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Abstract

In this paper, surrogate models are iteratively built ugiogynomial chaos expansion
(PCE) and detailed numerical simulations of a carbon sé@ies system. Output variables
from a numerical simulator are approximated as polynomiatfions of uncertain parame-
ters. Once generated, PCE representations can be usedéropthie numerical simulator and
often decrease simulation times by several orders of madmit However, PCE models are
expensive to derive unless the number of terms in the expasimoderate, which requires
a relatively small number of uncertain variables and a logréle of expansion. To cope with
this limitation, instead of using a classical full expamsai each step of an iterative PCE con-
struction method, we introduce a mixed-integer prograngniMIP) formulation to identify

the best subset of basis terms in the expansion. This agproakes it possible to keep the
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number of terms small in the expansion. Monte Carlo (MC) &atien is then performed by
substituting the values of the uncertain parameters ird@lkbsed-form polynomial functions.
Based on the results of MC simulation, the uncertaintiemgcting CQ underground are
guantified for a saline aquifer. Moreover, based on the PCéetave formulate an optimiza-
tion problem to determine the optimal G@jection rate so as to maximize the gas saturation

(residual trapping) during injection, and thereby minienihe chance of leakage.

Introduction

Due to increased recent concerns about the effects ef@d@ssions on global warming, various
forms of carbon emission reduction/elimination techn@sare under intensive research around
the world! Among those, carbon capture and storage (CCS) is considsrede of the promising
technologies to reduce GQevels in the atmosphereCCS usually involves capturing GGrom
large stationary facilities, such as power plants, andatsad the captured COfrom the atmo-
sphere over a long time period. One option forCorage is to inject C@into deep geological
formations, such as saline aquifers, depleted oil/gasvess, or deep unmineable coal seams.
It is often assumed that there is a layer of impermeable foomabove the storage layer, which
seals the sequestration system and preventsfo@ escaping.

Extensive research has been done to understand the physicakses in COsequestration.
These processes are modeled by solving governing equdtiomsass and heat balance, using
analytical formulas under simplified assumption®,or detailed numerical simulators, such as
ECLIPSE® or TOUGH2. A benchmark study recently compared several numerical faaxfe
CO, storage®

Because of incomplete knowledge or limited measuremelfityalparameters such as porosi-
ties and permeabilities in the equations governing @me dynamic often remain uncertain.
These uncertainties usually have a substantial effect erothput of the model, which raises
the question of what are the risks of injecting £@hderground when these models are used for

decision making under these uncertainties. Analysis otuamties is needed to quantify their
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impact on model predictive capabilities as well as to beiteterstand the potential risks of @O
storage. One way to quantify these uncertainties is to coenhidetailed model, usually a nu-
merical simulation model, with Monte Carlo (MC) simulatitmat involves repeated simulations
to obtain frequency histograms/distributions of modelpoiig. However, numerical models are
generally computationally expensive for repeated siniat especially when a single realization
of a simulation requires hours or days of CPU time. As an rétitve, we can first approximate
the detailed model output of interest using polynomial chexpansion (PCE) with respect to the
uncertain parameters, and then use the derived PCE ap@tcimo perform MC simulation.

PCE methods can provide efficient and accurate ways of anglymcertain behavior in a
complex systen?~16 These methods mainly fall into two categories: intrusiverapches and non-
intrusive ones. Intrusive methods involve substituting BCE approximations into the governing
equations and using a Galerkin technigliand a discretization scheme to solve for the coefficients
in the expansiort? Non-intrusive methods evaluate the coefficients in the esjoa using a small
number of model simulations and require no manipulationmofanlying partial differential equa-
tions 3-11.13-16Therefore, the latter approaches are easier to implemergeameralize to complex
systems. For this reason, we focus on non-intrusive PCEadsth

In non-intrusive PCE approaches, the coefficients of thgrmohial expansion can be com-
puted by projectiort:**which calculates an inner product for each coefficient thalves com-
puting multi-dimensional integrals. However, it is a nonial task to compute these integrals as it
becomes computationally prohibitive for many system isguncertain parameters) and/or high-
order expansion cases. Another way to calculate the caaftiis through solving a linear system
that is constructed after evaluating the model on a set opksmnirom the uncertainty space. De-
pending on the number and type of points being chosen, thétirsgmodel output surface can
be either interpolating these points (i.e., choosing calfmn points of the polynomial roots and
the same number as coefficients in the expansida)éor minimizing a least squares error (i.e.,
choosing random sampled points with high probabilities pexdorming regressiom®141°In the

first approach, collocation points come from the combimatibthe roots of next high-order poly-



nomials, which means that these points are different fdeiht degrees of expansion and the
corresponding model output needs to be evaluated at ak {haists. In other words, if a proper
PCE model satisfying a pre-set accuracy is going to be berkiively by increasing its degree one
at a time, the total computation is going to increase ramglyt not only involves the model eval-
uations under the current set of collocation points, bud Hie previous evaluations for low-order
collocation points. This explosion of CPU time limits amalbility of PCE techniques. Therefore,
we have adopted approaches that solve for the expansidicerk based on a fixed set of random
samples with high probabilities. By choosing samples withlprobabilities, the approximation
values of a model output are expected to have small devsafrom the exact values in the most
probable area of the uncertain parameters.

PCE based on interpolation of collocation points has begiiexpto the modeling of C®
sequestration by Oladyshkin et f:18 Parametric distributions were assumed to fit the observed
data of uncertain parameters in order to utilize the cooedmg orthogonal polynomial bast§.
However, using a hypothesis test, Kopp ef&have shown that the raw data used by Oladyshkin
et al.18 fail to follow a normal or a lognormal distribution. In adidib, using collocation pointéto
solve for the expansion coefficients limits applicationawldimensional PCEs. In related wotR,
PCE models were developed without parametric assumptionghbe correlations of uncertain
parameters were not explicitly addressed.

The contributions of the current paper are in two areas:

1. Inthe context of PCE methodology, we introduce the useixédiinteger optimization tech-
niques for systematic selection of the coefficients in tHgmpamial expansion. In contrast to
existing forward selection and backward elimination PC&htéquest® our approach cap-
tures interactions between low- and high-order terms optitgnomial expansion. As a re-
sult, simpler and more accurate surrogates can be builtihétbame amount of input/output

information (detailed model simulations).

2. Inthe context of C@sequestration, we apply the proposed PCE method to obtdtmiid-

els that relax the earlier assumptions on distributionsambunt for correlations between
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uncertain permeabilities and porosities. Our computataemonstrate that PCE surrogates
result in highly accurate approximations of a benchmarkbia@m. In addition, we propose
a stochastic optimization model that utilizes the PCE gates to identify optimal C&in-
jection rates that maximize G@mmobilization under parameter uncertainty while ensgirin

that caprock pressure stays low.

The remainder of the paper is organized as follows. In thieviahg section, we introduce
the mathematical concepts of PCE representation. Thengs@ide the method of building PCE
surrogate models with the MIP-based best subset selectismg the PCE model, we are able
to incorporate operational variables into the proposedérsork and formulate an optimal opera-
tional problem. A detailed illustration on a benchmark {forage modeling problem is presented
here. Computational results of the uncertainty quantiboeind optimal design using these PCEs

are presented next. Finally, conclusions are providedeanast section.

Polynomial chaos expansion approximation

Let us assume a physical mod&l= modelx), wherex = {xg,...,xy}' € RM, M > 1 is a vector

of parameters (model inputs¥ = {y1,...,yn}' € RN, N > 1 is a vector of model outputs of
interest. If the parameter vectgris uncertain and can be characterized with some probability
density function (PDF), it is expected that each model augpg # is also a random variable.
To keep the notation simplg; is denoted ay from this point forward. Assuming a particular
model outputy has finite variance, theycan be represented by the following polynomial chaos

expansion??
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where thea’s are coefficients, and thB's are multivariate polynomial basis functions that are
orthogonal with respect to the joint PDF xf
In practice, this PCE is truncated at a finite number of basistions. The number of the terms

N: in the expansion is
(M +d)!
Mid!

Ny = (2)

whereM is the number of model inputs (lengthxjfandd is the degree of the expansion, i.e., the

highest degree of the polynomial basis functions.

Orthogonal polynomial basis

The orthogonal polynomials for a single random variablee defined as follows. Assunféx)
is the PDF ofx, and{ @ = x4 + lower degree termsi = 0,1,2, ...} are polynomial functions of.

Then, the polynomiady is defined to be orthogonal to polynomialif

/Q<pdcpcf(x)dx:o, d£c 3)

whereQ is the support of the random variable

If x can be characterized with one of the most commonly known P8eh as a normal or uni-
form distribution, then the corresponding orthogonal polyials can be chosen through the Askey
schemé! or generalized option? For example, a Hermite polynomial sequence corresponds to a
standard normally distributed random variable. kavith an arbitrary PDF, the orthogonal poly-
nomials are generated numericalR/These orthogonal polynomials are optimal with respect to
the PDF ofx, in the sense that the error computed as a difference bettheesxact value of a
model output and the value approximated by Eq. (1) w{t; = @1,i =0, ...,d} converges to zero
exponentially asl increases linearly?

For the case of an input vectarwith M random variables, Eq. (3) can be applied to define
the multidimensional orthogonal polynomials. If tkés are independent of each other, the joint

PDF ofx is then a product of the marginal distributions of eachThus, the multidimensional



orthogonal polynomial of degreg, i.e., By, can be obtained by multiplying the corresponding

individual orthogonal polynomial for eacty:

M M
Ba(X) = _rl(,qn(xi), Where_zlm =d, @Xx)=1i=1..M 4)

In the case of correlateg’s, an appropriate transformation, such as the Nataf toamftion, is
needed before Eg. (4) can be applied to generate the ortabgolynomial functions as discussed

next.

Transformation for correlated inputs

The Nataf transformaticff is a nonlinear transformation that translates correlag@diom vari-
ables to uncorrelated standard normal random variabless tidnsformation is often used for
the cases when the marginal PDF of each random variable isrkrmut not the joint PDF. The
transformation can be broken down into the following twasteFirst, the correlateq’s are trans-
formed to correlated standard normadd by setting their cumulative distribution functions (C&)F
equivalent:

2= ®(F(x)) ©)

whereF(x) is the marginal CDF of the random variabtg and ®~1(-) is the inverse of the

marginal CDF forz. These correlateg’s are then transformed to uncorrelaigs:
z=LE (6)

whereL is obtained by Cholesky decomposition of the correlatiotrixaf z
With the Nataf transformation, the correlated inpuxispace is transformed to an independent
standard normal space. The model output is then approxinaaten expansion of the orthogonal

polynomial basis o€, i.e., a summation of multiplications of Hermite polynofsia



Coefficient estimation

The next step is to estimate the coefficient vectar R™ in a truncated expansidviy(x) at degree
d with Ny polynomial basis terms. We have used linear regressionlte $or the coefficients.
First, N, points are selected forand denoted by the sit= {x!,...,xe}. Then, the coefficients

are computed by solving the following linear system:
Ba =y (7)

where theNp x Ny matrix B is formed by evaluating the polynomial basis functions &t Ny
selected points and are normalized to avoid ill conditigrdnie to power operations. The vector
y = {y},...,y"P}T containsN, values of a model output, which are obtained by running the
detailed simulation with the selected points as input \&l@enerallyN, is greater tham\; (e.g.,
Np = 2N, is suggested by Hosder et 4. so that Eq. (7) is an over-determined linear system.
Then,a is solved for by minimizing the training errofBa — y||3, which givesa = (BTB) 1By
provided tha(B"B) ! exists.

The choice oiX can be based on random sampling, such as Latin Hypercubdi8grfyHS),
from the joint PDF ofx. These realizations/points are sorted in the order of daebieg joint
probability densities. Those with higher probability digies are finally selected for the model

evaluations to solve fomr.

Goodness of fit measures

Now that we have a degraePCE approximatiotvly x built with a particular choice oK, we can
compute errors to see how wdlly x performs. In order to estimate the training error, we employ
the most frequently used statistical measBfe We also use the leave-one-out cross validation

errorQ? to keep track of overfitting:

1 T (F = Mg ey ()2

2_q_
< o2(y)




In this formula,My v, 1y is & PCE approximation built witN, — 1 points in the seX. One point

X; is left out, and the residual is calculated. Althou@hlooks similar toR?, the calculation of?
involves constructindl, PCE approximationgMg . 1,13 -+, Mg x\ ) } t0 compute the residuals.
Cross validation techniques are sensitive to overfittingesQ? may decrease if excessive higher-

degree terms are added to the expansion.

Building PCE approximations

Building an appropriate PCE for a model output is an itempvocedure with the above steps.
We start from a degreg-PCE @ = 0 at iteration 1), compute the coefficients by regressiod, an
calculateR? andQ?. If, at a given iteration, the error (Q?) starts to increase and/or approaches
zero (e.g., 0.01), the expansion of degdeis considered as a best fit of the current choicX of
Otherwise, we add one-degree higher polynomial terms texpansion of the current iteration.

From Eq. (2), we can see that the number of polynomial tedmgrows very fast when the
number of uncertain inputd and/or the degree of expansidrincrease. For exampld; = 8008
withd =6,M = 10. As at least as many & model simulations are needed to géor regression,

a large value of\; conflicts with our initial goal of reducing computationafet. To cope with
this issue, forward and backward stepwise regression igebsf> can be used, for example as
proposed by Blatman and Sudrét.

The main idea of the stepwise regression is that, insteaddihg all the one-degree higher
terms to the expansion of degrdet each iteration, the degréd-+ 1) expansion is enriched by
adding one polynomial term of degrde- 1 at each step. If the added term helps to increase model
accuracy significantly, it is retained in the deg(elet+ 1) expansion; otherwise it is discarded. The
expansion is updated with or without the addition of this rtewn. This step is repeated until
all N¢(d+1) — Ni(d) degreetd + 1) basis functions are screened. The benefit of this method is
that the number of the basis terms is minimized by negledtinge terms with very smadt’s in

the original full PCE expansion; therefore, the number oflgisimulations is kept as small as



possible. However, one issue of this stepwise approaclatsttignores the synergistic effect of
basis functions. For example, basis funct®ndiscarded at iteratiok may become significant

in future iterations after the addition of new basis funietio Since the stepwise scheme does not
allow the reentry of previous discarded terms, the regyitinncated polynomial expansion may

not be the best subset of the basis set. This issue is addmesse

Best subset selection based on MIP

In our work, we propose a new method of best subset selectisedoon mixed-integer program-

ming (MIP) to build PCE surrogate models. The formulatioasgollows:

min [Ba —y3

S.t. wi =T

atwj < a; <awj, Vje B

w; = {0,1}, Vj € 2,

where Z is the set of basis functions up to degaeat andaV are lower and upper bound of
the coefficienta;, T is the number of terms that is allowable in the polynomialasmgon. If the
integer variablew; is one, it indicates that the basis functiBpis allowed to be present in the
expansion. Ifw; is zero, the basis functioB; is not permitted in the expansion angl is forced

to zero by the second constraint. By the first constraintntiaber of terms in the expansion will
beT. For each givefT, the above MIP is solved by minimizing the training erfi@a —y||§_ The
value of the parametérr is chosen by minimizing the cross validation error, i.e.,nbiypimizing
1- Q2

This MIP formulation preserves the advantages of the stepreigression, i.e., keeps the num-

ber of terms in the expansion small as long as the tuning petearh is chosen to be small. In

fact, if T is set to be\;, the solution of this MIP also recovers the full classic palgnial chaos
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expansion. This flexibility of manipulating the number ofmts enables us to construct a general
PCE model that is either a full expansion or an expansion afbset of basis functions. In ad-
dition, the optimal set of the basis functions obtained Hyiag the MIP problem is based on a
complete search over the s&t This gives us the best subset that considers the synergifdcts
of basis functions. In our computational results, we do ples¢hat the MIP-based method re-
sults in smaller subsets of basis functions in comparisdhdstepwise method based on forward
selection and backward elimination.

The approach of constructing PCE models iteratively isioed in Figure 1. In comparison to
existing PCE methods, the forward and/or backward steprepession is replaced with the best

subset search using the MIP formulation.

Uncertainty analysis and injection optimization with PCEs

Once we have PCE approximations of the original numericalehas a function of the uncertain
parameters, we can then perform uncertainty analysis WaHPCE models. The effect of param-
eter uncertainties can be quantified using MC simulationne®&aly, in MC simulation, values
of the uncertain parameters are randomly sampled from tespective PDFs, if parameters are
independent, or from their joint PDF, if correlated. A LH8heique is used to increase the like-
lihood that the space of the uncertain parameters is coweridiently by these sampled points.
By substituting the random values of uncertain parametgosthe PCE approximation, the corre-
spondingy values are obtained. Statistical analysis can then benpeefibfor this specific model
outputy for uncertainty analysis.

In the work by Oladyshkin et afl® design variables are integrated into the PCE approxima-
tions, i.e., each design variable or parameter is assigitadypothetical distribution and treated
as the uncertainty input (parameters). Consequently, tiaehoutput becomes some polynomial
function of the model input and the design variables. We lestended this integrative idea to

formulate an optimal design problem based on the PCEs. br @tards, the implicit relationships

11



SelectX and collecty

{Initialize: degree d =0, set of basis A % 0

|

yes (

d = dmax? Ly: Ma(X) With Tg terms}
\/

ForT =1,...,N(d), solve the MIP
formulation for best subset selection,
i.e., find Ty s.t. Q3 is the largest

|

yes

{y: Mg_1(X) with Ty_4 terms}

no yes

Qf > Qtyge? {y: Mg (X) with Ty term%

Figure 1: Flowchart of the MIP-based PCE method
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between the objective/constraints and the model input asmd variables hidden under the black-
box numerical simulator are explicitly approximated by plodynomial expansions. The resulting

optimization problem under uncertainty takes the follagviarm:

min f(z,0)

stt. 9(z6)<O0

wherez is a vector of design variables, afidis a vector of uncertain parameters. The objective
f(z 0) and the constraintg(z 0) are the polynomial approximations for some model outputs of
interest. This optimization problem can be approached vatlous techniques, including different

models of uncertainty that account for worst-case or awege scenaric?.

Case study

We apply the adaptive PCE method to a benchmark €€yuestration problem. As G@s in-
jected into a saline aquifer, it spreads out around the tigjeavell, pushed by the high injection
pressure, displacing brine water to its irreducible sdimma® The upward movement of GQiue
to buoyancy stops when GQ@eaches an overlying impermeable caprock, where §@hysically
trapped §tructural trapping). After injection stops, the G@lume continues to move slowly lat-
erally due to the formation fluid’s natural flow, and gradyajéts trapped in the pore space, where
the plume is eventually entirely immobilized by thissidual trapping. Solubility trapping and
mineral trapping are much slower trapping mechanisms amdatrconsidered as significant in a
short simulation period of the nature considered in thig cisdy (two years).

One possible leaking scenario occurs during the laterabmewnt of the C@plume when CQ
is not entirely immobilized yet. Leakage happens when thenplencounters faults and/or broken
wells. Kumar’ determined well settings to maximize residual trapping amiied that structural

trapping is not desirable before G@& entirely immobilized because any loss of the seal intggri
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due to fractures, faults, or broken intercepting wells wélise the mobile C£to leak. Residual
trapping is preferred because it restricts the lateral mare of CQ and eventually immobilizes
the entire CQ plume.

Figure 2 shows a simplified sketch of @{jected into a saline aquifer. The modeling of £O
injection into a geological formation mainly involves mésdances and two-phase flow dynamics.

The following governing equations need to be solved for theathics of injected C®plume:

20piS N
ot +0-(pivi) =Q; (8)
Vi = KTlf(DloeragDZ) 9)
>S=1 (10)

wherei = {CO,-rich gas phase, brine water phase}is the porosityp; is the densityS is the
fluid saturationy; is the fluid velocity,Q; is the source (sink) ternis andk; are the intrinsic and

relative permeabilitiesp is the fluid pressure, ang is the viscosity.

al

Injection well

} t14

Aquitard/caprock

CO, plume

Aquifer/reservoir

-
-
-

Figure 2: CQ injection into a saline aquifer

Problem statement

We consider a C®injection benchmark that has been simulated using TOUGH&u{Em No.

4).28 TOUGH2 is a numerical simulator for modeling non-isothermaltiphase flow in fractured
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porous media, and has been under development since 1980s patticular benchmark problem,
COyisinjected into a saline aquifer through a horizontal welie injection rate is about 10 kiloton
every year. In a 2D vertical section, geological formatiarescomposed of alternating permeable
and impermeable layers. The simulation by TOUGH2 providssilts such as the pressure of
the injection layer and the CQdistribution profile (e.g., mass and gas saturation) aldhtha
formation layers.

We are mainly interested in quantifying the impact of theartain parameters such as porosity
and permeability on the model outputs. Therefore, the moadtgluts will first be approximated as
polynomial functions of porosity and permeability, allegius to perform MC simulation with the

PCE approximation later.

Uncertainty characterization of model input

Instead of using hypothetical parametric distributionshsas normals and log-normals, we have
used the raw data from field observations. As an illustrattbe National Petroleum Council
database for over one thousand reservoirs in43.8.used. The joint distribution as well as the
marginal PDFs of the input parameters (porosity and peritigalare plotted in Figure 3. It can be
seen from the two marginal histograms that neither of thedistibutions follows a standard para-
metric distribution. This means that the orthogonal poirads known for standard distributions
(e.g., Askey scheme polynomials) cannot be applied as hasitions directly in the expansion.
Further, the value of the correlation coefficigm{= 0.8) between the two parameters implies a
strong correlation between the two inputs. Thus, the Nagafsformation is needed before the
polynomial basis functions can be generated with Eq. (4)eséhwo correlated parameters are

transformed into two uncorrelated standard normals with(&gand Eq. (6).

Construction of PCEs

Once we have the standard normal random variables, we dere titie series of Hermite polyno-

mials known as orthogonal polynomials for a single stana@arinal variable. For the case of two
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Figure 3: Correlated input parameters

random variables, the polynomial basis functions are dsviist

Bo(§) = ¢o(&1)¢o(2) =1
Bi(§) =¢1(&1)¢o(&2) =&
Bi(§) =¢o(§1)91(&2) =&
B2() = ¢2(81)00(&2) =&7—1
B2(§) =01(81)91(82) = &1éo
B2(&) =o(81)p2(&2) =&5—1

The model output is then a PCE approximation in termé& wiith the coefficientsd’s) left as
unknowns. To solve for Eq. (7), we need more tiNarsamples. Here, a fixed design of experi-
ments, i.e., 100 LHS design fdris chosenB is then evaluated with these random samples. The

model evaluation vectoy is obtained by first performing the reverse of the Nataf ti@msation
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to translate the randoi back to the correspondingvalues, and running the model with these
samples. With all these, the best subset selection method tiee MIP formulation is solved to
find a PCE approximation for a model output satisfying rekdsi largeR? andQ?. Figure 4 and
Figure 5 are two examples of the polynomial surface fitedd®rhndom samples witR? = 0.98
andQ? = 0.98. The response surface of the fraction of G®the caprock fits a third-order expan-
sion, while the response surface of the fraction of gas-@R&3 in the caprock fits a fourth-order
expansion. The amount of G@n the caprock tends to decrease when the porosity and theeper
ability of the aquifer become larger (largér andé,). This is because more GQvould stay in
the aquifer if the porous space in the aquifer is larger @approsity) and the flow movement is

easier (larger permeability).

0.08 —

0.07 — : B
0.06 - R?=0.98

0.05 —

0.04 —

0.03 —

0.02 —

0.01 —

Mass fraction of CO 5 in caprock after 30 days of injection

Figure 4: PCE model example 1, fitting a third order expansion

The pressure of the injection layer (i.e., saline aquitegaing to be disturbed by the injection
activity. The pressure buildup due to injection is of parde interest as we want to know whether
the buildup would fracture the upper layer seal (i.e., calprduring injection, under uncertain ge-
ological parameters. Another selected model output is @asation, which is defined the fraction
of the pore space of the geological formation that is ocaipieCQ. A contour map of gas satu-

ration for the 2D domain gives us an idea of how thex®ime is distributed along all formations
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Fraction of gas phase CO2 in the caprock

Figure 5: PCE model example 2, fitting a fourth order expansio

after injection for a certain duration. These two model atdre functions of space and time. The
space domain (half space) of the problem is discretized avittesh of 34 29 (986) grid blocks.
The mesh grid is not uniform but refined near the injection wer each block at a specific time,
we construct PCE models for the two output variables, i.e cthefficients in the PCE model are
dependent on space and time. Although this process invgkesrating a large number of PCE
models, the overall computation time is relatively smailatdition, the availability of these PCE
models facilitates computation of probabilities for £l@akage as a function of space and time.

Figure 6 and Figure 8 are obtained by running one deterngni®UGH?2 simulation and
present the contour map of pressure and gas saturation3@ftdays of injection. A pressure
buildup is clearly observed around the injection well inl¥g 6. In the gas saturation map, the
CO, plume in the half space is observed. Figure 7 and Figure 9laened by substituting the
same model input values used in TOUGH2 simulation into tl&P8E approximations. Although
it takes 100 TOUGH2 simulations to first construct the PCE emmdhe advantage of the PCE
method is in the gain of speedups in conjunction with MC satiah, compared to applying MC
simulation with the TOUGH2 simulator directly.

In the two plots for pressure, the overall contours look EmiThe main feature of pressure
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transition in Figure 6 has been differentiated by the PCRuiktion in Figure 7. Notice that there
are some wigglings on the boundaries of the contours. Thisbealue to the oscillating feature
of polynomial terms in the expansion. For the gas saturatiap, 89 out of 239 constructed gas
saturation PCEs show small negative values. These negatives are numerical errors due to the
approximations using the polynomial terms. The errors are order of 6% of the true values on
average. Based on the locations where these small negativesvare observed, the negative gas
saturation is set to zero since the £@ume will not have arrived at these locations after 30 days
of injection. The resulting gas saturation map looks alnisntical to the map obtained using

TOUGH?2.

Pressure contour map after 30 days’ injection obtained with TOUGH2 (Pa) 7
180 )i%%
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Figure 6: Pressure contour map with TOUGH2 simulation

For comparison, we also implemented the forward and backet@pwise regression method
to construct PCE models that achieve a sim@ar(~ 0.98) for the same outputs. As mentioned
earlier, the stepwise regression method does not allowettemtry of previously discarded basis
terms, which however might be selected by the MIP-based adetih\s a result, the subset se-

lected by stepwise regression and even the number of subrget®t necessarily the same as the
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Figure 7: Pressure contour map with PCE approximation
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Figure 8: Gas saturation contour map obtained with TOUGHHRIktion (gas saturation is zero
beyond the scope of the figure)
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Gas saturation contour map after 30 days of injection obtained with PCE models
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Figure 9: Gas saturation contour map with PCE approximdtias saturation is zero beyond the
scope of the figure)

ones selected by the MIP-based method. From Table 1, we eathag among the PCE models
constructed for the 904 model outputs using both by stepweigession and MIP-based selection,
81.37% of the models end up with smaller or equivalent degreedsion when the MIP-based
method is used. In addition, all of these lower-degree esiparmodels require a smaller or equiv-
alent number of terms in the expansions when the MIP-badedtsm is used. Although 183%

of the models are in higher-degree expansions if consulweith the MIP-based method, the num-
ber of terms in the expansion are still smaller most of theeim\We conclude that 9% of the
time the MIP-based method performs better than forward ac#ard stepwise regression in the
sense that it yields simpler models based on the same nurhbanalations. Clearly then, this
approach would avoid overfitting and require fewer simoladito obtain equally accurate PCE

approximations.
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Table 1: Performance comparison of MIP-based subset selentd stepwise regression

% (Termsuip < TerMsepwisd % (Termsuip > TermMsepwise

% <Degreg,np < Degregtepwise) 81.37 0

% (Degre@np > Degregtepwise) 12.53 6.10

Correlated sampling for MC simulation

According to the Dvoretzky-Kiefer-Wolfowitz inequali§? with probability at least - a,

R 2
sup|Fn(t) — F(t)| <4/ =log—,
suplFo(t) —F (1) </ 5100 7

whereF,(-) is the empirical CDF based ansamples and (-) is the true CDF. Therefore, for a
99% confidence bandy(= 0.01) of F.,, the maximum error betwedf, andF is at most 005 if the
sample sizen is larger than 1000. For this reason, we have chosen 1000esfop Monte Carlo
simulation.

The bottom plot in Figure 10 represents the original datsgiorosity and permeability. The
top one shows 1000 pairs of correlated random samples usddbiate Carlo simulation. These
plots are generated through an inverse of the Nataf tramsftoon, where the empirical distribution
functions (i.e., empirical CDFs) are used to be the estimaftahe true CDFs for porosity and
permeability. From Figure 10, we can see that the simulaegpes reproduce the original dataset
very well. These 1000 pairs of samples are substituted irealerived PCE approximations for

the corresponding values, and the resulting distributions are shown in thé sestion.

Results of uncertainty analysis

For the benchmark problem here, it takes about 15 minutesrfonmn one TOUGH2 simulation,
which is still moderate for MC simulation. Therefore, weaatgerform 1000 simulations with the
TOUGH2 model to obtain distributions of model outputs thatean use for validating the results

of the PCE models.
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Figure 10: 1000 simulated correlated samples (top) in cois@ato NPC database (bottom)

Figure 11 shows the CDFs for the mass fraction ob@Qhe caprock after 30 days of injection.
The distribution obtained with a third-order polynomiapaxsion (dashed red) is very close to the
distribution (solid blue) obtained by running TOUGH2. Sianly, we can see a good match for the
mass fraction of gas-phase g the caprock in Figure 12. Note that the number of numerical
simulations is much smaller using the PCE method. In ourysthe choice of random samples is
fixed to 100. However, it can be kept as small as six in ordeohkeesthe linear system (Eqg. (7)).
The computation for finding a PCE approximation using theptida PCE method takes a few
seconds. The computation of MC simulation with PCE modddssabout three seconds, which is
also negligible. Therefore, the overall computation tirhesing the adaptive PCE method for MC
simulation is mainly due to the 100 numerical simulationsanpled points. This time is about
10% of the time for running 1000 MC simulations with TOUGH 2editly.

Figure 13 is a contour map with the average values of the preger the 2D domain of the
injection problem. This map is generated by taking an awve@gl000 TOUGH2 simulation
results. The map shows how the hydrostatic pressure fieldtisrded by the injection activity in
an average sense. The brighter area near the injectionepeisents high values of pressure. The

pressure differential is primary due to pressure buildupnduCQO; injection which could lead to
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higher pressure than the original hydrostatic pressureh&Ve a very similar map obtained with

the polynomial model. Again, we see some differences in tiselate values for some locations.
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Figure 13: Pressure contour map in average obtained with@id@&Jsimulation

Figure 15 is the contour map of the gas saturation after 3@ d&ynjection obtained with
TOUGH2. Almost exactly the same map is obtained with the P@jitaimation, see Figure 16.

We are also interested in knowing the pressure in the camiocke we want to know whether
the pressure would fracture the caprock during injectiar.dach simulation, the maximum pres-
sure along the caprock is found and a distribution is theiveléifor this maximum pressure. If
the pressure limit that would break the caprock formatiokniswn, the probability of overpres-
sure can be found in this distribution. For instance, if tfaeture pressure is about 500 bar, from

Figure 17, the overpressure probability is about 0.001.

Optimal injection rate under uncertainty

To reduce the risk of leakage, we would like to increase thewarhof CQ trapped by residual

trapping as much as possible, while making sure that theldgoipressure during injection does
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Figure 14: Pressure contour map in average with PCE appatixim
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Figure 15: Gas saturation contour map in average obtaingdMdUGH?2 simulation (gas satura-
tion is zero beyond the scope of the figure)
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Mean value of gas saturation after 30 days of injection obtained with PCEs
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not fracture the overlying seal. An optimization problenfasmulated for this purpose based
on the PCE approximations including the operational véeidthe injection rate). In our study,
a uniform random variable is used to represent the injeatda during the PCE development
step. The reason of choosing a uniform distribution for tesigh variable is that we assume no
preference and place equal weights for values in the designval. The mean of the uniform
distribution equals the value of the injection rate in thgimal 2D simulation, and the random
variable varies between half of the mean anfdl times the mean. The polynomial basis for the
uniform random variable as well as the two transformed noxaaables are then used to get the

PCE approximations of model outputs. The optimization f@oltakes following form:

986
max K¢ geo (Z Su(z, 51752>> (P1)
k=1

s.t. pk(z€1,€2) < piimit, k=1,...,986

whereé; and é, are the transformed random parameters for porosity and qaditity, z is the
operational variable, the injection rafg(-) is the expectation function with respect to uncertain
&1 and &, Q is the support of the uncertain parametefg,(z &1,¢2) and px(z, &1,€2) are the
polynomial functions for gas saturation and caprock pnessiti each grid block, and pjimit IS
the upper bound for the maximum caprock pressure, whicht iskx 10’ pa when solving this
optimization problem.

The objective is to maximize the expectation of the residrggdping which immobilizes the
CO, plume, and therefore the proportion of the mobile plume isimized so that the probability
of the mobile plume encountering faults and/or broken wslieduced. Gas saturation is selected
as the measure of residual trapping. Because of pressudepduring injection, we are concerned
about whether the increase of the pressure may break the tgpeation. So the maximum
caprock pressure is constrained by an upper bound. An olpinjeation ratez is determined to
maximize the gas saturation (minimizes the chance of legkagder uncertain parametdrsand

é», constrained by the pressure limit. This one-stage stdicha®blem is solved using a scenario-
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based approach, i.e., under 1000 realizations of uncgréaameters. Problem (P1) now becomes:

1 1000 / 986 S
X 1000 2, (kzlsgmz, f£,62’>> (P2)
= —

st p(z&,&) < pimt,  k=1,...,986; j=1,..,1000

In this formulation, the expectatidf(-) has been replaced by the average of the summation of
1000 realizations. As the uncertain parameter is reveasadifed), we also solved the following

problem:V realizationsj € {1,...,1000},

986

max Yy S,(2.€1.8) (P3)
k=1

S.t. pk(27 6]1_762]) S plimit, k= 177986

Because of the polynomial features (high nonlinearity thaisconvex) in both the objective func-
tion and constraints, we have used the deterministic gloptmization solver BARON to solve
the problem to global optimalit§®-31

Figure 18 shows the optimal injection rates from solving)(P3he optimal injection rate
that maximizes the expectation of residual in (P2) is shointhevalley of the top left plot, i.e.,
the lower bound. From Figure 18, we find that the optimal itijgcrate reaches the maximum
possible value that it can take (1.5 times the mean) in mesias@s except when the permeability
and porosity are relatively small. This is expected becaussmall porosity and permeability
areas, the ability of C®to move is small. As a result, GOnjected into such areas tends to result
in large pressure buildup. Thus, the pressure constramore likely to be active and restrict the
optimal injection rate for cases of small porosity and pexhility. In comparison to the results of
the previous simulation, we see from Figure 17 that, if theation rate is fixed, the probability of
the maximum caprock pressure to exceedld’ pais 0.17. This is a quite large failure probability
from the perspective of safety. The optimal injection rdteven at the bottom part of the plot is

a robust operation that is feasible over the entire uncedamain. Thus, we conclude that the
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probability of overpressure under optimal injection rat@symptotically zero.

The optimal injection rate under uncertainty was obtainednfthe formulation (P2) using
PCE models constructed after 30 days of injection. It is iwshtle to investigate how this optimal
injection rate changes over longer time periods, such agyeaeand two years. The numerical
studies for one and two years of injection show that the agitinjection rate remains unchanged,
i.e., at its lower bound. The optimal injection rate underentainty hits its lower bound at 30 days
of injection, which means the pressure constraint is aetnekrestricts the injection rate. Clearly,
then, for longer time periods of injection, the pressurest@int will remain active as the pressure
buildup during injection becomes larger as times goes byeréfore, the optimal injection rate
that is feasible under the domain of uncertain parametenaires the same under the longer time

horizons.

Conclusions

In this work, we have proposed a MIP-based best subset seletethod to iteratively build
polynomial chaos expansion models for the numerical sitrmiaof CO, geological sequestra-
tion. The particular PCE method is able to capture synaecgffiects between low- and high-order
polynomial terms, thus providing high accuracy and comjpurtal efficiency. In our study, corre-
lated uncertain parameters are considered without asgumstf parametric distributions, thereby
reducing the error introduced by subjectively fitting rawedto parametric distributions. The re-
sponse surface of model outputs obtained with the PCE sateogodels match well those obtained
with detailed simulations with TOUGHZ2.

We further utilized the PCE models for uncertainty quardificn and optimal operation. In
uncertainty analysis, the probability distributions frévionte Carlo simulation with PCE approx-
imations are very close to the true distribution functioth®$e obtained with Monte Carlo simu-
lation using TOUGHZ2). We gain orders of magnitude speedyupding the PCE models. In the

optimal operational problem, we have provided a rigoroug fea determining the injection rate
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under uncertainty with minimum leakage risks.
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