∂ū(t, x)

∂t
= E[L[u]], (20a)

dY(t; ω)

dt
Λ = −YST + h, (20b)

∂u(t, x)

∂t
= uM + p, (20c)

where ST is the transpose of the matrix S.
We note that the rate of change of the basis and stochastic coefficients is associated with the

matrix G whose entries are Gij =< E[L[u]Yj ], ui >, and the matrix S and M have closed form.
The denominator in nondiagonal entries of the matrix M in Equation (13b) can be zero if two
eigenvalues become identical. However, according to [1], the eigenvalues do not cross out and this
would not be the case.

The diagonal entries for S account for how the eigenvalues change in time Sii = 1
2

dλi(t)
dt

as
discussed in Remark 3, which can be computed exactly by equation (13c). This can be used as a
measure of criterion of when to add or remove modes; if the lowest eigenvalue grows quickly and is
larger than certain value, a new mode needs to be added.

Remark 5. Both DO and BO representations can be viewed as an extension of Karhunen-Loeve
representation in time under different assumptions. It is shown in Section 4 that they are equivalent
through the matrix differential equation; in other words, there is an one-to-one mapping between
the BO components and DO components. However, we have observed that BO is numerically more
stable than DO, in particular for high modes in non-linear problems.

4 Equivalence of BO and DO

We show that the BO and DO are equivalent in the sense that the DO components can be derived
from the BO components via the invertible matrix that evolves through the matrix ordinary differen-
tial equation, and vice versa. Let U = (u1, u2, ..., uN )T , Ũ = (ũ1, ũ2, ..., ũN )T , Y = (Y1, Y2, ..., YN )T

and Ỹ = (Ỹ1, Ỹ2, ..., ỸN )T be. Consider the linear transformation

Y = Λ−
1

2 PỸ , (21a)

U = Λ
1

2 PŨ, (21b)

where Λ = diag(λ1, ..., λN ) with λi, i = 1, ..., N being the positive eigenvalues of the covariance
operator in equation (9) and P satisfies the matrix differential equation

Ṗ = −Λ−
1

2 ΣΛ−
1

2 P, (22)

P (0) = IN ,
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where Ṗ is the time derivative of P , IN is the N ×N identity matrix and Σ is the skew-symmetric
part of the matrix S in equation (13c), i.e. Σij = Sij for i 6= j and Σii = 0 for i = 1, ..., N .

Remark 6. The solution P (t) to the matrix differential equation (22) remains the orthogonal matrix
for every time t ≥ 0 given the initial condition P (0) be an orthogonal matrix. Indeed the coefficient

F (t) ≡ −Λ−
1

2 ΣΛ−
1

2 of P in equation (22) is skew-symmetric because Σ is skew-symmetric, and
then we have

d

dt
P T (t)P (t) = Ṗ T (t)P (t) + P T (t)Ṗ T (t)

= (FP )T P + P T FP

= P T (F T + F )P

= O, t ≥ 0.

Therefore P T (t)P (t) = P T (0)P (0) = I, t ≥ 0.

We are now ready to establish the connection between the BO and the DO components.

Theorem 3. Suppose that Y, U, Ỹ , and Ũ satisfy equations (21a)-(21b). Then, there exists the
unique transformation between the BO and DO components: Y and U are the solutions to the
BO evolution equations (12a)-(12c) if and only if Ỹ and Ũ are the solutions to the DO evolution
equations (5a)-(5c).

Proof. Assume that Y and U are the solutions to the BO evolution equations (12a)-(12c). Then
we will prove that Ỹ and Ũ are the solutions to the DO evolution equations (5a)-(5c) by showing
the following three properties: i) Ũ is an orthonormal basis, ii) Y T U = Ỹ T Ũ , and iii) Ũ satisfy the
DO condition and (Ũ , Ỹ ) are DO components.

First, define the inner product of matrix UUT in the physical space by < UUT > whose (i, j)-th
entry is < ui, uj >. According to the BO assumption on the basis U , we have

Λ = < UUT >

= < Λ
1

2 PŨ(Λ
1

2 PŨ)T

= Λ
1

2 P < ŨŨT > P T Λ
1

2 .

Multiplying P T Λ−
1

2 and Λ−
1

2 P to the left and right, respectively on the both sides yields

< ŨŨT > = P T Λ−
1

2 ΛΛ−
1

2 P

= P T P

= I

where we used the property of orthogonal matrix P . Hence Ũ is an orthonormal basis.
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Second, the BO and DO representation to the solution u(x, t; ω) has the same form:

u(x, t; ω) = ū(x, t) +
N
∑

i=1

ui(x, t)Yi(t; ω)

= ū(x, t) +
N
∑

i=1

ũi(x, t)Ỹi(t; ω),

where (ui, Yi)
N
i=1 and (ũi, Ỹi)

N
i=1 are the BO and DO components, respectively. Indeed, we obtain

this directly using equations (21a)-(21b)

UT Y = (Λ
1

2 PŨ)T Λ−
1

2 PỸ = ŨT P T Λ
1

2 Λ−
1

2 PỸ = ŨT P T PỸ = ŨT Ỹ

Finally, we have by the definition of the transformation

U = Λ
1

2 PŨ

from which we have

U̇ =
1

2
Λ̇Λ−

1

2 PŨ + Λ
1

2 Ṗ Ũ + Λ
1

2 P
˙̃
U

= (S − 2Σ) Λ−
1

2 PŨ + Λ
1

2 P
˙̃
U

where the second equality comes from the equation (22) and S = Σ+ 1
2 Λ̇. We have by the definition

of the matrix S as in equation (10)
S =< UU̇T >

and putting the above two equations for U and U̇ all together yields

S = < Λ
1

2 PŨ
(

(S − 2Σ)Λ−
1

2 PŨ + Λ
1

2 P
˙̃
U
)T

= < Λ
1

2 PŨŨT P T Λ−
1

2 (S − 2Σ)T > + < Λ
1

2 PŨ
˙̃
UT P T Λ

1

2 >

= (S − 2Σ)T + Λ
1

2 P < Ũ
˙̃
UT > P T Λ

1

2

where we employed PP T = I, < ŨŨT >= I to get the third equality. Hence we have

1

2
Λ

1

2 P < Ũ
˙̃
UT > P T Λ

1

2 =
S − ST

2
− Σ

= O

because Σ is the skew-symmetric part of the matrix S that is exactly the first term on the right

hand side and we obtain < Ũ
˙̃
UT >= O that is precisely the DO condition in vector notation. This

completes the proof that Ỹ and Ũ are the solutions to the DO evolution equations.
The same procedure can be used to prove that if Ỹ and Ũ are the solutions to the DO evolution

equations, then Y and U are the solutions to the BO evolution equations.
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The BO and DO representation come from the KL decomposition and require that both basis
and stochastic coefficients are time-dependent. Hence there exists some redundancy in the repre-
sentation. In order to remove redundancy different constraints are imposed; DO require that the
evolution of the basis is normal to the space VS spanned by the basis called the DO condition
while BO requires that both the basis and stochastic coefficients are orthogonal with respect to
underying measure called the BO condition. Theorem 3 implies that both methods are equivalent
in the sense that one can be derived from the other, and vice versa through the orthogonal matrix
as in equations (21a)-(21b). Indeed, if equations (21a)-(21b) are plugged into the BO evolution
equations (12a)-(12c), then the DO evolution equations (5a)-(5c) are obtained, and vice versa.

5 Numerical example: Burgers equation

In this section, we consider the Burgers equation with random forcing and demonstrate convergence
with respect to the number of DO modes.

Consider the following stochastic Burgers equation with random forcing

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+

1 + ξ

2
sin(2πt), ∀(t, x) ∈ [0, T ] × D = [0, 2π] (23)

u(0, x) = g(x), ∀x ∈ D,

where ξ ∼ U [−1, 1] and the initial condition g(x) is given as

g(x) = 0.5 (exp(cos(x)) − 1.5) sin(x + 2π · 0.37). (24)

We take ν = 0.05. Note that the period of the forcing is one. Using the DO representation, we
obtain the form of the evolution operator L and some necessary forms:

L[u(x, t; ω)] = −uux + νuxx +
1 + ξ

2
sin(2πt)

= −ūūx − Yi
∂

∂x
(uiū) − YiYjui

∂uj

∂x
+ ν

(

ūxx + Yi
∂2ui

∂x2

)

+
1 + ξ

2
sin(2πt)

E[L(u)] = −ūūx − Cijui
∂uj

∂x
+ νūxx + 0.5 sin(2πt)

E[L(u)Yj ] = −

(

Cijuiūx + Ckj
∂uk

∂x
ū + Cikjui

∂uk

∂x

)

+νCij
∂2ui

∂x2
+ E[

ξ

2
Yj ] sin(2πt),

where Cijk = E[YiYjYk]. Note that E[LYj ] involves the third moment of the stochastic coefficients
and hence the PDE for ui is more complicated than the one in the advection equation in the previous
section. Since the initial condition is deterministic as in the advection equation, the Yi, i = 1, ..., N
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at the initial time become zero, which makes the covariance matrix for Yi singular. Hence, we use
the hybrid method to avoid the singularity due to the deterministic initial condition.

Unlike the advection problem where only one time step is enough to switch from PC to DO or
BO, we need to march for more time steps to allow the stochasticity of the system to develop fully.
We have performed some sensitivity studies to see how to choose the switching time from PC to
DO but a more systematic future study is required. We can choose the number of modes at the
switching time based on the eigenvalues of Cu(·,ts)(x, y). One criterion is to choose the number of
modes such that the sum of corresponding eigenvalues makes up to more than a threshold, say 99%
of the total.

The eigenvalues of KL decomposition of the solution at ten different times are shown in Figure 1.
Note that the eigenvalues of KL decomposition are the same as those of the covariance matrix C

whose (i, j) index is E[YiYj ]. We choose the switching time to be ts = 1.0 and the number of DO
or BO modes to be 6 based on Figure 1. Note that the number of modes should be increased to
capture the same percentage of the energy as the system evolves in time.

Figure 1: The eigenvalues of the covariance matrix C whose (i, j) index is E[YiYj ] at different switch
times ts. Left: eigenvalues for ts = 0.5j, j = 1, ..., 5, Right: eigenvalues for ts = 0.5j, j = 6, ..., 10.
The parameters used are ν = 0.05, Ns = 128, Nr = 64 and ∆t = 0.001.

The parameters are as follows:

∆t = 0.001, ts = 1, tf = 5, Ns = 128, Nr = 64, N = 6.

We choose N = 6 because, at ts = 1, the sixth mode is the largest eigenmode whose eigenvalue
is larger than the threshold value. Fourier collocation in the physical space and Legendre-Gauss
collocation in the parametric space are used for discretization. The third-order Adams-Bashforth
(AB3) is used as a time integrator to minimize the error due to the time discretization.
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The mean and variance at t = 5 using the hybrid method are shown in Figure 2; good agreement
with the exact solution is achieved. The L2 error for the mean and variance are shown in Figure 3
where BO has better accuracy than DO by one order of magnitude. DO and BO are tested with
different number of modes up to 6. They have the same accuracy for the first four modes but BO
is better than DO for higher modes. While they are equivalent as shown in Appendix this suggests
that BO gives numerically more stable scheme than DO as shown in Figure 4; the DO evolution
equation for the basis needs an inverse of matrix whose condition number for higher number is
large that may affect numerical instability. Further research is required in order to document this
point.

Figure 4 shows the exponential convergence obtained with respect to the number of modes at
time t = 5. As mentioned above both DO and BO have the same accuracy with lower modes but
BO is more accurate than DO with higher modes 5 and 6. This example is the first demonstration
of the fast convergence of the DO or BO method for a nonlinear SPDE.
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Figure 2: Mean (left) and variance (right) of the solution at t = 5 for the Burgers equation.
The switching time ts is 1 and the number of DO modes is 6. The mean and variance from the
probabilistic collocation method with Nr = 512 using the fourth-order Runge-Kutta method are
considered to be the exact solution.
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Figure 3: Relative L2 error for the mean (left) and variance (right) of the solution for the Burgers
equation with random forcing using DO and BO. Both methods have the same accuracy for the
mean while BO is an order of magnitude more accurate compared to DO for the variance. BO is
numerically more stable than DO for high modes while they have the same accuracy for low modes.
Note that the switching time is 1 and the error before the switching time is the same as collocation
method is used in the hybrid method.
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Figure 4: Relative L2 error for the mean and variance at t = 5. Exponential convergence is observed
as the number of modes increases. They have the same accuracy through N = 4 but BO is better
than DO for high modes.
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