Structural and Sub-Structural Features of Chemically Deposited Zinc-Oxide Thin Films

A.E. Bolotnikov

Presented at the SPIE Optics and Photonics 2013
San Diego, CA
August 27 – 29, 2013

September 2013

Nonproliferation and National Security Department

Brookhaven National Laboratory
P.O. Box 5000
Upton, New York 11973
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Structural and sub-structural features of chemically deposited Zinc-oxide thin films
A. S. Opanasyuk*a, T. O. Berestoka, P. M. Fochukb, A. E. Bolotnikovc, and R. B. Jamesc
aSumy State University, Rimsky-Korsakov Str., 2, Sumy, Ukraine; \\
bChernivtsi National University, 2, Kotsiubynskogo Str., Chernivtsi, Ukraine; \\
cBrookhaven National Laboratory, USA

ABSTRACT
We investigated the structural and sub-structural characteristics of ZnO films obtained by chemical bath deposition from solutions of zinc sulfate, thiourea, and ammonia. The duration of deposition ranged from 20- to 120-minutes. The concentration of thiourea was varied from 0.1- to 3-mol. We detailed the structural and sub-structural characteristics of these films using high-resolution scanning electron microscopy and x-ray diffraction. This research enables us to study features of the films’ structural formation, and to determine their basic characteristics, viz., phase analysis, texture quality, lattice constants, grain size, and size of the coherent scattering domain. Regimes were identified for depositing films with optimal structural characteristics for eventual use in solar-energy applications.

Keywords: Zinc oxide, chemical bath deposition, surface morphology, structure, sub-structure, X-ray diffraction

INTRODUCTION
Increasingly, zinc oxide is attracting the attention of researchers due to its unique properties and the possibility of its application as the base material in a variety micro-, optical- and acoustic-electronic devices. This material has high transparency in the visible spectrum, low toxicity, chemical- and thermal-stability, and good biocompatibility [1]. Moreover, due to the material’s high exciton-binding energy ($E_g = 3.37$ eV), effective laser generation is expected at room temperature [2]. Also, zinc oxide has a large band gap ($E_g = 3.37$ eV); consequently, it effectively absorbs ultraviolet radiation and so can be used as a sensor of UV radiation [3]. Furthermore, ZnO films are widely used as conductive- and window-layers of large-area solar cells [4].

Numerous growth techniques have been used to produce ZnO thin films including molecular-beam epitaxy [5], vapor deposition [6], magnetron sputtering [7], spray pyrolysis [8], and the sol-gel method [9]. Most of these processes are characterized by high complexity, and they necessitate use of high vacuum, energy or temperature during synthesis. Nowadays, chemical bath deposition (CBD) [10-15] is one of the most promising methods for obtaining ZnO films. Its main advantages are simplicity and efficiency, requiring only low temperature and pressure during synthesis, and, also affording the possibility of obtaining of large-areal layers on substrates of different shapes. Moreover, this method is suitable for depositing ZnO films with controllable structural properties, such as nanocrystalline layers, nanorods, and nanosheets. [10,12-14]

To generate ZnO layers, we employ different chemical reagents as precursors. Other researchers [10-13] have obtained zinc-oxide films from solutions of zinc nitrate and hexamethylenetetramine (HMTA) [10-11], hexamethylenetetramine and ammonia [12], and ethylenediamine and trietanolamine [13]. In contrast, in making the films, we employed a more accessible solution of zinc sulphate (ZnSO_4), thiourea ($\text{CS(NH}_2)_2$) and ammonia (NH_3OH), the latter serving as a complex agent to control sedimentation. The aim of our work was to study the structural- and sub-structural-characteristics of the condensates. These condensates were conditional upon our choice of the concentration of thiourea, the duration of the deposition, and the selection of optimum deposition conditions used to obtain films with the desired structural characteristics.

EXPERIMENTAL DETAILS
We generated ZnO films by chemical bath deposition by immersing the glass substrate in a chemical reactor with the aqueous precursors heated to 368 K. We prepared the initial solution by adding 50 ml of 0.1-M zinc sulfate dihydrate ($\text{ZnSO}_4\cdot2\text{H}_2\text{O}$) and 50-ml thiourea ($\text{CS(NH}_2)_2$) at concentrations of 0.1M, 0.5M, 1M, 2M, and 3M. The pH was
maintained at 10 by adding 10 ml of 25% ammonia solution (NH₄OH). The duration of deposition, τ, varied from 20- to 120-min. The substrates previously were cleaned with KOH, then isopropyl alcohol, and finally, distilled water. The structure of the films was investigated via the X-ray diffractometer DRON 4-07 (Ni-filtered Kα radiation of Cu-anode). The spectra were registered in the angle range $2\theta = 20^0$-800 (2θ - the Bragg angle). We focused the x-ray radiation according to the Bragg-Brentano method [16]. The phase analysis was accomplished by comparing the interplane distances and specific intensities of the XRD patterns of the samples, and from powder-diffraction data [17]. Harris’ method was used to determine the film’s texture. It especially is convenient for plane specimens where the axis of the texture is oriented normal to the surface tested [18]. The pole-density value was calculated via the equation:

$$P_i = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{I_i}{I_{0i}} \right),$$

where I_i, I_{0i} are the integral intensities of i-diffraction peak of the sample and etalon; N is the number of lines in the XRD pattern.

Thereafter, on the basis of this calculation, we built the dependencies $P_i - \varphi$ (where φ - is an angle between chosen direction and the normal to different crystallographic planes corresponding to the reflexes in the XRD patterns), and $P_i - (hkl)_i$ (where $(hkl)_i$ - Miller indexes). The angle φ was calculated for the hexagonal lattices according to equations given in [18]. The axis of the texture has values corresponding to the maximum P_i. The orientation factor was computed as

$$f = \frac{1}{N} \sum_{i=1}^{N} (P_i - 1)^2 .$$

The interplane distances for the wurtzite phases of the ZnO were obtained from the position of the $K_{\alpha 1}$ component of all of the most intense lines registered in the XRD-patterns. To determine the lattice parameters, a and c, of the hexagonal phase for ZnO, we used the following expressions:

$$a = \frac{\lambda}{2\sin \theta} \sqrt{\frac{4(h^2 + hk + k^2)}{3} + \frac{(a/c)^2}{l^2}}, \quad (1)$$

$$c = \frac{\lambda}{2\sin \theta} \sqrt{\frac{4(c/a)^2}{3} (h^2 + hk + k^2) + l^2} \quad (2),$$

where λ – is the X-ray wavelength.

The ratio c/a was considered equal to the value defined in the reference $c/a = 1.601$ [17]. Further, to gain precise values of the lattice constants, we followed the extrapolation method of Nelson-Riley [19, 20]. The least-squares method yielded a linear approximation of the points. For specifying the a and c constants of the hexagonal phase, we used a graphical method of successive approximations [18], repeating the calculations until the value of $a, c, \text{ and } c/a$ converged.

To determine the size of the coherent scattering domain (CSD) L in compounds, we used the Scherrer equation [16]:

$$L = \frac{K\lambda}{\beta \cos \theta},$$

where the K - coefficient depended on the grain’s shape ($K = 0.94$), and on β - the physical broadening of the X-ray line [19, 21].

RESULTS AND DISCUSSION

Figure 1 shows the electron-microscopic images of the surface of ZnO films obtained after different durations of deposition. It shows that the condensates, deposited for 20 minutes, are nanorods formed as hexagonal prisms with dimensions: $d = (0.25-1.00)$ µm in diameter and $l = (2.50-3.00)$ µm in length. They grow at different angles to the substrate. With increasing condensation time (from 60- to 120-minutes), due to the secondary nucleation there took place splice of intervals between nanorods and formation continues in the film.
Phase analysis of the XRD patterns for the condensates deposited at different concentrations of thiourea (τ = 60 min) showed that layers have a hexagonal structure. In the X-ray patterns, the intensities of reflections at angles (36.36°–36.38°) were the largest ones. The diffraction peaks correspond to the reflections from the (002) plane of the hexagonal phase of ZnO. This finding points to textured growth of the films. Along with these peaks, we registered very intense lines at the angles 31.66°, 36.16°, and 62.72° that were identified as the reflections, respectively, from (100), (101), and (110) planes of the ZnO wurtzite phase [17]. In addition in some XRD patterns, we discerned peaks at angles (24.65°–24.65°) that have been identified by others as a reflection of the (002) plane of Zn₄SO₄(OH)₆ H₂O compound. We note that annealing the layers in vacuum caused the decomposition of this compound [12].
The growth of the films' texture was confirmed by calculations of the reverse pole figures. The results of this assessment are depicted in Figure 3(a); they reveal that the pole density has a maximum value for the crystallographic (002) plane of ZnO hexagonal phase, indicating the existence of [002] texture. This growth texture is atypical for zinc oxide, which most often, has a growth texture in the [100] direction [10, 11]. Similar textural growth [002] was observed by others [12], wherein zinc oxide films were prepared by chemical-bath deposition from solutions of zinc nitrate and ammonia. Figure 3(b) displays the dependence of the orientation factor on the concentration of thiourea. We found that increasing the concentration of thiourea improves the films' growth texture because atoms of thiourea embedded in the structure of the film, making it more uniform.

Figure 3. Pole density P_{φ}, and orientation factor f, as a function of the incidence angle φ between the direction and the normal to the reflection plane for films obtained at different concentrations of thiourea (1 - 0.1 M, 2 - 0.5 M, 3 – 1 M, 4 – 2 M, 5 – 3 M)

Figure 4 shows the results of calculating the coherent scatter domain (CSD) in directions perpendicular to the crystallographic (100), (110) and (002) planes. These directions correspond to the crystal lattice axes of the hexagonal phase. We found that the CSD varies in the range of $L_{(100)} = (21-48) \text{ nm}$, $L_{(002)} = (38-60) \text{ nm}$, and $L_{(110)} = (21-36) \text{ nm}$. Furthermore, L has maximum value at the concentrations of thiourea of $C = 0.1-0.5 \text{ mol}$. Increases of the thiourea concentration in the initial solution results in a monotonic decrease of the CSD size in all three directions. Others [14] obtained similar results in determining its size ($L_{(100),(002)} = 47-48 \text{ nm}$) using the Scherrer equation (grain shape factor $K = 0.89$).

Figure 4. The effect of thiourea concentration on the CSD size in ZnO thin films. The CSD sizes in directions normal to the crystallographic (100), (110) and (002) planes were determined
Table 1 presents the results of calculating the lattice constants of ZnO condensates, made in solutions with different thiourea concentrations. Data were obtained by a graphical method of successive approximations after the first- and fifth-iteration. The value of the lattice constants a, c and the ratio c/a is practically unchanged after 4 and sometimes 5 iterations; this indicates convergence of the calculation for lattice parameters.

Table 1. Results of calculating ZnO lattice constants obtained by the iteration method using Nelson-Riley extrapolation graphs

<table>
<thead>
<tr>
<th>C, M</th>
<th>1 iteration</th>
<th>5 iterations</th>
<th>5 iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a, nm</td>
<td>c, nm</td>
<td>c/a</td>
</tr>
<tr>
<td>0.1</td>
<td>0.32535</td>
<td>0.52119</td>
<td>1.601936</td>
</tr>
<tr>
<td>0.5</td>
<td>0.32513</td>
<td>0.52094</td>
<td>1.602251</td>
</tr>
<tr>
<td>1</td>
<td>0.32511</td>
<td>0.52262</td>
<td>1.607517</td>
</tr>
<tr>
<td>2</td>
<td>0.32524</td>
<td>0.52138</td>
<td>1.603062</td>
</tr>
<tr>
<td>3</td>
<td>0.32463</td>
<td>0.52143</td>
<td>1.606229</td>
</tr>
</tbody>
</table>

Reference $a = 0.3256$ nm; $c = 0.5212$ nm, $c/a = 1.601$ [15]

Figure 5. The effect of thiourea concentration on the lattice constants a, c, and c/a. The results of the fifth iteration for c/a are depicted in the inset.

The dependence of a, c, and their ratio c/a as a function of thiourea concentration derived from the fifth iteration are shown in Figure 5. It was established that the lattice constants values for the material ($a = 0.32466-0.32525$ nm and $c = 0.52171-0.52306$ nm) are well correlated with data given in the reference [15] ($a = 0.3256$, $c = 0.5212$, and $c/a = 1.601$). Similar results of our calculation of lattice parameters ($a = 0.325$ nm and $c = 0.521$ nm) for zinc oxide films obtained by CBD from zinc acetate-dehydrate and sodium hydroxide solutions were found by others [15].

CONCLUSIONS

We obtained ZnO films by chemical-bath deposition in a solution of zinc sulfate, thiourea, and ammonia solution. Then, we assessed the dependence of the structural- and sub-structural- properties of the resulting condensates on the duration of the deposition and the concentration of thiourea in the initial solution. Furthermore, we showed that nanostructures form in the substrates during a 20-minute deposition. The optimal duration of deposition to assure the formation of a continuous layer is 60 min. Moreover, the films we generated display a hexagonal [002] growth texture, the quality of which depends on the concentration of thiourea. The average size of the CSD in directions corresponding to the axes of the crystal lattice of the hexagonal phase is equal to ($L_{(100)} = (21-48)$ nm, $L_{(002)} = (38-60)$ nm, $L_{(110)} = (21-36)$ nm); it decreases with increasing thiourea concentration in the initial solution. The films have lattice constants of $a = 0.32466-0.32525$ nm, $c = 0.52171-0.52306$ nm, and $c/a = 1.603-1.611$. These values show a good correlation to reference films. In addition, we identified the best physical and technological conditions for obtaining continuous films with a single-phase structure and a relatively large CSD.
ACKNOWLEDGMENTS

This work is supported by the Ukraine State Agency for the Science, Innovation and Informatization and by the Ministry of Education and Science of Ukraine (Grant No. 0113U000131, 0112U000772). Two of us (Bolotnikov and James) were partially supported by the Department of Energy’s NNSA Global Initiative of Proliferation Prevention and from the DOE/NNSA’s Office of DNN R&D.

REFERENCES

[17] [Selected powder diffraction data for education straining (Search manual and data cards)], Published by the International Centre for diffraction data, USA, p. 432 (1997).