NON-UNIFORM HEAT GENERATION
EXPERIMENTAL PROGRAM
Quarterly Technical Report No. 1
July - September 1963

To expedite dissemination of technical information to those persons requiring it, this report has been issued without the administrative review necessary to protect the interests of the U.S. Government, the European Atomic Energy Community (Euratom), and The Babcock & Wilcox Company. The recipient of this report agrees that it is passed to him in confidence and that he will maintain that confidence and make no disclosure or publication of the contents that would be detrimental to the interests of the U.S. Government, the European Atomic Energy Community (Euratom), and The Babcock & Wilcox Company.

AEC Contract No. AT(30-1)-3238
B&W Contract No. 59-3090

Submitted to
THE UNITED STATES ATOMIC ENERGY COMMISSION
by
THE BABCOCK & WILCOX COMPANY
Atomic Energy Division
Lynchburg, Virginia
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LIST OF PRINCIPAL INVESTIGATORS

ATOMIC ENERGY DIVISION

D. F. Judd
Technical Manager

R. H. Wilson
Analytical Program

ALLIANCE RESEARCH CENTER

H. S. Swenson
R. A. Lee
J. W. Ackerman
Experimental Program

The program will include experimental and analytical investigations to determine how non-uniformly distributed heat flux along lengths of tubular and annular channels affect the onset of burnout (departure from nucleate boiling). The experimental program will be conducted on the 1.8-MW heat transfer facility at B&W’s Research Center, Alliance, Ohio. The analytical program will be conducted by the Atomic Energy Division, Lynchburg, Virginia.

The first calendar quarter of this program has been spent planning, scheduling, designing, and initiating procurement. Design work, procurement, and facility modification are expected to be completed in the second quarter. Test work will begin and experimental data will be obtained early in the third quarter.
The Babcock & Wilcox Company, as part of the Joint U.S.-Euratom Research and Development Program, is conducting experimental and analytical investigations to determine the effects of irregular heat flow through reactor channels on the operating conditions that cause burnout (departure from nucleate boiling). This program seeks to improve design correlations that will be suitable for direct use by reactor designers. Tubular specimens having four axial power shapes and annular specimens having five power shapes will be used, and an effort to correlate the experimental data with empirical and analytical models will be made.

The experimental program will be conducted on a vertical test section in a closed loop through which water is circulated at a given rate. A 1.8-MW d-c power supply will heat the test section.

The first calendar quarter of this program has been spent planning, scheduling, designing, and initiating procurement. Design work, procurement, and facility modification are expected to be completed in the second quarter. Test work will begin and experimental data will be obtained early in the third quarter.
CONTENTS

1. INTRODUCTION .. 1

2. DESCRIPTION OF TEST APPARATUS 2

3. MODIFICATIONS TO TEST APPARATUS 6
 3.1. Flow Control and Measurement 6
 3.2. Pressure Fluctuations and Pressure Drop
 Measurements 6
 3.3. D-C Power Supply and Control 6
 3.4. Burnout Detector System 7

4. TEST SECTIONS ... 8
 4.1. Conditions for Tubular and Annular Test Sections . 8
 4.2. Dimensions and Flux Shapes of Tubular Test Sections . 8
 4.3. Dimensions and Flux Shapes of Annular Test Sections .. 9

5. SCOPE OF WORK ... 13
 5.1. Experimental Data 13
 5.2. Data Analysis 13
 5.3. Desired Conclusions 14

List of Figures

Figure

1. Test Site ... 4
2. Schematic Diagram of Test Apparatus 5
3. Heat Input Rate Distribution (Chopped Cosine) 10
4. Heat Input Rate Distribution (Maximum Rate at Channel
 Entrance) ... 11
5. Heat Input Rate Distribution (Maximum Rate at Channel
 Exit) .. 12
6. Non-Uniform Heat Generation Experimental Program
 Schedule Starting July 1963 15
1. INTRODUCTION

Nuclear reactors and modern boilers require more and more knowledge about the limitations on the transfer rates of heat from channel walls to flowing liquids. A very serious design problem still facing the reactor designer is the phenomenon called burnout (departure from nucleate boiling). The result of this phenomenon is that the heat transfer conductance is reduced considerably, causing the metal and fuel temperatures to rise and initiate failure of the fuel element. Although considerable attention has been given to this problem in recent years, the predictability of the occurrence of burnout conditions is still quite uncertain. In fact, there is still much disagreement on the effect of the channel geometry and operating conditions upon burnout.

In an effort to clarify some of the areas of disagreement, Babcock & Wilcox, as part of the Joint U. S.-Euratom Research and Development Program, is conducting an experimental and analytical program to determine the effects of non-uniform heat generation rates in tubular and annular flow channels on the operating conditions causing burnout, under experimental conditions representative of water reactor systems. The objective of the program is to seek improved design correlations suitable for direct use by reactor designers, with the technical approach to the work emphasizing the development of an improved understanding of the physical phenomena involved and their relation to design variables.
2. DESCRIPTION OF TEST APPARATUS

The experimental program will be conducted on a vertical test section in a closed loop through which water is circulated at a given rate. A 1.8-MW d-c power supply will heat the test section. A photograph of the test site is shown in Figure 1, and a schematic diagram of the test apparatus is shown in Figure 2. The circuit consists of a Westinghouse 150-D canned motor centrifugal circulating pump, an air-operated Annin flow control valve, flow measuring elements, a 60-kw immersion-type main loop heater, a tubular or an annular test section, a boiling water heat exchanger unit, and a loop pressurizer system. These components are joined with 3.25-inch-OD, 0.380-inch-wall SA-210 tubing to complete the closed loop. A burnout detector system is used for observing transition and film boiling in the test section.

Feedwater is demineralized plant steam condensate having NH₄OH added for pH control.

Test section flow rates are measured with a calibrated flow nozzle assembly located ahead of the test section. A turbine-type flow meter is used in conjunction with the nozzle to detect and record variations in flow rates or hydraulic instability during test operation.

The boiling water heat exchanger and the main loop heater make up the heat removal and temperature control unit for the test loop. Since a boiling water heat exchanger alone provides a rather sluggish control of heat removal rate, the exchanger is used only for coarse control of the heat removal rate. The main loop heaters are used for fine temperature control. In operation, the heat exchanger is adjusted to remove a little more heat from the system than is required to keep the system in thermal equilibrium. A small controlled amount of heat is added to the system to adjust the overall heat removal rate to that required. This heat addition is made by means of the main loop heaters, the signal
for the heater controls originating from a thermocouple used to measure the test section inlet fluid temperature.

Pressure is maintained with the pressurizer system by automatically controlling the rate of steam generation in the pressurizer vessel. Immersion-type electric heaters are used for heating.

The test apparatus is sufficiently automated to permit continuous stand-by operation without attending personnel; however, the d-c power supply will be operated only during periods of obtaining test data. The only time the loop is to be completely shut down is for maintenance or changing test sections.

The test sections are heated by passing direct current through the tube wall. The current is supplied from two d-c rectifier units, the input of each being 3-phase, 60-cycle, 4160-volt dc and the output being 100-volt dc at 9000 amperes. The two units can be operated in parallel and controlled with one controller, or operated independently with individual controllers.

The burnout detector is based on the principle that metal resistivity varies with metal temperature. Voltage taps are distributed along the length of the test sections, and the drop across each segment is continuously monitored and recorded. When burnout occurs, the metal temperature of the tube segment involved will rise and cause an increased voltage drop across that segment. The change in voltage drop will provide the warning that burnout has been obtained. This warning signal will automatically reduce the power if the test section temperature approaches a pre-set limit. The objective of the automatic setback is to prevent physical damage to the test section.
Figure 1. Test Site
Figure 2. Schematic Diagram of Test Apparatus

- **Pressurizer System**
- **Circulating Pump**
- **Flow Control Valve**
- **Flow Elements**
- **Main Loop Heaters (60kW)**
- **Flow**
- **Steam Out**
- **Boiling Water Heat Exchanger**
- **Feedwater Inlet**
- **Water In**
- **DC Power Supply**
- **Test Section**
- **Burnout Detector**
- **Flow Out**
3. MODIFICATIONS TO TEST APPARATUS

Modifications to the test apparatus are required to conduct this test program. These modifications, discussed in the following paragraphs, are being studied.

3.1. Flow Control and Measurement

A flow control valve that was used on previous tests is being checked and rebuilt as required. Two new calibrated nozzle assemblies, one for tubular test sections and one for annular test sections, will be procured. A turbine-type flow meter will be used to detect flow instabilities.

3.2. Pressure Fluctuations and Pressure Drop Measurements

Provisions are being made to monitor pressure fluctuations at the test section inlet that may be caused by a transition from nucleate to film boiling. Present plans include installing a pressure transducer ahead of the test section and recording the fluctuations. This monitoring instrumentation is available at the Research Center.

Provisions are also being made to obtain two-phase pressure drop measurements during the heat transfer tests. These measurements will be made with a high-pressure manometer and a gage.

3.3. D-C Power Supply and Control

An existing Research Center power control unit suitable for use in the tubular test section will be used as one of the two units required for the annular test section. One additional control unit is being designed for the annular test section. The instrumentation used with the power supply system is being studied and specifications established for changes and additions. New current-measuring shunts as well as changes to the ammeter and voltmeter ranges and panel boards will be required.

The bus-bar system from the rectifiers to the test section will be rerouted to the test section location. The design work for this change is almost complete.
3.4. **Burnout Detector System**

The burnout detector setpoints will be modified for the various operating conditions. Instrumentation connections will also be rerouted. The recorders of the voltage drop across the test section segments are being studied from the standpoint of being adapted to the burnout detector without causing electrical interference with the detector.
4. TEST SECTIONS

Considerable effort has gone into the preliminary design of the tubular and annular test sections. Work on both types is progressing in parallel so that the installation of each in the test apparatus will be mutually compatible. The effort so far has been directed toward establishing the specifications of the tube wall thicknesses so that the electrical load represented by the test sections will give the desired heat generation rate variation along the tube length and match the rectifier output, and so that the allowable stresses in the tubes will not be exceeded.

4.1. Conditions for Tubular and Annular Test Sections

The following burnout conditions are to be run in all combinations for each test section:

<table>
<thead>
<tr>
<th>Pressure, psia</th>
<th>Mass velocity × 10^6, lb/hr-ft^2</th>
<th>Inlet subcooling, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0.5</td>
<td>20</td>
</tr>
<tr>
<td>1500</td>
<td>1.5</td>
<td>50</td>
</tr>
<tr>
<td>1000</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>150</td>
</tr>
</tbody>
</table>

4.2. Dimensions and Flux Shapes of Tubular Test Sections

The dimensions of the tubular test sections are as follows:

Nominal ID, in. 0.446
Nominal OD, in. 0.607
Nominal length, in. 72

The longitudinal flux shapes of the tubular sections include the following:

T1. Uniform
T2. Chopped cosine, max/avg = 1.4 (see Figure 3)
4.3. Dimensions and Flux Shapes of Annular Test Sections

The dimensions of the annular test sections are as follows:

<table>
<thead>
<tr>
<th>Nominal ID of annulus, in.</th>
<th>0.607</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal OD of annulus, in.</td>
<td>1.053</td>
</tr>
<tr>
<td>Nominal length, in.</td>
<td>72</td>
</tr>
</tbody>
</table>

The longitudinal flux shapes of the outer and inner tubes of the annular sections include the following:

<table>
<thead>
<tr>
<th>Outer tube</th>
<th>Inner tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2. Uniform</td>
<td>A2. (Unheated)</td>
</tr>
<tr>
<td>A4. Chopped cosine (see Figure 3)</td>
<td>A4. (Unheated)</td>
</tr>
<tr>
<td>A5. Chopped cosine</td>
<td>A5. Uniform</td>
</tr>
</tbody>
</table>
Figure 3. Heat Input Rate Distribution (Chopped Cosine)
Figure 4. Heat Input Rate Distribution (Maximum Rate at Channel Entrance)
Figure 5. Heat Input Rate Distribution (Maximum Rate at Channel Exit)
5. SCOPE OF WORK

Tubular specimens having four axial power shapes and annular specimens having five power shapes will be tested, and an effort to correlate the experimental data with empirical and analytical models will be made. The program schedule is shown in Figure 6.

5.1. Experimental Data

The following experimental data will be reported for each set of test conditions:

1. Test section specification*.
2. System pressure referred to test section outlet.
3. Temperature of coolant entering and leaving the test section.
5. Enthalpy of coolant entering and leaving the test section.
6. Heat generation shape*.
7. Location of heater segment indicating burnout.
8. Heat flux on burnout segment.
9. Total pressure drop across test section.
10. Power input to test section.
11. Continuous voltage recording of burnout segment.
12. Continuous recording of test section inlet pressure fluctuations.

*Common to each test section.

5.2. Data Analysis

Accumulated data will be analyzed in an effort to determine whether steady or unsteady burnout is represented by each value. The consistency
of each kind of data with regard to correlatability will be determined for empirical and analytical models. An error analysis will be made as part of the evaluation of the models used for the correlations.

5.3. Desired Conclusions

Successful completion of experimental and analysis portions of this program should produce useful conclusions that will answer certain questions. At the present time, these questions are determined to be as follows:

1. Does the behavior of the system or the appearance of the data suggest a burnout model?
2. What part of the data supports the suggested model?
3. How does each of the following parameters affect the channel power limit caused by burnout (power distribution, cross-sectional shape of flow channel, pressure, inlet subcooling, and mass velocity)?
4. How do the data compare with selected correlations previously reported in the literature?
5. Beyond the scope of the preceding questions, what new observations or discoveries resulted from the program?
Figure 6. Non-Uniform Heat Generation Experimental Program Schedule Starting July 1963

<table>
<thead>
<tr>
<th>Months</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Modifications</td>
<td></td>
</tr>
<tr>
<td>Instrumentation Modifications</td>
<td></td>
</tr>
<tr>
<td>Tubular Test Section</td>
<td></td>
</tr>
<tr>
<td>Annular Test Section</td>
<td></td>
</tr>
<tr>
<td>Loop Operation</td>
<td></td>
</tr>
<tr>
<td>T1 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>T1 Test Runs</td>
<td></td>
</tr>
<tr>
<td>T2 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>T2 Test Runs</td>
<td></td>
</tr>
<tr>
<td>T3 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>T3 Test Runs</td>
<td></td>
</tr>
<tr>
<td>T4 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>T4 Test Runs</td>
<td></td>
</tr>
<tr>
<td>A1 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>A1 Test Runs</td>
<td></td>
</tr>
<tr>
<td>A2 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>A2 Test Runs</td>
<td></td>
</tr>
<tr>
<td>A3 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>A3 Test Runs</td>
<td></td>
</tr>
<tr>
<td>A4 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>A4 Test Runs</td>
<td></td>
</tr>
<tr>
<td>A5 Installation and Shakedown</td>
<td></td>
</tr>
<tr>
<td>A5 Test Runs</td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION

1. United States Atomic Energy Commission (27)
 Contracts Division
 New York Operations Office
 376 Hudson Street
 New York 14, New York
 Attn: Technical Information Group

2. United States Atomic Energy Commission
 New York Patents Office
 Upton, Long Island, New York
 Attn: Mr. Harmon S. Potter

3. United States Contractors (18)
 Allis-Chalmers Mfg. Co.
 Atomic Energy Division
 Milwaukee 1, Wisconsin
 Attn: K. F. Neusen
 Argonne National Laboratory
 Reactor Engineering Division
 9700 South Cass Avenue
 Argonne, Illinois
 Attn: Dr. Paul Lottes
 Argonne National Laboratory
 Reactor Engineering Division
 9700 South Cass Avenue
 Argonne, Illinois
 Attn: Dr. M. Petrick
 Dartmouth College
 Thayer School of Engineering
 Hanover, New Hampshire
 Attn: Dr. Graham B. Wallis
 Dynatech Corporation
 17 Tudor Street
 Cambridge 39, Massachusetts
 Attn: R. L. Mela
 General Electric Company
 Atomic Power Equipment Dept.
 2151 South First Street
 San Jose 12, California
 Attn: Dr. Frank Tippets
 General Electric Company
 Advanced Technology Laboratory
 Schenectady, New York
 Attn: Dr. Novak Zuber
 General Electric Company
 Hanford Atomic Products Operation
 Richland, Washington
 Attn: J. Batch
 Geoscience Ltd.
 8686 Dunaway Drive
 La Jolla, California
 Attn: Dr. H. F. Poppendiek
 Massachusetts Institute of Tech.
 Dept. of Mechanical Engineering
 Cambridge 39, Massachusetts
 Attn: Dr. W. M. Rohsenow
 Massachusetts Institute of Tech.
 Dept. of Mechanical Engineering
 Cambridge 39, Massachusetts
 Attn: Dr. P. Griffith
3. **United States Contractors' (Cont'd)**

- North Carolina State College
 - Dept. of Chemical Engineering
 - Raleigh, North Carolina
 - Attn: Dr. J. K. Ferrell
- Oak Ridge National Laboratory
 - P. O. Box Y
 - Oak Ridge, Tennessee
 - Attn: Dr. H. W. Hoffman

- National Aeronautics & Space Administration (2)
 - Lewis Research Center
 - 21000 Brookpark Road
 - Cleveland 35, Ohio
 - Attn: S. Weiss (SEPO)
- United States Atomic Energy Commission (2)
 - Division of Reactor Development
 - Washington 25, D. C.
 - Attn: R. M. Scroggins

4. **European Contractors (15)**

- Centre d'Etudes Nucleaires
 - Chemin des Martyrs
 - Grenoble (Isere)
 - France
 - Attn: M. Mondin
- CISE
 - Casella Postale 3986
 - Milano (Segrate)
 - Italy
 - Attn: Prof. M. Silvestri
- MAN
 - Abholfach
 - Nurnberg 2
 - Germany
 - Attn: Dr. Mayinger
- SNECMA
 - Division Atomique
 - 22 quai Gallieni
 - Suresnes (Seine)
 - France
 - Attn: M. Foure

- A.E.G.
 - AEG Hochhaus
 - 6 Frankfurt (Main) S 10
 - Germany
 - Attn: M. Schuller
- Alsthom
 - 38 avenue Kleber
 - Paris 16e
 - France
 - Attn: M. P. Domenjoud
- Centre d'Etudes Nucleaires
 - de Saclay
 - B.P. n° 2
 - Gif sur Yvette (Seine & Oise)
 - France
 - Attn: M. J. Horowitz
- FIAT
 - Sezione Energia Nucleare
 - Via Settembrini 235
 - Torino
 - Italy
 - Attn: M. G. Cesoni
- Reactor Centrum Nederland
 - 112 Scheveningseweg
 - 's Gravenhage
 - Netherlands
 - Attn: M. Pelser
- Compagnie Francaise
 - Thomson-Houston
 - 1 rue des Mathurins
 - Bagneux (Seine)
 - France
 - Attn: M. Lefranc

- CNEN
 - 15 via Belisario
 - Roma
 - Italy
 - Attn: Prof. F. Ippolito
4. European Contractors (Cont'd)

EURATOM (2)
Direction Generale R & E
51 rue Belliard
Bruxelles
Belgium
Attn: Dr. P. Kruys

5. The Babcock & Wilcox Company (37)

Allen, RK/Alliance
Barberton Library
Blaser, RU/Alliance
Central Files (10)
Deuster, RW (2)
Jager, RF/Alliance
Judd, DF (6)
Library, AED (2)

Littrell, LW (2)
Markert, W/Alliance Library
Meem, SH/Contract File (3)
Poor, HH/Alliance
Sankovich, MF
Swenson, HS/Alliance (3)
Travis, CC/TRG
Wilson, RH