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Abstract

In this paper, surrogate models are iteratively built usingpolynomial chaos expansion

(PCE) and detailed numerical simulations of a carbon sequestration system. Output variables

from a numerical simulator are approximated as polynomial functions of uncertain parame-

ters. Once generated, PCE representations can be used in place of the numerical simulator and

often decrease simulation times by several orders of magnitude. However, PCE models are

expensive to derive unless the number of terms in the expansion is moderate, which requires

a relatively small number of uncertain variables and a low degree of expansion. To cope with

this limitation, instead of using a classical full expansion at each step of an iterative PCE con-

struction method, we introduce a mixed-integer programming (MIP) formulation to identify

the best subset of basis terms in the expansion. This approach makes it possible to keep the
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number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by

substituting the values of the uncertain parameters into the closed-form polynomial functions.

Based on the results of MC simulation, the uncertainties of injecting CO2 underground are

quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimiza-

tion problem to determine the optimal CO2 injection rate so as to maximize the gas saturation

(residual trapping) during injection, and thereby minimize the chance of leakage.

Introduction

Due to increased recent concerns about the effects of CO2 emissions on global warming, various

forms of carbon emission reduction/elimination technologies are under intensive research around

the world.1 Among those, carbon capture and storage (CCS) is consideredas one of the promising

technologies to reduce CO2 levels in the atmosphere.2 CCS usually involves capturing CO2 from

large stationary facilities, such as power plants, and isolating the captured CO2 from the atmo-

sphere over a long time period. One option for CO2 storage is to inject CO2 into deep geological

formations, such as saline aquifers, depleted oil/gas reservoirs, or deep unmineable coal seams.

It is often assumed that there is a layer of impermeable formation above the storage layer, which

seals the sequestration system and prevents CO2 from escaping.

Extensive research has been done to understand the physicalprocesses in CO2 sequestration.

These processes are modeled by solving governing equationsfor mass and heat balance, using

analytical formulas under simplified assumptions,3–5 or detailed numerical simulators, such as

ECLIPSE6 or TOUGH2.7 A benchmark study recently compared several numerical models of

CO2 storage.8

Because of incomplete knowledge or limited measurement ability, parameters such as porosi-

ties and permeabilities in the equations governing CO2 plume dynamic often remain uncertain.

These uncertainties usually have a substantial effect on the output of the model, which raises

the question of what are the risks of injecting CO2 underground when these models are used for

decision making under these uncertainties. Analysis of uncertainties is needed to quantify their
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impact on model predictive capabilities as well as to betterunderstand the potential risks of CO2

storage. One way to quantify these uncertainties is to combine a detailed model, usually a nu-

merical simulation model, with Monte Carlo (MC) simulationthat involves repeated simulations

to obtain frequency histograms/distributions of model outputs. However, numerical models are

generally computationally expensive for repeated simulations, especially when a single realization

of a simulation requires hours or days of CPU time. As an alternative, we can first approximate

the detailed model output of interest using polynomial chaos expansion (PCE) with respect to the

uncertain parameters, and then use the derived PCE approximation to perform MC simulation.

PCE methods can provide efficient and accurate ways of analyzing uncertain behavior in a

complex system.9–16These methods mainly fall into two categories: intrusive approaches and non-

intrusive ones. Intrusive methods involve substituting the PCE approximations into the governing

equations and using a Galerkin technique17 and a discretization scheme to solve for the coefficients

in the expansion.12 Non-intrusive methods evaluate the coefficients in the expansion using a small

number of model simulations and require no manipulation of underlying partial differential equa-

tions.9–11,13–16Therefore, the latter approaches are easier to implement and generalize to complex

systems. For this reason, we focus on non-intrusive PCE methods.

In non-intrusive PCE approaches, the coefficients of the polynomial expansion can be com-

puted by projection,11,14which calculates an inner product for each coefficient that involves com-

puting multi-dimensional integrals. However, it is a non-trivial task to compute these integrals as it

becomes computationally prohibitive for many system inputs (uncertain parameters) and/or high-

order expansion cases. Another way to calculate the coefficients is through solving a linear system

that is constructed after evaluating the model on a set of samples from the uncertainty space. De-

pending on the number and type of points being chosen, the resulting model output surface can

be either interpolating these points (i.e., choosing collocation points of the polynomial roots and

the same number as coefficients in the expansion),9,13,16or minimizing a least squares error (i.e.,

choosing random sampled points with high probabilities andperforming regression).10,14,15In the

first approach, collocation points come from the combination of the roots of next high-order poly-
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nomials, which means that these points are different for different degrees of expansion and the

corresponding model output needs to be evaluated at all these points. In other words, if a proper

PCE model satisfying a pre-set accuracy is going to be built iteratively by increasing its degree one

at a time, the total computation is going to increase rapidlyas it not only involves the model eval-

uations under the current set of collocation points, but also the previous evaluations for low-order

collocation points. This explosion of CPU time limits applicability of PCE techniques. Therefore,

we have adopted approaches that solve for the expansion coefficients based on a fixed set of random

samples with high probabilities. By choosing samples with high probabilities, the approximation

values of a model output are expected to have small deviations from the exact values in the most

probable area of the uncertain parameters.

PCE based on interpolation of collocation points has been applied to the modeling of CO2

sequestration by Oladyshkin et al..16,18 Parametric distributions were assumed to fit the observed

data of uncertain parameters in order to utilize the corresponding orthogonal polynomial basis.16

However, using a hypothesis test, Kopp et al.19 have shown that the raw data used by Oladyshkin

et al.16 fail to follow a normal or a lognormal distribution. In addition, using collocation points16 to

solve for the expansion coefficients limits application to low-dimensional PCEs. In related work,18

PCE models were developed without parametric assumptions but the correlations of uncertain

parameters were not explicitly addressed.

The contributions of the current paper are in two areas:

1. In the context of PCE methodology, we introduce the use of mixed-integer optimization tech-

niques for systematic selection of the coefficients in the polynomial expansion. In contrast to

existing forward selection and backward elimination PCE techniques,15 our approach cap-

tures interactions between low- and high-order terms of thepolynomial expansion. As a re-

sult, simpler and more accurate surrogates can be built withthe same amount of input/output

information (detailed model simulations).

2. In the context of CO2 sequestration, we apply the proposed PCE method to obtain PCE mod-

els that relax the earlier assumptions on distributions andaccount for correlations between
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uncertain permeabilities and porosities. Our computations demonstrate that PCE surrogates

result in highly accurate approximations of a benchmark problem. In addition, we propose

a stochastic optimization model that utilizes the PCE surrogates to identify optimal CO2 in-

jection rates that maximize CO2 immobilization under parameter uncertainty while ensuring

that caprock pressure stays low.

The remainder of the paper is organized as follows. In the following section, we introduce

the mathematical concepts of PCE representation. Then, we describe the method of building PCE

surrogate models with the MIP-based best subset selection.Using the PCE model, we are able

to incorporate operational variables into the proposed framework and formulate an optimal opera-

tional problem. A detailed illustration on a benchmark CO2 storage modeling problem is presented

here. Computational results of the uncertainty quantification and optimal design using these PCEs

are presented next. Finally, conclusions are provided in the last section.

Polynomial chaos expansion approximation

Let us assume a physical modelY = model(x), wherex = {x1, ...,xM}T ∈ R
M, M ≥ 1 is a vector

of parameters (model inputs),Y = {y1, ...,yN}
T ∈ R

N , N ≥ 1 is a vector of model outputs of

interest. If the parameter vectorx is uncertain and can be characterized with some probability

density function (PDF), it is expected that each model output yi ∈ Y is also a random variable.

To keep the notation simple,yi is denoted asy from this point forward. Assuming a particular

model outputy has finite variance, theny can be represented by the following polynomial chaos

expansion:20

y = P(x) = α0B0+
M

∑
j=1

α jB1(x j)+
M

∑
j=1

j

∑
k=1

α jkB2(x j,xk)

+
M

∑
j=1

j

∑
k=1

k

∑
h=1

α jkhB3(x j,xk,xh)+ ...

(1)
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where theα ’s are coefficients, and theB’s are multivariate polynomial basis functions that are

orthogonal with respect to the joint PDF ofx.

In practice, this PCE is truncated at a finite number of basis functions. The number of the terms

Nt in the expansion is

Nt =
(M+d)!

M!d!
(2)

whereM is the number of model inputs (length ofx) andd is the degree of the expansion, i.e., the

highest degree of the polynomial basis functions.

Orthogonal polynomial basis

The orthogonal polynomials for a single random variablex are defined as follows. Assumef (x)

is the PDF ofx, and{φd = xd + lower degree terms,d = 0,1,2, ...} are polynomial functions ofx.

Then, the polynomialφd is defined to be orthogonal to polynomialφc if

∫

Ω
φdφc f (x)dx = 0, d 6= c (3)

whereΩ is the support of the random variablex.

If x can be characterized with one of the most commonly known PDFs, such as a normal or uni-

form distribution, then the corresponding orthogonal polynomials can be chosen through the Askey

scheme21 or generalized options.12 For example, a Hermite polynomial sequence corresponds to a

standard normally distributed random variable. Forx with an arbitrary PDF, the orthogonal poly-

nomials are generated numerically.22 These orthogonal polynomials are optimal with respect to

the PDF ofx, in the sense that the error computed as a difference betweenthe exact value of a

model outputy and the value approximated by Eq. (1) with{Bi = φi, i = 0, ...,d} converges to zero

exponentially asd increases linearly.12

For the case of an input vectorx with M random variables, Eq. (3) can be applied to define

the multidimensional orthogonal polynomials. If thexi’s are independent of each other, the joint

PDF of x is then a product of the marginal distributions of eachxi. Thus, the multidimensional

6



orthogonal polynomial of degreed, i.e., Bd , can be obtained by multiplying the corresponding

individual orthogonal polynomial for eachxi:

Bd(x) =
M

∏
i=1

φmi(xi), where
M

∑
i=1

mi = d, φ0(xi) = 1, i = 1, ...,M (4)

In the case of correlatedxi’s, an appropriate transformation, such as the Nataf transformation, is

needed before Eq. (4) can be applied to generate the orthogonal polynomial functions as discussed

next.

Transformation for correlated inputs

The Nataf transformation23 is a nonlinear transformation that translates correlated random vari-

ables to uncorrelated standard normal random variables. This transformation is often used for

the cases when the marginal PDF of each random variable is known, but not the joint PDF. The

transformation can be broken down into the following two steps. First, the correlatedxi’s are trans-

formed to correlated standard normalzi’s by setting their cumulative distribution functions (CDFs)

equivalent:

zi = Φ−1(F(xi)) (5)

whereF(xi) is the marginal CDF of the random variablexi, and Φ−1(·) is the inverse of the

marginal CDF forzi. These correlatedzi’s are then transformed to uncorrelatedξi’s:

z = Lξ (6)

whereL is obtained by Cholesky decomposition of the correlation matrix of z.

With the Nataf transformation, the correlated input inx-space is transformed to an independent

standard normal space. The model output is then approximated as an expansion of the orthogonal

polynomial basis ofξ , i.e., a summation of multiplications of Hermite polynomials.
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Coefficient estimation

The next step is to estimate the coefficient vectorα ∈R
Nt in a truncated expansionMd(x) at degree

d with Nt polynomial basis terms. We have used linear regression to solve for the coefficients.

First, Np points are selected forx and denoted by the setX = {x1
, ...,xNp}. Then, the coefficients

are computed by solving the following linear system:

Bα = y (7)

where theNp ×Nt matrix B is formed by evaluating the polynomial basis functions at the Np

selected points and are normalized to avoid ill conditioning due to power operations. The vector

y = {y1, ...,yNp}T containsNp values of a model outputy, which are obtained by running the

detailed simulation with the selected points as input values. Generally,Np is greater thanNt (e.g.,

Np = 2Nt is suggested by Hosder et al.24) so that Eq. (7) is an over-determined linear system.

Then,α is solved for by minimizing the training error||Bα − y||22, which givesα = (BT B)−1BT y

provided that(BT B)−1 exists.

The choice ofX can be based on random sampling, such as Latin Hypercube Sampling (LHS),

from the joint PDF ofx. These realizations/points are sorted in the order of descending joint

probability densities. Those with higher probability densities are finally selected for the model

evaluations to solve forα.

Goodness of fit measures

Now that we have a degree-d PCE approximationMd,X built with a particular choice ofX , we can

compute errors to see how wellMd,X performs. In order to estimate the training error, we employ

the most frequently used statistical measureR2. We also use the leave-one-out cross validation

errorQ2 to keep track of overfitting:

Q2 = 1−
1

Np
∑Np

i=1(y
i −Md,X\{xi}(x

i))2

σ2(y)
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In this formula,Md,X\{xi} is a PCE approximation built withNp −1 points in the setX . One point

xi is left out, and the residual is calculated. AlthoughQ2 looks similar toR2, the calculation ofQ2

involves constructingNp PCE approximations{Md,X\{x1}, ...,Md,X\{xNp}} to compute the residuals.

Cross validation techniques are sensitive to overfitting sinceQ2 may decrease if excessive higher-

degree terms are added to the expansion.

Building PCE approximations

Building an appropriate PCE for a model output is an iterative procedure with the above steps.

We start from a degree-d PCE (d = 0 at iteration 1), compute the coefficients by regression, and

calculateR2 andQ2. If, at a given iteration, the error (1-Q2) starts to increase and/or approaches

zero (e.g., 0.01), the expansion of degreed is considered as a best fit of the current choice ofX .

Otherwise, we add one-degree higher polynomial terms to theexpansion of the current iteration.

From Eq. (2), we can see that the number of polynomial termsNt grows very fast when the

number of uncertain inputsM and/or the degree of expansiond increase. For example,Nt = 8008

with d = 6,M = 10. As at least as many asNt model simulations are needed to gety for regression,

a large value ofNt conflicts with our initial goal of reducing computational effort. To cope with

this issue, forward and backward stepwise regression techniques25 can be used, for example as

proposed by Blatman and Sudret.15

The main idea of the stepwise regression is that, instead of adding all the one-degree higher

terms to the expansion of degreed at each iteration, the degree-(d +1) expansion is enriched by

adding one polynomial term of degreed+1 at each step. If the added term helps to increase model

accuracy significantly, it is retained in the degree-(d+1) expansion; otherwise it is discarded. The

expansion is updated with or without the addition of this newterm. This step is repeated until

all Nt(d +1)−Nt(d) degree-(d +1) basis functions are screened. The benefit of this method is

that the number of the basis terms is minimized by neglectingthose terms with very smallα ’s in

the original full PCE expansion; therefore, the number of model simulations is kept as small as

9



possible. However, one issue of this stepwise approach is that it ignores the synergistic effect of

basis functions. For example, basis functionBk discarded at iterationk may become significant

in future iterations after the addition of new basis functions. Since the stepwise scheme does not

allow the reentry of previous discarded terms, the resulting truncated polynomial expansion may

not be the best subset of the basis set. This issue is addressed next.

Best subset selection based on MIP

In our work, we propose a new method of best subset selection based on mixed-integer program-

ming (MIP) to build PCE surrogate models. The formulation isas follows:

min ‖Bα − y‖2
2

s.t. ∑
j∈B

w j = T

αLw j ≤ α j ≤ αU w j, ∀ j ∈ B

w j = {0,1}, ∀ j ∈ B,

whereB is the set of basis functions up to degreed, αL andαU are lower and upper bound of

the coefficientα j, T is the number of terms that is allowable in the polynomial expansion. If the

integer variablew j is one, it indicates that the basis functionB j is allowed to be present in the

expansion. Ifw j is zero, the basis functionB j is not permitted in the expansion andα j is forced

to zero by the second constraint. By the first constraint, thenumber of terms in the expansion will

beT . For each givenT , the above MIP is solved by minimizing the training error‖Bα − y‖2
2. The

value of the parameterT is chosen by minimizing the cross validation error, i.e., byminimizing

1−Q2.

This MIP formulation preserves the advantages of the stepwise regression, i.e., keeps the num-

ber of terms in the expansion small as long as the tuning parameterT is chosen to be small. In

fact, if T is set to beNt , the solution of this MIP also recovers the full classic polynomial chaos
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expansion. This flexibility of manipulating the number of terms enables us to construct a general

PCE model that is either a full expansion or an expansion of a subset of basis functions. In ad-

dition, the optimal set of the basis functions obtained by solving the MIP problem is based on a

complete search over the setB. This gives us the best subset that considers the synergistic effects

of basis functions. In our computational results, we do observe that the MIP-based method re-

sults in smaller subsets of basis functions in comparison tothe stepwise method based on forward

selection and backward elimination.

The approach of constructing PCE models iteratively is outlined in Figure 1. In comparison to

existing PCE methods, the forward and/or backward stepwiseregression is replaced with the best

subset search using the MIP formulation.

Uncertainty analysis and injection optimization with PCEs

Once we have PCE approximations of the original numerical model as a function of the uncertain

parameters, we can then perform uncertainty analysis with the PCE models. The effect of param-

eter uncertainties can be quantified using MC simulation. Generally, in MC simulation, values

of the uncertain parameters are randomly sampled from theirrespective PDFs, if parameters are

independent, or from their joint PDF, if correlated. A LHS technique is used to increase the like-

lihood that the space of the uncertain parameters is coveredsufficiently by these sampled points.

By substituting the random values of uncertain parameters into the PCE approximation, the corre-

spondingy values are obtained. Statistical analysis can then be performed for this specific model

outputy for uncertainty analysis.

In the work by Oladyshkin et al.,16 design variables are integrated into the PCE approxima-

tions, i.e., each design variable or parameter is assigned with a hypothetical distribution and treated

as the uncertainty input (parameters). Consequently, the model output becomes some polynomial

function of the model input and the design variables. We haveextended this integrative idea to

formulate an optimal design problem based on the PCEs. In other words, the implicit relationships
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SelectX and collecty

Initialize: degree d = 0, set of basis A = 0

d = dmax? y = Mdmax(x) with Tdmax terms

d = d +1

For T = 1, . . . ,Nt(d), solve the MIP
formulation for best subset selection,

i.e., find Td s.t. Q2
d is the largest

Q2
d < Q2

d−1? y = Md−1(x) with Td−1 terms

Q2
d ≥ Q2

target? y = Md(x) with Td terms

no

no

no yes

yes

yes

Figure 1: Flowchart of the MIP-based PCE method
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between the objective/constraints and the model input and design variables hidden under the black-

box numerical simulator are explicitly approximated by thepolynomial expansions. The resulting

optimization problem under uncertainty takes the following form:

min
z

f (z,θ)

s.t. g(z,θ)≤ 0

wherez is a vector of design variables, andθ is a vector of uncertain parameters. The objective

f (z,θ) and the constraintsgi(z,θ) are the polynomial approximations for some model outputs of

interest. This optimization problem can be approached withvarious techniques, including different

models of uncertainty that account for worst-case or average-case scenarios.26

Case study

We apply the adaptive PCE method to a benchmark CO2 sequestration problem. As CO2 is in-

jected into a saline aquifer, it spreads out around the injection well, pushed by the high injection

pressure, displacing brine water to its irreducible saturation.3 The upward movement of CO2 due

to buoyancy stops when CO2 reaches an overlying impermeable caprock, where CO2 is physically

trapped (structural trapping). After injection stops, the CO2 plume continues to move slowly lat-

erally due to the formation fluid’s natural flow, and gradually gets trapped in the pore space, where

the plume is eventually entirely immobilized by thisresidual trapping. Solubility trapping and

mineral trapping are much slower trapping mechanisms and are not considered as significant in a

short simulation period of the nature considered in this case study (two years).

One possible leaking scenario occurs during the lateral movement of the CO2 plume when CO2

is not entirely immobilized yet. Leakage happens when the plume encounters faults and/or broken

wells. Kumar27 determined well settings to maximize residual trapping andargued that structural

trapping is not desirable before CO2 is entirely immobilized because any loss of the seal integrity
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due to fractures, faults, or broken intercepting wells willcause the mobile CO2 to leak. Residual

trapping is preferred because it restricts the lateral movement of CO2 and eventually immobilizes

the entire CO2 plume.

Figure 2 shows a simplified sketch of CO2 injected into a saline aquifer. The modeling of CO2

injection into a geological formation mainly involves massbalances and two-phase flow dynamics.

The following governing equations need to be solved for the dynamics of injected CO2 plume:

∂φρiSi

∂ t
+∇ · (ρiνi) = Qi (8)

νi =
Kki

µi
(∇p+ρig∇z) (9)

∑Si = 1 (10)

wherei = {CO2-rich gas phase, brine water phase};φ is the porosity,ρi is the density,Si is the

fluid saturation,νi is the fluid velocity,Qi is the source (sink) term,K andki are the intrinsic and

relative permeabilities,p is the fluid pressure, andµi is the viscosity.

Aquitard/caprock

Injection well

Aquifer/reservoir

CO2 plume

Figure 2: CO2 injection into a saline aquifer

Problem statement

We consider a CO2 injection benchmark that has been simulated using TOUGH2 (Problem No.

4).28 TOUGH2 is a numerical simulator for modeling non-isothermal multiphase flow in fractured
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porous media, and has been under development since 1980. In this particular benchmark problem,

CO2 is injected into a saline aquifer through a horizontal well.The injection rate is about 10 kiloton

every year. In a 2D vertical section, geological formationsare composed of alternating permeable

and impermeable layers. The simulation by TOUGH2 provides results such as the pressure of

the injection layer and the CO2 distribution profile (e.g., mass and gas saturation) along all the

formation layers.

We are mainly interested in quantifying the impact of the uncertain parameters such as porosity

and permeability on the model outputs. Therefore, the modeloutputs will first be approximated as

polynomial functions of porosity and permeability, allowing us to perform MC simulation with the

PCE approximation later.

Uncertainty characterization of model input

Instead of using hypothetical parametric distributions such as normals and log-normals, we have

used the raw data from field observations. As an illustration, the National Petroleum Council

database for over one thousand reservoirs in U.S.29 is used. The joint distribution as well as the

marginal PDFs of the input parameters (porosity and permeability) are plotted in Figure 3. It can be

seen from the two marginal histograms that neither of the twodistributions follows a standard para-

metric distribution. This means that the orthogonal polynomials known for standard distributions

(e.g., Askey scheme polynomials) cannot be applied as basisfunctions directly in the expansion.

Further, the value of the correlation coefficientρ (= 0.8) between the two parameters implies a

strong correlation between the two inputs. Thus, the Nataf transformation is needed before the

polynomial basis functions can be generated with Eq. (4). These two correlated parameters are

transformed into two uncorrelated standard normals with Eq. (5) and Eq. (6).

Construction of PCEs

Once we have the standard normal random variables, we can utilize the series of Hermite polyno-

mials known as orthogonal polynomials for a single standardnormal variable. For the case of two
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Figure 3: Correlated input parameters

random variables, the polynomial basis functions are as follows:

B0(ξ ) = ϕ0(ξ1)ϕ0(ξ2) = 1

B1(ξ ) = ϕ1(ξ1)ϕ0(ξ2) = ξ1

B1(ξ ) = ϕ0(ξ1)ϕ1(ξ2) = ξ2

B2(ξ ) = ϕ2(ξ1)ϕ0(ξ2) = ξ 2
1 −1

B2(ξ ) = ϕ1(ξ1)ϕ1(ξ2) = ξ1ξ2

B2(ξ ) = ϕ0(ξ1)ϕ2(ξ2) = ξ 2
2 −1

...

The model output is then a PCE approximation in terms ofξ with the coefficients (α ’s) left as

unknowns. To solve for Eq. (7), we need more thanNt samples. Here, a fixed design of experi-

ments, i.e., 100 LHS design forξ is chosen.B is then evaluated with these random samples. The

model evaluation vectory is obtained by first performing the reverse of the Nataf transformation
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to translate the randomξ back to the correspondingx values, and running the model with thesex

samples. With all these, the best subset selection method using the MIP formulation is solved to

find a PCE approximation for a model output satisfying relatively largeR2 andQ2. Figure 4 and

Figure 5 are two examples of the polynomial surface fitted to 100 random samples withR2 = 0.98

andQ2 = 0.98. The response surface of the fraction of CO2 in the caprock fits a third-order expan-

sion, while the response surface of the fraction of gas-phase CO2 in the caprock fits a fourth-order

expansion. The amount of CO2 in the caprock tends to decrease when the porosity and the perme-

ability of the aquifer become larger (largerξ1 andξ2). This is because more CO2 would stay in

the aquifer if the porous space in the aquifer is larger (larger porosity) and the flow movement is

easier (larger permeability).

Figure 4: PCE model example 1, fitting a third order expansion

The pressure of the injection layer (i.e., saline aquifer) is going to be disturbed by the injection

activity. The pressure buildup due to injection is of particular interest as we want to know whether

the buildup would fracture the upper layer seal (i.e., caprock) during injection, under uncertain ge-

ological parameters. Another selected model output is gas saturation, which is defined the fraction

of the pore space of the geological formation that is occupied by CO2. A contour map of gas satu-

ration for the 2D domain gives us an idea of how the CO2 plume is distributed along all formations
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Figure 5: PCE model example 2, fitting a fourth order expansion

after injection for a certain duration. These two model outputs are functions of space and time. The

space domain (half space) of the problem is discretized witha mesh of 34×29 (986) grid blocks.

The mesh grid is not uniform but refined near the injection well. For each block at a specific time,

we construct PCE models for the two output variables, i.e, the coefficients in the PCE model are

dependent on space and time. Although this process involvesgenerating a large number of PCE

models, the overall computation time is relatively small. In addition, the availability of these PCE

models facilitates computation of probabilities for CO2 leakage as a function of space and time.

Figure 6 and Figure 8 are obtained by running one deterministic TOUGH2 simulation and

present the contour map of pressure and gas saturation after30 days of injection. A pressure

buildup is clearly observed around the injection well in Figure 6. In the gas saturation map, the

CO2 plume in the half space is observed. Figure 7 and Figure 9 are obtained by substituting the

same model input values used in TOUGH2 simulation into the 986 PCE approximations. Although

it takes 100 TOUGH2 simulations to first construct the PCE models, the advantage of the PCE

method is in the gain of speedups in conjunction with MC simulation, compared to applying MC

simulation with the TOUGH2 simulator directly.

In the two plots for pressure, the overall contours look similar. The main feature of pressure
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transition in Figure 6 has been differentiated by the PCE simulation in Figure 7. Notice that there

are some wigglings on the boundaries of the contours. This may be due to the oscillating feature

of polynomial terms in the expansion. For the gas saturationmap, 89 out of 239 constructed gas

saturation PCEs show small negative values. These negativevalues are numerical errors due to the

approximations using the polynomial terms. The errors are on the order of 6% of the true values on

average. Based on the locations where these small negative values are observed, the negative gas

saturation is set to zero since the CO2 plume will not have arrived at these locations after 30 days

of injection. The resulting gas saturation map looks almostidentical to the map obtained using

TOUGH2.
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Figure 6: Pressure contour map with TOUGH2 simulation

For comparison, we also implemented the forward and backward stepwise regression method

to construct PCE models that achieve a similarQ2 (≃ 0.98) for the same outputs. As mentioned

earlier, the stepwise regression method does not allow the re-entry of previously discarded basis

terms, which however might be selected by the MIP-based method. As a result, the subset se-

lected by stepwise regression and even the number of subsetsare not necessarily the same as the
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Figure 7: Pressure contour map with PCE approximation
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Figure 8: Gas saturation contour map obtained with TOUGH2 simulation (gas saturation is zero
beyond the scope of the figure)
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Figure 9: Gas saturation contour map with PCE approximation(gas saturation is zero beyond the
scope of the figure)

ones selected by the MIP-based method. From Table 1, we can see that, among the PCE models

constructed for the 904 model outputs using both by stepwiseregression and MIP-based selection,

81.37% of the models end up with smaller or equivalent degree of expansion when the MIP-based

method is used. In addition, all of these lower-degree expansion models require a smaller or equiv-

alent number of terms in the expansions when the MIP-based selection is used. Although 18.63%

of the models are in higher-degree expansions if constructed with the MIP-based method, the num-

ber of terms in the expansion are still smaller most of the times. We conclude that 93.9% of the

time the MIP-based method performs better than forward and backward stepwise regression in the

sense that it yields simpler models based on the same number of simulations. Clearly then, this

approach would avoid overfitting and require fewer simulations to obtain equally accurate PCE

approximations.
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Table 1: Performance comparison of MIP-based subset selection and stepwise regression

%
(

TermsMIP ≤ Termsstepwise
)

%
(

TermsMIP > Termsstepwise
)

%
(

DegreeMIP ≤ Degreestepwise

)

81.37 0

%
(

DegreeMIP > Degreestepwise

)

12.53 6.10

Correlated sampling for MC simulation

According to the Dvoretzky-Kiefer-Wolfowitz inequality,32 with probability at least 1−α,

sup
t∈R

|F̂n(t)−F(t)| ≤

√

1
2n

log
2
α
,

whereF̂n(·) is the empirical CDF based onn samples andF(·) is the true CDF. Therefore, for a

99% confidence band (α = 0.01) of F̂n, the maximum error between̂Fn andF is at most 0.05 if the

sample sizen is larger than 1000. For this reason, we have chosen 1000 samples for Monte Carlo

simulation.

The bottom plot in Figure 10 represents the original datasetfor porosity and permeability. The

top one shows 1000 pairs of correlated random samples used for Monte Carlo simulation. These

plots are generated through an inverse of the Nataf transformation, where the empirical distribution

functions (i.e., empirical CDFs) are used to be the estimator of the true CDFs for porosity and

permeability. From Figure 10, we can see that the simulated samples reproduce the original dataset

very well. These 1000 pairs of samples are substituted into the derived PCE approximations for

the correspondingy values, and the resulting distributions are shown in the next section.

Results of uncertainty analysis

For the benchmark problem here, it takes about 15 minutes to perform one TOUGH2 simulation,

which is still moderate for MC simulation. Therefore, we also perform 1000 simulations with the

TOUGH2 model to obtain distributions of model outputs that we can use for validating the results

of the PCE models.
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Figure 10: 1000 simulated correlated samples (top) in comparison to NPC database (bottom)

Figure 11 shows the CDFs for the mass fraction of CO2 in the caprock after 30 days of injection.

The distribution obtained with a third-order polynomial expansion (dashed red) is very close to the

distribution (solid blue) obtained by running TOUGH2. Similarly, we can see a good match for the

mass fraction of gas-phase CO2 in the caprock in Figure 12. Note that the number of numerical

simulations is much smaller using the PCE method. In our study, the choice of random samples is

fixed to 100. However, it can be kept as small as six in order to solve the linear system (Eq. (7)).

The computation for finding a PCE approximation using the adaptive PCE method takes a few

seconds. The computation of MC simulation with PCE models takes about three seconds, which is

also negligible. Therefore, the overall computation time of using the adaptive PCE method for MC

simulation is mainly due to the 100 numerical simulations atsampled points. This time is about

10% of the time for running 1000 MC simulations with TOUGH2 directly.

Figure 13 is a contour map with the average values of the pressure for the 2D domain of the

injection problem. This map is generated by taking an average of 1000 TOUGH2 simulation

results. The map shows how the hydrostatic pressure field is disturbed by the injection activity in

an average sense. The brighter area near the injection well represents high values of pressure. The

pressure differential is primary due to pressure buildup during CO2 injection which could lead to
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Figure 11: Fraction of CO2 in the caprock after 30 days of injection
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Figure 12: Fraction of gas-phase CO2 in the caprock after 30 days of injection
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higher pressure than the original hydrostatic pressure. Wehave a very similar map obtained with

the polynomial model. Again, we see some differences in the absolute values for some locations.
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Figure 13: Pressure contour map in average obtained with TOUGH2 simulation

Figure 15 is the contour map of the gas saturation after 30 days of injection obtained with

TOUGH2. Almost exactly the same map is obtained with the PCE approximation, see Figure 16.

We are also interested in knowing the pressure in the caprocksince we want to know whether

the pressure would fracture the caprock during injection. For each simulation, the maximum pres-

sure along the caprock is found and a distribution is then derived for this maximum pressure. If

the pressure limit that would break the caprock formation isknown, the probability of overpres-

sure can be found in this distribution. For instance, if the fracture pressure is about 500 bar, from

Figure 17, the overpressure probability is about 0.001.

Optimal injection rate under uncertainty

To reduce the risk of leakage, we would like to increase the amount of CO2 trapped by residual

trapping as much as possible, while making sure that the buildup pressure during injection does
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Figure 14: Pressure contour map in average with PCE approximation
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Figure 15: Gas saturation contour map in average obtained with TOUGH2 simulation (gas satura-
tion is zero beyond the scope of the figure)
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Figure 16: Gas saturation contour map in average obtained with PCE approximation (gas saturation
is zero beyond the scope of the figure)
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not fracture the overlying seal. An optimization problem isformulated for this purpose based

on the PCE approximations including the operational variable (the injection rate). In our study,

a uniform random variable is used to represent the injectionrate during the PCE development

step. The reason of choosing a uniform distribution for the design variable is that we assume no

preference and place equal weights for values in the design interval. The mean of the uniform

distribution equals the value of the injection rate in the original 2D simulation, and the random

variable varies between half of the mean and 1.5 times the mean. The polynomial basis for the

uniform random variable as well as the two transformed normal variables are then used to get the

PCE approximations of model outputs. The optimization problem takes following form:

max
z

Eξ1,ξ2∈Ω

(

986

∑
k=1

Sgk(z,ξ1,ξ2)

)

(P1)

s.t. pk(z,ξ1,ξ2)≤ plimit , k = 1, . . . ,986

whereξ1 andξ2 are the transformed random parameters for porosity and permeability, z is the

operational variable, the injection rate,E(·) is the expectation function with respect to uncertain

ξ1 and ξ2, Ω is the support of the uncertain parameters,Sgk(z,ξ1,ξ2) and pk(z,ξ1,ξ2) are the

polynomial functions for gas saturation and caprock pressure at each grid blockk, and plimit is

the upper bound for the maximum caprock pressure, which is set to 4×107 pa when solving this

optimization problem.

The objective is to maximize the expectation of the residualtrapping which immobilizes the

CO2 plume, and therefore the proportion of the mobile plume is minimized so that the probability

of the mobile plume encountering faults and/or broken wellsis reduced. Gas saturation is selected

as the measure of residual trapping. Because of pressure buildup during injection, we are concerned

about whether the increase of the pressure may break the upper formation. So the maximum

caprock pressure is constrained by an upper bound. An optimal injection ratez is determined to

maximize the gas saturation (minimizes the chance of leakage) under uncertain parametersξ1 and

ξ2, constrained by the pressure limit. This one-stage stochastic problem is solved using a scenario-
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based approach, i.e., under 1000 realizations of uncertainparameters. Problem (P1) now becomes:

max
z

1
1000

1000

∑
j=1

(

986

∑
k=1

Sgk(z,ξ
j

1 ,ξ
j

2)

)

(P2)

s.t. pk(z,ξ
j

1 ,ξ
j

2)≤ plimit , k = 1, . . . ,986; j = 1, . . . ,1000

In this formulation, the expectationE(·) has been replaced by the average of the summation of

1000 realizations. As the uncertain parameter is revealed (realized), we also solved the following

problem:∀ realizationsj ∈ {1, . . . ,1000},

max
z

986

∑
k=1

Sgk(z,ξ
j

1 ,ξ
j

2) (P3)

s.t. pk(z,ξ
j

1 ,ξ
j

2)≤ plimit , k = 1, . . . ,986

Because of the polynomial features (high nonlinearity thusnonconvex) in both the objective func-

tion and constraints, we have used the deterministic globaloptimization solver BARON to solve

the problem to global optimality.30,31

Figure 18 shows the optimal injection rates from solving (P3). The optimal injection rate

that maximizes the expectation of residual in (P2) is shown at the valley of the top left plot, i.e.,

the lower bound. From Figure 18, we find that the optimal injection rate reaches the maximum

possible value that it can take (1.5 times the mean) in most scenarios except when the permeability

and porosity are relatively small. This is expected because, in small porosity and permeability

areas, the ability of CO2 to move is small. As a result, CO2 injected into such areas tends to result

in large pressure buildup. Thus, the pressure constraint ismore likely to be active and restrict the

optimal injection rate for cases of small porosity and permeability. In comparison to the results of

the previous simulation, we see from Figure 17 that, if the injection rate is fixed, the probability of

the maximum caprock pressure to exceed 4×107 pa is 0.17. This is a quite large failure probability

from the perspective of safety. The optimal injection rate shown at the bottom part of the plot is

a robust operation that is feasible over the entire uncertain domain. Thus, we conclude that the
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probability of overpressure under optimal injection rate is asymptotically zero.

The optimal injection rate under uncertainty was obtained from the formulation (P2) using

PCE models constructed after 30 days of injection. It is worthwhile to investigate how this optimal

injection rate changes over longer time periods, such as oneyear and two years. The numerical

studies for one and two years of injection show that the optimal injection rate remains unchanged,

i.e., at its lower bound. The optimal injection rate under uncertainty hits its lower bound at 30 days

of injection, which means the pressure constraint is activeand restricts the injection rate. Clearly,

then, for longer time periods of injection, the pressure constraint will remain active as the pressure

buildup during injection becomes larger as times goes by. Therefore, the optimal injection rate

that is feasible under the domain of uncertain parameters remains the same under the longer time

horizons.

Conclusions

In this work, we have proposed a MIP-based best subset selection method to iteratively build

polynomial chaos expansion models for the numerical simulation of CO2 geological sequestra-

tion. The particular PCE method is able to capture synergistic effects between low- and high-order

polynomial terms, thus providing high accuracy and computational efficiency. In our study, corre-

lated uncertain parameters are considered without assumptions of parametric distributions, thereby

reducing the error introduced by subjectively fitting raw data to parametric distributions. The re-

sponse surface of model outputs obtained with the PCE surrogate models match well those obtained

with detailed simulations with TOUGH2.

We further utilized the PCE models for uncertainty quantification and optimal operation. In

uncertainty analysis, the probability distributions fromMonte Carlo simulation with PCE approx-

imations are very close to the true distribution functions (those obtained with Monte Carlo simu-

lation using TOUGH2). We gain orders of magnitude speed-up by using the PCE models. In the

optimal operational problem, we have provided a rigorous way for determining the injection rate
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Figure 18: Optimal injection rates with respect to uncertain porosity and permeability: 3D plots
of optimal injection rates under 1000 realizations of uncertain parameters (top left); Scatter plot of
1000 realizations of uncertain parameters (top right); Optimal injection rates vs. porosity (bottom
left); Optimal injection rates vs. permeability (bottom right)
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under uncertainty with minimum leakage risks.
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