RECEIVED BY DILL DEDT 1970

LMEC-Memo-69-7 Volume I, Revision 1

A state of the second s

LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

FAILURE DATA HANDBOOK -FOR NUCLEAR POWER FACILITIES-

A Guide for the Design, Construction, and Maintenance of Nuclear Power Plants from a Reliability Improvement Standpoint

VOLUME I FAILURE DATA AND APPLICATIONS TECHNOLOGY

REVISION NOTICE

Latest revised pages supersede the same pages of initial issue. Insert revised pages into basic publication. Destroy superseded pages.

Liquid Metal Engineering Center

Operated for the U.S. Atomic Energy Commission by Atomics International A Division of North American Rockwell Corporation

This document is **PUBLICLY RELEASABLE** Steel Authorizing Official Date: <u>5-15-06</u>

Contract: AT(04-3)-700

Issued: August 15, 1969 Revised: June 30, 1970 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report may not be published without the approval of the Patent Branch, AEC.

· · · · · ·

- LEGAL NOTICE -

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

June 30, 1970

LIST OF EFFECTIVE PAGES

Page	Issue				
Title	June 30, 1970				
2	Initial				
2a	June 30, 1970				
3 thru 7	Initial				
1 - 1	Initial				
1-2	June 30, 1970				
1-3 thru 1-211	Initial				
1-212 thru 1-226	June 30, 1970				
1-227 thru 1-300	Initial				
1-301 thru 1-311	June 30, 1970				
1-312 thru 1-331	Initial				
1-332 thru 1-408	June 30, 1970				
1-409 thru 1-550	Initial				
1-551 thru 1-609	June 30, 1970				
2-1 thru 2-5	Initial				
3-1 thru 3-153	Initial				
4-1 thru 4-27	Initial				

FOREWORD

The need for improved Quality and Reliability Assurance in the fabrication, construction, operation, and maintenance of nuclear power plants is recognized. This handbook is an initial effort to collect and evaluate records on past unscheduled events with systems and components in liquid metal cooled facilities, beginning with conceptual design through final shutdown, and coupled with establishment of a systematic reporting procedure for currently occurring incidents, malfunctions, or problems, will lead to eventual attainment of the goal of competitive product assurance for the LMFBR.

The handbook will maintain an updated record of events affecting the construction schedule or cost, safety, availability, or the maintainability of a nuclear power plant or test facility. Initial coverage will be limited to liquid metal facilities with emphasis on mechanical components. Future coverage will include other nuclear power plant types as well.

The value of this handbook will be realized only when it is used in the manner and for the purpose intended. The following factors should not detract from its value but point out fundamental limitations to the scope of its use.

- Failure rate data printed herein, will for many years have a very low level of confidence. Inadequate source material and the fact that most failures to date are of the break-in or experimental-design type rather than classical random failures, necessitates extreme caution in their use.
- 2) Failure rate data for systems other than mechanical are recorded for the facilities currently operating but should be used only to weigh values obtained from other published sources having several orders of magnitude greater statistical confidence.
- 3) Emphasis is placed on the cause, mode, and effect of failures and associated engineering evaluation with recommendations. Careful examination of the description of the component or system must be made by a cognizant person in order to ascertain whether an event or associated recommendation is truly applicable for comparison to his particular need or situation.

LMEC-Memo-69-7, Vol I

3

The introduction of each part and subsection describes the reason for its development, the extent of coverage and growth expectation, its application, and its limitation. Expressed local assumptions and limitations are extremely important and should be rigidly adhered to.

Parts 1 and 2 of Volume I of the handbook will grow rapidly and continuously; Parts 3 and 4 on Reliability and Maintainability will have very slow initial growth; and Part 4 will take several years to attain a reasonable level of utility. In Voume II, the category identification system will grow with increased information volume and will be subjected to periodic revision to improve its usability. The Glossary should change very little.

All data in the handbook will eventually be recorded in greater detail in both LMEC's MIRACODE system (with original document records) and in a digital recording system. In addition, facility design and maintenance data will be similarly stored. An Electronic Accounting Machine (EAM) card is used for this storage, as shown in Volume II. Once in operation, this system will afford a rapid and effective means of retrieving information in response to detailed questions from contractor personnel.

This edition contains data retrieved from: (1) facility publications (i.e., progress reports, operation history reports, maintenance reports, failure reports, and incident reports); (2) maintenance work orders; (3) component history records; (4) verbal communication; and (5) miscellaneous documents. None of these sources were prepared or published with the intent of being applied to the express purpose of this handbook, nor was there an expectation of being subjected to this degree of scrutiny. As a result, it was rarely possible to clearly identify the cause of the event and many times it was even quite unclear as to exactly what part of which specific component failed and what final corrective action was accomplished. Numerous blank spaces exist in the tabulated data because present schedule and prohibitive cost did not warrant the lengthy research required to obtain this information from remote and sometimes poorly documented sources. In some cases, the material may be subject to misinterpretation by the reviewer. Every effort, however, has been made to minimize these problems. As the system improves and the need warrants, these data will be obtained.

Events specifically recorded at LMEC facilities on narrative-type incident report forms were equally lacking in the type of information of value to this handbook. This was due to lack of: clarity with respect to cause, clear description with respect to environmental circumstances surrounding the event, and formal followup on temporary corrective action and recommendations. In some cases the component which was considered to have failed, in reality may not have failed at all. For example, the case of a circuit breaker which opened causing a pump to trip – the breaker may have functioned in normal response to an overload. However, the circuit breaker is listed as having failed because of the lack of sufficient information. An improved LMEC reporting system has eliminated many of these problems and it is hoped that development of better communication with other reporting facilities and keeping abreast of current events in the future will develop considerable improvement in the completeness and validity of the information in the next edition.

The second secon

The authorized level of effort for this edition did not permit specific identification and detailed classification (in the category format described in Volume II) of each of the components in the individual systems of each of the facilities participating in the reporting system. Thus, this edition does not fully describe the component with respect to each of the last six columns covering design specifications. Similarly, the numerical count of total component population in each facility could not be made except for isolated cases. This made it impossible to obtain population failure rates – even questionable ones. Most of the failure rates quoted are for the reported population that failed. That is, they approximate the mean-time-to-failure for those that failed.

During the next fiscal year, LMEC plans, as a minimum, to tabulate and record (in computer storage) fully identified component information for the heat transfer and process systems of LMEC's facilities and EBR-II. This identification will include both design specification and local system/component identification tag numbers. Once this is accomplished, better failure rate information on these facilities will begin to evolve. If possible, Fermi components will also be tabulated. In this issue, only sodium and related system component failure events were recorded for SRE, HNPF, and Fermi while a broader coverage of failure events were recorded for EBR-II, SCTI, and LCTL.

Operational period experiences associated with each of the major component and system categories described in Volume II are tabulated in Part 1. Each category and/or subcategory is accompanied by representations of relative frequencies and summaries or discussion in order to give:

- 1) The Designer Knowledge of past problems and component or system weaknesses encountered under active operating conditions and repetition of which he should strive to avoid in his own design.
- Project Management A tool for estimating potential component or system reliability in order to assess required system complexity and design margin requirements.
- 3) RDT A sound basis for specific R&D efforts to improve component design or methods of detecting failures while they are still incipient.
- 4) Operations A human factor index for reduction of the human error potential.
- 5) Maintenance A guide to improved maintenance methods, optimum inspection frequency, and incipient failure detection methods.

Sources of data and recommended ground rules for use of this section are described herein as a guide to the user. Applications, theory, and methodology are defined in Parts 3 and 4.

Each basic component is identified with its known failure experiences and these failures are categorized in a tabular presentation deemed suitable for ready design reference on problems to be avoided. Suggestions on how to avoid these problems are given along with statements as to the present state-of-theart, test under consideration, and potential areas of future research and development. The information will be most useful to the designer with certain qualifications in its usage. Matching of component type, environment, and operating condition is, in most cases, very important for valid comparison of historical failure and expectation with respect to a specific design.

Very few mechanical failures recorded in this handbook will fall in the classification of random failures. All have been subjected to redesign, environmental adjustment, and procedural change in operation. It is the designer's responsibility to assess the reasoning behind the corrective actions taken, to

apply this reasoning to his design, and to investigate other sources of failure data that may exist.

Failure detection effectiveness data are given where possible to assist the designer in improving the availability expectation of his facility. Also, recommendations of specific statements, to be included in procurement or acceptance specifications or standards, are presented as a guide to improvement of the reliability of the component.

Specific limitations should be placed on the use of indicated failure rates. The reasons for this are: (1) the failures are non-random, occurring mostly under test conditions, and in many cases the component was one of a kind; (2) actual component environmental history is not obtainable from the historical records. Failure rates given here have no level of confidence unless one is given. They should be used only for comparative purposes by qualified persons to evaluate the potential of improvement in component reliability or system availability that could be expected by a component change, rating change, or system redundancy modification. As the confidence level of failure rate data for specific compoents improves, curves of failure rate vs operating level will be included.

All failure data for each basic component is compiled under the heading of that component and is further broken down with respect to major subtypes. Basic components are listed alphabetically with accompanying introductory descriptions of the component/part classification code and figures of the most fundamental major types.

PART 1. FAILURES OCCURRING DURING FACILITY OPERATION CONTENTS

-

-

	Page	е
I.	Component Failure Data From All Causes	
	A. Chemical System Components	
	l. Demineralizersl-10	
	B. Containment System Components	I
	l. Air Locks	I
	2. Hoist Units	
	3. Shielding	
	4. Vessel Internals (removable)	
	5. Vessels and Tanksl-44	
	C. Electrical System Components	
	1. Electrical Generators (emergency and auxiliary)	
	2. Heaters (electrical)	
	3. Motors (electric)	
	4. Power Switch Gear, Circuit Breakers, Relays, Transformersl-83	
	5. Turbine Generators (generator side)	
	D. Energy Conversion (Mechanical) System Componentsl-10	4
	l. Furnace Equipment	4
	2. Motors, Engines, and Turbines (hydraulic, pneumatic, steam)	9
	3. Transmissions and Drive Shafts	5
	4. Turbine Generators (turbine side)	3
	5. Valve Operators	9
	E. Fuel Handling and Core Components	4
	l. Fuel and Breeder Elements	4
	2. Fuel Handling Equipment (liquid metal, internal)	2
	F. Heat Transfer System Components	8
	l. Blowers and Fansl-16	8
	2. Cold Traps/Hot Traps	5
	3. Coolers (other than liquid-metal-to-air)	2
	4. Desuperheaters	6
	5. Feedwater Heaters	1

CONTENTS

		Page
	6.	Filters and Strainers
	7.	Intermediate Heat Exchangers
	8.	Piping and Associated Fittings
	9.	Piping Supports
	10.	Pumps and Supportsl-231
	11.	Rupture Discs
	12.	Steam Generatorsl-301
	13.	Traps (general)
	14.	Valves
	G. In	strumentation and Control System Components
	1.	Air Dryers
	2.	Annunicators-Alarmsl-413
	3.	Compressors
	4.	Control and Safety Elementsl-429
	5.	Controllers
	6.	Indicators and Recordersl-446
	7.	Instrumentation (terminal boards, patch panels, relays, suppressors)l-470
	8.	Neutron Sourcel-475
	9.	Sensors (other than radiation)l-479
	10.	Sensors (radiation)
	11.	Wiring and Connectors
II.	Syste	m-Oriented Component Failures
	A. Ge	eneral
	B. Fa	ailures Due to Existing System Action
		ailures Due to Nonexistent System or Inadequacy a System
III.	Sodiu	m Leak Experiencel-551
	A. Int	roduction
	B.De	sign and Operating Data
		dium Leak Incident Summaries
	D. Co	omponent Failure Rates
	E.Ap	plication of Sodium Leak Data

•

I. COMPONENT FAILURE DATA FROM ALL CAUSES

In this section, all failure data for each basic component are compiled under the category heading for that component, and are further broken down with respect to major subtypes. Basic components have been categorized and listed alphabetically with accompanying introductory descriptions of the component/part classification code and illustrations of the most fundamental component types.

The data tabulated in this section were obtained from many sources, including: (1) facility publications (i.e., progress reports, failure reports, incident reports, etc.); (2) maintenance work orders; (3) component history records; (4) verbal communications; and (5) other miscellaneous documents. These source documents are noted in the failure data tables. A key to these source documents is presented in the following alphabetical listing as an aid to the reader.

SOURCE DOCUMENT KEY

DOCUMENT SOURCE AGC Internal Letter "Aerojet-General Corporation Internal Letter, " Aerojet-General Corporation, Van Karman Center "Aerojet-General Corporation Technical AGC TM Memorandum, " Aerojet-General Corporation, Van Karman Center "Atomics International Letter, " Atomics AI Letter International, Canoga Park, California See "Monthly Operating Report (HNPF)" AI Monthly (HNPF) AI Monthly Hilites (HNPF) See "Monthly Hilites (HNPF)" See "Monthly Operating Report (HNPF)" AI Monthly Operating Report (HNPF) "Atomics International Monthly Reactor AI Monthly ROAP Report Operations Analysis Program Report, " (HNPF) Hallam Nuclear Power Facility, Hallam, Nebraska "Reactor Development Program Progress ANL (EBR-II) Report, "Argonne National Laboratory, Experimental Breeder Reactor #II, Argonne, Illinois "Report of EBR-II Operations," Argonne ANL - Idaho National Laboratory - Idaho Division, **Division - Operations Report** National Reactor Testing Station, Idaho Falls, Idaho "American Nuclear Society" ANS "American Nuclear Society, EBR-I and ANS-100 (EBR-II) EBR-II Operating Experience, "Fast Reactor Technology National Topical Meeting, April 26-28, 1965, Detroit, Michigan APDA AECU "Atomic Energy Commission, Unclassified, " Atomic Power Development Associates, Inc., Detroit Michigan

DOCUMENT	SOURCE
APDA-CFE (Fermi)	"Enrico Fermi Atomic Power Plant Current Experience Series," Atomic Power Development Associates, Inc., Detroit, Michigan
Conference 650620	Sodium Component Development Program Information Meeting, Chicago, June 16-17, 1965
Construction Log (HNPF)	''Construction Log Book (HNPF),'' Hallam Nuclear Power Facility, Hallam, Nebraska
Construction Log Book (HNPF)	''Hallam Nuclear Power Facility Construc- tion Log Book,'' Hallam Nuclear Power Facility, Hallam, Nebraska
CPPD Monthly (HNPF)	"Consumers Public Power District, Hallam Nuclear Power Facility Monthly Report," Hallam Nuclear Power Facility, Hallam, Nebraska
Daily Site Wire (HNPF)	"Daily Site Wire (TWX)," Hallam Nuclear Power Facility, Atomics International, Canoga Park, California
Daily Wire (HNPF)	See "Daily Site Wire (HNPF)"
EF (Fermi)	"Enrico Fermi Atomic Power Plant Monthly Report," Power Reactor Develop- ment Co., Detroit, Michigan
EFAPP (Fermi)	"Enrico Fermi Atomic Power Plant (Fermi)" (unpublished internal document), Power Reactor Development Co., Detroit, Michigan
EFAPP Maintenance Report (Fermi)	See ''EFAPP (Fermi)''
EFAPP-MR (Fermi)	See ''EFAPP (Fermi)''
HNPF Construction Log	See "Construction Log Book (HNPF)"
IL NAA-SR-TDR (HNPF)	"Internal Letter for North American Aviation, Special Report, Technical Data Report, " Atomics International, Canoga Park, California

DOCUMENT	SOURCE
IMPR	"Incident, Malfunction, and Problem Report," Liquid Metal Engineering Center, Canoga Park, California
IMR-MOR (HNPF)	''Initial Malfunction Report - Monthly Operating Report (HNPF), '' Hallam Nuclear Power Facility, Hallam, Nebraska
Incident, Malfunction, and Problem Report	See "IMPR"
Incident Report (SCTI)	"Sodium Component Test Installation, Incident Report, " Atomics International, Canoga Park, California
Incident Report (SRE)	''Sodium Reactor Experiment Incident Report, '' Sodium Reactor Experiment, Atomics International, Canoga Park, California
Initial Malfunction Report (HNPF)	''Initial Malfunction Report, '' Hallam Nuclear Power Facility, Hallam, Nebraska
Internal Letter (HNPF)	''Internal Letter,'' Hallam Nuclear Power Facility, Hallam, Nebraska
Internal Letter, A1-7518-9819	D.A. McGree to H.A. Gerber, "Repair of HNPF (Hallam Nuclear Power Facility) EM (Electromagnetic) Pump," Hallam Nuclear Power Facility, Hallam, Nebraska (January 3, 1962)
KAPL	"Knolls Atomic Power Laboratory," General Electric Company, Schenectady, New York
Lab Notebook (LCTL)	"Laboratory Notebook, Large Component Test Loop," Atomics International, Canoga Park, California
LMEC, NAA-SR	"Liquid Metal Engineering Center, North American Aviation Special Report," Atomics International, Canoga Park, California
Log Book (LCTL)	''Large Components Test Loop Log Book

"Large Components Test Loop Log Book (LCTL), " Atomics International, Canoga Park, California

DOCUMENT

Log Book (SRE)

Maintenance Log Book (SRE)

Maintenance Report (EBR-II)

Maintenance Report ANL (EBR-II)

Monthly Hilites (HNPF)

Monthly Operating Report (HNPF)

MOR (HNPF)

MSA EP

NAA-SR

NASA C.R.

Operating Log (SRE)

Operating Maintenance Report (EBR-II)

Operating Monthly Report (EBR-II)

SOURCE

--- ---

"Log Book (SRE), " Sodium Reactor Experiment, Atomics International, Canoga Park, California

"Sodium Reactor Experiment Maintenance Log Book (SRE), " Atomics International, Canoga Park, California

"EBR-II Maintenance Report," Experimental Breeder Reactor No. II, National Reactor Testing Station, Idaho Falls, Idaho

See "Maintenance Report (EBR-II)"

"Monthly Hilites" (TWX), Hallam Nuclear Power Facility, Atomics International, Canoga Park, California

"Hallam Nuclear Power Facility Monthly Operating Report," Hallam Nuclear Power Facility, Hallam, Nebraska

See "Monthly Operating Report (HNPF)"

"MSA Research Corporation Bulletin," MSA Research Corporation, Callery, Pennsylvania

"North American Aviation Special Report," Atomics International, Canoga Park, California

"NASA Contractor Report," National Aeronautics and Space Administration, Washington, D.C.

See "Log Book (SRE)"

"Operating Maintenance Report (EBR-II)," Experimental Breeder Reactor No. II, National Reactor Testing Station, Idaho Falls, Idaho

"Operating Monthly Report (EBR-II)," Experimental Breeder Reactor No. II, National Reactor Testing Station, Idaho Falls, Idaho

DOCUMENTS

Operating Weekly Report (EBR-II)

Operation Maintenance Report (EBR-II)

Operations Log (SRE)

Operations Maintenance (EBR-II)

Operations Maintenance Report (EBR-II)

Operations Monthly Report (EBR-II)

Operations Weekly Report (EBR-II)

Operation Weekly Report (EBR-II)

Oper. Maint. (EBR-II)

Personal Communication, C.W. Griffin

Plant Modification and Maintenance Report (EBR-II)

PMMR (EBR-II)

PRDC (Fermi)

PRDC-EF (Fermi)

ROAP Report (HNPF)

Shift Leader's Log Book (HNPF)

SOURCE

"Operating Weekly Report (EBR-II)," Experimental Breeder Reactor No. II, National Reactor Testing Station, Idaho Falls, Idaho

See "Operating Maintenance Report (EBR-II)"

See "Log Book (SRE)"

See "Operating Maintenance Report (EBR-II)"

See "Operating Maintenance Report (EBR-II)"

See "Operating Monthly Report (EBR-II)"

See "Operating Weekly Report (EBR-II)"

See "Operating Weekly Report (EBR-II)"

See "Operating Maintenance Report (EBR-II)"

"C.W. Griffin, " Liquid Metals Engineering Center, Canoga Park, California

"Plant Modification and Maintenance Report," Experimental Breeder Reactor No. II, National Reactor Testing Station, Idaho Falls, Idaho

See "Plant Modification and Maintenance Report (EBR-II)"

"Power Reactor Development Company," Enrico Fermi Atomic Power Plant, Lagoona Beach, Michigan

See "EF (Fermi)"

See "AI Monthly ROAP Report (HNPF)"

''Shift Leader's Log Book, '' Hallam Nuclear Power Facility, Hallam, Nebraska

DOCUMENTS

SNAP 8-D of A.G.C.F.C. MSA EM P.F.

S.T.P. (EBR-II)

TWX

TWX to R.S. Baker (HNPF)

Weekly Hilites (HNPF)

Weekly Maintenance Report (EBR-II)

Weekly Report (EBR-II)

Weekly Site Report (HNPF)

Weekly Site Wire (HNPF)

Work Request (HNPF)

WR (HNPF)

SOURCE

Facility comments, SNAP-8 Division of Aerojet-General, "MSA EM pump Failures," recorded March 18, 1966 on the November 22, 1965 summary, Aerojet General Corporation, Von Karman Center

"Systems Training Program, Training Information," Experimental Breeder Reactor No. II, National Reactor Testing Station, Idaho Falls, Idaho

"Teletype Writer Exchange," Atomics International, Canoga Park, California

"Teletype Writer Exchange to R.S. Baker," "HNPF EM Pumps," (November 3, 1961), Atomics International, Canoga Park, California

"Weekly Hilites," (TWX), Hallam Nuclear Power Facility, Atomics International, Canoga Park, California

See "Operating Maintenance Report (EBR-II)"

See "Operating Weekly Report (EBR-II)"

See "Weekly Hilites (HNPF)"

See "Weekly Hilites (HNPF)"

"Hallam Nuclear Power Facility Work Request, "Hallam Nuclear Power Facility, Hallam, Nebraska

See "Work Request (HNPF)"

A. CHEMICAL SYSTEM COMPONENTS

1. Demineralizers

Failure data for demineralizers (ion exchange unit) are presented in Tables 1-1 through 1-3.

a. Reliability Information

Design Features:

Demineralizers are used to purify the feedwater feed to the steam generator.

Mode of Failure:

Mechanical vibration

Failure Description:

The pipe header which distributes the water flow cracked because of vibration.

Control Methods:

1) Use stainless steel headers and stronger pipes.

2) Anchor the pipes properly.

b. Discussion and Recommendations

The Poly-Vinyl Chloride pipe used in the demineralizer failed because of vibration. This pipe was held on the same supports as other plant piping. The vibrations from other pipes caused fatigue and finally pipe failure. Attempts to repair the pipe were unsuccessful.

Poly-Vinyl Chloride plastic pipe should not be used where any vibration can cause failure. The pipe leading from a demineralizer system should be either aluminum or steel with a Polyproplene liner.

TABLE 1-1

FAILURE DATA FOR <u>DEMINERALIZERS</u> (ION EXCHANGE UNIT)

(Sheet 1 of 2)

ITEM 2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION 0PERATING CONDITIONS 0PERATING CONDITIONS 1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. CODE: (Component) (System/Subsystem) 1. SCTT CAUSE MODE EFFECT MII MI MI MI MI MI S33 Direct observation 1. Distribution manifold pulled loose from thin-wall SS tubing. 2. Scheduled monthly air mixing will previous of resin on pipeline within the flanged view of resin o	
Image: Distribution Header 2. Treated water/condensate polishing 478 53 117 thin-wall SS tubing. Image: Distribution Header 2. Treated water/condensate polishing 478 53 117 2. Part replaced. 3. 53 273100 3. Incident report No. 30 4. Incident report No. 30 MI MI MI 128 Direct observation 1. Plastic tee cracked at threads due to v 2. Feedwater Supply and Treatment/Condensate 2. Feedwater Supply and Treatment/Condensate 1. SCTI MI 128 61 136 4175 Direct observation 1. Plastic tee cracked at threads due to v 4. Incident report No. 90 5.53 2.73200 1. SCTI 4. Incident report No. 90 3. Societal repair, replaced plastic piping viping. 3. 1. Demineralizer / Plastic Pipe 1. SCTI 4. Incident report No. 90 MI MI MI 53 53 3. 120 gpm, to 140°F, 100 psig 4. Incident report No. 305 53 53 53 53 53 1. SCTI 2. Plastic influent header manifold replace 4. 1. Makeup Water 1. SCTI 2. Polishing system 1. SCTI	
 Plastic Tee Feedwater Supply and Treatment/Condensate Demineralizing I. Demineralizer / Plastic Pipe Seedwater Supply and Treatment/Condensate Demineralizing I. SCTI I. SCTI I. SCTI I. Cracked water and chemical feed system I. SCTI I. Cracked water and chemical feed system I. SCTI I. SCTI I. Cracked water and chemical feed system I. SCTI I. SCTI	ent overpacking
 Plastic Pipe Plast	ith aluminum
Demineralizer/ 2. Polishing system 172 59 530 inspection of system 2. Part replaced. Plastic Waterline 3. - <td></td>	
2. Feedwater Supply and Treatment/ Demineralizer 4. Incident report No. 68 component. application. 3. 53 272200 272200 application. application.	cted before
 5 1. Demineralizer/Acid Inlet Header 2. Steam and feed system 3. 495°F, 19.6% flow 4. Incident report No. 328 3. 53 272200 MI MI MI 59 580 6300 Routine area watch MI 59 580 6300 Routine area watch I. Weld holding acid inlet header support tank broke allowing header to tear loos tank. 2. Substituted header (stainless steel flam rewelded bracket of improved design. 3. Improve bracket design - replace plast 	e from es) and

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

24

FAILURE DATA FOR <u>DEMINERALIZERS (ION EXCHANGE UNIT</u>)

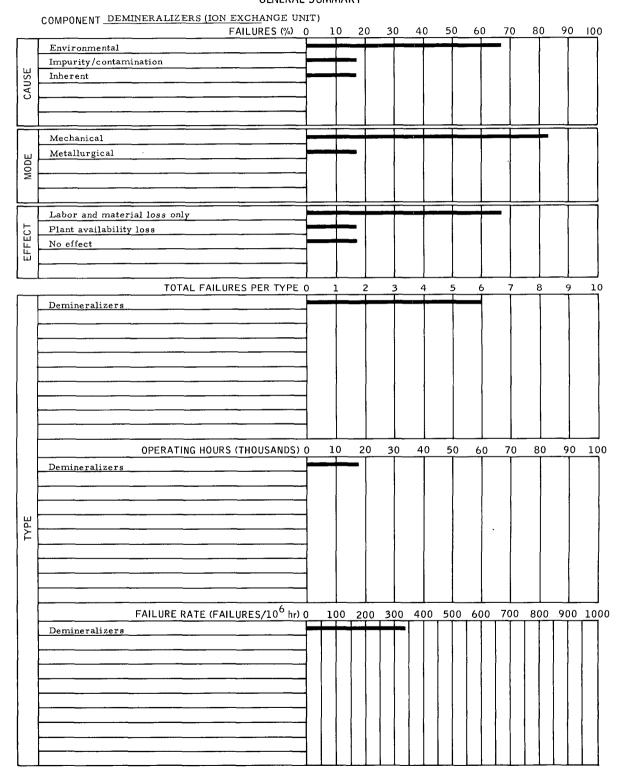
(Sheet 2 of 2)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION	
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
6 LMEC-Memo-69-7, Vol I	Manifold 2 Feedwater Supply	 SCTI Upper manifold demineralizer D-1 12,600 gal, 100 psig Incident report No. 309 (10-17-66) 	MA 186	MA 5Z	MA 520	2550	During preventive maintenance	 Inspection found upper distribution manifold cracked in the threads at the supporting flange. Header material is plastic "Uscolite" and not strong enough to hold load. Upper manifold replaced with SS header to provide adequate strength. Resin beds should be mixed during long shutdowns to prevent excessive packing. 	

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-2

.....


FAILURE DISTRIBUTION FUNCTIONS

COMPONENT DEMINERALIZERS (ION EXCHANGE UNIT)

	COMPONENT SUBTYPEDEMINERALIZERS	_URES (%) 0	10	20	30	4	05	06	0 7	08	0 9	100
PLANT TYPE	Component Test Facility											
SYSTEM	Feedwater Supply and Treatment											
COMPONENT PART	Distribution Manifold Plastic Tee Plastic Tube Acid Inlet Header Manifold Flange											
CAUSE	Environmental Impurity/contamination Inherent											
MODE	Mechanical Metallurgical											
EFFECT	Labor and material loss only Plant availability loss No effect											

TABLE 1-3

GENERAL SUMMARY

B. CONTAINMENT SYSTEM COMPONENTS

1. Air Locks

Failure data for air locks are presented in Tables 1-4 through 1-8.

- - --- - ---- -----

a. Reliability Information

Design Features:

Compartments with two doors and inflatable seal with inner lock to prevent opening both doors at once. Valve and piping for equalization of pressure.

Critical Characteristics:

Maintain reliable atmospheric isolation.

Mode of Failure:

- 1) Seal, gasket, and valve leakage
- 2) Switch malfunction
- 3) Penetration leakage.

Failure Description:

- 1) Inflatable seal valve leaked
- 2) Neoprene boot leaked
- 3) Door seal ruptured
- 4) Door switch inoperative
- 5) Equalizing valves leaked
- 6) Electrical and pipe penetrations leaked.

Control Methods:

- 1) Establish a regular schedule of inspection and testing for all seal equipment and specific procedures for maintenance and repair.
- 2) Optimum test period assumed to be about eight months.
- 3) Some facilities use continuous leak monitoring with no access during operation.

Failure Rates:

Approximate failure rates developed by Holmes & Narver, Inc. for air lock components used in water reactors are as follows:

- 1) 2.5×10^{-6} /hr for values
- 2) 4.5×10^{-6} /hr for gaskets and seals
- 3) 4.5×10^{-6} /hr for penetrations

The frequency for LMFBR's appears comparable.

b. Discussion and Recommendations

None.

TABLE 1-4

FAILURE DATA FOR _____AIR LOCKS

(Sheet 1 of 2)

	1. COMPONENT/PART1. FACILITY2. SYSTEM/SUBSYSTEM2. COMPONENT LOCATION		FAILURE INDEX CODE*					1. FAILURE DESCRIPTION	
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
1	 Air Lock/Door Reactor Containment/ Air Lock 01 194220 	 EBR-II Equipment inner door Ambient temperature ANL 7132-7152 	I 133	I 35	I 580	4,660	Direct observation	 Door blown off causing damage to other components in the reactor building. Part replaced. None. 	
2	 Air Lock/Inflatable Seal Valve Reactor Containment/ Air Lock 01 194220 	 EBR-II Equipment lock/admission valve Ambient temperature PMMR-58 (4) 	MI 500	MI 73	MI 530	9,300	Preventive mainte- nance	1. Valve cracked. 2. Part replaced. 3. None.	
3	 Air Lock/Seal Air Valve Reactor Containment/ Air Lock 01 194220 	 EBR-II Equipment lock Ambient temperature PMMR-13 	MI 500	MI 55	MI 550	1,200	Direct observation	 Valve would not release air from seal. Local repair. None. 	
4	 Air Lock/Neoprene Boot Reactor Containment/ Air Lock 01 194220 	 EBR-II Interlock - air lock Ambient temperature PMMR-10/14/64 (4) 	MI 500	MI BZ	MI 530	1,200	Preventive mainte- nance	 Leak. Local repair. Establish regular inspection schedule for seals. 	
5	 Air Lock/Seal Reactor Containment/ Air Lock 01 194220 	 EBR-II Personnel air lock Ambient temperature PMMR-17 (4) 	MI 500	МІ 59	MI 550	1,200	Operational monitor	l. Leaking (pin hole leak). 2. Local repair. 3. None.	
6	 Air Lock/Hydraulic Unit Reactor Containment/ Air Lock 01 194220 	 EBR-II Personnel air lock Ambient temperature PMMR-18 	MI 500	MI BZ	MI 530	1,200	Routine inspection	 Unknown. Part replaced. None. 	

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-4
MOLL	

FAILURE DATA FOR _____ AIR LOCKS

.

(Sheet	2	of	2)	
--------	---	----	----	--

Γ		1. COMPONENT/PART	1. FACILITY		URE IN				
IT	ЕМ	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS	CAUSE			OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
	7	 Air Lock/Door Switch Reactor Containment/ Air Lock 01 194220 	 EBR-II Personnel air lock Ambient temperature PMMR-5 	MI 500	MI BZ	MI 550	1,200	Direct observation	 Faulty switch. Part replaced. None.
TMT	8	 Air Lock/Seal Reactor Containment/ Air Lock 01 194220 	 EBR-II Personnel air lock Ambient temperature PMMR-22 (4) 	MI 500	MI 59	MI 550	1,200	Direct observation	 Seal ruptured. Part replaced. None.
I MEC Mana Co	9	 Air Lock/Seal Reactor Containment/ Air Lock 01 194220 	 EBR-II Personnel air lock Ambient temperature PMMR-49 (4) 	MI 500	MI 59	MI 520	7,800	Direct observation	 Seal ruptured. Part replaced. None.
3 47-1 4		 Air Lock/Seal Reactor Containment/ Air Lock 01 194220 	 EBR-II Personnel air lock Ambient temperature PMMR-49 (4) 	MI 478	МІ 59	MI 520	7,800	Direct observation	 Seal ruptured - improperly vulcanized. Part replaced. Maintenance/repair procedures and inspection methods should be clearly defined.
	11	 Air Lock/Electrical Conax Seal Reactor Containment/ Process Penetrations 01 194231 	 EBR-II Emergency air lock electrical feed- through Ambient temperature PMMR-82 	MI 500	MI 52	MI 530	7,400	Routine inspection	l. Seal leaking. 2. Part replaced. 3. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT AIR LOCKS	-									
	COMPONENT SUBTYPE EMERGENCY	-									
PLANT TYPE			0 2) 3	0 40) 50	0 60	0 7	0 8	0 90	0 100
SYSTEM	Reactor Containment										
COMPONENT PART	Electrical Conax Seal										
CAUSE	, Unknown										
MODE	Mechanical										
EFFECT	Labor and material loss only										

TABLE <u>1-5</u>

FAILURE DISTRIBUTION FUNCTIONS

..

	COMPONENT AIR LOCKS										
	COMPONENT SUBTYPE EQUIPMENT FAILURES (%)	 0	.0 2	<u>0 3</u>	0 4	0 5	6 0	07	0 8	0 9	0 10
PLANT TYPE	Nuclear Test Reactor										
SYSTEM	Reactor Containment Fuel Handling										
COMPONENT PART	Door Inflatable Seal Air Valve Neoprene Boot										
CAUSE	Environmental Unknown										
MODE	Chemical Mechanical Metallurgical Unknown										
EFFECT	Caused damage to other components Labor and material loss only System/component inoperative										

TABLE <u>1-6</u>

FAILURE DISTRIBUTION FUNCTIONS

	COMPONENT AIR LOCKS											
	COMPONENT SUBTYPE PERSONNEL											
		FAILURES (%) ()) 10	20	30	40	50	6	5 7	08	09	0 100
PLANT TYPE	Nuclear Test Reactor											
SYSTEM	Reactor Containment											
COMPONENT PART	Seal Hydraulic Unit Door Switch			-								
CAUSE	Human error Unknown		_	-								
	Mechanical						Ī					
MODE	· · · · · · · · · · · · · · · · · · ·											
┝─	Unknown	1					+					
EFFECT	Plant availability loss Labor and material loss only System/component inoperative											

TABLE <u>1-7</u>

FAILURE DISTRIBUTION FUNCTIONS

TABLE 1-8

-

GENERAL SUMMARY

	FAILURES (%)		<u> </u>	0	30	40)	50	60		70	80	9	0	10
	Environmental														
	Human error														
CAUSE	Unknown		_			-		+			+				
CAL															
-															
	Chemical							Ţ	T			T			
ш	Mechanical			<u> </u>	-		_								
MODE	Metallurgical														
≥ [Unknown				•										
	Caused damage to other components				T				T		Τ	T			
5	Plant availability loss														
EFFECT	Labor and material loss only			_	_	-					1				
	System/component inoperative					-									
	TOTAL FAILURES PER TYPE () 1		2	3	4	_	5	6	_	7	8		9	
Ī	Air locks - equipment	ī			-Ť-			Т	Ť		Τ	Ť			
	Air locks ~ personnel		-				-	+							
	Air locks - emergency														
[ĺ –		- 1			1						
[1			
[
[
1	OPERATING HOURS (THOUSANDS) () 10	2	0	30)	50	60)	70	80	9	0	1
ł	OPERATING HOURS (THOUSANDS) (Air locks - equipment) 10	2	0	30	40)	50	60)	70	80	9	0	1
ļ) 10	2	0	30	40)	50	60)	70	80	9	0	1
ļ	Air locks - equipment) 10	2	0	30	4()	50	60)	70	80	9	0	1
	Air locks - equipment Air locks - personnel) 10	2	0	30	40)	50	60)	70	80	9	0]
'PE	Air locks - equipment Air locks - personnel) 10	2	0	30	40)	50	60)	70	80	9	0]
I Y P E	Air locks - equipment Air locks - personnel) 10	2	0	30	40)	50)	70	80	9	0]
I Y PE	Air locks - equipment Air locks - personnel		2	0	30	4()	50	60)	70	80	9	0	1
I Y PE	Air locks - equipment Air locks - personnel) 10	2	0	30	40)	50	60)	70	80	9	0]
TYPE	Air locks - equipment Air locks - personnel		2	0	30	4()	50	60)	70	80	9	0]
TYPE	Air locks - equipment Air locks - personnel Air locks - emergency		2	0	30	40)	50	60)	70	80	9	0]
IYPE	Air locks - equipment Air locks - personnel Air locks - emergency		2												
TYPE	Air locks - equipment Air locks - personnel				30										
TYPE	Air locks - equipment Air locks - personnel Air locks - emergency FAILURE RATE (FAILURES/10 ⁶ hr) C														
I Y PE	Air locks - equipment Air locks - personnel Air locks - emergency FAILURE RATE (FAILURES/10 ⁶ hr) C Air locks - equipment														
IYPE	Air locks - equipment Air locks - personnel Air locks - emergency FAILURE RATE (FAILURES/10 ⁶ hr) C Air locks - equipment Air locks - personnel														
I Y PE	Air locks - equipment Air locks - personnel Air locks - emergency FAILURE RATE (FAILURES/10 ⁶ hr) C Air locks - equipment Air locks - personnel														
IYPE	Air locks - equipment Air locks - personnel Air locks - emergency FAILURE RATE (FAILURES/10 ⁶ hr) C Air locks - equipment Air locks - personnel														
IYPE	Air locks - equipment Air locks - personnel Air locks - emergency FAILURE RATE (FAILURES/10 ⁶ hr) C Air locks - equipment Air locks - personnel														
	Air locks - equipment Air locks - personnel Air locks - emergency FAILURE RATE (FAILURES/10 ⁶ hr) C Air locks - equipment Air locks - personnel														

2. Hoist Units

Failure data for hoist units are presented in Tables 1-9 through 1-12.

a. Reliability Information

Design Features:

Grip and vertically position fuel elements.

Critical Characteristics:

Severe thermal, pressure, chemical, and radioactive environment; blind operation; precision movement; high reliability.

Modes of Failure:

- 1) Failure to provide, control, or cut off power
- 2) Failure to lift, halt, hold, and lower on command and at proper speed
- 3) Failure to grasp, hold, and release on command
- 4) Failure to indicate, limit, and control the position of gripper and load
- 5) Failure to shield and support.

Failure Description:

- 1) Defective electric components or an unreliable power supply
- 2) Broken or jammed cables, gears, bearings, and other parts of the lifting mechanism
- 3) Jammed or broken precision machined parts in gripper
- 4) Misaligned, jammed, or broken mechanical parts in control and sensing system
- 5) Insufficient shielding and loose connection in support structure.

Control Methods:

- 1) Provide a fail-safe system, a positive cut-off, and emergency power.
- 2) Avoid overloading the lifting mechanism.
- 3) Use proper materials, simplify the configuration, and provide adequate clearances and tolerances.

- 4) Provide fail-safe devices, emergency controls, and a verification of signal data.
- 5) Inspect and maintain the hoist.

Alternative Concepts:

Hydraulic or liquid metal lifting mechanism.

Suggested Incipient Failure Detection Methods:

- Failure is sometimes preceded by detectable variations in certain operating parameters. The thermocouple to detect a hot bearing and the pressure gage to detect loss of oil pressure are well known. With respect to hoists, it should be possible to put a sonic detector in the drive box to sense abnormal chatter from misaligned or fouled gears, etc. Also, a power or work meter on the hoist motor could sense abnormal energy requirements in lifting stuck fuel elements or other hangups.
- 2) Failure often occurs with no detectable change in operation until the moment of catastrophy. The fraying of a load cable or the crack in a gripper are typical examples. The classic method used to avoid
 this type failure is routine maintenance and inspection coupled with periodic proof and other nondestructive tests. When this method is used with skill and diligence, it detects most surface defects. Hidden defects are much more difficult to ascertain. Improvement in flaw detection depends on the development of built-in, nondestructive scanners. Because of the complex configuration of hoisting mechanisms, this development effort will be costly.

b. Discussion and Recommendations

General:

The function of any hoist is to grip and vertically move a load. The principal parts of a hoist are the power source, the lifting mechanism, the gripper, the sensing and control system, and the support and shielding.

Hoists for fuel handling machines are specialized in that they primarily grip and move fuel elements inside a reactor. The fuel elements must be handled and maintained in a high-temperature, pressurized, chemically reactive, and also radioactive environment. The movements are mostly hidden from the operator. Under these conditions the hoist movement must be precise and reliable.

Power Source:

Electric, pneumatic, and hydraulic power can be used. The choice of power governs the operation and configuration of the other parts of the hoist. Most hoists use electric power.

A power failure is lost, unprogrammed, or runaway power. Power failures are caused by defective electrical components or an unreliable supply.

The best design and installation cannot prevent power failures with certainty. However, the catastrophic consequences of a power failure must be avoided by providing a fail-safe system, positive cutoff, and emergency power with the alternative of manual operation.

Lifting Mechanism:

The lifting mechanism transforms the power into controlled vertical motion. The mechanism usually consists of a gear drive, a drum, brakes, sheaves, guides, a cable (or chain), and gripper attachment.

A failure of the lift mechanism is failure to lift, halt, hold, or lower the load on command and at the proper speed. Failures of the lifting mechanism are due most often to broken gears and galled bearings. These result in stalled or uneven movement. A rupture or pull-out of the cable or lift chain is less frequent but can have catastrophic consequences.

Most failures can be prevented by avoiding overloads and by adequate inspection and maintenance.

Gripper Mechanism:

The gripper is the device that holds the load. The simplest gripper is the hook which is manually attached to the load. At the other end of the spectrum is the fuel handling gripper. It must remotely and precisely grasp, hold, and release the pickup attachment on a fuel element. This must be accomplished on command and in a severe thermal, pressure, chemical, and radioactive environment.

A failure of the gripper mechanism is failure to grasp, hold, or release the load on command. Failures of the gripper mechanism are due to jammed or broken precision machined parts.

Such failures can usually be avoided if, during design, the proper materials are selected, simplicity of configuration is stressed, and adequate clearance and tolerance are provided.

Control and Sensing System:

Hoists may be manually controlled by the operator based on direct observation or on remote indicators. Completely programmed control is also possible. The most common control mode is semi-automatic where the operator's command initiates a sequence of automatic movement.

Sensing devices are required for hidden hoist operations, for programmed sequences of events, and to automatically limit travel. Signals actuate indicators, alarms, protective devices, or controls.

A failure of the control and sensing system is a failure to indicate, limit, or control the position of the gripper or the load. Failures are most frequently caused by misaligned, jammed, or broken mechanical parts.

The control system should be designed like the power system with fail-safe devices, positive cutoffs, and emergency controls. The sensing system should have a method of verifying that signaled information is correct.

Shielding and Supports:

A housing contains the severe environment surrounding the lifted element, and shields operations surrounding the hoist from adverse effects of the environment. Conditioning equipment may be required to maintain the environment. The shielding may surround the entire hoist, some parts of it, or only the lifted element.

The support structure holds the hoist and shielding and transmits the dead and lifted loads to the building frame or foundation. The support structure may be either stationary or mobile.

Failure to shield or support can result in damage to the load, to personnel, to the surrounding facility, or to the operating process. Shielding failures are

almost always due to failure to provide shielding. Support failures are due usually to deterioration or loosening of the connections.

.. .

Proper evaluation of the environment requiring shielding and detailed inspection and maintenance of the shield and support structure would reduce the possibility of failure.

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Hoist Unit/Lifting Cable Nuclear Fuel Handling and Storage of Equip- ment/Fuel Handling Machine 50 235163 	1. Fermi 2. Cask car 3. Min. 350°F, argon 4. PRDC-EF-47	MI 120	MI 59	MI 530	14,941	Direct observation	 Cable broke. Part replaced. None.
2		 Hoist Drum/Bearings Nuclear Fuel Handling and Storage Equipment/ Fuel Handling Machine 50 235163 	2. Cask car 3. Min.350°F, argon	MI 114	MI 68	MI 550	14,763	During actuation	 Sodium deposition and dry bearing surfaces caused bearing to gall. Vendor repair of component. Select bearing materials compatible with sodium.
3		 Hoist Unit/Fuel Gripper Nuclear Fuel Handling and Storage Equipment/ Fuel Handling Machine 50 235163 	 EBR-II Primary/fuel unloading machine 210 to 700°F ANL-6780 	MI 218	MI 55	MI 550	1000	Operational monitors	l. Mechanism jammed. 2. Local repair. 3. None.
4		 Hoist Unit/Fuel Gripper Nuclear Fuel Handling and Storage Equipment/ Fuel Handling Machine 50 235163 	4. ANL-6923	MI 218	MI 55	MI 530	1000	During preventive maintenance	 Gripper jammed. Local repair, gripper removed, cleaned, inspected, and reinstalled. None.
Ē		 Hoist Unit/Fuel Gripper Drive Gear Nuclear Fuel Handling and Storage Equipment/ Fuel Handling Machine 50 235163 	4. PMMR-14	MI 500	MI 59	MI 550	1200	Operational monitors	 Gear broken. Part replaced. Check surface hardness (Rc) of material used to fabricate the gears; change material, if necessary, or heat treatment method (i.e., case harden).
Ļ	1	= INCIDENT	MI = MINOR MALFUNCTION						

FAILURE DATA FOR HOIST UNITS (Sheet 1 of 2)

TABLE <u>1-9</u>

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-29

TABLE 1-9

FAILURE DATA FOR HOIST UNITS

(Sheet 2 of 2)

						(511)	eet 2 of 2)		
]	COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*		OPERATING	METHOD OF FAILURE	1. FAILURE DESCRIPTION
ITE	M 3	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	HOURS	DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
6	2	 Hoist Unit/Fuel Gripper Funnel Nuclear Fuel Handling and Storage Equipment/ Fuel Handling Machine 50 235163 	 EBR-II Primary/internal fuel handling equipment 210 to 700°F ANL-6944 	MI 187	MI 54	MI 550	790	Operational monitor	 Funnel of gripper contacted the hold-down. Part replaced. Reduce speed of insertion to 2 in./min to allow gripper to attain equilibrium temperatures.
7	Ĩ	 Hoist Unit/Fuel Gripper Sensing Rod Nuclear Fuel Handling and Storage Equipment/ Fuel Handling Machine 50 235163 	 EBR-II Primary/fuel unloading machine 210 to 700°F PMMR-108 	MI 172	MI 54	MI 550	11,320	During actuation	 Sensing rod bent. Local repair, spare gripper installed. Slower than 6 in./min insertion into liquid sodium.
8	:	 Hoist Unit/Gripper Jaw Gears Nuclear Fuel Handling and Storage Equipment/ Fuel Handling Machine 50 235163 	4. PMMR-43, 9-65	MI 219	MI 59	MI 530	3070	Operational monitor	 Gear broken. Part replaced. None.
*			MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-10

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT HOIST UNITS

٦

	COMPONENT SUBTYPE FUEL HANDLING HOIST											
	FAILUR	<u>ES (%) 0</u>	10	20	3	0 4	10 <u>5</u>	<u>6 6</u>	0 7	0 8	0 91	0 100
PLANT TYPE	Nuclear Test Reactor											
	Fuel Handling Machine											
SYSTEM						1						
П	Fuel Gripper							†				
	Fuel Gripper Drive Gear		_									
COMPONENT PART	Fuel Gripper Funnel Fuel Gripper Sensing Rod			-								
ONEN												
COMP												
÷												
H	Environmental						1	<u>†</u>	L			
CAUSE	Impurity/contamination							1				
CAI												
	Unknown											
	Mechanical					······						
MODE												
			_									
	Labor and material loss only											
EFFECT	System/component inoperative											
1	····											
							L	1		I		

··· ---

.

FAILURE DISTRIBUTION FUNCTIONS

e a companye a companye

COMPONENT HOIST UNITS

	COMPONENT SUBTYPE FUEL HANDLING HOIST (FERMI) FAILURES (%) 0	10) 2	0 3	30 4	10 5	50 6	50 1	70 8	30 9	0 10
PLANT	Nuclear Power Beactor										
SYSTEM	Fuel Handling				•						
COMPONENT PART	Lifting Cable Bearing										
CAUSE	Environmental										
MODE	Mechanical Metallurgical			-							
EFFECT	Labor and material loss only System/component inoperative										

GENERAL SUMMARY

	COMPONENT HOIST UNITS FAILURES (%))	10	20)	30	40	50) 6	0	70	8	0	90	100
	Environmental		Ţ			-	, T			İ.	Ť		İ	Ť	Ţ
	Impurity/contamination			_		_	-								
SЕ	Unknown	_													
CAUSE							ľ								
ပ		Í													
	Mechanical					-					<u> </u>				=
	Metallurgical		_				[
MODE	Metallal Bical														
Ň															
]
	Labor and material loss only						-			Î	T				1
E	System/component inoperative						_		_	-					
Ц Ц Ц	S) brown component interor and														
EFFECT															
	TOTAL FAILURES PER TYPE (5	1	2		3	4	5	e	5	7	8	3	9	10
	Fuel handling hoists		-			-	_	-							
			1												
													1		
ļ															
ŀ															
}															
ŀ		I											1		
ŀ	OPERATING HOURS (THOUSANDS) (10	20)	30	40	50) (50	70	8	30	90	10
ŀ	Fuel handling hoists														
ŀ						}							Ì		
ŀ													ļ		
ωŀ															
ТҮРЕ															
											1				
	· · · · · · · · · · · · · · · · · · ·														
	FAILURE RATE (FAILURES/10 ⁶ hr) (۱ <u>ــــــــــــــــــــــــــــــــــــ</u>												100	
) 	20	40) 	60	80	1.1		20 1 1	140		50 L T	180	20
	Fuel handling hoists		T	П											
	· · · · · · · · · · · · · · · · · · ·														
ł														1	
ŀ															
			Ł	1 1	1	1		1	ſ	1	1	1	. 1		1 1

3. Shielding

Failure data for shielding are presented in Tables 1-13 through 1-15.

a. Reliability Information

Modes of Failure:

- 1) Binding due to oxide impurities of bismuth, tin, and sodium in seal.
- Water-soaked plug caused violent sodium-water reaction and damage to components.

Failure Experience:

- The reason for repeated occurrence of oxide impurity accumulation was not resolved, but cover gas impurities are a potential source.
- 2) Water soaking of the plug was an unusual and hopefully unrepeatable serious accident.

Control Methods:

- 1) Sources of impurities which can condense as oxides in rotating seals should be determined and eliminated whenever practical.
- 2) Sodium condensate in seals can sometimes be prevented by including louvered cooling baffles between the sodium surface and seal area to precipitate the vapors before they reach the seal region.

b. Discussion and Recommendations

None.

1. COMPONENT/PART 1. FACILITY 2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCA 3. CODE: 3. OPERATING CONDIT (Component) 4. SOURCE DOCUMENT (System/Subsystem) 1. Fermi 1 1. Shielding/O-rings 2. Reactor Equipment/ Reactor Shielding 1. Fermi 3. 16 2. Reactor exit port sl 2. Nuclear Fuel Handling 3. Minimum 350°F, at 4. EF-APP-47 4. EF-APP-47 3 1. Uranium Shield/ Rotor 1. Fermi 4. EF-APP-47 2. Cask car 3. Minimum 350°F, at 3. Minimum 350°F, at 4. EF-APP-47 3. Minimum 350°F, at	TION TIONS T CAUS hield plug MI 312 MI 117	ALURE IN CODE* 5E MODE MI 52 MI 54	EFFECT MI 530	OPERATING HOURS 14,941	METHOD OF FAILURE DETECTION Direct observation	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS O-ring worn out, causing seal to leak. Part replaced. Increase preventive maintenance frequency.
(Component) (System/Subsystem) 4. SOURCE DOCUMEN (System/Subsystem) 1 1. Shielding/O-rings 2. Reactor Equipment/ Reactor Shielding 3. 16 213000 1. Fermi 2. Reactor exit port sl 3 4. EF-46 2 1. Uranium Shield/ Column 2. Nuclear Fuel Handling Machine 3. 16 235150 1. Fermi 2. Cask car 3. Minimum 350°F, an 4. EF-APP-47 3 1. Uranium Shield/ Rotor 2. Nuclear Fuel Handling Machine 3. 16 235150 1. Fermi 2. Cask car 3. Minimum 350°F, an 4. EF-APP-47	T CAUS	MI 52 MI	MI 530	HOURS	DETECTION	 RECOMMENDATIONS O-ring worn out, causing seal to leak. Part replaced.
 Reactor Equipment/ Reactor Shielding Reactor Shielding I6 2 Uranium Shield/ Column Reactor Equip- ment/Fuel Handling Machine I6 235150 Uranium Shield/ Rotor Uranium Shield/ Rotor Sermi Cask car Horanium Shield/ Rotor Sermi Cask car Kermi Cask car Kinimum 350°F, and Kermi Cask car Kinimum 350°F, and Kermi Cask car Kinimum 350°F, and Kermi Cask car Kinimum 350°F, and Kermi Kermi Kermi Kermi 	hield plug 312 MI 117	52 MI	530	14,941	Direct observation	2. Part replaced.
 Column Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 16 235150 Uranium Shield/ Rotor Nuclear Fuel Handling EF-APP-47 Fermi Cask car Minimum 350°F, a: and Storage Equip- 4. EF-APP-47 	117		1.00			menere preventive manifematice frequency.
Rotor 2. Nuclear Fuel Handling and Storage Equip- 2. Cask car 3. Minimum 350°F, au 4. EF-APP-47			MI 530	6470	Direct observation	 Column distorted. Port replaced. None.
ment/Fuel Handling Machine 3. 16 235150	rgon MI	MI 54	MI 530	6470	Direct observation	 Rotor bound against the cask walls. Part replaced. None.
41. Shielding/Seal Trough1. EBR-II2. Reactor Equipment/ Shielding2. Rotating plug3. 16213000	MI 200	MI 55	MI 530	2590	During preventive maintenance	 Impurities in seal, oxides of bismuth, tin, and sodium. Local repair. None.
51. Shielding/Metal Seal 2. Reactor Equipment/ Shielding1. EBR-II 2. Rotating plug 3. 400°F3. 16 2130004. ANL-7115, 10/65	MI 200	MI 55	MI 550	3410	During inspection of system associated to failure component	 Oxides and sodium in seal. Local repair. None.
 6 1. Shielding/Metal Seal 2. Reactor Equipment/ Shielding 3. 16 213000 1. EBR-II 2. Small rotating plug 3. 281 to 400°F 4. Maintenance report 		MI 51	MI 530	14,150	During preventive maintenance	 Oxides and sodium in seal. Local repair. None.

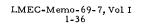
TABLE ______ FAILURE DATA FOR _______

(Sheet 1 of 2)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

			٢ <i>٢</i>	ILUKE			HELDING et 2 of 2)		
ITEN	2	. COMPONENT/PART . SYSTEM/SUBSYSTEM . CODE: (Component) (System/Subsystem)	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		LURE IN CODE*		OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
7	2	 Shielding/Plug Seal Trough Reactor Equipment/ Shielding 16 213000 	 EBR-II Top shield plug auxiliary gripper - Operation monthly report, 2/68 	MA 500	MA B6	MA 530	13,380	Direct observation	 Shield plug soaked with water, trapped under labyrinth or end cap. None. None.
8	i	 Shielding/Plug Seal Reactor Equipment/ Shielding 16 213000 	 EBR-II Rotating Plug 281 to 400°F Operation monthly report, 2/68 	MA 315	MA 37	MA 530	13,380	Direct observation	 Water trapped under labyrinth or end cap entered primary tank when plug was reinserted, sodium was expelled through the hole up around the plug. Local repair. Revise procedure to require inspections for water.
9		 Shielding/Transfer Port O-ring Nuclear Fuel Handling and Storage Equip- ment/Shielding 16 235150 	 EBR-II Primary/fuel unloading machine - PMMR-48 	MI 126	MI 52	MI 530	3410	Preventive mainte- nance	 O-ring worn out. Part replaced. Replacement of O-rings and gaskets is desirable whenever parts are disassembled for maintenance or repair.

 \cap


FAILLIRF DATA FOR SHIELDING

* I = INCIDENT MI = MINOR MAL MA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT SHIELDING	<u> </u>									
	COMPONENT SUBTYPE		0 0	0 1		05	06	07	08	09	0 10
PLANT TYPE	Nuclear Rever Reactor		0 2	0 3	30 4			_			
SYSTEM	Reactor Equipment Nuclear Fuel Handling and Storage Equipment										
COMPONENT PART	"O" Ring Metal Seal Plug Seal Trough Other										
CAUSE	Environmental Impurity/contamination Human error Unknown										
	Chemical Mechanical		†								· ·
MODE	Other	_									
EFFECT	Labor and material loss only System/component inoperative										

TABLE <u>1-14</u> FAILURE DISTRIBUTION FUNCTIONS

٦

TABLE <u>1-15</u>

-

- --

-

GENERAL SUMMARY

	COMPONENT <u>SHIELDING</u> FAILURES (%) 0]	10	20	0	30	40	0	50	60	7	0	80	9	0 1	00
	Environmental		-			-				T		Γ				
	Impurity/contamination	_	-	_	_	-+-			ł							
ISE	Human error	_	+		-											
CAUSE	Unknown		-													
												1				
									+	<u> </u>		<u> </u>	_ _ _			4
	Chemical		T													
MODE	Mechanical		L													
l §	Other		Т					1								
<u> </u>	Labor and material loss only		T		-	Ŧ				-		F	-			Ī
5	System/component inoperative		+											1		
EFFECT																
Ш																
L	TOTAL FAILURES PER TYPE 0		⊥ 1	2	L	3		L 1	 5	 6		1 7	8	 ç	<u> </u>	 10
	Shielding		Ļ				-	+	1			Ĺ	1		, 	٦ ٦
	Smelding															
									1							
								ļ								
	·····						ļ									
]								
			L.,						- _							
	OPERATING HOURS (THOUSANDS) 0		1	2	0	30	4	0	50	60)	'0 L	80	9	0.	100
	Shielding		Γ			Τ			Τ				-			
ТҮРЕ										1						
≿			1													
			1									I				
	FAILURE RATE (FAILURES/10 ⁶ hr) 0	_1	00	20	0	300	40	00	500	60	0 7	00	800	90	0 1	.000
	Shielding		•													
																1
	······		ļ													
																1

4. Vessel Internals (removable)

Failure data for vessel internals (removable) are presented in Tables 1-16 through 1-18.

a. Reliability Information

Design Features:

Control rod thimble.

Critical Characteristics:

Thin-wall tube encloses and guides the control rod absorber element in the reactor core. The thimble extends from the shield plug into the core and seals the reactor sodium out of the control rod internals and seals the shield plug holes.

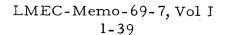
Mode of Failure:

- 1) Installation procedure error
- 2) Embrittlement of metal.

Failure Description:

- 1) The holddown snap ring for the thimble had not been installed and the thimble came out of the shield plug hole.
- 2) The thin wall in the lower part of the thimble became brittle and cracked permitting leakage.
- 3) Personnel attempted to place a thimble in a maintenance cell which was already occupied.
- 4) A thimble was wedged against a control rod subassembly which caused the control rod to be damaged when it was removed.

Control Methods:


- 1) Installation and maintenance procedures must be adequate and must be used.
- 2) Care must be given to the selection of materials when parts are designed.

b. Discussions and Recommendations

Seven events were reviewed regarding failures of control rod thimbles. Three of the failures were due to operating or handling errors. The only solution to this problem is adequate and carefully followed operational and maintenance procedures using checklists for backup.

Four of the failures were a result of one prime failure. This was a design problem due to improper selection of materials. The solution is a complete knowledge of design requirements based on operating conditions.

Incipient failures in two cases studied would be impossible to detect because they were operator errors. The very nature of the thimble and its purpose makes it difficult to predict failures.

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	м	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		2. Reactor Equipment/	1. HNPF 2. C-68 3. 4. NAA-SR-10743 (6-1-63)	MA 121	MA 61	MA 550	Unknown	Operational monitors	 Thimble leaking. Replace thimble. None.
2		 Vessel Internals/ Thimble Reactor Equipment/ Core Components and Supports 07 216400 	 HNPF Control rod thimble channel XIII Primary hot leg - 945°F Primary cold leg - 610°F Monthly operating report No. 3 	MI 330	MI 53	MI 530	1605	Direct observation	 Hydraulic force of sodium sufficient to float thimble out of core position (approx. 10 in.); holddown ring inadvertently removed. Spare installed. None.
3		2. Reactor Equipment/	 HNPF Control rod thimble TZ-3 350 to 925°F Monthly operating report No.13 	I 442	I 84	I 520	4450	Direct observation	 1/2-indiameter piece fell out of thimble wall. Part replaced. None.
4		Thimble 2. Reactor Equipment/	 HNPF Control rod thimble TZ-6 350 to 925°F Monthly operating report No.13 	I 442	I 84	I 520	4450	Direct observation	 Thimble had become brittle and shattered during examination. Part replaced. None.
5		 Vessel Internals/ Thimble Reactor Equipment/ Core Components and Supports 07 216400 	 HNPF Control rod thimble No. 12 350 to 925°F Monthly operating report No. 11 	I 442	I 84	I 520	3710	Direct observation	 Crack in thimble resulted in leakage. Part replaced. None.
*	і ЛА	= INCIDENT = MAJOR MALFUNCTION	MI = MINOR MALFUNCTION P = PROBLEM		•	•		<u></u>	

FAILURE DATA FOR <u>VESSEL INTERNALS, REMOVABLE</u> (Sheet 1 of 2)

TABLE _____ 1-_ 16

FAILURE DATA FOR <u>VESSEL INTERNALS</u>, REMOVABLE (Sheet 2 of 2)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	IDEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
6	 Vessel Internals/ Thimble Reactor Equipment/ Core Components and Supports 07 216400 	 HNPF Control rod thimble No.13 350 to 925°F Monthly operating report No.11 	I 442	I 84	I 520	3710	Direct observation	 Thimble cracked and resulted in leakage. Part replaced. None.
8	 Vessel Internals/ Thimble Reactor Equipment/ Core Components and Supports 07 216400 	 HNPF Control rod thimble TZ-13 350 to 925°F Monthly operating report No.11 	MI 330	MI 55	MI 550	3710	Direct observation	 Attempt made to place thimble in occupied maintenance cell engaging thimble to plug pickup cup. Operational procedure and/or training change. None.
8		 EBR-II Control rod grid position 5*C-3 300 to 800°F ANL-7419 	MA 172	MA 54	MA 520	13,380	Inspection of asso- ciated systems	 Bent flat was wedged against subassembly C-2039 and caused this and control rod L-446 to be scratched when they were removed. Component replaced. None.
	= INCIDENT	MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALF MA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT <u>VESSEL INTERNALS</u>	_									
	FAILURES (%)	0 1	0 2	0 3	<u>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </u>	0 5	0 6	0 7	0 8	0 9	0 1
PLANT TYPE	Nuclear Power Reactor Nuclear Test Reactor										
SYSTEM	Core Components and Supports										
ART	Thimble					 					
COMPONENT PART											
CAUSE	Environmental Human error Inherent										
MODE	Chemical Mechanical Metallurgical										
EFFECT	Plant availability loss Labor and material loss only System/component inoperative										

TABLE <u>1-17</u>

FAILURE DISTRIBUTION FUNCTIONS

GENERAL SUMMARY

	COMPONENT VESSEL INTERNALS FAILURES (%) 0	1(0	20	30	4	0_5	50	60	70	80	90	10
	Environmental	-											
[Human error			+-	•			1					
CAUSE	Inherent	-						•	1		{		
٦۲								1					
Ŭ []										1	
	Chemical		•										
ш	Mechanical										1		
MODE	Metallurgical												
-													
					<u> </u>								-
⊢	Plant availability loss Labor and material loss only												
Ш					-					ł			
EFFECT	System/component inoperative											Ì	
								<u> </u>					
;	TOTAL FAILURES PER TYPE 0	2		4	6		3 :	10	12	14	16	18	2
	Vessel internals			T									
	· · · ·	ľ					}						
-				Í	Í		ĺ	1	Ì	Ì			
	·····										1		
											ļ		
									[1	Í	
	OPERATING HOURS (THOUSANDS) 0	10	0	20	30	-4	0 :	50	60	70	80	90) 1(
	Vessel internals		_										
								ĺ					
щ													
TΥΡΕ					1						ł		
				1								1	
							ļ)		
	FAILURE RATE (FAILURES/10 ⁶ hr) 0			100		21	L		300		400		5
	Vessel internals			100				ТТ	300			TT	5
	Vessel Internals												
- {													
ļ						í							
	1	1 1	1	1	1 1	1	r ł	1 1	1	1 1	1 1	1 1	
}													

5. Vessels and Tanks

Failure data for vessels and tanks are presented in Tables 1-19 through 1-22.

a. Reliability Information

Design Features:

The primary purpose is containment. In addition, reactor vessels have unique alignment requirements. Heating of the sodium vessels is also necessary.

Critical Characteristics:

The vessel is required to last the life of the plant (30 years) under extreme loading conditions of temperature and varying flow rates. Transient conditions resulting from seismic loadings and/or steam generator operating abnormalities also have to be considered.

Mode of Failure:

- 1) Broken parts
- 2) Clogging of lines
- 3) Crack
- 4) Fire.

Failure Description:

- 1) Bolts broken due to torquing
- 2) Lines were clogged
- 3) Stiffeners broken loose at weld
- 4) Cracks at pipe connections or worn because of rough edges
- 5) Gasket failure.

Control Methods:

- 1) Provide a procedure for torquing of bolts.
- 2) Stiffeners should be enlarged and flow rates lowered to prevent water hammer.

3) Operational procedures should be revised to minimize the possibility of fire while draining sodium.

b. <u>Discussion and Recommendations</u>

None.

					eet 1 of 2)				
	2	. COMPONENT/PART . SYSTEM/SUBSYSTEM	 FACILITY COMPONENT LOCATION 	FAI	LURE IN CODE*		OPERATING	METHOD OF FAILURE	1. FAILURE DESCRIPTION
	" 3	 CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	2		 EBR-II Condensor water box No information available PMMR-100 	MI 500	MI 59	MI 530	9345	Direct observation	 Brass studs broken. Part replaced. Revise maintenance procedure to include torque limit for brass bolts.
2	2	. Steam, Condensate and	 EBR-II Drain pipe connection No information available PMMR-17 	MI 500	MI 73	MI 530	1200	Direct observation	 Crack in tank at drain pipe connection. Local repair. None.
3	2	. Steam,Condensate and Feedwater Piping and	 SCTI Steam and feedwater system 200,000 lb rated flow out pressure 25 psia Incident report No.107 	MA 175	MA 59	MA 117	5225	During repair or inspection of system associated to failure component.	 Two Weir plate stiffener bars broke loose at welds in deaerator. Local repair, new angle iron stiffeners of larger cross section installed; baffle holes and torn areas adjacent were patched and reinforced. Maintain the polish flow rate low enough to prevent water hammer during steam generator preheat circulation.
4	2	Purification System	 EBR-II Surge tank sodium primary 300 to 700°F Operations weekly report, 4-3-68 	MI 195	MI 51	MI 530	14,000	Operational monitors	 Vacuum line clogged. Local repair, removed and cleaned. None.
5	2	Purification System	 EBR-II Surge tank sodium primary 300°F PMMR-106 	MI 195	MI 51	MI 550	10,840	Operational monitors	 Vacuum line clogged. Local repair, line removed and cleaned. None.

FAILURE DATA FOR VESSELS AND TANKS

TABLE ______

(Sheet 1 of 2)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

Four ment / 13, 300 to 500 F while thing and for sodium drain and							eet 2 of 2)		
TEM 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT CAUSE MODE OPERATING Mode Net				FAII					
 6 1. Tank/Rupture Disk 2. Heat Transfer/ Intermediate Coolant 3. 66 4. Monthly operating report No. 25 2. Primary IHX cell No. 1 3. 06 4. Monthly operating report No. 5 5. 06 4. Monthly operating report No. 5 5. 06 4. Monthly operating report No. 5 5. 06 5. 06 6. 1. HNPF 7. 1. Vessel/50 gal Drum 6. 1. HNPF 7. 1. Vessel/50 gal Drum 7. 1. Vessel/50 gal Drum 7. 1. HNPF 7. 2. Primary IHX cell No. 1 7. 300 to 500°F while filling and draining 7. 300 to 500°F while filling and draining 7. 4. Monthly operating report No. 5 8. 1. Expansion Tank/ 7. HNPF 7. Tank No. 2, secondary, 304 SS 7. 4. M ThPF 7. Tank No. 2, secondary, 304 SS 7. 4. M ThPF 7. Sodium 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. Yessels and Tanks/ 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. Tank No. 2, secondary Solution 7. Tank No. 2, secondary Expansion Tank, 30. 06 7. Tank No. 2, secondary Expansion Tank, 30. 06 7. Tank No. 2, secondary Expansion Tank, 30. 06 7. Tank No. 2, secondary Expansion Tank, 30. 06 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. HNPF 7. Tank No. 2, secondary Expansion Tank, 30. 06 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. HNPF 7. HNPF 7. Secondary Expansion Tank, 30. 06 7. HNPF 7. Hort Tansfer/ 4. AI monthly, 6-14-63 7. HNPF 7. Hort Tansfer/ 1. HNPF 7. Hort Tansfer/ 1. HNPF 7. Hort Tans	ITEM	3. CODE: (Component)	3. OPERATING CONDITIONS	CAUSE	MODE		HOURS		
 7 1. Vessel/50 gal Drum 2. Primary IHX cell No. 1 3. 300 to 500°F while filling and draining 3. 300 to 500°F while filling and draining 3. 06 3. 06 4. Monthly operating report No. 5 3. 136 34 530 36 36 34 530 36 36 34 36 34 530 36 36 34 36 34 36 34 36 34 36 34 36 34 374 3744 <l< td=""><td>6</td><td>2. Heat Transfer/ Intermediate Coolant 3. 06</td><td>2. Expansion tank No. 2</td><td></td><td></td><td></td><td>9420</td><td>Direct observation</td><td>on inner backup plate. 2. Temporary repair, a second rupture disk in series with the original disk. 3. None.</td></l<>	6	2. Heat Transfer/ Intermediate Coolant 3. 06	2. Expansion tank No. 2				9420	Direct observation	on inner backup plate. 2. Temporary repair, a second rupture disk in series with the original disk. 3. None.
 8 1. Expansion Tank/ Sodium 2. Tank No. 2, secondary, 304 SS . Heat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ Plug Gasket 2. Heat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ 2. Haat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ 2. Heat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ 2. Heat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ 2. Heat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ 2. Heat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ 2. Heat Transfer/ Intermediate Cooling 3. 06 9 1. Vessels and Tanks/ 2. Heat Transfer/ Intermediate Cooling 3. 06 9 1. HNPF 2. Secondary Expansion Tank, 304 SS, 1/2-in. wall 3 4. AI monthly, 6-14-63 9 1. HNPF 2. Secondary Expansion Tank, 304 SS, 1/2-in. Wall 9 1. Vessels and Tanks/ 3. 06 9 1. HNPF 2. Secondary Expansion Tank, 304 SS, 1/2-in. Wall 9 1. Vessels and Tanks/ 3. None. 	7	2. Other Reactor Plant Equipment/ Maintenance 3. 06	 Primary IHX cell No. 1 300 to 500°F while filling and draining 			I 530	2400	Direct observation	 draining sodium. Operational procedure change: use only drums with covered ends with two bung holes, one for sodium drain and one for purge line. Also insulate between barrel and rac None
9 1. Vessels and Tanks/ Plug Gasket 1. HNPF 1. HNPF 1. HNPF 2. Heat Transfer/ Intermediate Cooling System 2. Secondary Expansion Tank, 304 SS, 1/2-in. wall 500 BZ 590 2. Repaired gasket. 3. - - - - - - 3. - - - - - 3. - - - - - 3. - - - - - 3. - - - - - 3. - - - - - - 4. AI monthly, 6-14-63 - - - -	8	Sodium 2. Heat Transfer/ Intermediate Cooling 3. 06	2. Tank No.2, secondary, 304 SS 3				3744	Operational monitor	entrainment. 2. Installed bypass line so 90% of sodium flows around tank. 3. None.
	9	Plug Gasket 2. Heat Transfer/ Intermediate Cooling System 3. 06	2. Secondary Expansion Tank, 304 SS, 1/2-in. wall 3				10,416	Direct observation	2. Repaired gasket.

TABLE <u>1-19</u>

FAILURE DATA FOR ______ VESSELS AND TANKS

LMEC-Memo-69-7, Vol I 1-47

* I = INCIDENT MI = MINOR MAI MA = MAJOR MALFUNCTION P = PROBLEM

COMPONENT SUBTYPE		COMPONENT VESSELS AND TANKS										
FAILURES (%) 0 10 20 30 40 50 60 70 80 90 Image: Component Test Reactor Image: Component Reactor Image: Component Reactor <td< th=""><th></th><th>COMPONENT SUBTYPE</th><th>INSATE AND WAT</th><th>ER</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		COMPONENT SUBTYPE	INSATE AND WAT	ER								
Component Test Facility -					20	30	40	50	60	70 8	30 9	90 10
Main Steam Main Steam <td>L.</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	L.				_			_				
Main Steam Main Steam <td>ANI ANI</td> <td>Component Test Facility</td> <td></td>	ANI ANI	Component Test Facility										
Main Steam Main Steam <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>							1					1
Steam and Feedwater Steam and Feedwater	L											
Steam and Feedwater Steam and Feedwater		Main Steam										1
How Weir Baffle Plate How	[_						
Weir Baffle Plate Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Weid Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Weid Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Weid Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensat	Σ				l							
Weir Baffle Plate Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Weid Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Weid Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Weid Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensat	ET I											
Brass Studs Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensat	SΥ											1
Brass Studs Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensate Storage Image: Condensat									ł			
Brass Studs Image: Stude storage Image: S												
Brass Studs Image: Stude storage Image: S												<u> </u>
Weld Condensate Storage		Weir Baffle Plate					\top					
We chanical Mechanical Mechanical </td <td></td> <td>Brass Studs</td> <td></td>		Brass Studs										
Image: Section of the section of th	E	Weld Condensate Storage			_							
Image: Section of the section of th	AR											
Image: Section of the section of th												
Image: Section of the section of th	VEN							ł				
Image: Section of the section of th	DO L											
Image: Section of the section of th	≥ 0											
Worknown Mechanical	U U						1					
With the second seco					{	Į						1
Worknown Mechanical												
Worknown Mechanical												
Unknown Mechanical Metallurgical Metallurgical Labor and material loss only		Environmental						Τ				1
Unknown Mechanical Metallurgical Metallurgical Labor and material loss only	ω									1		
Unknown Mechanical Image: Constraint of the second se	ns					}			1			
Mechanical Metallurgical Labor and material loss only	CA.							ĺ			1	
Mechanical Metallurgical Labor and material loss only												
Metallurgical Image: Constraint of the second sec		Unknown						_				
Metallurgical Image: Constraint of the second sec	Ī	Mechanical					-					[
Labor and material loss only	ш			_	_							
Labor and material loss only	8											
	Σ											
	ľ											
		Labor and material loss only								<u> </u>		
	E I											
	μ						1					
	Ξŀ								1			
	.	······································		Į			ł		1			

TABLE <u>1-20</u>

FAILURE DISTRIBUTION FUNCTIONS

·· —

TABLE <u>1-21</u> FAILURE DISTRIBUTION FUNCTIONS

- --

-

	COMPONENT VESSELS AND TANKS	_										
	COMPONENT SUBTYPE											
	FAILURES (%)	0	10	20	3(n 4	10	50 é	b0 7	0 8	0 9	0 10
ſ	Nuclear Power Reactor	Ť	<u>T</u>	-20	-				<u>, i i i i i i i i i i i i i i i i i i i</u>	Ť	Ť	
μ	Nuclear Test Reactor	- ·								1		
PLANT TYPE	Component Test Facility			_			}					
<u>م</u> '	Component Test Fachity	1							Į			
	Coolant Treatment	<u></u>			_			†	<u>†</u>		<u> </u>	
ł	Heat Transfer	- 	_	_			-		1)]	
5	Other Plant Equipment		_				1			ļ		ļ
SYSTEM		1										
ΥS	······································	1					İ			ļ		
S		1)	1	1
1	· · · · · · · · · · · · · · · · · · ·	1										
		1	ł							ł	}	
	Vacuum Line		-				Î		Ī	1	1	
		1					1		Ì	ļ		
		1							Į		1	
AR		1					1		1			
L P		1										
N N N	Other (Miscellaneous)	-	_			_	<u> </u>					
COMPONENT PART		1						1	1			
MP		1										Į
8		1					1					
		1						1				
	· · · · · · · · · · · · · · · · · · ·	1			{		í	Î		1	{	
		1								}		
	Environmental			-	_			-		–	<u> </u>	[
[w]	Inherent	}					3			{	}	ł
CAUSE	Unknown]	-				ļ					
CA]	1		ļ		Ì		1			
										1		
									1			
	Chemical		-						1			
щ	Mechanical		+	-			1				1	
MODE	Other	<u> </u>					1					
	Reactivity change											
	Unknown	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
	Labor and material loss only	<u>}</u>	+	-+-			+			+-		
EFFECT	System/component inoperative											
	No effect]							}		ļ	
Ξ												
		1						1		}	1	

٦

GENERAL SUMMARY

	COMPONENT VESSELS AND TANKS FAILURES (%))	10	0	20		30	_ 4	0	5	0	60		70	8	0	90	100
	Environmental	_		-	-		F							T				
	Inherent	┝──																i
ISE ISE	Unknown	-		-	-													
CAUSE		1																
	· · · · · · · · · · · · · · · · · · ·	1	- {						ļ									
		1																
	Chemical				Ť			_	<u> </u>			Ť	•	T			Ť	—
	Mechanical		_	_	-		-		-	_								
MODE	Metallurgical											- {					}	
M	Reactivity change	<u> </u>	_															
	Other			•••	-													
	Labor and material loss only	L															T	
			_ {															
EFFECT	System/component inoperative																	
ΕF	No effect																	
ш																		1
									<u> </u>					<u> </u>				
	TOTAL FAILURES PER TYPE ()	<u>1</u>		2		3	4		5		6		7	8		9	10
	Sodium tanks																	
	Condensate and water tanks					i												
														1				
									1			1			ĺ			
									L					<u> </u>				
	OPERATING HOURS (THOUSANDS) ()	10)	20		30	4	0	5	0	60)	70_	8	0	90	100
[Sodium tanks	-	_							-								
[Condensate and water tanks	-		_	•													1
[ļ						ļ
			i						ĺ									
ТҮРЕ												1					1	1
≿	<u> </u>								[ļ								
								i							l			- {
																		1
11								i										
	FAILURE RATE (FAILURES/10 ⁶ hr) () Г Т	10	0	200) 	300	4()0 r - 1	50	0	60	$\frac{0}{1}$	00	80	0 9	<u>900</u>	$\frac{100}{1}$
	Sodium tanks			•														
	Condensate and water tanks																	
			ļ															
			ļ															
1 1				- 1				1				- 1			1			1 1
			-	1														1 1

C. ELECTRICAL SYSTEM COMPONENTS

1. Electrical Generators (emergency and auxiliary)

Failure data for electrical generators (emergency and auxiliary) are presented in Tables 1-23 through 1-26.

- a. Emergency Diesel Generators
- (1) Reliability Information

Design Features:

Diesel-generator sets are designed to provide emergency electric power to critical plant loads on loss of normal power. Undervoltage relays sense a loss of normal power, automatically start the diesel, either with battery power or compressed air, and actuate a transfer switch.

Mode of Failure:

- 1) Mechanical malfunctions in diesel engine.
- 2) Fuel supply malfunctions.
- 3) Control component malfunctions.
- 4) Generator problems.
- 5) System oriented malfunctions.

Failure Experience:

Experience throughout industry has shown that any of the above failure modes must be considered as possibilities.

Control Methods:

- 1) Good quality control in system component procurement.
- 2) Top quality electrical and mechanical maintenance.
- 3) An effective program of exercising the diesel generator under load.

Alternate Concepts:

An alternate power supply from an independent source.

(2) Discussion and Recommendations

Standby emergency diesel generators offer a wide variety of malfunction possibilities. Such malfunctions can be either component oriented or system oriented. By their nature their operating hours are limited and erratic. This opens a whole bay of malfunction possibilities which do not exist with continuous duty machines. They go from a cold start to full load in ten seconds or less. The generator is at the mercy of the diesel engine, which must itself be maintained in the best possible manner. Control components must be in perfect condition, because a malfunction in any one of many components can prevent proper operation.

A good preventive maintenance program is a must, including a plan to regularly exercise the diesel-generator under load.

- b. Motors-Generator Sets
- (1) Reliability Information

Design Features:

Generators driven by electric motor prime mover, operating from normal plant power. Output used as noise-free power supply, variable frequency power supply, or for isolation purposes.

Mode of Failure:

- 1) Bearing failure
- 2) Brush wear
- 3) Control component failure.

Failure Experience:

- 1) Bearing failure most common. Reasons not available.
- 2) Abnormal brush wear indicated in a few cases. Reasons not available.

Control Methods:

- 1) Install high-temperature alarms on bearing housings of large generators.
- 2) Verify adequacy of bearing lubrication.

LMEC-Memo-69-7, Vol I 1-52

- 3) Don't overload bearings.
- 4) Close maintenance surveillance.

b. Discussion and Recommendations

It is noted that most of the reported malfunctions relate to bearing and brush problems. This is normal for rotating electrical machines and if detected during routine preventive maintenance, and did not cause an unscheduled outage, perhaps would not even be considered a malfunction.

Bearings should last a minimum of one year under continuous operating conditions, and with proper maintenance can be expected to last two years. Brush life is more uncertain and is dependent on environmental conditions. Brushes can last a year or more.

Other less-common malfunctions are related to winding insulation failure. This is usually caused by generator overheating or insulation deterioration due to age. Overheating can be caused by poor ventilation, overloading, or dirt accumulation in the windings. To illustrate the effect of heat on electrical insulation, the operating life of insulation is reduced by a factor of 1/2 for each 10°C increase in operating temperature. For example, an insulation whose rated life is 20 years at 80°C would have a rated life of 10 years at 90°C, or 5 years at 100°C.

Every machine should be completely dismantled every two years and thoroughly cleaned and inspected. Coils, stators, and rotors can be redipped and baked or spray varnished. All windings should be meggered to detect any incipient insulation weaknesses.

FAILURE DATA FOR <u>ELECTRICAL GENERATORS (EMER</u>GENCY AND AUXILIARY)

(Sheet 1 of 3)

	2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE:	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	(inboard) 2 2. Accessory Electrical	1. EBR-II 2. Primary sodium pump 3. 400 hp, 480 volts 4. PMMR-43	MI 500	MI BZ	MI 530		maintenance	 Bearings worn out. Part replaced. Determine cause of bearing failure and institute procedures to prevent recurrence.
2	2. Accessory Electrical Equipment/M.G.Set	1. EBR-II 2. Primary pump/M.G. set No. 1 3. 400 hp, 480 volts 4. Operations weekly report, 2-14-68		MI BZ	MI 530	~13,500	maintenance	1. Brushes worn out. 2. Part replaced. 3. None.
3	2. Accessory Electrical Equipment/M.G.Set	1. EBR-II 2. Primary pump/M.G.set No.1 3. 400 hp, 480 volts 4. PMMR-80		MI BZ	MI 530	∼6900		 Dirty commutator. Cleaned and polished commutator and reseated brushes. The most common cause of commutator failure is the wrong type of brushes; therefore, determine that brushes are correct for the service.
4	2. Accessory Electrical Equipment/M.G.Set	1. EBR-II 2. Primary pump/M.G.set No.1 3. 400 hp, 480 volts 4. PMMR-80		MI BZ	MI 530	~6900	During preventive maintenance	1. Brushes worn out. 2. Part replaced. 3. None.
5	2. Accessory Electrical Equipment/M.G.Set	 EBR-II Primary pump/M.G. set No. 2 400 hp, 480 volts Operations weekly report, 2-14-68 	MI 500	MI 52	MI 530	~13,500		1. Brushes worn out. 2. Part replaced. 3. None.
6	2. Accessory Electrical Equipment/M.G.Set	1. EBR-II 2. Primary pump/M.G.set No.2 3. 400 hp, 480 volts 4. Operations monthly report,7-31-68	MI 500	MI 19	MI 530	∼15,240	Routine area watch, direct observation	 Commutator was worn. Part replaced. Insufficient information to comment. Properly maintained commutator should last ~3 years without machining.
7	2. Accessory Electrical Equipment/M.G.Set	 EBR-II Primary/pump collector ring end 400 hp, 480 volts Operations monthly report, 10-2-68 	MI 500	MI 52	MI 530	∼15,240	During routine inspection	 Bearing worn out. Part replaced. None.
L	I = INCIDENT M	II = MINOR MALFUNCTION			l			<u></u>

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

 $\begin{array}{c} \mbox{FAILURE DATA FOR} \ \underline{\mbox{electrical generators (emergency and auxiliary)}} \\ ({\rm Sheet \ 2 \ of \ 3}) \end{array}$

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	<pre>3. CODE: (Component) (System/Subsystem)</pre>	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
8	Equipment/M.G.Set	 EBR-II Primary pump/M.G.set No.2 400 hp, 480 volts Operations monthly report, 10-2-68 	MI 500	MI 19	MI 530	15,240	During routine inspection	 Removed the Pure Carbon brushes from the excitor and replaced with National Carbon brushes. Part replaced. None.
9	Equipment/M.G.Set	1. EBR-II 2. Primary pump/M.G. set No. 2 3 4. Operations monthly report, 11-67	MI 500		MI 530	12,500	Operational monitors	1. Faulty frequency generator. 2. Part replaced. 3. None.
10	 Generator/Brushes Accessory Electrical Equipment/M.G.Set 57 470000 	1. EBR-II 2. Primary pump 3. 400 hp, 480 volts 4. Maintenance report, 2-14-68		MI 52	MI 550	13,500	Protective system	 Brushes worn out. Part replaced. Follow manufacturer's recommendations in care of brushes and commutators.
11	Equipment/M.G.Set	 EBR-II Primary pump No. 1 400 hp, 480 volts Maintenance report, 2-29-68 			MA 520	13,500	Operational monitors	 Faulty brushes, worn too short. Part replaced. Up-grade preventive maintenance.
12	Equipment/M.G.Set	 EBR-II Plant constant power supply M.G. set - Operations monthly report, 10-2-68 		MA 52	MA 520	15,240	During routine inspection	l. Bearings worn out. 2. Parts replaced. 3. Increase preventive maintenance frequency.
13	Bearings 2. Accessory Electrical	1. EBR-II 2. Primary pump No. 1 3. 400 hp, 480 volts 4. PMMR-102			MI 530	10,000	During routine inspection	 Bearings worn out. Part replaced. Check for proper alignment, proper lubrication and frequency of preventive maintenance on bearings.
14	2. Accessory Electrical	 EBR-II Secondary sodium EM pump A. Maintenance report, 2-14-68 			MI 530	13,500	Operational monitors	 Faulty diode. Part replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

FAILURE DATA FOR ELECTRICAL GENERATORS (EMERGENCY AND AUXILIARY) (Sheet 3 of 3)

)

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*				1. FAILURE DESCRIPTION
ITE	M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT		MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
15	Ĩ	2. Accessory Elect.Equip.	 SCTI Emergency electrical system 300 kw, 1800 rpm, 277/480 volts Incident report No. 333 	MA 327	MA 13	MA 580	58		 Maintenance personnel hit wires while lowering air filter causing short circuit in wiring. Replaced damaged wiring. None.
16	i	2. Accessory Electrical	 SCTI Emergency electrical system 300 kw diesel, 457 hp, 1800 rpm Incident report No. 319 		MI 25	MI 550	Unknown		 Severe power dip, incoming power, tripped circuits. Voltage regulator did not operate properly. Manufacturer recommended removing damping transformer in circuit. This modification was completed. None.
17	Ĩ	 Generator/Emergency Diesel Accessory Electrical Equipment/Emergency Diesel Generators 57 462100 	 Emergency generator 1200 to 1360 rpm 	MA 336	MA 46	MA 550	1200		 Diesel started, loaded normally, stopped, and could not be restarted. Operating limits changed. None.
18	2	 Generator/Emergency Diesel Accessory Electrical Equipment/Emergency Diesel Generators 57 462100 	2. Emergency generator 3. 1200 to 1360 rpm	MA 344	MA 24	MA 550	1200		 Human error. The diesel control switch had to be switched to the off position, then to standby. This was not known by the operating personnel. Operational procedure change. Upgrade operator training on diesel engine operation.
*		■ INCIDENT	MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-56

TABLE <u>1-24</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT ELECTRICAL GENERATORS (EMERGENCY AND AUXILIARY)

COMPONENT SUBTYPE _____MOTOR - GENERATOR SETS FAILURES (%) 0 10 30 40 50 60 70 80 90 100 20 Nuclear Test Reactor PLANT TYPE Accessory Electrical Equipment SYSTEM Bearing Brushes Excitor COMPONENT PART Others CAUSE Unknown Electrical MODE Mechanical Unknown EFFECT Plant availability loss Labor and materials loss only System/component inoperative

TABLE <u>1-25</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT _ELECTRICAL GENERATORS (EMERGENCY AND AUXILIARY)

COMPONENT SUBTYPE EMERGENCY DIESEL GENERATORS

		FAILURES (%)	0 1	0 2	0 3	0 4	0 5	06	0 7	08	<u> </u>	0 100
[Component Test Facility		_									
PLANT TYPE	Nuclear Test Reactor											
ן⊴≿			1									
L T			1									
	Emergency Electrical Equipment					ļ						
Σ												
E]									
SYSTEM												
"			1									
			1									
			1			1						
					ŕ	l		1				
	Emergency Diesel		-									
	Voltage Regulator											
RT	Others											
РA	· · · · · · · · · · · · · · · · · · ·		4									
L Z			4									
COMPONENT PART	· · · · · · · · · · · · · · · · · · ·		4									
04			ł									
NON N			4									
			4									
			4									
			4									
					L							
	Environmental		_									
і _ш												
ISI	Human error						-					
CAUSE			1									
			1									
			1					1				
					L							
	Electrical											
MODE			4									
м М	Instrumentation function											
			4									
		· · · · ·										
1					[1			l			
EFFECT	System/component inoperative						 					
Ш	Potential damage to equipment											

TABLE _1-26____

GENERAL SUMMARY

COMPONENT_ELECTRICAL GENERATORS (EMERGENCY AND AUXILIARY) 50 60 70 80 90 100 FAILURES (%) 0 10 20 30 40 Environmental Human error CAUSE Unknown Electrical Instrumentation function MODE Mehcanical Unknown Plant availability loss Labor and material loss only EFFECT System/component inoperative Potential damage to equipment 4 14 18 20 2 6 8 10 12 16 TOTAL FAILURES PER TYPE 0 Motor - generator sets Emergency diesel generators 75 100 125 150 175 200 225 250 OPERATING HOURS (THOUSANDS) 0 25 50 Motor - generator sets Emergency diesel generators ТҮРЕ FAILURE RATE (FAILURES/10⁶ hr) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Motor - generator sets Emergency diesel generators

2. Heaters (electrical)

Failure data for heaters (electrical) are presented in Tables 1-27 through 1-30.

a. Reliability Information

Design Features:

Resistance or induction type, electrically energized heaters used for the heating of liquid metal systems.

Critical Characteristics:

Provide a regulated heating capability for sodium pipes and vessels.

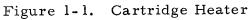
Mode of Failure:

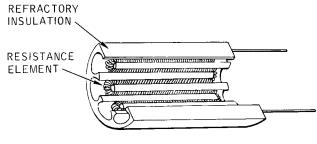
- 1) Heating elements melted away or burned out.
- 2) Heater jacket ruptured.
- 3) Heater circuits opened or grounded.

Failure Description:

- 1) Poor heat sink caused excessive temperature.
- 2) Stagnant sodium, or foreign particles caused burnout.
- 3) Vapor bubbles on the surface of tubular heaters caused burnout.

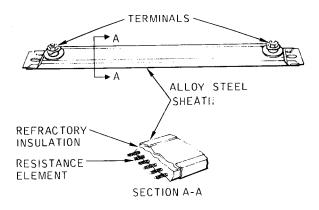
Control Methods:


- 1) Provide rigid specifications to ascertain closed loop temperature control.
- 2) Provide adequate heat sinks.
- 3) Quality assurance should review all burnout failures to determine possible influence of the heater control circuit.


b. Discussion and Recommendations (See Figures 1-1 through 1-3)

Resistance Heaters:

The resistance heater malfunctions which were tabulated were not sufficiently described to accurately evaluate them individually. Heaters which were burned out did so because of poor heat sinks, conducting heat away from the



7-7694-215-27

Figure 1-2. Clam Shell Heaters

7-7694-215-26

Figure 1-3. Strip Heaters

sheath material of the tubular heaters. In one case, insulating material fell and packed around a furnace-type heater on the outside of a hot trap, causing the heater to burn out.

In several other cases, tubular heaters immersed in sodium burned out for no apparent reason. Previous experiments with immersion heaters, operating at high temperatures in stagnant sodium, has shown that they frequently experience high-temperature excursions and burnout. Heaters with this type of malfunction have been examined and it has been determined that the nichrome elements in the heaters have vaporized, indicating a temperature in excess of 2600°F. It is suspected that sodium vapor bubbles collect on the surface of the tubular heaters, effectively preventing good heat transfer to the liquid sodium, and resulting in the heater burnout. If the sodium is flowing past the heaters, the situation is somewhat relieved since the bubbles are removed from the heater surface.

It is recommended that immersion heaters shall not be used in sodium heating applications in excess of 1000°F unless appropriate precautions are taken. One such precaution would be to place skin thermocouples on representative heater sheaths to control the heater maximum temperature. Another precaution would be to use a flow switch which would deenergize the heaters upon the loss of sodium flow.

Resistance-type heaters are very reliable if properly installed and controlled. The maximum heat density should be controlled to as low a value as is practical. This is usually accomplished by operating the heater at less than rated voltage.

Various types of heater control systems are available, ranging from a sophisticated solid-state proportional control to a simple off-on control. In general, reliability is usually enhanced by the simpler forms of control.

High-quality heaters can be built to very rigid specifications. Commercialtype tubular heaters also are considered to be highly reliable.

Induction Heaters:

Some induction heating malfunctions were also reported. As might be expected, most of the problems were related to grounded wiring, or open circuits. One weakness of induction heating is the large amount of wire which is exposed to mechanical damage, as well as the exposure of the wire insulation to high temperatures. This method of heating is not recommended except in special cases.

LMEC-Memo-69-7, Vol I

1-62

TABLE ______

FAILURE DATA FOR <u>HEATERS (ELECTRICAL)</u> (Sheet 1 of 4)

(Sheet 1 of	(Sheet	t l of	4
-------------	--------	--------	---

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Heater/Terminals Heat Transfer/Liquid Metals Purification 38 224237 	 SRE Hot trap main primary sodium system 1300°F, 26 kw Maintenance log, 8/13/63 	MI 320	MI 21	MI 530	Unknown	Protective system	 Open circuit (furnace terminal connection burned). Local repair. Design hot trap vault to permit proper cooling of terminals and the performance of maintenance work space problem.
2	 Heater/Heating Ele- ment Heat Transfer/Liquid Metals Purification 38 224237 	 SRE Hot trap main primary sodium system 1300°F, 26 kw Operating log, 11/8/65 	MI 156	MI 12	MI 530	Unknown	Protective system	 Thermal insulation falling into furnace caused heating element to burn out. Elements replaced. Problem result of inadequate space for hot trap instal- lation. Design hot trap vaults to provide adequate working room.
3	 Argon Heater/Ele- ments Fuel Handling/Fuel Handling Machines (External) 38 235140 	 Fermi Cask Car Minimum 350°F, Chromalox Type CABB-25 EFAPP No. 47 	MI 187	MI 17	MI 550	4015	Direct observation	 Heating elements melted. Part replaced with type TDH-60 (derated to 50 kw). None.
4	 Heaters/Pot Head Fuel Handling/Fuel Handling Machines (External) 38 235140 	 Fermi Cask Car Minimum 350°F, argon EFAPP No. 59 	MI 478	MI 17	MI 530	6470	Direct observation	 Melted improperly made pot heads on heater terminals. Part replaced. Improve fabrication procedures.
5	 Heaters/Heating Elements Fuel Handling/Fuel Handling Machines (External) 38 235140 	 Fermi Cask Car Minimum 350°F, argon PRDC-EF-14 	MI 478	MI 17	MI 530	1460	Direct observation	 Melted improperly made pot heads on heater terminals. Local repair. Improve fabrication procedures.
6	 Heater/Element Fuel Handling/ Machine Cooling System 38 235140 	 EBR-II Fuel unloading machine 10 kw, 440 v PMMR-93 	MI 500	MI 12	MI 530	9300	Operational monitors	 Heater burned out. Part replaced. None.
	1 1 2 3 4 5	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 1. Heater/Terminals 2. Heat Transfer/Liquid Metals Purification 38 224237 1. Heater/Heating Element Heat Transfer/Liquid Metals Purification 38 224237 1. Heater/Heating Elements Fuel Handling/Fuel Handling Machines (External) 38 235140 Heaters/Pot Head Fuel Handling/Fuel Handling Machines (External) 38 235140 Heaters/Heating Elements Fuel Handling/Fuel Handling Machines (External) 38 235140 Heaters/Heating Elements Fuel Handling/Fuel Handling Machines Fuel Handling/Fuel Handling Machines Fuel Handling/Suel Handling Machines Fuel Handling/Suel Handling Machines Sas 	ITEM2. SYSTEM/SUBSYSTEM2. COMPONENT LOCATION3. CODE: (Component) (System/Subsystem)3. OPERATING CONDITIONS11. Heater/Terminals 2. Heat Transfer/Liquid Metals Purification 3. 38 2242371. SRE 2. Hot trap main primary sodium sys- tem 3. 1300°F, 26 kw 4. Maintenance log, 8/13/6321. Heater/Heating Ele- ment 2. Heat Transfer/Liquid Metals Purification 3. 38 2242371. SRE 2. Hot trap main primary sodium sys- tem 3. 1300°F, 26 kw 4. Operating log, 11/8/6531. Argon Heater/Ele- ments 2. Fuel Handling/Fuel Handling Machines (External) 3. 38 2351401. Fermi 2. Cask Car 3. Minimum 350°F, Chromalox Type CABB-25 4. EFAPP No. 4741. Heaters/Pot Head 2. Fuel Handling/Fuel Han	2.SYSTEM/SUBSYSTEM2.COMPONENT LOCATION3.CODE:3.OPERATING CONDITIONS(Component)4.SOURCE DOCUMENT(System/Subsystem)4.SOURCE DOCUMENT11.Heatter/Terminals2.HeatTransfer/LiquidMetals Purification3.3.382242371.1.Heater/Heating Element2.HeatTransfer/LiquidMetals Purification1.3.382.Heatter/Heating Fleements2.Fuel Handling/FuelHandling Machines1.2.Fuel Handling/FuelHandling Machines1. <td>2.SYSTEM/SUBSYSTEM2.COMPONENT LOCATIONCODE*3.CODE:3.OPERATING CONDITIONSA.MIMI11.Heater/Terminals1.SREZ.MI3202.Heat Transfer/Liquid Metals Purification1.SREMI320Z13.1.Heater/Heating Elerment1.SREMIMIMI2.Heater/Heating Elerment1.SREMIMIMI3.1.Argon Heater/Elerments1.SREMIMI123.1.Argon Heater/Elerments1.SREMIMIMI3.1.Argon Heater/Elerments1.Cask CarMI173.1.Argon Heater/Elerments1.FermiMI187173.1.Argon Heater/Elerments1.FermiMI187173.1.Heaters/Pot Head1.FermiMI478174.ErAPP No. 473.382351401.Fermi1.Fermi5.1.Heaters/Heating Elerments1.Fermi2.Cask CarMI478175.1.Heater/Element1.Fermi2.Cask CarMI478176.1.Heater/Element1.Fermi2.Cask CarMI478176.1.Heater/Element1.Fermi3.10 Nimuru</td> <td>ITEMCODE: (Component) (System/Subsystem)2. COMPONENT LOCATIONCODE*11. Gode3. OPERATING CONDITIONS4. SOURCE DOCUMENTCAUSEMODEEFFECT11. Heater/Terminals 2. Heat Transfer/Liquid Metals Purification 3. 38 2242371. SRE 2. Hot trap main primary sodium sys- tem 3. 1300°F, 26 kw 4. Maintenance log, 8/13/63MI 320MI 21MI 53021. Heater/Heating Ele- ment 2. Heat Transfer/Liquid Metals Purification 3. 38 2242371. SRE 2. Hot trap main primary sodium sys- tem 3. 1300°F, 26 kw 4. Operating log, 11/8/65MI 112MI 1231. Argon Heater/Ele- ments 2. Fuel Handling/Fuel Handling Machines (External) 3. 38 2351401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 47MI 478MI 47841. Heaters/Fot Head (External) 3. 38 2351401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 59MI 478MI 47851. Heaters/Heating Ele- ments 2. Sast401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 59MI 478MI 47861. Heaters/Heating Ele- Handling / Sast401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 59MI 478MI 47861. Heater/Element 2. Fuel Handling / Achines (External) 3. 38 2351401. EBR-II 2. Fuel Unadaing machine 3. 38 235140MI 4. PMMR-93MI 4. PMMR-93</td> <td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS CAUSE MODE EFFECT 1 1. Heater/Terminale (Component) (System/Subsystem) 1. SRE CAUSE MI MI MI 2. Heater/Terminale 224237 1. SRE 2. Hot trap main primary sodium sys- tem MI MI MI MI MI MI MI 2. Heater/Heating Ele- ment 1. SRE 1. SRE Hot trap main primary sodium sys- tem MI MI MI MI MI MI 3. Argon Heater/Ele- ments 1. SRE 1. SRE Hot trap main primary sodium sys- tem MI MI MI MI MI 3. Argon Heater/Ele- ments 1. SRE Crosmalos Type CABB-25 MI MI MI MI 3. Argon Heater/Ele- ments 1. Fermi Crosmalos Type CABB-25 MI MI MI MI 3. 38 235140 1. Fermi Cask Car MI MI MI MI MI 4. Heaters/Heating Ele- ments 1. Fermi Cask Car MI MI MI MI MI 3. 38 . S35140 1. Fermi Cask Car MI MI MI MI MI</td> <td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE: 0PERATING CONDITIONS 0PERATING CONDITIONS</td>	2.SYSTEM/SUBSYSTEM2.COMPONENT LOCATIONCODE*3.CODE:3.OPERATING CONDITIONSA.MIMI11.Heater/Terminals1.SREZ.MI3202.Heat Transfer/Liquid Metals Purification1.SREMI320Z13.1.Heater/Heating Elerment1.SREMIMIMI2.Heater/Heating Elerment1.SREMIMIMI3.1.Argon Heater/Elerments1.SREMIMI123.1.Argon Heater/Elerments1.SREMIMIMI3.1.Argon Heater/Elerments1.Cask CarMI173.1.Argon Heater/Elerments1.FermiMI187173.1.Argon Heater/Elerments1.FermiMI187173.1.Heaters/Pot Head1.FermiMI478174.ErAPP No. 473.382351401.Fermi1.Fermi5.1.Heaters/Heating Elerments1.Fermi2.Cask CarMI478175.1.Heater/Element1.Fermi2.Cask CarMI478176.1.Heater/Element1.Fermi2.Cask CarMI478176.1.Heater/Element1.Fermi3.10 Nimuru	ITEMCODE: (Component) (System/Subsystem)2. COMPONENT LOCATIONCODE*11. Gode3. OPERATING CONDITIONS4. SOURCE DOCUMENTCAUSEMODEEFFECT11. Heater/Terminals 2. Heat Transfer/Liquid Metals Purification 3. 38 2242371. SRE 2. Hot trap main primary sodium sys- tem 3. 1300°F, 26 kw 4. Maintenance log, 8/13/63MI 320MI 21MI 53021. Heater/Heating Ele- ment 2. Heat Transfer/Liquid Metals Purification 3. 38 2242371. SRE 2. Hot trap main primary sodium sys- tem 3. 1300°F, 26 kw 4. Operating log, 11/8/65MI 112MI 1231. Argon Heater/Ele- ments 2. Fuel Handling/Fuel Handling Machines (External) 3. 38 2351401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 47MI 478MI 47841. Heaters/Fot Head (External) 3. 38 2351401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 59MI 478MI 47851. Heaters/Heating Ele- ments 2. Sast401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 59MI 478MI 47861. Heaters/Heating Ele- Handling / Sast401. Fermi 2. Cask Car 3. Minimum 350°F, argon 4. EFAPP No. 59MI 478MI 47861. Heater/Element 2. Fuel Handling / Achines (External) 3. 38 2351401. EBR-II 2. Fuel Unadaing machine 3. 38 235140MI 4. PMMR-93MI 4. PMMR-93	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS CAUSE MODE EFFECT 1 1. Heater/Terminale (Component) (System/Subsystem) 1. SRE CAUSE MI MI MI 2. Heater/Terminale 224237 1. SRE 2. Hot trap main primary sodium sys- tem MI MI MI MI MI MI MI 2. Heater/Heating Ele- ment 1. SRE 1. SRE Hot trap main primary sodium sys- tem MI MI MI MI MI MI 3. Argon Heater/Ele- ments 1. SRE 1. SRE Hot trap main primary sodium sys- tem MI MI MI MI MI 3. Argon Heater/Ele- ments 1. SRE Crosmalos Type CABB-25 MI MI MI MI 3. Argon Heater/Ele- ments 1. Fermi Crosmalos Type CABB-25 MI MI MI MI 3. 38 235140 1. Fermi Cask Car MI MI MI MI MI 4. Heaters/Heating Ele- ments 1. Fermi Cask Car MI MI MI MI MI 3. 38 . S35140 1. Fermi Cask Car MI MI MI MI MI	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE: 0PERATING CONDITIONS 0PERATING CONDITIONS

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______

FAILURE DATA FOR <u>HEATERS (ELECTRICAL)</u> (Sheet 2 of 4)

	2 SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION			DEX			1, FAILURE DESCRIPTION
TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	1	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
7	 Heater/Element Fuel Handling/ Machine Cooling System 38 235140 	 EBR-II Fuel unloading machine 10 kw, 440 v Operation weekly report, 5/68 	MI 500	MI 12	MI 530	14,300	Operational monitors	1. Heater burned out. 2. Part replaced. 3. None.
8	 Heater/Element Fuel Handling/ Machine Cooling System 38 235140 	 EBR-II Fuel unloading machine 10 kw, 440 v Weekly maintenance report, 5/68 	MI 500	MI 12	MI 550	14,700	During actuation	 Heater burned out. Part replaced. None.
9	 Heater/Element Reactor Equipment/ Preheating Systems 38 214340 	 EBR-II Rotating plug heater 218 to 355°F ANL-7071, 6/65 	MI 500	МІ 12	MI 530	2190	Operational monitors	 Heater burned out. Part replaced. Install a fuse or circuit breaker in power leads to heater.
10	 Heater/Jacket Reactor Equipment/ Preheating Systems 38 214340 	 EBR-II Primary sodium tank (W-2) 27 kw each Weekly maintenance report, 5/21/68 	MI 500	MI 59	MI 530	14,400	Operational monitors	 Heater jacket ruptured. Part replaced. Operate heater at slightly less than rated voltage to prolong life.
	2. Reactor Equipment/ Preheating Systems	 EBR-II Primary sodium tank (W-4) 27 kw each Operation weekly report, 5/21/68 	MI 500	MI -13	MI 530	14,400	Operational monitors	 Sodium shorted heater element. Part replaced. None.
12	 Heater/Element Reactor Equipment/ Preheating Systems 38 214340 	 EBR-II Primary sodium tank (W-4) 27 kw each Operation weekly report, 2/14/68 	MI 500	MI 12	MI 530	13,500	During preventive maintenance	 Heater burned out. Part replaced. None.
13	 Heater/Element Reactor Equipment/ Preheating Systems 38 214340 	 EBR-II Primary sodium tank (W-5) 27 kw each PMMR-69, 3/66 	MI 500	MI 12	MI 530	4955	Operational monitors	 Element burned out. Part replaced. None.
	TEM 7 8 9 10 11 12 13	 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem) 7 1. Heater/Element 2. Fuel Handling/ Machine Cooling System 3. 38 235140 8 1. Heater/Element 2. Fuel Handling/ Machine Cooling System 3. 38 235140 9 1. Heater/Element 2. Reactor Equipment/ Preheating Systems 3. 38 214340 10 1. Heater/Lement 2. Reactor Equipment/ Preheating Systems 3. 38 214340 11 1. Heater/Element 2. Reactor Equipment/ Preheating Systems 3. 38 214340 11 1. Heater/Element 2. Reactor Equipment/ Preheating Systems 3. 38 214340 12 1. Heater/Element 2. Reactor Equipment/ Preheating Systems 3. 38 214340 12 1. Heater/Element 2. Reactor Equipment/ Preheating Systems 3. 38 214340 13 1. Heater/Element 2. Reactor Equipment/ Preheating Systems 3. 38 38 	Z.SYSTEM/SUBSYSTEM Component) (System/Subsystem)Z.COMPONENT LOCATION 3.71.Heater/Element 2.Fuel Handling / Machine Cooling System 3.1.EBR-II 2.Fuel Handling / 2.81.Heater/Element 2.2.Fuel unloading machine 3.10 kw, 440 v 4.81.Heater/Element 2.Fuel unloading machine 3.10 kw, 440 v 4.81.Heater/Element 2.Fuel unloading machine 3.10 kw, 440 v 4.91.Heater/Element 2.Fuel unloading machine 3.10 kw, 440 v 4.1.EBR-II 2.Fuel unloading machine 3.10 kw, 440 v 4.1.EBR-II 2.Fuel unloading machine 3.10 kw, 440 v 4.1.EBR-II 2.Fuel unloading machine 3.218 to 355°F 4.101.Heater/Jacket 2.1.EBR-II 2.2.2.Primary sodium tank (W-2) 3.2.7 kw each 4.Weekly maintenance report, 5/21/68111.Heater/Element 2.2.Primary sodium tank (W-4) 3.2.7 kw each 4.121.Heater/Element 2.2.7 kw each 4.2.7 kw each 4.2.7 kw each 4.	2.SYSTEM/SUBSYSTEM2.COMPONENT LOCATIONTEM3.CODE: (Component) (System/Subsystem)3.OPERATING CONDITIONS71.Heater/Element1.EBR-II2.Fuel Handling/ Machine Cooling System1.EBR-II3.38 2351402.Fuel unloading machine 3.MI81.Heater/Element Petheating Systems 3.1.EBR-II 2.MI3.1.Heater/Element Preheating Systems 3.1.EBR-II 2.MI101.Heater/Element/ Preheating Systems 3.1.EBR-II 2.Reactor Equipment/ Preheating Systems 3.MI111.Heater/Lement Preheating Systems 3.1.EBR-II 2.MI2.1.EBR-II 2.Primary sodium tank (W-2) 3.27 kw each 4.MI2.1.EBR-II 2.Primary sodium tank (W-4) 3.500111.Heater/Element 2.1.EBR-II 2.MI2.1.EBR-II 2.Primary sodium tank (W-4) 3.500121.Heater/Element 2.1.EBR-II 2.MI2.1.EBR-II 2.2.500131.Heater/Element 2.1.EBR-II 2.2.131.Heater/Element 2.1.EBR-II 2.2.143401.EBR-II 2.2.500121.Heater/Element 2.2.<	2.SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem)2.COMPONENT LOCATION SOURCE DOCUMENTCODE*71.Heater/Element 2.4.SOURCE DOCUMENTCAUSEMODE71.Heater/Element 2.1.EBR-II 2.Fuel unloading machine 3.MI 500MI 1281.Heater/Element 2.1.EBR-II 2.Fuel unloading machine 3.MI 500MI 1281.Heater/Element 2.1.EBR-II 2.Fuel unloading machine 3.MI 5001291.Heater/Element 2.1.EBR-II 2.Rotating plug heater 3.MI 500MI 50091.Heater/Jacket 2.1.EBR-II 2.Rotating plug heater 3.MI 500MI 500101.Heater/Jacket 2.1.EBR-II 2.Primary sodium tank (W-2) 3.Z7 kw each 4.MI 500111.Heater/Element 2.1.EBR-II 2.MI 50059111.Heater/Element 2.2.Primary sodium tank (W-4) 3.S0013121.Heater/Element 2.2.Primary sodium tank (W-4) 3.S0012131.Heater/Element 2.2.Primary sodium tank (W-4) 3.S0012143401.EBR-II 2.Primary sodium tank (W-4) 3.S0012121.Heater/Element 2.2.Primary sodium tan	2.SYSTEM/SUBSYSTEM (Component) (System/Subsystem)2.COMPONENT LOCATION 3.CODE*71.Heater/Element (System/Subsystem)1.EBR-II 2.Fuel Handling/ 3.MIMI71.Heater/Element System 3.1.EBR-II 2.Fuel unloading machine 3.MIMI81.Heater/Element System 3.1.EBR-II 2.Fuel unloading machine 3.MIMI81.Heater/Element System 3.1.EBR-II 2.Fuel unloading machine 3.MIMI91.Heater/Element 2.2.Rotating plug heater 3.SoonMIMI1.EBR-II 2.Rotating plug heater 3.218 to 355°F 3.MIMIMI1.Heater/Jacket 2.Primary sodium tank (W-2) 3.27 kw each 4.MIMIMI101.Heater/Element 2.1.EBR-II 2.Primary sodium tank (W-4) 3.SoonMIMI111.Heater/Element 2.1.EBR-II 2.Primary sodium tank (W-4) 3.SoonMIMI121.Heater/Element 2.1.EBR-II 2.Yi kw each 3.SoonMIMI121.Heater/Element 2.2.Yi kw each 3.SoonSoonSoonSoon111.Heater/Element 2.1.EBR-II 2.Yi kw each 3.SoonMIMI12 </td <td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT CAUSE MODE EFFECT OPERATING 7 1. Heater/Element 2. Fuel unloading machine MI MI<td>Zest SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE: OPERATING CONDITIONS CODE: OPERATING CONDITIONS METHOD OF FAILURE DETECTION 7 1. Heaster/Element 2. Fuel Manding/ System 1. EBR-II CAUSE MODE EFFECT OPERATING MODE OPERATING EFFECT OPERATING DETECTION 8 1. Heaster/Element 1. EBR-II Fuel unloading machine MI MI MI S30 14,300 Operational monitors 8 1. Heaster/Element 1. EBR-II Fuel unloading machine MI MI</td></td>	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT CAUSE MODE EFFECT OPERATING 7 1. Heater/Element 2. Fuel unloading machine MI MI <td>Zest SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE: OPERATING CONDITIONS CODE: OPERATING CONDITIONS METHOD OF FAILURE DETECTION 7 1. Heaster/Element 2. Fuel Manding/ System 1. EBR-II CAUSE MODE EFFECT OPERATING MODE OPERATING EFFECT OPERATING DETECTION 8 1. Heaster/Element 1. EBR-II Fuel unloading machine MI MI MI S30 14,300 Operational monitors 8 1. Heaster/Element 1. EBR-II Fuel unloading machine MI MI</td>	Zest SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE: OPERATING CONDITIONS CODE: OPERATING CONDITIONS METHOD OF FAILURE DETECTION 7 1. Heaster/Element 2. Fuel Manding/ System 1. EBR-II CAUSE MODE EFFECT OPERATING MODE OPERATING EFFECT OPERATING DETECTION 8 1. Heaster/Element 1. EBR-II Fuel unloading machine MI MI MI S30 14,300 Operational monitors 8 1. Heaster/Element 1. EBR-II Fuel unloading machine MI MI

* I \square INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

FAILURE DATA FOR <u>HEATERS (ELECTRICAL)</u> (Sheet 3 of 4)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY VI 2. COMPONENT LOCATION		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION		
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS		
14	 Heater/Element Reactor Equipment/ Preheating Systems 38 214340 	 EBR-II Primary sodium tank (W-5) 27 kw each Operation maintenance report 	MI 500	MI 18	MI 530	15,240	During routine inspection	 Low resistance reading on heating element. Part replaced. None. 		
15	 Heater/Element Reactor Equipment/ Preheating Systems 38 214340 	 EBR-II Primary sodium tank (W-2) 27 kw each PMMR-69, 3/66 	MI 500	MI 12	MI 530	4955	Operational monitors	 Heater element burned out. Part replaced. Operate heater at slightly less than rated voltage to prolong heater life. 		
16	 Heater/Element Reactor Equipment/ Preheating Systems 38 214340 	 EBR-II Secondary sodium tank (west nozzle) 27 kw each PMMR-91, 12/1/66 	MI 500	MI 12	MI 530	8780	Operational monitors	 Heater element burned out. Part replaced. None. 		
17	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	 Fermi Panel 6, circuit 5, No. 1 IHX - EF-46 	MI 16Z	MI 21	MI 530	14,941	During actuation	 Open circuit. Local repair. None. 		
18	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	1. Fermi 2. Panel 6, circuit 8, No. 1 IHX 3 4. EF-46	MI 16Z	MI 21	MI 530	14,941	During actuation	 Open circuit. Local repair. None. 		
19	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	1. Fermi 2. Panel 6, circuit 9, No. 1 IHX 3 4. EF-46	MI 16Z	MI 21	MI 530	14,941	During actuation	 Open circuit. Local repair. None. 		
20	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	1. Fermi 2. Panel 8, circuit 10, No. 3 30 in. pipe 3 4. EF-46	MI 16Z	MI 13	MI 530	14,941	During actuation	 Grounded circuit. Local repair. None. 		

٠

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______

FAILURE DATA FOR <u>HEATERS (ELECTRICAL)</u> (Sheet 4 of 4)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAII	URE IN CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
21	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	1. Fermi 2. Panel 6, circuit 4, pump No. 1 3. – 4. EF-46	MI 16Z	MI 13	MI 530	14,941	During actuation	 Grounded circuit. Local repair. None.
22	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	1. Fermi 2. Panel 8, circuit 19, pump No. 3 3. – 4. EF-46	MI 16Z	MI 21	MI 530	14,941	During actuation	 Open circuit. Local repair. None.
23	 Heaters/Heating Element Heat Transfer/ Purification 38 224237 	 Fermi Primary sodium service - PRDC-EF-53 	MI 161	MI 12	MI 530	14,941	Direct observation	 Circuits burned out. Component corrective modification. Recurring electrical problems should be technically analyzed and recommendations made.
24	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	 Fermi Secondary/secondary sodium piping - PRDC-EF-43 	MI 442	MI 1Z	MI 530	14,941	Direct observation	 Insulation dried, cracked, and was falling off. Part replaced. Use high temperature insulation where temperature is a problem.
25	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	 Fermi No. 2 and 3 circuit, 12-17 - PRDC-EF-34 	MI 15Z	MI 13	MI 530	14,763	Operational monitors	 Heater circuit grounded. Component corrective modification. None.
26	 Heaters/Wiring Reactor Equipment/ Preheating 38 214340 	 Fermi No. 2 and 3 circuit, 12-18 - PRDC-EF-34 	MI 15Z	MI 13	MI 530	14,763	Operational monitors	 Heater circuit grounded. Component corrective modification. None.
*		MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

1-66

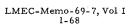
TABLE _1-28_

FAILURE DISTRIBUTION FUNCTIONS

and a second second second second second second second second second second second second second second second

COMPONENT HEATERS (ELECTRICAL)

--


	COMPONENT SUBTYPE	0 1	0	20	30) 4	0 5	0 6	0_7	0 8	09	0 10
PLANT TYPE	Nuclear Power Reactor				_							
SYSTEM	Reactor Auxiliary Cooling and Heating Coolant Receiving, Makeup and Treatment											
COMPONENT PART	Wiring Heating Element											
CAUSE	Environmental Inherent											
MODE	Electrical											
EFFECT	Labor and materials loss only											

	COMPONENT <u>HEATERS (ELECTRICAL)</u>	_										
	COMPONENT SUBTYPE RESISTANCE HEATERS											
		- 0 1	.0 2	0 3	30 4	0 5	6 0	0 7	0 8	0 9	0 10	
	Nuclear Power Reactor)	ř.	Ť	Ť	Ť	Ť	Ĭ	Ť	Ť Í	ř i	
PLANT TYPE	Nuclear Test Reactor	1								-		
ZĽ		1	1									
۵.		1										
<u></u>		1	<u>∔</u> —	<u> </u>	<u>+</u>	1	<u> </u>		<u> </u>	1 T		
	Reactor Auxiliary Cooling and Heating											
	Coolant Receiving, Makeup and Treatment	 										
SYSTEM	Fuel Handling Machines		<u> </u>	1					1			
ST		1					1					
S		4										
		1										
			1									
						<u> </u>						
	Heating Elements									-		
	Heating Terminals						1			ł	1	
<u>-</u>	Heating Jacket											
AR	Others					Į –	ļ		ļ			
COMPONENT PART		1										
л Ш							ł			t		
NO												
МЪ						ļ			1		ļ	
3			1									
		1										
		1			1	ļ						
		1				[Í		
		<u> </u>	<u>i</u>	<u> </u>	<u> </u>	1 I	1		<u> </u>	1	<u> </u>	
	Environmental											
ш		4							1	ļ		
CAUSE	Human error					i						
U U	Inherent		–		1]		
	Ünknown			Í		i	<u> </u>		•			
	Electrical							_				
ω		1				[[
MODE	Mechanical											
Σ		1										
		1										
		<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>			+	1	<u> </u>	<u> </u>				
⊢												
ы Ш												
EFFECT	Labor and material loss only			 								
ш	System/component inoperative									l		
					1	1]		

TABLE <u>1-29</u>

FAILURE DISTRIBUTION FUNCTIONS

- - - - -

TABLE ______

GENERAL SUMMARY

	COMPONENT <u>HEATERS (ELECTRICAL)</u> FAILURES (%) 0		10	20	3(D	40	50	6(0	70	8	0	90	100
	Environmental			Ţ	Ĩ		-	Ť			Ť	<u> </u>		Ť	Ţ
	Human error	t.													
CAUSE	Inherent		╺╍┿╸												
AU	Unknown				_		-								
, Ç					ł										1
										_					
	Electrical						-		_	_		_		-	
	Mechanical														1
MODE							ļ								
Μ								1	1						
	Labor and material loss only	-	-	-							_	_		-	
СТ	System/component inoperative	١.	-				}								
EFFECT															
ш															
														1	
r	TOTAL FAILURES PER TYPE 0		2	4	6) 	8	10	1	2	14		6	18	20
	Resistance heaters											_			
	Induction heaters														1
							1								
					ĺ										
1															
	· · · · · · · · · · · · · · · · · · ·														
	OPERATING HOURS (THOUSANDS) 0		20	40	6	0	80	100	12	20	140	16	50	180	200
	Resistance heaters	-								-	Т				
	Induction heaters			-+-	_	_			_			-			
ТҮРЕ												i			}
Γ́-														ļ	
			Í		Í										
		·								L					
	FAILURE RATE (FAILURES/10 ⁶ hr) 0	Т	20	40	60	0	80		$\frac{12}{1}$	20 	140	$\frac{16}{1}$	50 Г Т	180	200
	Resistance heaters					_									
	Induction heaters		Τ		Π										
			1			1									

3. Motors (electric)

Failure data for motors (electric) are presented in Tables 1-31 through 1-34.

a. Motors (200 hp and larger)

(1) Reliability Information

Design Features:

Electric motors, squirrel cage induction and synchronous types, 200 hp and larger, operating at 480 and 4160 volts, used as pump and fan prime movers. Motors are designed for both indoor and outdoor installation.

Critical Characteristics:

The maintenance with regard to lubrication, alignment, moisture and dirt protection is important.

Mode of Failure:

- 1) Bearing failure
- 2) Insulation failure
- 3) Brush failure.

Failure Experience:

- 1) Seven malfunctions due to bearing failure
- 2) One outage due to dirty brushes
- 3) Four malfunctions caused by insulation failure.

Control Methods:

- The high bearing failure rate indicates that the machine maintenance in the facilities reporting is not as thorough as it should be. In most cases, failure was caused by improper lubrication. Misalignment or improper loading probably accounts for certain bearing failures. Proper installation and maintenance are necessary for satisfactory service.
- 2) Outdoor motors should have enclosures which will protect the motor windings from moisture.

- 3) Motors which see intermittent service should be provided with heaters which will keep the windings dry.
- Motors with standard insulation should not be operated in an argon atmosphere, due to the low breakdown voltage characteristics of argon. If an inert atmosphere must be provided, nitrogen would be a better choice.
- 5) Open motors should be operated only in a clean environment.

(2) Discussion and Recommendations

A look at the failure experience records of the plants represented in this report shows that the predominant type of malfunction is bearing failure, with insulation failure running a close second. As is the case with all rotating machinery, proper equipment installation and lubrication plays a very important part in long bearing life.

If the experience of the electric utility industry is used as a basis of comparison, it is seen that the electric motor malfunction experience of the facilities reported on is far greater than the utilities standards. Since the installations reported on are either test facilities or prototype nuclear plants, it might be concluded that this difference in electric motor performance is due to less effective preventive maintenance, lower installation standards, or the difference in the mode of operation between these facilities and typical utility power plants. By their nature, test facilities are one-of-a-kind installations and are therefore not always adoptable to established design and construction standards. They are usually operated on an intermittent basis, which imposes unusual demands on electric motors. Continuous duty motors have a longer operating life than intermittent duty motors. A large motor sitting at rest for long periods of time will frequently suffer bearing damage. Motor windings which are not kept warmer than the ambient temperature will absorb moisture, which frequently causes an insulation breakdown. Large intermittent duty motors should be provided with heaters to prevent this situation.

An examination of electric utility maintenance and operating standards would be of value in establishing similar standards for nuclear facilities, particularly large LMFBR plants. Different utilities have a variety of operating philosophies which affect their maintenance procedures. The two electric utilities serving the Los Angeles area, for example, operate with different preventive maintenance philosophies. One utility operates its turbo-generator units from 18 months to 24 months continuously before they have a scheduled shutdown. During this shutdown period, of from two to three weeks, a thorough inspection of the unit and all of its auxiliary electric motors, is made and necessary maintenance is performed. At the next scheduled unit shutdown, all appropriate machines, including many electric motors, are dismantled and completely overhauled.

The other utility has a scheduled unit shutdown only once every five years. They are willing to take the risk of an unscheduled shutdown before the fiveyear period is over; and if this occurs, their major overhaul may be performed during the emergency shutdown. Operating procedures are a blend of engineering and economics.

Both of the utilities referred to maintain a highly efficient daily maintenance program. This includes visual inspection, complex instrumentation and alarm systems, and redundant standby systems in critical areas. Lubrication techniques are very well organized.

Appropriate methods should be borrowed from the electric utility industry and applied to the nuclear industry. With proper maintenance, facility shutdowns due to bearing failure could be virtually eliminated. These methods will be especially applicable to future LMFBR plants which will have a probable refueling shutdown about once a year.

Insulation failure in most motors can be traced to moisture in the windings or to overheating. Motors exposed to the weather should be either totally enclosed or weather protected. Motors must also be properly ventilated to prevent overheating. In some cases high-temperature insulation in the windings must be specified. Electric motors should never be operated in an argon cover gas environment. Experience has shown that insulation failure is quite common in such situations. This is due to the low breakdown voltage characteristics of argon. The same is true of certain other inert gases.

Probable insulation failure can be predicted by measuring the insulation resistance, with a Megger or other non-destructive methods, at regular intervals. Ten years is a reasonable life expectancy for large motor windings. Whether a motor is rewound or replaced is a matter of economics.

b. Motors (less than 200 hp)

(1) Reliability Information

Design Features:

Electric motors, squirrel cage induction, less than 200 hp, operating at 120 and 480 volts are for all types of applications. Most fractional horsepower motors are rated 120 volts, single phase. Some fractional horsepower and all integral horsepower motors are rated 480 volts, three phase.

Critical Characteristics:

The maintenance with regard to lubrication, alignments, and moisture.

Mode of Failure:

- 1) Bearing failure
- 2) Insulation failure
- 3) Brush failure.

Failure Experience:

- 1) Eleven malfunctions due to bearing failure
- 2) Seven malfunctions due to insulation failure
- 3) One reported brush failure.

Recommendations

- The high incidence of bearing failures could be greatly reduced by proper maintenance. Most bearing failures were caused by improper lubrication. Other contributing factors to bearing failures are shaft misalignment and improper loading. Proper installation and maintenance of these motors would eliminate most bearing problems.
- 2) Winding insulation failures were caused in most cases by open type motors being exposed to the weather. In this type of location the motor should be either totally enclosed or weather protected.
- 3) Brush wear is to be expected, but it can be minimized by proper adjustment.
- (2) Discussion and Recommendations

```
Refer to Paragraph 3.a.(2).
```

TABLE ______

FAILURE DATA FOR MOTORS (ELECTRIC)

(Sheet 1 of 6)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*			ERATING METHOD OF FAILURE	1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Motor/Bearing Accessory Electrical Equipment/Station Service Equipment 09 461000 	 EBR-II Auxiliary primary pump-rectifier cooling fan Operations weekly report, 12/20/67 	MI 500	MI 52	MI 530	13,380	Operational monitors	 Bearings worn out. Part replaced. None.
2	 Motor/Stator Windings Turbine-Generator Units and Condenser/ Circulating Water System 09 330000 	 SCTI Circulating cooling water system (P-2) 200 hp, 4160 v, 26 amps Incident report No. 118 	MA 236	MA 11	MA 530	8,400	Direct observation	 Motor shorted out causing circuit breaker trip when attempt made to start motor. Vendor repair of component. Use weather protected electrical motors if exposed to weather.
3	 Motor/Brushes and Brush Rigging Heat Transfer/ Reactor Coolant 09 221131 	 Fermi Primary, pump 3/pony motor 350 hp, 900 rpm EF-28 	MI 500	MI 5Z	MI 530	13,930	Audio noise	 Brushes dirty. Local repair, brushes and rigging cleaned. Revise preventive maintenance inspection intervals to prevent unscheduled outage of equipment.
4	 Motor/Bearings Heat Transfer/ Reactor Coolant 09 221131 	 Fermi Primary, pump 3/pony motor 350 hp, 900 rpm EF-28 	MI 500	MI 5Z	MI 530	13,930	Audio noise	 Bearings showed discolored ring. Local repair, two bearings transposed and reused. None.
5	 Motor/Dust Cover Heat Transfer/ Reactor Coolant 09 221131 	 Fermi Primary, pump 3/pony motor 350 hp, 900 rpm EF-29 	MI 136	MI 53	MI 530	14,360	Protective system	 Argon leak past dust cover. Local repair, installing gasket beneath dust cover and sealing with RTV 732. None.
6	 Motor/Field Heat Transfer/ Reactor Coolant 09 221121 	 Fermi Primary, pump 1/motor 1000 hp, 900 rpm PRDC-EF-16 	MI 151	MI 13	MI 530	9,390	Operational monitors	 Short circuit in field winding. Vendor repair of component. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

MA = MAJOR MALFUNCTION P = PROBLEM

, 1

TABLE <u>1-31</u>

FAILURE DATA FOR MOTORS (ELECTRIC) (Sheet 2 of 6)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAI	ILURE INDEX CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
7	 Motor/Bearings Heat Transfer/ Reactor Coolant 09 221121 	 Fermi Primary, pump 1/motor 1000 hp, 900 rpm PRDC-EF-2 	MI 472	MI 52	MI 530	2,920	Direct observation	 Bearing failed due to shaft current. Part replaced. None.
8	 Motor/Bearings Heat Transfer/ Reactor Coolant 09 221121 	 Fermi Primary, pump 1/motor 1000 hp, 900 rpm PRDC-EF-13 	MI 171	MI 5Z	MI 530	4,280	Alarm	 Bearings worn out. Part replaced. None.
9	 Motor/O-Rings Heat Transfer/ Intermediate Cooling 09 222121 	 HNPF Secondary sodium pump 350 hp Work request No. 2675 	MI 11Z	MI BZ	MI 530	6,541	During inspection of system associated to failure component.	 O-rings replaced during inspection of upper motor bearing. Component corrective modification. None.
10	 Motor/Bearing Heat Transfer/ Reactor Coolant 09 221121 	 SCTI Primary sodium pump (P-5) 200 hp, 480 v Incident report No. 334 	MA 500	MA 52	MA 125	12,185	Direct observation	 Bearing noisy, motor radial bearing race broken. Replaced. Use of factory sealed bearings recommended.
11	 Motor/Bearing Heat Transfer/ Intermediate Coolant 09 222121 	 SCTI Secondary sodium system pump (P-6) 350 hp, 4160 v, 3 phase Incident report No. 86 	I 114	I 58	I 45	555	Direct observation	 Motor reported to have sealed bearings; therefore, bearing was not lubricated. Replaced bad bearing with factory sealed type. Improve Quality Assurance inspection procedures.
12	 Motor/Shading Coil Heat Transfer/ Intermediate Coolant 09 222121 	 SCTI Secondary sodium system pump (P-6) 350 hp, 4160 v, 3 phase Incident report No. 84 	MI 127	MI 29	MI 520	450	Protective system	 Shading coils of motor starter loose, caused contact chattering. Remove coils, repair, reinstall. Revise frequency of preventive maintenance inspectio to prevent unscheduled outage.
13	 Motor/Winding Heat Transfer/ Intermediate Coolant 09 222121 	 SCTI Secondary sodium system pump (P-6) 350 hp, 4160 v Incident report No. 32 	MI 167	MI 15	MI 550	115	Protective system	 A phase-to-phase fault between a lead and coil caused the fuse to blow. Component design change. Air cooling should replace argon cooling.

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-31</u>

FAILURE DATA FOR MOTORS (ELECTRIC) (Sheet 3 of 6)

	1	L. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	URE IN CODE*				1. FAILURE DESCRIPTION
ITE	M	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
14		 Motor/Windings Heat Transfer/ Intermediate Coolant 09 222121 	 SCTI Secondary sodium system pump 350 hp, 4160 v Incident report No.2 	MA 157	MA 13	MA 530	Unknown	During actuation	 Motor winding insulation failed due to improper operating environment. Vendor repair of component. Air cooling should replace argon cooling.
		 Motor/Wiring Reactor Equipment/ Reactor Shielding 09 213000 	l. EBR-II 2. Reactor cover holddown 3. 4. PMMR-80	MI 500	MI 52	MI 530	6,780	Preventive mainte- nance	 Motor inoperative. Local repair, motor rewired. Revise preventive maintenance procedure to include inspection for oil leak.
16		 Motor/Bearing Other Reactor Plant Equipment/Blower 09 290000 	 EBR-II Secondary sodium expansion tank (level probe cooling) Alternating current Maintenance report, 5/21/68 	MA 500	MA 52	MA 520	14,576	Audible noise	 Bearings failed. Temporary cooling applied until tests completed. Power supply should be relocated to an area of lower ambient temperature.
17		 Motor/Bearing Reactor Equipment/ Preheating Systems 09 214330 	 SCTI Preheat furnace (H-2)/induced draft fan 1.5 hp, 950 rpm Incident report No.111 	MI 187	MI 57	MI 530	5,500	Direct observation	 Motor bearings overheated and seized. Part replaced. Recommend use of high-temperature, factory-sealed bearings.
18		 Motor/Starting Relay Reactor Equipment/ Preheating Systems 09 214340 	 SCTI Primary sodium air preheat furnace fan motor 1/3 hp, 1725 rpm, 115 v Incident report No. 312 	MI 417	. MI 57	MI 530	4,518	Direct observation	 Single phase starting relay burned out. Probable cause bad bearings or sticking start to run relay. Component part replaced, start and stop procedure modified. Protective hood installed over unit. None.
19		 Motor/Bearing Feedwater Supply and Treatment/Makeup Water Treatment 09 272300 	 SCTI Treated water system pump 75 gpm, 231 ft/head, 100°F Incident report No. 44 	MI 414	MI 17	MI 530	707	Direct observation	 Motor bearing race guide broke because bearing overheated, short gage glass did not afford indication of low oil level. Part replaced. Design should specify adequate sight level indication; lubrication procedures should be reviewed.
*		= INCIDENT	MI = MINOR MALFUNCTION					,	

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-31</u>	1	ГA	BLE	E	1-3	1
-------------------	---	----	-----	---	-----	---

FAILURE DATA FOR _______ MOTORS (ELECTRIC)

(Sheet 4 of 6)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
20	 Motor/Winding Insula- tion Steam Condensate and Feedwater Piping and Equipment/Condensate 09 283000 	l. SCTI 2. Steam and feedwater system 3. 40 hp, 3550 rpm, 440 v 4. Incident report No.99	I 236	I 13	I 530	3,544	During actuation	 Motor shorted to ground winding, insulation failed. Vendor repair, motor rewound and reinstalled. Design should provide for totally enclosed motor (instead of drip proof) if exposed to weather.
21	 Motor/Bearing Accessory Electrical Equipment/M.G. Set 09 470000 	 EBR-II Secondary sodium system/M.G. set Alternating current PMMR-92-12-15-66 	MI 125	MI 52	MI 530	9,045	Direct observation	 Outboard thrust bearing badly worn. Part replaced. Require more stringent preventive maintenance inspections.
22	 Blower Motor/ Windings Heat Transfer/ Cold Traps, Hot Traps, Filters, Strainers 09 224233 	 SRE Primary cold trap blower A. 4. Incident report, 11/27/61 	MI 237	MI 13	MI 530	Unknown	During actuation	 Water shorted out windings. Repaired locally. Purchase equipment for the environment.
23	 Motors (Electrical)/ Wiring Feedwater Supply and Treatment/Pumps and Drives 09 271200 	 SCTI Steam and feedwater 7.5 hp SCTI, incident report No. 52 	MI 32Z	MI 13	MI 550	1,452	During preventive maintenance	 Industrial maintenance man short-circuited treated water motor wires. Circuit breaker reset, motor restarted. Improve design layout and maintenance procedures.
24	 Motor/Bearing Fuel Handling/Cooling System 09 235140 	 Fermi Argon blower cask car Minimum 350°F, 100 rpm EFAPP-MR-47 	MI 187	MI 50	MI 550	6,470	Direct observation	 Bearings over heating. Part replaced, two auxiliary fans installed to cool the new bearings (180 cfm of air). Bearings operating under adverse thermal conditions should be considered during design.
25	 Motor/Bearing Fuel Handling/Cooling System 09 235140 	 Fermi Cask car No. l argon blower Minimum 350°F, argon, 1000 rpm EFAPP-MR-98 	MI 111	MI 52	MI 530	11,740	Audio noise	 Bearings worn out. Part replaced. None.

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

FAILURE DATA FOR <u>MOTORS (ELECTRIC)</u> (Sheet 5 of 6)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
I	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	26	 Motor/Bearing Retainer Fuel Handling/ Cooling System 09 235140 	 Fermi Cask car No.l argon blower Minimum 350°F, argon, 1000 rpm EFAPP-MR-98 	MI 127	MI 59	MI 530	11,740	Audio noise	 Bearing retainer broken. Part replaced. Increase frequency of preventive maintenance inspections to detect developing problems before total failure.
LMEC	27	 Motor/Brushes Accessory Electrical Equipment/M.G. Set 09 470000 	 EBR-II Secondary sodium system/M.G. set PMMR-80-6-19-66 	MI 125	MI 19	MI 530	6,920	Preventive mainte- nance	 Brushes worn. Part replaced. None.
LMEC-Memo-69-7, Vol	28	 Motor/Windings Fuel Handling/Cooling System 09 235140 	 EBR-II Fuel unloading machine 10 hp, alternating current blower Operations monthly report 11/67 	MI 126	MI 12	MI 530	12,500	Operational monitors	 Motor burned out. Motor replaced. None.
7, Vol I	29	 Motor/Unknown Reactor Equipment/ Reactor Shielding 09 213000 	 EBR-II Reactor cover lock No. 3 Alternating current Operation weekly report 2/14/68 	MI 137	MI 12	MI 530	13,500	Operational monitors	 Motor burned out. Part replaced. None.
	30	 Motor/Bearing Turbine-Generator Units and Condenser/ Central Lubricating System 09 350000 	 EBR-II Main turbine lubrication PMMR-18 	MI 500	MI 52	MI 530	1,200	Audio noise	 Noisy oil pump. Part replaced. Revise frequency of preventive maintenance inspections to detect problem before failure occurs.
	31	 Motor/Bearing Turbine-Generator Units and Condenser Lubricating System 09 350000 	l. EBR-II 2. Main turbine/oil purification 3. 4. PMMR-89	MI 500	MI 52	MI 530	7,944	Preventive mainte- nance	 Bad bearing. Part replaced. Revise frequency of preventive maintenance.
									,

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-31</u>

FAILURE DATA FOR MOTORS (ELECTRIC) (Sheet 6 of 6)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
32	 Motor/Bearings Other Reactor Plant Equipment/Auxiliary Cooling 09 290000 	 EBR-II Primary sodium system blower 4. Operations weekly report, 12/20/67 	MI 500	MI 52	MI 530	13,380	During preventive maintenance	 Bearing bad. A new blower motor was installed to replace existing motor which needs new bearings. None.
33 LMEO	 Motor/Windings Heat Transfer/ Intermediate Cooling 09 222121 	 SRE Main secondary sodium pump Incident report, 9/16/65 	MA 237	MA 13	MA 530		Alarm	 Short circuit in windings due to water after a rain storm. Removed and sent to vendor for repair. Should be weather protected, or totally enclosed.
34 34 LMEC-Memo-69-7, Vol I	 Motor/Windings Heat Transfer/ Intermediate Cooling 09 222121 	 SRE Main secondary sodium pump Operations log, 12/2/66 	MA 237	MA 13	MA 530		Alarm	 Short circuit in windings due to water after a rain storm. Removed and sent to vendor for repair. Motor should be weather protected or totally enclosed.

MA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT MOTORS (ELECTRIC)											
	COMPONENT SUBTYPEMOTORS, ELECTRIC (LARGER	тна	N 20	0 HF	²)							
		0	10	20		30	40	50 é	50 7	0 8	0 9	0 10
	Nuclear Power Reactor	Ĭ	Ť.	Ţ		—			1	Ť	ř.	ľ
Έщ	Nuclear Test Reactor											
PLANT TYPE	Component Test Facility				_							
٩.	Component rest racinty	-										
	Heat Transfer		-	-		-	-		Ì.	İ		1
	Accessory Electrical Equipment	`	•									
Σ	Generator Units and Condensor	- 	•									
ΤE												
SYSTEM												
		1										
		1										
	Bearings					-			T			
	Windings	-	_									
	Other		-	+		•					1	
COMPONENT PART											1	
μ												
E N												
NO NO	· · · · · · · · · · · · · · · · · · ·	7										
N N		1									1	
U S		1										
		1										
		1										
	Environmental		-		\		-	-				1
ш	Impurity/contamination		•									
CAUSE	Inherent]	•									
CA	Unknown]—		_		-			1			
]								<u> </u>		
	Electrical											
ш	Mechanical]				-	_					
MODE	Other]	•									
2		7										
	Plant availability loss	-		•								
EFFECT	Labor and material loss only	-	-			-		+	1	1	1	
	System/component inoperative	<u> </u>	•									ļ
μ		1				1						•
		1		- 1		1			1	1	1	1

TABLE <u>1-32</u>

FAILURE DISTRIBUTION FUNCTIONS

.

TABLE <u>1-33</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT ______ MOTORS (ELECTRIC)

COMPONENT SUBTYPE ______ MOTORS, ELECTRIC (LESS THAN 200 HP)

		FAILURES (%) 0	10) 2	0 3	0 4	0 5	0 6	0 7	0 8	0_9	0 10
	Nuclear Power Reactor			-				-				
PAT	Nuclear Test Reactor	-	_									
PLANT TYPE	Component Test Facility			_								
]
	Heat Transfer		_	-		Ι						
	Fuel Handling							ļ				
Σ	Reactor Vessel										ļ	
SYSTEM	Accessory Electric Equipment											
SΥ	Turbine Generator											
	Other Plant Equipment		_									
	Other					1	Ì					
								<u> </u>		L		
	Bearing			_						{ _		
	Winding		_			+						
L2	Brushes		-			}						
COMPONENT PART	Relays		-									
5	Unknown									ļ		
NEN												
PO												
NO N												
0					}]	ļ.		ļ			
						<u> </u>	[<u></u>	l	[
	Environmental											
CAUSE	Impurity/contamination									ľ		
AU	Inherent											
U U	Unknown									}		
						<u> </u>			L	L		
	Electrical		_	_								
MODE	Mechanical											
MO	Other							ļ				
1						}	ļ					
누그			=			<u> </u>	l	<u> </u>	L	L	<u> </u>	
╎╷╷	Plant availability loss	······										
່ <u>ບ</u>	Labor and material loss only											
EFFECT	System/component inoperative]	j				
ш I												
1 I					1	1	1	1		1		

TABLE ______

GENERAL SUMMARY

	COMPONENT MOTORS (ELECTRIC)			-		~		•			- 0	,	~				~ ^	
<u> </u>	FAILURES (%) 0		10)	2	0	30	0	40		50 T	6	0	70	8	0 	90	100
	Environmental Impurity/contamination																	
Ш	Human error															l		
CAUSE	Inherent				1													
U U	Unknown			_	_													
1																		
<u> </u>	Electrical				_		_				+			+-			<u> </u>	-
}	Mechanical															1		1
MODE	Other										Τ	-						
ž		_																
					1													
	Plant availability loss	_	=+		_		1		+		+	_		+		1	\pm	
F	Labor and material loss only						`											
EFFECT	System/component inoperative						Ι									Γ		
E.									Í									Ì
-															İ			
	TOTAL FAILURES PER TYPE 0		10)	2	 0	3())	40		 50	6	0	70	- 8	0	90	 10(
	Motors electric >200 HP			_	-	<u> </u>	Ť		Ť		Ť		<u> </u>	Ť		Ť	Ť	Ť
	Motors electric < 200 HP				_							İ						
ľ																		
							Í				1	j						1
												ĺ				1		
																İ		
	OPERATING HOURS (THOUSANDS) 0		25	;	5	0	75	5	100	1	25	15	50	175	20	00	225	250
	Motors electric >200 HP		-	_	_		-		-		Γ							
	Motors electric < 200 HP		-		-		+		+		┿							
											1							
TΥΡΕ														ĺ				
Γ́-											1			1				1
-																		Ì
	FAILURE RATE (FAILURES/10 ⁶ hr) 0		10	0	20	0	30	0	400	5	00	60	0	700	80	0	900	1000
[Motors electric > 200 HP	-		•		Τ			Ĩ				Т	Τ		T		
	Motors electric <200 HP	-	+	•														
					1	Ì					1			ĺ	1			
														1				
														1				
⊢⊢																		
										1	1			1				

```
4. Power Switch Gear, Circuit Breakers, Relays, Transformers
```

Failure data for Power Switch Gear, Circuit Breakers, Relays, Transformers are presented in Tables 1-35 through 1-40.

- a. Circuit Breakers
- (1) Reliability Information

Design Features:

Circuit breakers are used to interrupt electrical circuit because of malfunctions.

Critical Characteristics:

Circuit breakers may experience both electrical and mechanical malfunctions. The contacts must be kept clean and their interruption capacity must be adequate.

Mode of Failure:

- 1) Short circuits
- 2) Overheated
- 3) Open circuits
- 4) Erratic behavior
- 5) Broken.

Failure Description:

- 1) Wires were short circuited during construction.
- 2) A circuit breaker overheated.
- 3) Circuit breakers tripped.
- 4) Switch broke.

Control Methods

- 1) Improved supervision when construction work is being done
- 2) Improved cooling
- 3) Improved maintenance
- 4) More attention to vendor specifications.

```
LMEC-Memo-69-7, Vol I
```

1-83

(2) Discussion and Recommendations

The data contained in the tabulated malfunction report is so fragmentary and incomplete that it is impossible to arrive at any definite conclusions, or for that matter, to properly evaluate the malfunctions that have been tabulated. For this reason the following comments relate to known problem areas in the various equipment categories.

Circuit breakers fall into two general categories, air immersed and oil immersed. The great majority are air circuit breakers. All circuit breakers are subjected to both electrical and mechanical malfunctions and must have both types of maintenance to assure proper operation.

Molded case circuit breakers, are the most widely used type of air circuit breaker, and also the least reliable. When properly applied, they perform satisfactorily; but they should be frequently inspected to minimize malfunctions. Molded case breakers have their own trip elements, some adjustable and some not adjustable, which serve as overload sensing devices. These should be calibrated periodically to prevent false tripping. The mechanical action of all circuit breakers should be frequently checked and contact surfaces kept clean. Main contacts should produce equal pressure on all three phases and arc chutes should be kept clean. It is important that circuit breakers have an adequate interrupting capacity for the available fault current at the particular point of breaker installation. A breaker should not be relocated to a different circuit without first verifying the adequacy of its interrupting capacity.

b. Relays

(1) Reliability Information

Design Features:

Relays are specifically picked to fit their function and environment. They are control devices that are actuated by variations in conditions in an electric circuit.

Critical Characteristics:

This is somewhat dependent on their use. Cleanliness and proper adjustments are important.

Mode of Failure:

- 1) Burnout
- 2) Intermittent contact
- 3) Broken parts.

Failure Description:

- 1) The relays were electrically burned out.
- 2) Relays were not pulling in properly or there was chattering.
- 3) Contactor was broken.

Control Methods

Establish maintenance procedures for length of use.

(2) Discussion and Recommendations

Relays are precision instruments and must be treated as such. They should be tested and calibrated at regular intervals to assure proper operation. The frequency of such testing will vary with the relay type and the operating environment. The testing and calibration should be done by qualified individuals who have access to the proper test equipment. Since relays have many different characteristics, the test procedure must be tailored to the relay. Instantaneous pickup and dropout current values must be checked. Inverse overcurrent relays must have their time-current characteristics verified and calibrated. Certain relays contain timing devices which must be calibrated. Contacts must be cleaned and their movement must at times be adjusted.

In addition to the above, certain relays, such as overcurrent relays, must be externally adjusted to compensate for varying load conditions. Failure to do this may result in erroneous tripping.

c. Switch Gear

(1) Reliability Information

None

(2) Discussion and Recommendations

Most switches require only superficial inspection to make sure that handles, linkage, and the like are in good mechanical condition. Contacts are usually self-cleaning, but may require occasional adjustment.

Magnetic contactors require much the same type of maintenance that a circuit breaker requires. One difference is the holding coil in a contactor which is continuously energized and which may occasionally require replacement. When used as a motor starter, care must be taken to install the proper heaters in the contactor to provide the proper overload protection for the motor.

d. Transformers

(1) Reliability Information

Design Features:

A transformer is designed to convert current variations in one electrical circuit into current and voltage variations in a second circuit.

Critical Characteristics:

Transformers must be adequately cooled.

Mode of Failure:

- 1) Burned out
- 2) Short circuited
- 3) Overheated.

Failure Description:

- 1) Transformer shorted out.
- 2) Transformer overheated, smoked.

Control Methods:

Electrical contacts should not be exposed to the weather.

(2) Discussion and Recommendations

Transformers are generally considered to be the most reliable of all the general types of electrical equipment. In spite of this high reliability factor, transformers must be properly maintained in order to obtain optimum service.

Transformers fall into several general categories, among them power distribution, instrument, and control. Each type of transformer has its own unique characteristics and does not require the same type of maintenance. Adequate cooling is a requirement of all transformers, and most are either air or liquid cooled. Transformer windings and cooling fins must be kept clean and free of foreign material to assure proper cooling.

Among the tests which should periodically be performed on most transformers are the following:

- 1) Winding resistance
- 2) Insulation resistance
- 3) Ratio
- 4) Polarity.

TABLE <u>1-35</u>

FAILURE DATA FOR POWER SWITCH GEAR CIRCUIT BREAKERS, RELAYS, TRANSFORMERS

(Sheet 1 of 5)

)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*				1. FAILURE DESCRIPTION
ITE	М	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Relay/Terminal Board Turbine-Generator Units and Condenser/ Generator Side 58 320000 	l. EBR-II 2. Turbine generator exciter 3. 20,000 kw 4. ANL-7457	MA 148	MA 53	MA 520	14,650	Operational monitors	1. Burned out. 2. Part replaced. 3. None.
		 Relay/Terminal Turbine-Generator Units and Condenser/ Generator Side 58 320000 	 EBR-II Turbine generator exciter 85 kw, 250 v ANL-7457 	MA 148	MA 12	MA 520	14,650	Operational monitors	l. Burned out. 2. Part replaced. 3. None.
	3	 Relay/Terminal Turbine-Generator Units and Condenser/ Generator Side 58 320000 	 EBR-II Generator field 20,000 kw Operations weekly report, 5/8/68 	MI 148	MI 12	MI 520	14,400	Operational monitors	 Mounting board broke down causing terminal to loosen. Malfunction caused turbine to trip off the line. Local repair. None.
	4	 Relay/Over Current Relay Accessory Electrical Equipment/Protective Equipment 58 430000 	 LCTL LCTL/sodium system pump relay 750 rpm, sodium 740°F LCTL log book No.21-1, 1/3/65 	MI 156	MI 14	MI 530	Unknown	Direct observation	 Relay was not pulling all the way in. Part replaced. None.
		 Relay/DC Power Supply Accessory Electrical Equipment/Protective Equipment 58 430000 	 LCTL LCTL/sodium system relay E 110 v, 40 amp, variable speed to 1000 rpm LCTL log book No. A-063347, 3/12/64 	MI 500	MI 12	MI 550	Unknown	Direct observation	 Relay "E" burned out. Part replaced. None.
L									<u> </u>

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-88

 $\left(\right)$

TABLE ________

FAILURE DATA FOR <u>power switch gear circuit breakers</u>, relays, transformers

(Sheet 2 of 5)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	EM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Relay/Coil Accessory Electrical Equipment/Circuit Breakers 58 412000 	 SCTI Secondary sodium P-6 sodium pump motor starter 350 hp, 4160 v, 3 phase, class II Incident report No. 32 	MI 127	MI 14	MI 530	900	Audio noise	 Faulty shading coil caused chattering noise. Replaced shading coils. Establish maintenance procedure providing for replacement after specified hours of use.
t		 Relay/Contacts Accessory Electrical Equipment/Protective Equipment 58 430000 	 SCTI Boiler feed pump motor - Incident report No. 329 	MI 117	MI 59	MI 530	6,635	Routine inspection	 Contactor broken between silver contact and bronze support segments. Replacement of parts. Design requirements and quality control improve- ment required.
LMEC-Memo-69-7, Vol		 Transformer/Coils Accessory Electrical Equipment/Trans- formers 58 411000 	 LCTL LCTL/sodium system Sodium flow from supply to core tank LCTL log book No. B-104323, 8/28/63 	MI 151	MI 17	MI 550	Unknown	Direct observation	 Iransformer overheated. Part replaced. None.
ol I		 Transformer/Coil Accessory Electrical Equipment/Trans- formers 58 411000 	 LCTL LCTL/sodium system 110 v, 40 amp, variable speed to 1000 rpm LCTL log book No. B-104322, 8/26/63 	MI 500	MI 12	MI 550	Unknown	Direct observation	 Power transformer burned out. Part replaced. None.
J		 Transformer/Windings Accessory Electrical Equipment/Trans- formers 58 411000 	 SCTI Control circuit auxiliary pump P-1 50 w/110 v Incident report No. 74 	MI 157	MI 13	MI 530	3610	Auxiliary oil pump for boiler feed pump would not start	 Transformer shorted. Transformer and associated Mercoid switch replaced. None.
		 Transformer/Coil Accessory Electrical Equipment/Trans- formers 58 411000 	 SCTI Primary system/low flow EM pump 480 v Incident report No. 50 	MA 200	MA 11	MA 530	3600	Protective system	 Control transformer shorted, fuses blown. Local repair, transformer cleaned of dirt and moisture and moved to a better protected area (switch gear room). Electrical contacts should not be directly exposed to weather effects.
*			MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

 $\label{eq:failure data for \underline{power switch gear circuit breakers, relays, transformers}$

(Sheet 3 of 5)

 $\left(\right)$

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	URE IN CODE*				1. FAILURE DESCRIPTION
ITE	M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Breaker/Contactor Accessory Electrical Equipment/Circuit Breakers 58 412000 	1. EBR-II 2. Primary tank cover 3 4. OWR, 11/21/67	MI 500	MI 55	MI 550	12,425	Operational monitors	 Breaker inoperative. Local repair. None.
1		 Breaker/Bakelite switch Accessory Electrical Equipment/Circuit Breakers 58 412000 	 EBR-II Primary-sodium purification/ silicone pump No. 2 - - PMMR-109 	MI 500	MI 59	MI 530	Unknown	Operational monitors	 Switch broken. Part replaced. None.
		 Circuit Breaker/ Contacts Accessory Electrical Equipment/Circuit Breakers 58 412000 	1. LCTL 2. LCTL/2 by 3 pump 3. – 4. LCTL log book	MI 151	MI 17	MI 530	Unknown	Direct observation	 Overheated breaker. Local repair. None.
1	5	 D-2 Breaker/Trip Mechanism Accessory Electrical Equipment/Circuit Breakers 58 412000 	 SCTI Primary sodium/P-5 pump a. Incident report, 2/11/66 	MI 157	MI 22	MI 520	Unknown	Protective system	 Trip mechanism inoperative on D-2 breaker. Part replaced. None.
1	.6	 Breaker D-2/Over- current Relay Accessory Electrical Equipment/Circuit Breakers 58 412000 	 SCTI Primary sodium pump (P-5) - Incident report No. 20 	MI 500	MI BZ	MI 530	383	Protective system	 Faulty breaker, open circuit. Defective breaker was replaced. None.
			MI = MINOR MALEUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-35</u>

FAILURE DATA FOR POWER SWITCH GEAR CIRCUIT BREAKERS, RELAYS, TRANSFORMERS

(Sheet 4 of 5)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
17	 Circuit Breaker/ Overload Turbine-Generator Units and Condenser/ Circulating Water 58 330000 	 SCTI Circulating cooling water system pump circuit breaker. - - Incident report No. 10 	MI 157	MI 22	MI 510	2205	Protective system	 Thermal overload relay tripped pump circuit. Time delay relay reset. Review vendor specification.
18 I MEC- Memo- 69- 7. Vol	 Circuit Breaker/ Overload Turbine-Generator Units and Condenser/ Circulating Water 58 330000 	 SCTI Circulating cooling water pump (P-2) circuit breaker - Incident report No. 11 	MI 157	MI 22	MI 510	2205	Protective system	 Thermal overload relay tripped pump circuit off. Time delay relay reset. Review vendor specification.
0-69-7. Vol I	 Breaker D-2/Over- current Relay Accessory Electrical Equipment/Circuit Breakers 58 412000 	 SCTI Primary sodium pump (P-5) - Incident report No. 124 	MI 500	MI 21	MI 520	Unknown	Protective system	 One wire to the circuit breaker was loose. Local repair. Improve electrical maintenance work control.
20	 Circuit Breaker/ Microswitch Accessory Electrical Equipment/Circuit Breakers 58 412000 	 SCTI Circulating water system (P-2) pump motor 5 kv, 4160 v, 1200 amps Incident report No. 322 	MA 110	MA 53	MA 530	Unknown	During activation	 Water pump failed to start. Circuit breaker could not close as screws worked loose on latching micro- switch and it did not operate. Local repair. Proper installation (lock washers, etc.)
21	 Circuit Breaker/ Overload Turbine-Generator Units and Condenser/ Circulating Water 58 330000 	 SCTI Steam and feedwater system cooling water pump (P-2) - - Incident report No. 12 	MI 157	MI 22	MI 520	2205	Protective system	 Thermal overload relay tripped pump circuit to open. Local repair, thermal overload tripping point was increased from 100 to 110%. Review vendor specification.

.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

ſ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
		3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	22	 Circuit Breaker/Wires Accessory Electrical Equipment/Circuit Breakers 58 412000 	 SCTI Control panels A, B, C Breakers engaged Incident report No. 304 	MI 324	MI 13	MI 43	2205	Protective system — tripped plant electric power	 Construction men shorted wires while working on control panel (contractor personnel). Vendor repair. None,
	23	 Breaker/Bus Bars Accessory Electrical Equipment/Circuit Breakers 58 412000 	 SCTI Motor control center 480 v, 16 unit panel, ambient Incident report No. 308 	I 300	I 13	I 570	Unknown	During modifications	 Contractor personnel shorted bus bars with electrical fish tape resulting in fire among bus bar cables. Bus bar sections and circuit breaker connections rewired. Improve supervision of construction work.
fama 60 7 Val T	24	 Circuit Breaker/ Overload Heat Transfer/Inter- mediate Coolant 58 222121 	 SCTI Secondary sodium system sodium pump (P-6) 350 hp, 4160 v, 1180 rpm (operated at 680 rpm) Incident report No. 31 	MI 167	MI 21	MI 550	9	Protective system	 Overload protective circuit breaker tripped. Operating limits change. Air cooling should replace argon cooling.
	25	 Circuit Breaker/ Overload Coil Heat Transfer/ Electrical 58 221121 	 SCTI Primary sodium system sodium pump (P-5) circuit breaker - - Incident report No. 1 	MI 472	MI 22	MI 157	270	Protective system	 Breaker tripped numerous times, initial startup or shakedown problem. Local repair. Circuit breaker was replaced. Stock replacement components.
	26	 Power Switchgear/ Reversing Contactor Accessory Electrical Equipment/Switch Gear 58 410000 	 HNPF Reactor core/dummy control rod No. 1 350 to 925°F Monthly operating report No. 6 	MI 415	MI 15	MI 530	3250	During actuation	 Contactor fused shut. New contacts installed; breaker reset. None,
	27	 Main Disconnect Switch/Contact Faces Accessory Electrical Equipment/Switch Gear 58 410000 	 EBR-II Auxiliary primary EM pump Operating maintenance report, 7/17/68 	MI 500	MI 11	MI 530	15,240	During routine inspec- tion	 Faulty switch. Part replaced. None.

TABLE 1-35

FAILURE DATA FOR POWER SWITCH GEAR CIRCUIT BREAKERS, RELAYS, TRANSFORMERS

(Sheet 5 of 5)

LMEC-Memo-69-7, Vol I 1-92

.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-36</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT <u>POWER SWITCH GEAR, CIRCUIT BREA</u>KERS, RELAYS, TRANSFORMERS

COMPONENT SUBTYPE ____CIRCUIT BREAKERS

	FAILURES (%)	<u>0 1</u>	0 2	0 3	0 4	0 5	06	0 7	0 8	09	0 10
PLANT TYPE	Nuclear Test Reactor Component Test Facility	 									
SYSTEM	Heat Transfer Turbogenerator Units and Condensor Accessory Electrical Equipment										
COMPONENT PART	Overload and Trip Mechanisms Contacts and Switches Wires and Bus Bars										
CAUSE	Environmental Human error Inherent Unknown										
MODE	Electrical Mechanical Other										
EFFECT	Acceptable incipient damage Plant availability loss Labor and material loss only System/component inoperative										

TABLE <u>1-37</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT POWER SWITCH GEAR, CIRCUIT BREAKERS, RELAYS, TRANSFORMERS

.

	FAILURES (%)	<u>0 1</u>	0 2	0 3	04	05	06	0 7	<u> </u>	0 9	0 100
PLANT TYPE	Nuclear Test Reactors Component Test Facilities										
SYSTEM	Turbogenerator Units and Condensors Accessory Electrical Equipment										
COMPONENT PART	Terminal and Terminal Boards Coil (s) Other										
CAUSE	Environmental Unknown										
MODE	Electrical Mechanical								•		
EFFECT	Plant availability loss Labor and material loss only System/component inoperative									```	

TABLE <u>1-38</u>

- ----

. .

FAILURE DISTRIBUTION FUNCTIONS

•

COMPONENT POWER SWITCH GEAR, CIRCUIT BREAKERS, RELAYS, TRANSFORMERS

COMPONENT SUBTYPE _____SWITCH GEAR

		FAILURES (%) 0	1	02	0 3	0 4	0 5	0 6	0 7	0 8	09	0 10
	Nuclear Power Reactor											
PLANT TYPE	Nuclear Test Reactor							1				
	Accessory Electrical Equipment				-	r T	1					
SYSTEM												
SYS												
	Contacts											
ART												
COMPONENT PART												
NEN												
МРО												
CO												
							ļ					
	· · · · · · · · · · · · · · · · · · ·											
	Inherent					-						
ш	Unknown		·									
CAUSE												
	Electrical											
MODE												
Ĭ												
-	Labor and material loss only											
EFFECT												
EF	· · · · · · · · · · · · · · · · · · ·											

TABLE <u>1-39</u>

- -- --

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT POWER SWITCH GEAR, CIRCUIT BREAKERS, RELAYS, TRANSFORMERS

	COMPONENT SUBTYPE	5 FAILURES (%) 0) 10	20	30) 4	0 5	06	07	08	0 9	0 100
PLANT TYPE	Component Test Facilities					•						
SYSTEM	Accessory Electrical Equipment						· · · · · · · · · · · · · · · · · · ·					
COMPONENT PART	Windings Other											
CAUSE	Environmental Impurity/contamination Unknown											
MODE	Electrical						3					
EFFECT	Labor and material loss only System/component inoperative											

TABLE ______

-

GENERAL SUMMARY

	COMPONENT <u>POWER SWITCH GEAR, CIRCUIT BREA</u> FAILURES (%)		10	0	20		30	4()	50		60		70)	80		90	10
	Environmental				-			-		-				T		Τ		Γ	
	Impurity/contamination	-																	
ISE	Human error]—	. .																
CAUSE	Inherent]—	-									ľ							
	Unknown	-			1.	ain.						•							
	Electrical		-				Ţ.								_			Т	
	Mechanical	1			-														
MODE	Other	┶																	
Ŵ																			
	Acceptable incipient damage						+		<u> </u>			1						+	
	Plant availaiblity loss																		
EFFECT	Labor and material loss only		_			. •		_	-										
Ē	System/component inoperative		_	_															
	TOTAL FAILURES PER TYPE	0	2	2	4		6	8	}	10	1	12	2	14	Ļ	16		18	20
	Relays							•				1							
	Breakers	-				•	1												
	Transformers																		
	Switch gear	_																	
								į											
		4																	
		-																	
		-																	
		-																	
	OPERATING HOURS (THOUSANDS)	0	1	0	20		30		0		1	60)	70)	80			10
	Relays	Ť			-									T		Ť		1	
	Breakers	1	-							.									
	Transformers	┶━	-													1		Í	
	Switch gear]			-														
ТҮРЕ] ·																	
∠	_													ļ					
	FAILURE RATE (FAILURES/10 ⁶ hr)	0	5	0	100)]	150	20	00	25	0	30	0	35	0	40	0 4	50	50
	Relays					Τ	Τ						Τ		T				Γ
				_		+	+			_	4	-	,						
	Breakers							1											1
	Breakers Transformers					T				1			- 1	- 1	1	- I.	- 1		
	Transformers				4		Τ												
	Transformers																		
	Transformers																		,
	Transformers																		
	Transformers																		

5. Turbine Generators (generator side)

Failure data for turbine generators (generator side) are presented in Tables 1-41 through 1-43.

a. Reliability Information

Design Features:

Power generator, with a steam turbine prime mover, generates electric power for commercial type usage. Malfunction data is limited to one unit, and therefore is not broad-based.

Mode of Failure:

- 1) Oil seal ring misalignment
- 2) Brush wear
- 3) Bearing wear
- 4) Misalignment or turbogenerator
- 5) Coil open circuited
- 6) Exciter bus bar insulation failed.

Failure Experience:

- 1) Two or more malfunctions caused by unit misalignment.
- 2) Brushes replaced or reseated in two instances.
- 3) Bearings were defective in two instances.
- 4) Generator coil defective on one occasion.
- 5) Exciter bus bar insulation defective once.

Control Methods:

- 1) Turbogenerator physical alignment should be accomplished with great precision when unit is installed.
- 2) Turbogenerator should be on turning gear whenever the unit is down.
- 3) Verify adequacy of bearing lubrication.
- 4) Have adequate preventive maintenance program.

b. Discussion and Recommendations

Malfunction data in this report is limited to one turbogenerator unit, and is therefore not broad enough to support general conclusions. From the events reported on, however, it is seen that several of the malfunctions were due to improper alignment. Precise alignment is extremely important on large generating units because of the possibility of harmonic vibrations developing which can be very damaging to high inertia machines.

Maintenance procedures for machines of this size, and larger, should follow the standards developed by the electric power industry. These procedures differ considerably from those followed by general industry. Different utilities evolve their own procedures which sometimes reflect such factors as spinning reserve and economics. One utility, for example, reports that their large generating units have a scheduled shutdown, after the first year, of only once every five years. They find it economically justified to risk an emergency trip of the unit during that 5-year period. A nuclear power plant would not have that option since they would be shut down at approximate 1-year intervals for reactor refueling.

The insulation resistance of all large generators should be measured at regular intervals. Data from such tests can be used to detect incipient weak spots in coil windings as well as other related coil conditions.

During a shutdown period, the generator should be on its turning gear, to prevent bearing damage, and lubricating oil pressure must be maintained. For this reason, lube oil pumps are usually powered by a motor connected to an uninterruptable power supply.

TABLE <u>1-41</u>

FAILURE DATA FOR <u>TURBINE GENERATORS (GENERATOR</u> SIDE) (Sheet 1 of 2)

ITEM	 COMPONENT/PART SYSTEM/SUBSYSTEM 		FAILURE IN CODE*		DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)		CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Turbine Generator/ Seal Ring Turbine Generator/ Generator Side 56 320000 	 EBR-II Generator/H₂ Seal 3. 3,600 rpm, 20,000 kw, 13.8 kv ANL-7255 	MI 500	MI 56	MI 530	7,800	Routine inspection	 Seal oil ring misalignment. Local repair, ring remachined and reinstalled. None.
2	 Turbine Generator/ Commutator Brushes Turbine Generator/ Generator Side 56 320000 	 EBR-II Main generator 3,600 rpm, 20,000 kw, 13.8 kv PMMR-76 	MI 500	MI BZ	MI 530	6,300	Preventive mainte- nance	 Brushes replaced. Part replaced. None.
3	 Turbine Generator/ Bearing Turbine Generator/ Generator Side 56 320000 	 EBR-II Main generator/north end 3,600 rpm, 20,000 kw, 13.8 kv PMMR-81 	MA 500	MA 56	MA 520	15,240	Direct observation	 Generator-turbine combination not mounted at proper levels causing shaft misalignment. Local repair. Upgrade Quality Assurance surveillance on installation of generator.
4	 Turbine Generator/ Bearing Cap Turbine Generator/ Generator Side 56 320000 	 EBR-II Main generator/north end 3,600 rpm, 20,000 kw, 13.8 kv PMMR-81 	MA 500	MA 52	MA 520	15,240	Direct observation	 Vibrating. Part replaced. None.
5	 Turbine Generator/ Bearing Turbine Generator/ Generator Side 56 320000 	 EBR-II Main generator/south end 3,600 rpm, 20,000 kw, 13.8 kv PMMR-81 	MA 500	MA 56	MA 520	15,240	Direct observation	 Generator not mounted level causing shaft misalignment. Part replaced. Improve alignment procedures.
6	 Turbine Generator/ Rotor Turbine Generator/ Generator Side 56 320000 	 EBR-II Main generator 3,600 rpm, 20,000 kw, 13.8 kv PMMR-81 	MA 500	MA 59	MA 520	15,240	Direct observation	 Vibrating. Part replaced. None.

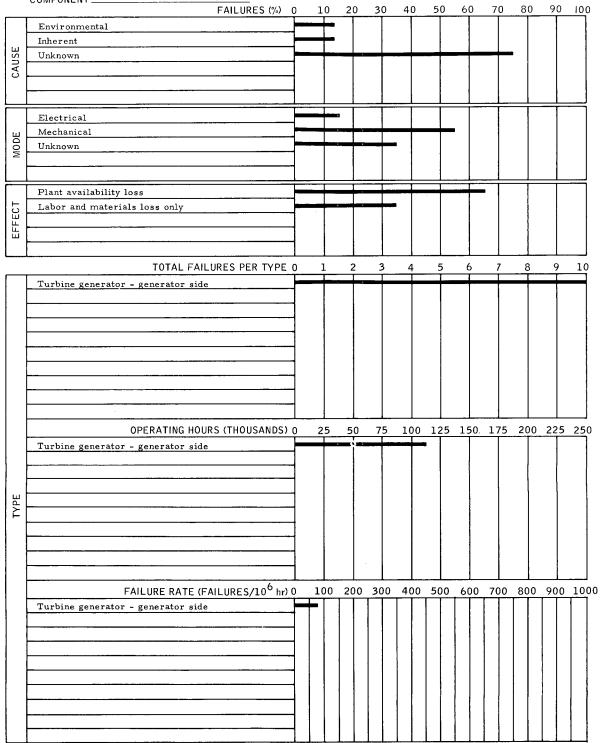
TABLE 1-41

FAILURE DATA FOR <u>TURBINE GENERATORS (GENERATOR SIDE)</u> (Sheet 2 of 2)

ITEM 3. CODE: (Component) (System/Subsystem) 3. OPERATING CONDITIONS A. SOURCE DOCUMENT CAUSE MODE DEFECTION METHOD OF FAILURE DETECTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS 7 1. Turbine Generator/ Coll Winding 1. EBR-II MA 3. 3600 rpm, 20,000 kw, 13.8 kv MA 500 MA 59 MA 500 15,240 Direct observation 1. Coll winding broken. 2. Part replaced. 8 1. Turbine Generator/ Generator Side 3. 56 1. EBR-II MI 2. Main generator / anglight MI 4. PMMR-81 MI 500 MI 500 MI BZ MI 530 MI 530 Preventive mainte- nance 1. Faulty bearings. 2. Part replaced. 8 1. Turbine Generator/ Generator Side 3. 56 1. EBR-II 2. Cenerator exciter MI 3. 85 kw, 250 vdc MI 4. PMMR-96 MI 444 MI BZ MI 520 MI 4. Valible noise 1. Nosy brushes. 9 1. Turbine Generator/ Exciter Brushes 1. EBR-II 2. Generator Side 3. 56 320000 1. EBR-II 2. Control winding report, 7/3/68 MI 444 MI 444 MI 48 MI 444 M	ON	1. FAILURE DESCRIPTION			LURE IN CODE*		1. FACILITY 2. COMPONENT LOCATION	COMPONENT/PART SYSTEM/SUBSYSTEM	1	
Image: Coll Winding Construction 2. Main generator 3. 3600 rpm, 20,000 kw, 13.8 kv 500 59 520 59 520 2. Part replaced. 3. 560 rpm, 20,000 kw, 13.8 kv 4. PMMR-81 MI MI MI MI S00 9,345 Preventive maintenance 1. Faulty bearings. 2. Turbine Generator/ Bearings 1. EBR-II 2. Main generator/amplidyne MI MI MI S00 BZ 530 9,345 Preventive maintenance 1. Faulty bearings. 2. Part replaced. 3. None 4. PMMR-96 3. 56 S20000 1. EBR-II MI MI BZ 530 9,345 Preventive maintenance 1. Faulty bearings. 2. Part replaced. 3. None. 500 5 320000 1. EBR-II MI MI BZ 530 9.345 Preventive maintenance 1. Nosy brushes. 2. Docal repair. 3. Sone. 2. Generator Side 3. Sone. 3. Sone 500 5 320000 1. EBR-II 2. Generator exciter MI MI BZ 520 14,650 Operational monitors 1. Nosy brushes. 2. Local repair. 3. Sone		2. CORRECTIVE ACTION 3. RECOMMENDATIONS		HOURS	MODE	CAUSE	3. OPERATING CONDITIONS	CODE: (Component)	3.	ITEM
Image: Problem of the second state		2. Part replaced.	Direct observation	15,240			2. Main generator 3. 3,600 rpm, 20,000 kw, 13.8 kv	Coil Winding Turbine Generator/ Generator Side 56	2.	7
 I0 I. Turbine Generator / Exciter Armature I. EBR-II I. Turbine generator exciter I. Turbine generator exciter I. Turbine Generator / Turbine Plant Equip- ment S6 		2. Part replaced.		9,345			2. Main generator/amplidyne 3. 85 kw, 250 vdc	Bearings Turbine Generator/ Generator Side 56	2.	- 8
 In Turbine Generator / Exciter Armature Turbine Generator / Exciter Armature Turbine Generator / Turbine Generator / Turbine Plant Equip- ment 56 			Audible noise	15,240			2. Generator exciter 3. 85 kw, 250 vdc	Exciter Brushes Turbine Generator/ Generator Side 56	2.	9
	ılated.		Operational monitors	14,650			2. Turbine generator exciter 3. 85 kw, 250 vdc	Exciter Armature Turbine Generator/ Turbine Plant Equip- ment	2.	10

TABLE	1-42

FAILURE DISTRIBUTION FUNCTIONS


COMPONENT TURBINE GENERATOR (GENERATOR SIDE)

	COMPONENT SUBTYPE	10	30	4	0	50	60	70	80 9	90 10
PLANT	Test Reactor									
SYSTEM	Turbine Generator - Generator Side									
COMPONENT PART	Bearing Commutator Brushes Exciter Brughes Seal Ring Rotor Coil Winding Exciter - Armature									
CAUSE	Environmental Inherent Unknown			<u> </u>						
MODE	Electrical Mechanical Unknown									
EFFECT	Plant availability loss Labor and materials loss only									

TABLE <u>1-43</u>

GENERAL SUMMARY

D. ENERGY CONVERSION (MECHANICAL) SYSTEM COMPONENTS

1. Furnace Equipment

Failure data for furnace equipment are presented in Tables 1-44 through 1-46.

a. Reliability Information

Design Features:

Common knowledge

Critical Characteristics:

Common knowledge

Mode of Failure:

- 1) Improperly established maintenance schedule.
- 2) Thermal expansion difference causing stress cracks.
- 3) Insufficient reinforcing to support furnace refractory.
- 4) Operator caused malfunctions.

Failure Description:

- 1) Ceramic feedthrough insulator of the pilot light electrode cracked.
- 2) Flame rod cracked and electrical wire connector eyelet corroded; rain leakage shorted the electrical wires.
- 3) Sodium-smoke-type leak detector was actuated.
- 4) Hangers for supporting refractory protecting tubes broke loose.
- 5) Burner flamed out and plant was shut down when operator improperly adjusted gas and air flow.

Control Methods:

- To avoid high local thermal and fatigue stresses, design should provide adequate clearance between materials with different thermal expansion coefficients if they are exposed to temperature changes.
- 2) Plant operator's manual should call special attention to those control and equipment adjustments where very small changes may cause heavy plant disturbances or even shutdowns.

3) Preventive maintenance frequency should be established for all critical subsystems, with special attention given to units exposed to outside environment. Special instructions should be given in cases where material compatibility and reliability is critical.

b. Discussion and Recommendations

Although equipment is available to detect furnace equipment failures, it is more economical to use preventive maintenance inspection than failure detecting instrumentation. In case of relatively inexpensive components, keep spares in stock and replace them before their expected lifetime expires.

Sodium-smoke sensors are sensitive enough to detect sodium leaks in their early stages; however, strategically placed strain gages can be utilized to detect incipient failures.

TABLE <u>1-44</u>

FAILURE DATA FOR <u>FURNACE EQUIPMENT</u>

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ľ	ТЕМ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	1	 Furnace/Pilot Electrode Heat Transfer/Furnace 41 227300 	 SCTI Primary Rating = 35 Mwt, 1200°F Incident report No. 348 	MI 121	MI 13	MI 530	9807	Audible noise	 Pilot electrode insulator cracked allowing short circuit Replaced part. None.
LMEC-	2	 Cas Fired Furnace/ Pilot Rod Heat Transfer/Furnace 41 227300 	 SCTI Heater H-1 Rating = 35 Mwt, 1200°F Incident report No. 340 	MI 121	MI 61	MI 530	26 , 274	Alarm	 Flame rod cracked and high temperature lead assembly eyelet soldered connection corroded. Replaced parts. None.
LMEC-Memo-69-7, Vol I	3	 Gas Fired Furnace/ Tubes Heat Transfer/Furnace 41 227300 	 SCTI Primary Rating = 35 Mwt, 1200°F Incident report No. 302 	I 136	I 61	I 520	9580	Operational monitor	 Sodium leak indicated on smoke detectors - 4 gpm estimated from 8 in./hr loss of sodium level in primary expansion tank. Local repair. None.
o] I	4	 Furnace/Pilot Burner Heat Transfer/Furnace 41 227300 	 SCTI Primary Rating = 35 Mwt, 1200°F Incident report No. 332 	MI 156	MI 47	MI 119	Unknown	Operational monitors	 Disturbance in Southern California Edison System resulted in power drip, causing automatic plant shutdown. Normal power enabled restart. None.
	5	 Furnace Equipment/ Supports Heat Transfer/Reactor Coolant 41 227300 	 SCTI Sodium heat transfer Rating = 35 Mwt, 1200°F Incident report No.63 	MI 416	MI 53	MI 520	9580	During routine inspec- tion	 The refractory protecting tube support hangers broke loose. Wire mesh was installed to support the refractory material. None.
	6	 Furnace Equipment/ Gas Pilot Heat Transfer/Reactor Coolant 41 227300 	 SCTI Sodium heat transfer Rating = 35 Mwt, 1200°F Incident report No. 54 	MA 339	MA BO	MA 520	4005	During activation	 Operator improperly adjusted gas flowrate and combustion air flow, causing a burner flame out; this in turn, tripped the primary sodium pump. Pilot lights were reignited and the primary pump restarted. Improve operator training.
L			MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT <u>FURNACE EQUIPMEN</u>											
	COMPONENT SUBTYPE FURNACE EQUIE	PMENT					<u> </u>		~ -	<u> </u>		0 10
PLANT TYPE	Component Test Facility	FAILURES (%) C) 1	0 2	0 3	04	05	06	0 7	08	0 9	0 10
SYSTEM	Heat Transfer Reactor Equipment											
COMPONENT PART	Pilot Tubes											
CAUSE	Environmental Inherent Human error											
MODE	Electrical Mechanical Metallurgical Other						-					
EFFECT	Labor and materials loss only System/component inoperative Plant availability loss			-								

TABLE <u>1-45</u>

.

FAILURE DISTRIBUTION FUNCTIONS

TABLE _______

GENERAL SUMMARY

	COMPONENT <u>FURNACE EQUIPMENT</u> FAILURES (%) 0	10) 2	0	30	40	50	60	70	80	90	100
	Environmental			ľ –	Ť			Ť		<u> </u>	T	Ĩ
1	Inherent	-			╺╾┿╼╸							
CAUSE	Human error											
AU												
ſ		Í			1						Í	Í
Ŀ												
\square	Electrical		-									
ш	Mechanical			-								
MODE	Metallurgical		_									
2	Other											
				<u> </u>								
	Labor and material loss only											
L.	System/component inoperative											
EFFECT	Plant availability loss				_						1	
μ												
								<u>_</u>				
r	TOTAL FAILURES PER TYPE 0	1		2	3	4	5	6	7	8	9	10
	Furnace equipment											
												1
												1
	OPERATING HOURS (THOUSANDS) 0	10) 2	20	30	_40	50	60	70	80	90	100
	Furnace equipment											
											ł	
ш		1										
ТҮРЕ												
	FAILURE RATE (FAILURES/10 ⁶ hr) 0	20		10	60	80	100	120	140	160	180	200
	Furnace equipment	11	,		- 00							
	Turnace equipment											

2. Motors, Engines, and Turbines (hydraulic, pneumatic, steam)

Failure data for motors, engines, and turbines, (hydraulic, pneumatic, steam) are presented in Tables 1-47 through 1-49.

a. Reliability Information

Design Features:

Small high-speed rotating machinery designed for long trouble-free service life.

Critical Characteristics:

One or two-stage turbines, thin blading, close running clearances, shaft, seals, bearing.

Mode of Failure:

- 1) Turbine blade damage
- 2) Seal failure
- 3) Overheating.

Failure Description:

- 1) Turbine blades failed, apparently due to foreign object.
- 2) Turbine overheating resulted from excessive oil in system.
- 3) Turbine seal leakage resulted in bearing failure.
- 4) Improper size bearing caused unusual wear pattern.

Control Methods

- 1) Install debris catcher upstream of turbine steam inlet.
- 2) Ensure clean steam supply to turbine.
- 3) Maintain adequate surveillance and preventive maintenance procedure relative to seals.
- 4) Maintain adequate quality control and detailed installation procedures requiring checking of critical dimensions before installation of replacement parts.

b. Discussions and Recommendations

A total of five failure events were reviewed with this component. The failures were primarily mechanical failures and failures resulting from inadequate quality control and improper maintenance procedures.

A turbine blade failure was reported. Apparently something passed through the turbine causing a section of blading to be broken out and bending the remaining blades. Four pieces of wood were found in the pump; perhaps a fifth piece found its way into the turbine inlet. It is possible that blade fatigue was the cause, but this is not very probable. A vibration indicator with an electronic shutdown or alarm might have prevented the extensive damage observed but would not have prevented the failure. A debris trap upstream of the turbine inlet may have prevented the failure.

Two problems were reported. The first problem was caused by improper maintenance procedures; too much oil was added to the unit causing excessive smoking. The unit was shut down and the excess oil drained. On restarting, a rubbing noise was heard and the unit was shut down. A quantity of metal particles and nicked blades were found when the turbine was disassembled. Again the lack of cleanliness in the steam system appeared to be the problem. Either a clean system or a means of preventing contaminants from entering the turbine is required. Improper maintenance procedure or human errors may be prevented by service checkoff procedures and caution markings on the unit.

A turbine seal failure ultimately causing a bearing failure was reported. There is no indication that the seal was repaired or replaced. The bearing, however, was replaced and the unit returned to service. The seal leakage was undoubtedly corrected by increasing the load on the packing, replacing the packing or, if it was a mechanical seal, by replacing worn parts. The seal leakage was probably the result of normal wear but in view of the difficulties with debris in the system the possibility cannot be ruled out that the failure was caused by abrasive particles entrained in the steam system. Since seal leakage is a recurring problem it would be advisable to provide a means of preventing the steam leakage from condensing on the bearing. A preventive maintenance program could be initiated by which seals are periodically overhauled. During preventive maintenance inspection, an incipient failure was discovered and reported. The bearing was found to exhibit an unusual wear pattern and it was found that the clearance was too small. This was obviously a quality control problem either at the factory or during a previous replacement. The incorrect-size bearing should not have been installed. The bearing was rebored to the correct size and reinstalled.

TABLE <u>1-47</u>

FAILURE DATA FOR MOTORS, ENGINES, AND TURBINES

(HYDRAULIC, PNEUMATIC, STEAM)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION				1. FAILURE DESCRIPTION		
	TEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE		HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	1	 Turbine/Blading Steam, Condensate and Feedwater/Boiler Feed Pump⁻ 10 284100 	1. EBR-II 2. Turbine-driven feed pump 3. 900 hp, 9700 rpm 4. PMMR-24	MI 500	MI 59	MI 550	Unknown	Routine area watch	 Severe damage to turbine wheel blades Damaged part replaced - local repair Maintain clean steam system - install debris catcher at turbine inlet. Insure blade fatigue not problem.
LMEC-N	2	 Turbine/Turbine Blades Steam, Condensate and Feedwater/Boiler Feed Pump 10 284100 	2. Feedwater/turbine-driven feed pump	MI 273	MI 52	MI 530	Unknown	Direct observation	 (a) Overheating and smoking because of too much oil in unit. (b) Failure due to turbine blade damage (minor). Oil drained to proper level and turbine cleaned of metal particles - local repair Maintain clean steam system - improve maintenance procedures (excess oil human error) - install debris catcher at turbine inlet.
LMEC-Memo-69-7, Vol I	3	 Turbine/Turbine Seals Steam, Condensate and Feedwater/ Condensate Pump 10 283100 	 EBR-II Condensate /turbine-driven condensate pump 122 hp, 1760 rpm PMMR-113 	MA 185	MA B8	MA 550	12,390	Operational monitors	 Turbine seal failure eventually causing bearing failure. New bearing installed, local repair. Improve surveillance of shaft seals - redesign to prevent steam condensation on bearing housing - maintain clean steam system.
1 I	4	 Turbine/Turbine Bearing Steam, Condensate and Feedwater/ Condensate Pump 10 283100 	 EBR-II Condensate /turbine-driven condensate pump 122 hp, 1760 rpm PMMR-94 	MI 500	MI 52	MI 530	9345	Preventive maintenance	 Bearing discrepance - unusual rubbing on top and bottom of bearing. Bearing clearance found too small - bearing rebored and reinstalled with proper clearance. Quality control problem - improve QC procedures.
	5		 HNPF Secondary/sodium system - Monthly operating report No. 16 	MA 126	MA 59	MA 550	4560	Operational monitors	 Direction control valve malfunctioned, resulting in slow response of reverse selection operation. Control valve was overhauled, valve plunger and O-rings replaced. None.
ا		= INCIDENT N = MAJOR MALFUNCTION	AI = MINOR MALFUNCTION P = PROBLEM	I					

٠

TABLE <u>1-48</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT MOTORS, ENGINES AND TURBINES (HYDRAULIC, PNEUMATIC, STEAM)

COMPONENT SUBTYPE ______ TURBINE - STEAM

	FAILURES (%)	0 1	0 2	20 2	30 4	0 5	60 6	0 7	<u>'0 8</u>	30 9	0 100
PLANT TYPE	Nuclear Test Reactor										
ŚYSTEM	Steam, Condensate and Feedwater Piping and Equipment										
COMPONENT PART	Blades (Blading) Bearing Seal										
CAUSE	Environmental Impurity/contamination Unknown										
MODE	Mechanical Other										
EFFECT	Labor and material loss only System/component inoperative										

TABLE ______

GENERAL SUMMARY

	COMPONENT <u>MOTORS, ENGINES AND TURB</u> INES (H) FAILURES (%)	ORA 0	.0LI 10	с, г 20	NEU	лма 30	40	, SI)	сели 50	م 60	70	80	90	10
	Environmental		-			-	-							
	Impurity/contamination			_										
JSE	Unknown	_	+	_		+-								
CAUSE														
		<u> </u>												
,	Mechanical		-					_		_				
ш	Other]	+-	-										
MODE		4				1	1							
2	<u></u>													
			1											
	Labor and material loss only					-	-					1		
L C	System/component inoperative	<u> </u>	+		1	+	-	-	-	-	1			
EFFECT	· · · · · · · · · · · · · · · · · · ·	4								Í	[Í		
Ш		4							Ì					
											1			
·····	TOTAL FAILURES PER TYPE	0	1	2		3	4		5	6	7	8	9	1
	Steam turbines		1			+	-			1	- 1			1
	Pneumatic motors													
	······································	4									1			
		{											Í	
		-												
i f	·	4												
		4												
		1												
	······································	1												
	OPERATING HOURS (THOUSANDS)	 n	-	10)	1	20	 า		30		40		5
	Steam turbines	Ľ				1		-	T	Ť				
	Pneumatic motors													
		1												
		1												
ТҮРЕ		1							1					
≿	- <u></u>													
]												
]												
]												
	FAILURE RATE (FAILURES/10 ⁶ hr)	0		10	0		20	0		300		400		50
	Steam turbines	ĒŦ	-	T-I		-	F							Τ
	Pneumatic motors	 	-		-	+-		-						
			ļ											
						1				1				
											1			

3. Transmissions and Drive Shafts

Failure data for transmissions and drive shafts are presented in Tables 1-50 through 1-52.

a. Reliability Information

Design Features:

Motor-driven machinery designed to do lifting, pushing, rotating, and stopping of a wide range of equipment as found in reactor systems.

Critical Characteristics:

Equipment must be able to drive and position or index its dependent mechanisms with high precision and accuracy.

Mode of Failure:

- 1) Couplings failed or overheated.
- 2) Shafts bent, worn out, broken or stuck.
- 3) Seals leaked.
- 4) Bearings broken, frozen to shaft, and worn out.
- 5) Gears damaged, broken, or worn out.
- 6) Snubbers leaked oil, stuck, and some had not been installed.
- 7) Clutches and brakes inoperative and worn out.
- 8) Keys, set screws, and pin loose, worn out, or broken.
- 9) Switches and contacts loose or broken.
- 10) Bellows ruptured, leaked, or improperly welded.
- 11) Actuator rods, cables, and wires stuck, jammed, or broken.
- 12) Structures broken or cracked.

Failure Description:

 Mechanical couplings were badly worn; they had broken splines and other broken parts. A magnetic coupling (electrical) overheated. The mechanical failures seemed to be due to overloads or misalignments The electrical heating of the magnetic coupling was probably due to improper cooling or overload which caused stoppage.

- 2) Shafts were generally bent, meaning they were overloaded. Others were stuck due to foreign objects getting into their guides or bearings.
- 3) Shaft seals leaked oil causing other components to malfunction.
- 4) Many mechanisms failed because bearings failed. Bearings failed due to misalignments, or loads, or improper use.
- 5) Gears failed because of overloads, misalignments, and spacing or support failures.
- 6) Snubbers (shock absorbers) failed because the static O-ring seals failed and leaked oil. The snubber failures resulted in damage to other parts of the control rod drives and pull rods. In one case snubbers had not been installed.
- 7) Clutches and brakes were worn out due to normal lifetime. Some clutches and brakes failed because oil and grease leaked onto them.
- 8) Keys, pins, and set screws worked loose and sheared, caused galling of shafts, and let gears loosen, resulting in other failures.
- 9) Switches and contacts were worn out or broken, causing motors and electric clutches to be inoperative.
- 10) Bellows ruptured due to fatigue, resulting in sodium leaks which caused push rod, etc., for grippers to become stuck.
- Actuator rods, cables, and wires became bent, jammed, and broken. The results were inoperative control rods, fuel handling equipment, and interlocking mechanisms.
- 12) Structures such as gear box housing experienced cracks in the casting.A gear drive support was broken from overload conditions.

Control Methods:

 Proper selection, installation, and maintenance of most mechanical components such as shaft coupling, bearings, gears, keys, set screws, and pins are necessary for trouble-free operation.

- 2) Installing of protective covers would eliminate damage to delicate components such as switches.
- Selection of proper materials for seals and correct installation procedures will eliminate most seal problems.

b. Discussion and Recommendations

A total of 60 mechanical failures were studied. The mechanisms involved were control rods, fuel handling equipment, and gear drives for reactor shields. The failures can be classified in basic component groups such as bearings, keys, and gears. Sometimes failures are reported as mechanism failures when in reality a mechanism fails because of a small component part failure. Its component part may have failed due to overload, misalignment, improper selection of materials for service required, or improper use of component. In the study, five control rod snubber failures were reported. The actual failure was a static O-ring seal at the bottom of the snubber which lost its tension by cold flow of the material and let the snubber fluid leak away. The snubber's inability to cushion the control element drop during scram caused failures to other parts of the control rod.

Clutch and brakes failed to function properly because oil or grease from bearings and gear boxes had dripped on their linings. Here the actual failures were shaft seals.

Some other failures were due to improper assembly or failure to install parts.

Some bearings, splines, coupling, pins, and keys failed because they were overloaded. The overloads may be because of a design error or improper installation. In some cases bearings and splines failed due to lubrication failures or dirt working into the lubrication. Incipient failure of bearings, gears, and other moving elements may be detected by a change of sound or other operating characteristics. Seals will generally start to leak slowly before complete failure. Clutches and brakes will start to show signs of slippage before complete failure. Keys, set screws, and pins will become loose and demonstrate some backlash before breaking. Most of these pending failures should be detected with regular inspection and maintenance programs. If one part fails before the normal expected life, it may be because of a faulty part; but if replacements continue to fail, it is evident that the part is being overloaded.

TABLE _______

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS (Sheet 1 of 13)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	URE IN CODE*				1. FAILURE DESCRIPTION
ITE	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Drive/Magnetic Coupling Heat Transfer/Trans- mission and Drive Shafts 12 222140 	 Fermi Secondary system No. 2 pump 350 hp, 900 rpm, 12,000 gpm, 675°F, 35 psi EF-12 	MI 415	MI 12	MI 530	6470	Direct observation	 Magnetic coupling burned out. Part replaced. Install temperature indicator on magnetic coupling and establish upper operating temperature limit for coupling.
2	 Generator Drive Shaft/ Seal Turbine-Generator Units and Condenser/ Generator Side 12 320000 	 EBR-II Main generator/turbine Oil seal operated at 4.5 psig above hydrogen pressure in the casing PMMR-104 	MI 500	MI 52	MI 530	10,380	Operational monitors	 Seal worn out. Part replaced. None.
3	 Coupling/Insert Steam Condensate and Feedwater Piping and Equipment/Condensate Booster Pump 12 283200 	 EBR-II Condensate/motor-driven condensate pump 364°F at 1500 psig, 3580 rpm PMMR-35 	MI 500	MI 59	MI 530	2590	Preventive mainte- nance	 Coupling broken. Part replaced. None.
4	 Transmission and Drive Shafts/Coupling Heat Transfer/Reactor Coolant Pump 12 221110 	 LCTL LCTL/sodium system pump coupling 500°F, flow meter calibration check LCTL log book, 10/25/63 	MI 126	MI 52	MI 550	Unknown	Direct observation	 Coupling worn out. Part replaced. None.
5	 Transmissions and Drive Shafts/Coupling Heat Transfer/Reactor Coolant Pump 12 221110 	 LCTL LCTL/sodium system pump coupling 110 v, 40 amp, variable speed to 1000 rpm LCTL log book, 10/24/61 	MI 124	MI 73	MI 550 .	Unknown	During actuation	l. Sheared spline in lower half. 2. Part replaced. 3. None.

)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-118

TABLE 1-50

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS (Sheet 2 of 13)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	6	 Drive Shaft/Coupling Accessory Electrical Equipment/M.G. Set 12 470000 	 EBR-II Secondary sodium system/M.G.set PMMR-92-12-15-66 	MI 125	MI 52	MI 530	8420	During repair of associated component	 Coupling badly worn. Part replaced. None.
LM	7	 Transmission/Gears Heat Transfer/Reactor Coolant System 12 221140 	 Fermi Primary/No. 1 pump expansion tank 100 gpm, 75 ft discharge head EFAPP No. 55 	MI 348	MI 52	MI 530	1628	Direct observation	l. Gears worn out. 2. Part replaced. 3. None.
LMEC-Memo-69-7, Vol 1-119	8	 Transmission/Gear Box Shaft Turbine-Generator Units and Condenser/ Circulating Water Pump 12 330000 	 EBR-II Cooling tower (south riser) 83°F PMMR-97 	MI 500	MI 57	MI 550	9345	Operational monitors	l. Shaft frozen to bushing. 2. Part replaced. 3. None.
51 I	9	 Transmission Box Bushing/Gear Turbine-Generator Units and Condenser/ Circulating Water Pump 12 330000 	 EBR-II Cooling tower (south riser) 83°F PMMR-97 	MI 500	MI 57	MI 550	9345	Operational monitors	 Shaft frozen to bushing. Part replaced. Increase preventive maintenance inspections on valves to prevent shaft from freezing to bushings.
	10	 Transmission/Stem Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal 12 236100 	 EBR-II Primary/fuel handling equipment 700°F PMMR-61 	MI 500	MI 59	MI 530	4660	Preventive mainte- nance	l. Broken stem. 2. Part replaced. 3. None.
			MI = MINOR MALEUNCTION						······································

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

-

TABLE ______

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFT

Image: System/Subsystem 1. FACILITY 2. System/Subsystem 1. FACILITY 2. OWPONENT/CART 1. FACILITY 2. OWPONENT LOCATION Image: System/Subsystem 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT 5. OURCE DOCUMENT 0 Internal 1. Transmission/Transfirmer/Tran						eet 3 of 13)	
S. CUDE: 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT HOURS DETECTION 1. Cluck independence 11 1. Transmission/Transfer Arm, Cluck 4. SOURCE DOCUMENT CAUSE MODE EFFECT HOURS DETECTION 3. RECOMMENDATIONS 11 1. Transmission/Transfer Arm, Cluck 1. EBR-II 2. Primary/fuel handling equipment MI MI MI BZ 550 9345 During actuation 1. Cluck nioperative. 12 1. Transmission/Transfer Arm, Eventation of the randing and Storage Equipment of Luck Wire 1. EBR-II MI MI MI MI 550 9345 During actuation 1. Cluck wire broken. 2. Vicear repair. 3. Maintenance report, 4/18/68 MI MI MI MI 14,150 Operational monitors 1. Cluck wire broken. 2. Local repair. 3. Maintenance report, 4/18/68 MI MI MI MI 11,320 During actuation 1. Key worn out due to slippage. 2. Local repair. 4. Solar equipment 4. PMMR-108 MI MI MI MI 11,320 During actuation 1. Key worn out due to slippage. 2. Local repair. 4. PMMR-108 4. PMMR-108 MI Si Si Si Si Si Si 14 <td></td> <td>2 SYSTEM/SUBSYSTEM</td> <td></td> <td>FAI</td> <td></td> <td></td> <td></td> <td></td>		2 SYSTEM/SUBSYSTEM		FAI				
 Fer Arm, Clutch Primary/fuel handling equipment Nolcar Fuel Handling None. PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-98 PMR-108 PMR-108 PMR-103 PMR-113, 11/62 PMR-113, 11/62 PMR-113, 11/62 	TIEM	(Component)		CAUSE	MODE	HOURS		
 fer Arm, Elevation clutch Wire Nuclear Fuel Handling A Maintenance report, 4/18/68 Maintenance report, 4/18/68 Mai	11	fer Arm, Clutch 2. Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal 3. 12	2. Primary/fuel handling equipment 3.			9345	During actuation	2. Local repair.
 13 1. Transmission/Clutch Key Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal 12 236100 14 1. Transmission and Drive Shafts/Rail Guide Bearing Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 14 1. Transmission and Drive Shafts/Rail Guide Bearing Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 12 12 14 1. Transmission and Drive Shafts/Rail Guide Bearing Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 12 12 12 12 12 14 1. Transmission and Drive Shafts/Rail Guide Bearing Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 12 12 14 1. Transmission and Drive Shafts/Rail Guide Bearing Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 12 12 		fer Arm, Elevation clutch Wire 2. Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal 3. 12	2. Primary/fuel handling equipment 3.			14,150	Operational monitors	2. Local repair.
Drive Shafts/Rail Guide Bearing 2. Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 3. 12	13	Key 2. Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal 3. 12	2. Primary/fuel handling equipment 3.			11,320	During actuation	 Local repair. Include in preventive maintenance inspection to
	14	Drive Shafts/Rail Guide Bearing 2. Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 3. 12	2. Primary/suel unloading machine 3.			12,390	Direct observation	2. Local repair.

TABLE ______

FAILURE DATA FOR <u>TRANSMISSIONS AND DRIVE SHAFTS</u> (Sheet 4 of 13)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	 Transmission and Drive/Rail Guide Bearings Nuclear Fuel Handling and Storage Equip- ment/Support Struc- tures 12 235113 	 EBR-II Primary/fuel unloading machine - - Operation weekly report, 12/67 	MI 500	MI 52	MI 530	13,212	Direct observation	 Bearings worn out. Part replaced. None.
16 16 17 17 17	 Transmission and Drive/Shaft Adapter Nuclear Fuel Handling and Storage Equipment/ Reactor Vessel Servicing Equipment 12 232100 	 EBR-II Primary/fuel unloading machine 210 to 700°F Operation weekly report, 1/17/68 	MI 315	MI 59	MI 530	13,380	Direct observation	 Shaft adapter broken. Part replaced. Disassembly instructions should be carefully reviewed prior to repair or maintenance.
17	 Transmission Extension/Takeup Reel Bearings Nuclear Fuel Handling and Storage Equip- ment/Cooling System 12 235140 	 EBR-II Primary system/fuel unloading machine - PMMR-62, 1/66 	MI 500	MI 59	MI 530	4955	Preventive mainte- nance	 Bearings worn out. Part replaced. None.
18	 Transmission Extension/Takeup Real Bearings Nuclear Fuel Handling and Storage Equipment/Cooling System 12 235140 	 EBR-II Primary system/fuel unloading machine PMMR-82, 8/66 	MI 100	MI 59	MI 530	7400	Direct observation	 Bearing broken. Part replaced. Design modification required, similar failure occurred before. See PMMR-62.
	 Transmission Extension/Takeup Reel Nuclear Fuel Handling and Storage Equipment/Cooling System 12 235140 INCIDENT 	 EBR-II Primary system/fuel handling machine - PMMR-113, 11/14 MI = MINOR MALFUNCTION 	MI 500	MI 59	MI 530	12,390	Direct observation	 Cable broken. Part replaced. Larger cable may accept more wear and cycles.

TABLE	1-50

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS

(Sheet 5 of 13)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	URE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
20	 Transmission Gear Box/Bolts Reactor Equipment/ Reactor Shielding 12 213000 	 EBR-II Primary cover lock No. 3 Operation weekly report, 5/1 	MI 321	MI 68	MI 530	14,300	During repair of primary failure component	 Set screws which lock into bolt thread caused galling. Part replaced. None.
	 Transmission Oil Seals/Seal Reactor Equipment/ Reactor Shielding 12 213000 	 EBR-II Primary cover lock No. 2 3. 4. PMMR-81 	MI 500	MI BZ	MI 530	6920	Preventive mainte- nance	 Oil seals leaked. New oil seals installed. None.
22	 Transmission Oil Seal/Seal Reactor Equipment/ Reactor Shielding 12 213000 	 EBR-II Primary cover lock No. 1 4. PMMR-80 	MI 500	MI 52	MI 530	6780	Preventive mainte- nance	l. Oil seal leak. 2. Part replaced. 3. None.
23	 Transmission and Drive Shaft/Cable Drive Clutch Reactor Equipment/ Reactor Shielding 12 213000 	 EBR-II Small plug rotating drive Goveration weekly report, 2/7/68 	MI 500	MI 13	MI 550	1200	Operational monitor	 Thermocouples were shorted by sodium leakage. Part replaced. None.
24	 Transmission and Drive/Drive Gear Heat Transfer/ Reactor Coolant 12 221100 	 Fermi No. 3 sodium pump, pony motor 350 hp, 11,800 gpm, 900 rpm EF-28 	MI 148	MI 53	MI 530	13,930	Audio noise	 Drive gear loose. Local repair, tightened drive gear set screw. Revise preventive maintenance inspection intervals to prevent unscheduled outage of equipment.
25.	 Transmission and Drive/Follower Roller Shafts Reactor Equipment/ Reactor Shielding 12 213000 	 Fermi Rotating shield plug drive PRDC-EF-6 	MI 9ZZ	MI 54	MI 530	4015	Direct observation	 Roller shafts bent. Part replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

٤

|--|

TABLE ______

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS (Sheet 6 of 13)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	26	 Transmission/Clutch Support Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machines 12 235110 	 EBR-II Carriage drive-fuel unloading machine - PMMR-113, 11/67 	MI 500	MI 59	MI 530	12,390	Direct observation	 Support broken. Local repair. None.
LMEC-Memo-69-7, 1-123	27	 Transmission/Storage Basket Drive Bearings Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal 12 236100 		MI 500	MI 52	MI 530	10,820	Routine inspection	l. Bearings worn out. 2. Part replaced. 3. None.
9-7, Vol I	28	 Transmission/Upper and Lower Radial Bearings Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal 12 236100 	1. Fermi 2. Sweep mechanism 3 4. EF-22	MI 114	MI 55	MI 530	11,740	During actuation	 Upper drive mechanism bound up during folding of sweep arm. Lower radial bearing found frozen and shaft scored. Provided manual operation during investigation. An engineering review of the design should be undertaken to determine if a modification would prevent future malfunctions.
	29	 Transmission and Drives/Gear Reduc- tion Unit Nuclear Fuel Handling and Storage Equipment /Hoist 12 235162 		MI 117	МІ 73	MI 530	Unknown	During actuation	 Gear reduction unit developed a series of brittle cracks. Gear unit replaced. None.
	* 1		MI = MINOR MALFUNCTION						

TABLE

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS (Sheet 7 of 13)

1	- 1	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITI	ΞM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	ÇAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Transmission Extension/Friction Compensator Shaft Nuclear Fuel Handling and Storage Equipment/Liquid Metal Internal (holddown) 12 236100 	 EBR-II Primary system/fuel handling subassembly holddown A. Operation weekly report, 1/10/68 	MI 500	MI BZ	MI 530	13,380	Preventive mainte- nance	 Shaft worn out. Part replaced. Revise preventive maintenance inspection interval to permit replacement before total failure.
1.MEC-Memo-69-7. Vol 1		 Transmission Extension/Friction Compensator Bearings Nuclear Fuel Handling and Storage Equipment/Liquid Metal Internal (holddown) 12 236100 	 EBR-II Primary system/fuel handling assembly holddown Operation weekly report, 1/10/68 	MI 500	MI BZ	MI 530	13,380	Preventive mainte- nance	 Bearings worn out. Part replaced. Revise preventive maintenance inspection interval to permit replacement before total failure.
Vol I	32	 Transmission Extension/Friction Compensator Roll Pin Nuclear Fuel Handling and Storage Equipment/Liquid Metal Internal (holddown) 12 236100 	 EBR-II Primary system/fuel handling subassembly holddown Operation weekly report, 1/10/68 	MI 500	MI BZ	MI 530	13,380	Preventive mainte- nance	 Roll pin worn out. Part replaced. Revise preventive maintenance inspection interval to permit replacement before total failure.
	33	 Transmission/Push Force Mechanism Switch Nuclear Fuel Handling and Storage Equip- ment/Liquid Metal Internal (holddown) 12 236100 	 EBR-II Primary system/fuel handling subassembly holddown Operation weekly report, 1/10/68 	MI 500	MI 59	MI 530	13,380	Preventive mainte- nance	l. Backup switch broken. 2. Part replaced. 3. None.
Ļ	_		MI = MINOR MALEUNCTION						

LMEC-Memo-69-7, Vol I 1-124

TABLE _______

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS (Sheet 8 of 13)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
1	ΤEΜ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	34	 Transmission/Bellows Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	Reactor control rod drive No. 7	MI 500	MI 59	MI 550	5990	Operational monitors	 Bellows broken. Part replaced. Perform engineering study on cause of failure and make recommendations.
LMEC-M	35	 Transmission/Lower Drive Assembly Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 EBR-II Reactor control rod drive No.6 300 to 800°F Operation weekly report, 12/20/67 	MI 500	MI 55	MI 530	13,380	Operational monitors	 Drive assembly inoperative. Part replaced. None.
LMEC-Memo-69-7, Vol 1-125	36	 Transmission/Bellows Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	2. Mark II oscillator rod	MI 500	MI BZ	MI 550	15,240	Direct observation	 Found sodium in tube above bellows. New spare control rod was installed in its place. None.
П	37	 Transmission and Drive Shafts/Drive Shaft Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 Fermi Oscillator rod extension Reactor environment PRDC-EF-17 	MI 328	MI 55	MI 530	9390	Direct observation	 Axial binding attributed to a fragment of an old dust seal found in the upper housing. Local repair. Require more stringent inspection prior to closure of equipment and use proper assembly procedure.
	38	 Transmission and Drive Shafts/Bearing Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 Fermi Reactor safety rod drive No. 7 PRDC-EF-13 	MI 500	MI 52	MI 530	7200	Direct observation	l. Badly worn shaft bearing. 2. Part replaced. 3. None.
	-								

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	39	 Transmission and Drive Shaft/Connection Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	l. Fermi 2. Safety rod extension No.6 3 4. PRDC-EF-38	MI 324	MI 14	MI 530	14,941	During activation	 Loose connection at terminal board caused safety rod flow speed drive motor to fail. Local repair. None.
LMEC-Memo-69-	40	 Transmission and Drive Shafts/Exten- sion Bellows Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 Fermi Reactor system/No. 1 safety rod - PRDC-EF-13 and 14 	MI 456	MI 67	MI 550	7930	Direct observation	 Porosity in the flange weld at the bottom of the primary bellows resulted in a sodium leak. Local repair. Rewelded flange. Revise Quality Assurance procedures for acceptance of welds.
9-7, Vol I	41	 Transmission and Drive/Limit Switch Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 Fermi Reactor system/No.l safety rod - PRDC-EF-15 	MI 331	MI 59	MI 530	8660	Direct observation	 Broken as a result of accidental movement between switches. Part replaced. Install protective brackets over switches to prevent inadvertent damage.
	42	 Transmission and Drive Shafts/Brake Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	1. Fermi 2. Safety rod drive 3 4. EFAPP-MR-45	MI 157	MI 13	MI 530	4913	Protective system	 Drive brake inoperative. Part replaced. Revise preventive maintenance procedure to require inspection of drive brakes at schedule intervals.
	43	 Transmission/Bellows Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	2. Reactor control rod drive No. 8	MI 500	MI 59	MI 530	2590	During preventive maintenance	l. Control rod bellows ruptured. 2. Part replaced. 3. None.

TABLE <u>1-50</u>

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS (Sheet 9 of 13)

MA = MAJOR MALFUNCTION P = PROBLEM

1-126

-

TABLE 1-50

 Γ

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS

(Sheet 10 of 13)

	- [1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	м	3. CODE:	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
4		 Transmission/Bellows Reactivity Reactor Equipment/ Control and Safety Shutdown 12 212300 	 EBR-II Reactor control rod drive No. 9 300 to 800°F ANL-7105 	MI 500	MI 59	MI 550	3410	During inspection of system associated to failure component	 Sodium leaked into area between bellows and gripper tube. Part cleaned and freed. None.
4 1 MEC - Mano- 60		 Transmission/Sensing Rod Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	2. Reactor control rod drive 3. 300 to 800°F	MI 500	MI 55	MI 550	3410	Operational monitors	 Sodium leaked into area between bellows and gripper tube. Part cleaned and freed. None.
4 4 7 7 7		 Transmission/Jaw Drive Clutch Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	1. EBR-II 2. Control rod No. 3 3. 4. PMMR-102	MI 500	МІ 59	MI 530	10,000	During routine inspection	l. Roll pins broken. 2. Part replaced. 3. None.
4		 Transmission/Shaft Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	1. EBR-II 2. Control rod No. 7 3. 4. ANL-6965	MA 500	MA BZ	MA 520	15,240	Direct observa- tion	 Clutch inoperative. Part replaced. None.
4		 Transmission/Jaw Drive Clutch Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 EBR-II Control rod No. 9 Operations monthly report, 9/18/6 	MA 500	MA 55	MA 550	1200	Protective system	 Control rod shaft was stuck in reactor vessel cover, and would not move even with air assistance. Part replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

.....

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS

(Sheet 11 of 13)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	M	3. CODE:	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	_MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
49	Ĩ	Reactivity Control	1. EBR-II 2. Control rod No. 9 3. 4. ANL-6965	MA 500	MA 55	MA 550	1200	Protective system	l. Control rod shaft jammed. 2. Part replaced. 3. None.
50 TMFC-Memo-	ź	2. Reactor Equipment/ Reactivity Control and	 EBR-II Control rod No. 12 A. Operations monthly report, 11/67 	MI 500	MI 52	MI 530	12,000	During routine in- spection	 Clutch worn out. Replaced with new unit. Revise preventive maintenance inspection schedule to detect problem before total failure.
5 5 5	i	2. Reactor Equipment/	 HNPF Reactor core/control rod 350 to 945°F Monthly operating report No. 14 	MI 137	MI 52	MI 530	4450	Operational monitors	 Snubbers lost oil. Corrective modification. None.
- 52	î	2. Reactor Equipment/	 HNPF Reactor core/control rod No.2 350 to 945°F Monthly operating report No.3 	MI 337	MI 57	MI - 530	1605	Direct observation	 Bushing bent oblong, stopping rod movement. Unknown. None.
5:	Z	Drive Shaft/Drive Unit 2. Reactor Equipment/	 HNPF Reactor core/control rod No.8 350 to 925°F Monthly operating report No.7 	MI 500	MI BZ	MI 530	3250	Direct observation	 Drive unit inoperative. No reason given. Part replaced. None.
*	2	Drive Shafts/Snubbers 2. Reactor Equipment/ Reactivity Control and Safety Shutdown 3. 12 212300	 HNPF Reactor core/control rod No. 10 350 to 945°F Monthly operating report No. 24 M = MINOR MALFUNCTION	MI 500	MI BZ	MI 550	8700	Direct observation	 Unknown. Fart replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

|--|

TABLE 1-50

FAILURE DATA FOR <u>TRANSMISSIONS AND DRIVE SHAFTS</u> (Sheet 12 of 13)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*				· · · · · · · · · · · · · · · · · · ·	1. FAILURE DESCRIPTION				
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS		MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
55	2. Reactor Equipment/	 HNPF Reactor core/control rod No. 10 350 to 945°F Monthly operating report No. 24 	MI 500	MI BZ	MI 550	8700	Direct observation	 Unknown. Part replaced. None. 				
56 LMEC-Memo-69-7,	 Transmissions and and Drive Shafts/ Mechanical Interlock Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 HNPF Reactor core/automatic flux control rod No. 14 350 to 945°F Monthly operating report No. 6 	MI 33Z	MI 55	MI 530	3250	Operational monitors	 Mechanical interlock jammed. Local repair. Replace with better quality contactors. Weekly inspection to be performed. 				
0-69-7, Vol I	 Transmissions and Drive Shafts/Rod Actuator Brake Shoe Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 HNPF Reactor/control rod No.18 350 to 945°F Monthly operating report No.21 	MI 31Z	MI A5	MI 550	8320	Operational monitors	 Evidence of grease on brake shoes, causing slow release and sluggish drive. Part replaced. None. 				
58	 Transmissions and Drive Shafts/Shaft Seal Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 HNPF Reactor core/control rod CR-19 350 to 945°F Monthly operating report No.20 	MI 12Z	MI 5Z	MI 530	7754	Direct observation	 Oil observed on brake disk caused by leaking shaft seal. Part replaced. None. 				
59	 Transmission and Drive Shafts/Pull Tubes Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	 HNPF Reactor core/control rod SN-20 350 to 945°F Monthly operating report No.25 	MI 178	MI 5Z	MI 550	9420	Direct observation	 Pull tubes elongated due to unsnubbed drops. Unknown. None. 				
			<u> </u>			L	L					

 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 	FAI	LURE IN CODE*	IDEX		······································	1. FAILURE DESCRIPTION		
		CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS		
 Reactor Equipment/ Reactivity Control and Safety Shutdown 12 212300 	<pre>1. HNPF 2. Reactor core/control rod SN-20 3. 350 to 945°F 4. Monthly operating report No. 24 </pre>	MI 321	MI 54	MI 550	4450	Direct observation	 Assembly error, no snubbers were installed in contr rod. Snubbers added. None. 		

()

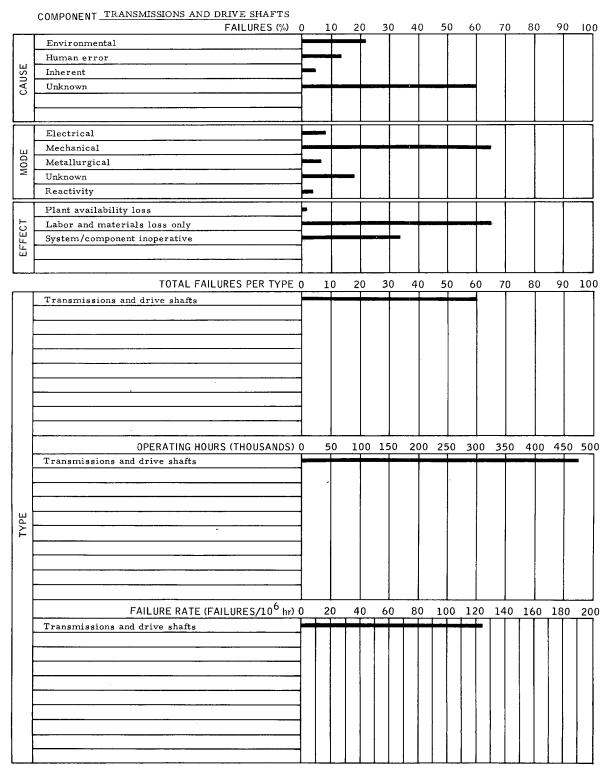
TABLE ______

FAILURE DATA FOR TRANSMISSIONS AND DRIVE SHAFTS

1-130 1

TABLE ______

FAILURE DISTRIBUTION FUNCTIONS


COMPONENT TRANSMISSIONS AND DRIVE SHAFTS

COMPONENT SUBTYPE _____ TRANSMISSIONS AND DRIVE SHAFTS

	FAILURE	S (%) 0	10	2	0	30	40	50) 6	0 7	08	0 90	0 10
.	Nuclear Test Reactor					+							
PLANT TYPE	Nuclear Power Reactor		_			+-	•						
	Component Test Facility		•										
	Reactor Coolant		+		1								
	Turbine Generator		-										
Σ	Condensate		•		ļ								
'STEM	Heat Transfer		-										
SY S	Accessory Electrical Equipment		·										
	Fuel Handling Equipment					•							
	Reactivity Control/Equipment												
	Bearings					1	\uparrow				İ –		
	Gears		-	•									
H	Shafts and Stems									ļ			
COMPONENT PART	Couplings		-			1							
Ē	Bellows		-										
١ĒΝ	Snubbers		-										
PO	Clutch												
No	Seals		-									1	
ပ	Friction Compensator												
	Jaw												
	Brakes												
	Other				<u> </u>		<u> </u>			I	<u> </u>	<u> </u>	l
	Environmental												
Щ	Human error												
CAUSE	Inherent		•									1	
C	Unknown							_		1			
	Electrical					T					T		
Ы	Mechanical												
MODE	Metallurgical											1	
	Unknown				1								
L_	Reactivity change										<u> </u>		<u> </u>
	Plant availability loss									1			1
EFFECT	Labor and materials loss only									<u> </u>			
	System/component inoperative			:	+	-	•						
	· · · · · · · · · · · · · · · · · · ·												
					1	1			1	1	1	1	L

TABLE _1-52____

GENERAL SUMMARY

4. Turbine Generators (turbine side)

Failure data for turbine generators (turbine side) are presented in Tables 1-53 through 1-55.

a. Reliability Information

Design Features:

Large rotating machinery normally designed for long-term trouble-free operation.

Critical Characteristics:

Multi-stage turbine, long thin blading, close running clearances.

Mode of Failure:

- 1) Steam flange leaks
- 2) Seal ring
- 3) Blade damage
- 4) Control malfunctions.

Description of Failures:

- 1) Leakage at steam turbine flange with cause undescribed.
- 2) Section of broken seal ring caused blade damage.
- 3) Pressure governor malfunctioned apparently due to misalignment developing and resulting in control problems.

Control Methods:

- 1) Preventive maintenance check and retorque flange bolts, particularly after failures which may cause increased system vibration.
- 2) Maintain accelerometer surveillance of large equipment to detect failures.
- 3) Ensure running clearances are in accordance with supplier recommendations.

- 4) Perform analysis to establish metallurgical cause of failure.
- 5) Maintain adequate servicing of controls to prevent corrosion, inadequate lubrication, and contamination.

b. Discussion and Recommendations

A total of three failure events were reviewed. The failures fell into three categories: (1) leakage, (2) mechanical, and (3) control malfunction.

A steam leak on the vertical flange of the main turbine was reported. The report did not indicate whether the leakage was at the flange joint or in the flange parent metal. It is assumed that the leakage occurred at the joint. Leakage at the flange joint could be caused by (1) thermal cycling and differential expansion which would reduce the flange loading and allow leakage, or by (2) vibration causing loosening of the flange bolts. This particular leakage did occur after a reported turbine blade failure. There is good possibility that the increased vibration coupled with thermal stress could have resulted in the flange leakage. After turbine difficulties it would be in order to torque check all bolted flange connections.

A mechanical failure of the seal ring was reported. A piece of the seal ring broke from the turbine casing causing extensive blade damage. However, it is possible that a blade failure caused the seal ring damage. Assuming the seal ring to be at fault, the failure probably occurred as a result of excessive rubbing between the ring and rotating assembly. The rubbing may have occurred at startup, damaging the ring, so that subsequent vibration and pressure loading and even light rubbing eventually resulted in the failure. There is no indication as to when the failure occurred, only when it was observed. In any case, it appears as though a design change is in order to prevent future problems. Opening the running clearances is one possible remedy for this type of problem. There is also the possibility of faulty material which would indicate a quality control problem.

The use of a vibration meter with a recorded output and surveillance of the records might have indicated the time of failure and possibly given indications of an impending failure, depending upon how the failure progressed.

A control malfunction was reported. The governor pressure control apparently experienced a performance shift which caused difficulties in controlling the header pressure. The problem was solved by readjusting and realigning the governor.

The performance shift could have been caused by (1) vibration loosening the adjustment mechanism, (2) improper or inadequate lubrication, (3) mechanical stress, and (4) improper maintenance and lack of cleaning.

Since it is not known what was accomplished during the readjustment and realignment, it is difficult to make a recommendation.

TABLE ______

FAILURE DATA FOR <u>TURBINE GENERATORS (TURBINE SIDE</u>)

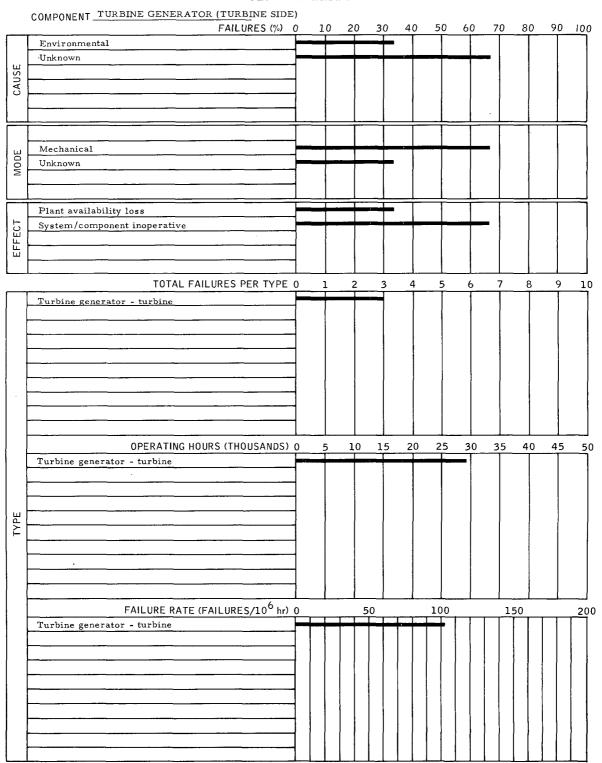
ſ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
1	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	1	 Turbine-Generator/ Flange Turbine-Generator Units/Turbine Side 55 310000 	 EBR-II Main turbine/vertical flange 20,000 kw, 3,600 rpm PMMR-91 	MI 500	MI BZ	MI 550	8,732	Direct observation	 Steam leak on main turbine flange Local repair to be attempted - apparently successful because turbine put back in service. Following any turbine problems of increasing vibration recheck turbine flange connections - tighten bolts.
LMEC-Memo-69- 1-136	2	 Turbine-Generator/ Spill Strip Casing Turbine-Generator Units/Turbine Side 55 310000 	 EBR-II Main turbine 20,000 kw, 3,600 rpm ANL7255, PMMR-85 	MA 500	MA 53	MA 520	7,800	Routine inspection	 Portion of seal ring broke from turbine causing extensive blade damage. The supplier representative (GE) replaced or repaired all questionable blading. Increase running clearance of seal ring if possible - clean steam system - incorporate vibration meter with visual read out chart or electronic alarm red line - determine blade fatigue not problem - determine ring material is sound.
-69-7, Vol I 6	3	 Turbine-Generator/ Governor Turbine-Generator Units/Turbine Side 55 310000 	 EBR-II Main turbine 20,000 kw, 3,600 rpm PMMR-113 	MI 500	MI 43	MI 550	12,390	Operational monitors	 Pressure governor malfunction causing difficulties in controlling steam header pressure. Governor was realigned and reset at facility. Improve maintenance procedures - check for clean- liness of mechanism, corrosion, lubrication - check to ensure vibration is not loosening adjustment mechanism.
									-

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

÷

TABLE <u>1-54</u>

FAILURE DISTRIBUTION FUNCTIONS


-

COMPONENT TURBINE GENERATOR (TURBINE SIDE)

COMPONENT SUBTYPE TURBINE GENERATOR (TURBINE SIDE) 60 90 100 FAILURES (%) 0 40 50 70 80 10 20 30 Nuclear Test Reactor PLANT TYPE Turbine-Generator Units - Turbine Side SYSTEM Governor Blades Flange COMPONENT PART Environmental CAUSE Unknown MODE Mechanical Unknown EFFECT Plant availability loss System/component inoperative

TABLE ______

GENERAL SUMMARY

5. Valve Operators (See Figures 1-4 and 1-5)

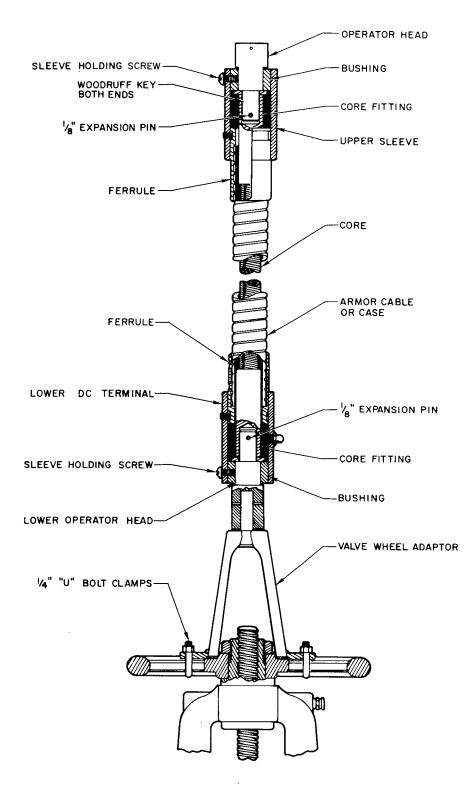
Failure data for valve operators are presented in Tables 1-56 through 1-58.

a. Reliability Information

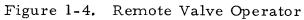
Design Features:

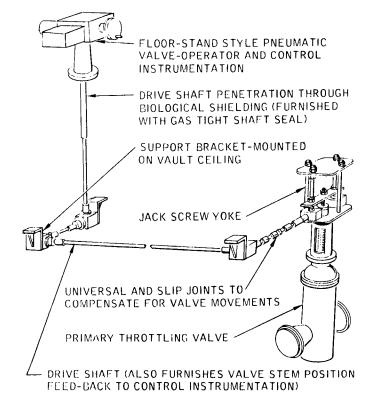
Pneumatic cyclinder is used to open and close valves.

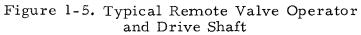
Critical Characteristics:


- 1) Cylinder seals
- 2) Packing gland and valve stem assembly
- 3) Coupling between actuator and valve.

Failure Description:


- 1) Dirt or paint on stem
- 2) Stem bent
- 3) Improper packing techniques
- 4) Wrong type of packing
- 5) Actuator moving too fast
- 6) Improper repair and/or assembly and/or installation
- 7) Water in cylinders.


Control Methods:


- 1) Clean actuator stems.
- 2) Break packing joint alignment.
- 3) Install packing rings with care.
- 4) Tighten up packing evenly.
- 5) Verify that packing is of right size and material.
- 6) Install orifices in actuation system to control timing.
- 7) Write repair, assembly, and installation checklists and detailed procedures if necessary.
- 8) Install water traps and filters in air system.

b. Discussion and Recommendations

Remote valve operators (see Figure 1-5) are generally required in sodium systems for reasons of accessibility limitations. The nuclear radiation field in which the valve operator may function must be considered to ensure that lubricants and electrical insulation will not suffer deterioration. Stem force must be controlled in order not to exceed any structural limitations to the valve. Frictional losses associated with either flexible drive shafts or solid mechanical drive trains interconnected to gear boxes, universal joints and couplings must be allowed for, when establishing power actuating requirements. Allowances should also be made for pipe deflections and valve motion relative to the drive shafts. Where closing or opening speed is high, the valve design must have adequate provision for reducing the transient forces by the use of energyabsorption devices.

Failures to either the coupling or universal joint were high. It was concluded that the original design did not adequately consider the forces involved and did not provide for thermal growth. The timing of the actuator was off, and orifices installed in the system would have provided more positive control. Water was found in the cylinders. This could have been prevented if the system were designed with traps to prevent the collection of moisture in areas that harm the system.

There were many failures during installation or while personnel were working in the area. These included the disengaging of shafts from their couplings, the shearing of pins, breaking of keys, bent stems, repair and replacement of gears and clutches, and improper choice of packing and its installation. This situation could be improved with better design, more training for personnel, and more complete installation and maintenance procedures.

\mathcal{V}	

TABLE ________

FAILURE DATA FOR VALVE OPERATORS (Sheet 1 of 9)

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITE	ΞM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Valve Operator/ Shaft Heat Transfer/Pri- mary Coolant Piping and Valves 21 21230 	 HNPF Primary (block valve) V-101 Gas cooled freeze seal gate, 14 in., ambient temperature HNPF, work request No. 1742 	MA 110	MA 53	MA 530	2784	Direct observation (unscheduled)	 Shaft rising and disengaging from coupling. Local repair, tack welded shaft to coupling. None.
2		 Valve Operator / Shaft Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (block valve) V-201 Gas cooled freeze seal gate, 14 in., ambient temperature HNPF, work request No. 1742 	MA 110	MA 53	MA 530	2784	Direct observation (unscheduled)	 Shaft rising and disengaging from coupling. Local repair, tack welded shaft to coupling. None.
3		 Valve Operator / Shaft Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (block valve) V-301 Gas cooled freeze seal gate, 14 in., ambient temperature HNPF, work request No. 1742 	MA 110	MA 53	MA 530	2784	Direct observation (unscheduled)	 Shaft rising and disengaging from coupling. Local repair, tack welded shaft to coupling. None.
4		 Valve Operator/ Key Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (throttle) V-203 Ambient temperature S. Berger, et al, HNPF, Reactor Operations Analysis Program Semi- Annual Progress Report No. 4, Feb. 29, 1964-Sept. 30, 1964, NAA-SR-10743 	MI 126	MI 59	MI 530	14,208	Operational monitors	 Part broken. Part replaced. None.
5		 Valve Operator/ Key Heat Transfer/Inter- mediate Coolant Piping and Valves 21 222230 	 1. HNPF 2. Secondary (throttle) V-102 3. Ambient temperature 4. HNPF, work request No. 2490 	MA 126	MA 55	MA 520	5836	Operational monitors	 Park broken. Part replaced. None.
Ļ	_	= INCIDENT N	/I = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-56

FAILURE DATA FOR VALVE OPERATORS (Sheet 2 of 9)

Γ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ľ	ГЕМ	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Valve Operator/ Clutch and Gear Box Heat Transfer/Inter- mediate Coolant Piping and Valves 21 222230 	 HNPF Secondary (throttle) V-102 Ambient temperature HNPF, work request No. 2526 	MA 126	MA 55	MA 520	5932	Alarm	 Dogs on both clutch and gears were sheared off. Part replaced. None.
LMEC-Memo-69-7.	7	 Valve Operator/ Gear Box Heat Transfer/Inter- mediate Coolant Piping and Valves 21 222230 	 HNPF Secondary (throttle) V-302 Ambient temperature HNPF, work request No. 1932 	MI 126	MI 52	MI 530	2640	During preventive maintenance	 Broken part. Local repair, replaced with new gear and gaskets. None.
o-69-7. Vol I	8	 Valve Operator/ Gear Box Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (fill and drain) V-461 Ambient temperature HNPF, work request No. 949 	MI 110	MI 55	MI 530	24	Direct observation (unscheduled)	 Would not open or close. Local repair, repaired gear box. None.
	9	 Valve Operator/ Gear Box Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (fill and drain) V-462 Ambient temperature HNPF, work request No. 949 	MI 110	MI 55	MI 530	24	Direct observation (unscheduled)	 Would not open or close. Local repair, repaired gear box. None.
	0	 Valve Operator/ Gear Box Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (reactor inlet) V-002 Ambient temperature HNPF, work request No. 2397 	MI 126	MI 52	MI 530	6790	During preventative maintenance	 Would not open or close. Local repair, repaired gear box. None.
Ľ		= INCIDENT	MI = MINOR MALFUNCTION						

)

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-144

TABLE 1-56

FAILURE DATA FOR <u>VALVE OPERATORS</u> (Sheet 3 of 9)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAI	LURE IN CODE*	IDEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	 Valve Operator/ Clutch Assembly Gears Heat Transfer/Inter- mediate Coolant Piping and Valves 21 222230 	 HNPF Secondary (throttle) V-302 Ambient temperature HNPF, work request No. 814 	MI 126	MI 59	MI 530	24	During actuation	 Clutch assembly broken. Local repair, replaced damaged clutch assembly with assembly from No. 3 primary valve. None.
12	 Valve Operator/ Gears Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 1. HNPF 2. Primary (throttle) V-303 3. Ambient temperature 4. HNPF, work request No. 959 	MI 321	MI 59	MI 530	48	During actuation	 Gears and shaft jammed. Local repair, replaced damaged parts. None.
	 Valve Operator / Jack Screw Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 1. HNPF 2. Primary (throttle) V-103 3. Ambient temperature 4. HNPF, work request No. 2852 	MI 110	MI 55	MI 530	7200	During preventive maintenance	 Movement obstruction (working stress). Local repair, increased size of jack screw penetration. Redesign of drive mechanism of valve.
	 Valve Operator/ Jack Screw Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (throttle) V-203 Ambient temperature HNPF, work request No. 2857 	MI 110	MI 55	MI 530	7440	During preventive maintenance	 Movement obstruction (working stress). Local repair, increased size of jack screw penetration. Redesign of drive mechanism of valve.
15	 Valve Operator/ Jack Screw Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (throttle) V-303 Ambient temperature HNPF, work request No. 2857 	MI 110	MI 55	MI 530	7992	During preventive maintenance	 Movement obstruction (working stress). Local repair, increased size of jack screw penetration. Redesign of drive mechanism of valve.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ________

FAILURE DATA FOR <u>VALVE OPERATORS</u> (Sheet 4 of 9)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		_URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITI	EM	3. CODE:	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Valve Operator/ Jack Spindle Heat Transfer/Inter- mediate Coolant Piping and Valves 21 222230 	 HNPF Secondary (throttle) V-202 Ambient temperature HNPF, shift leader's log book, 2/23/63 	MA 126	MA 59	MA 520	5880	Direct observation (unscheduled)	 Keys in gear to jack spindle sheared. Jack spindle sent to vendor for rework. Redesign of drive mechanism of valve.
		 Valve Operator / Roll Pins Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (block valve) V-201 Ambient temperature HNPF, work request No. 3446 	MA 416	MA 59	MA 520	4320	Direct observation (unscheduled)	 A dowel pin in the valve operator gear train sheared. Local repair, replaced pin. Increase pin diameter.
LMEC-Memo-69-7, Vol I		 Valve Operator/ Key Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (throttle) V-103 Ambient temperature HNPF, monthly operating report, No. 10098 	MI 126	MI 59	MI 530	13,536	Operational monitors	 Key broke (improper differential motion). Park replaced. None.
1		 Valve Operator / Drive Shaft Heat Transfer/Primary Coolant Piping and Valves 21 221230 	 HNPF Primary (throttle) V-103 Ambient temperature HNPF, monthly operating report, No. 10098 	MI 149	MI 68	MI 530	13,536	Operatinal monitors	 Shaft scored (improper differential motion). Part replaced. None.
2		 Valve Operator / Universal Joint Heat Transfer/Primary Coolant Piping and Valves 21 221230 	 HNPF Primary (block) V-457 Ambient temperature HNPF, work request No. 1915 	MI 475	MI 59	MI 530	3600	During actuation	 Broken during actuation. Local repair. Change to stainless steel type.
		= INCIDENT	MI = MINOR MALFUNCTION						

M = INCIDENT MI = MINOR MAL MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-56</u>

FAILURE DATA FOR VALVE OPERATORS (Sheet 5 of 9)

ſ	1	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
Т	ЕМ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
2		 Valve Operator/ Universal Joint Heat Transfer/Pri- mary Coolant Piping and Valves 21 221200 	 HNPF Primary (drain) V-464 Ambient temperature HNPF, work request No. 963 	MI 110	MI 59	MI 530	48	Direct observation	 Broken universal joint. Local repair. Change to stainless steel type.
		 Valve Operator / Universal Joint Heat Transfer/Liquid Metals Purification 21 224235 	 HNPF Primary (plugging meter inlet) V-443 Ambient temperature HNPF, work request No. 2665 	MI 410	MI 59	MI 530	7656	During actuation	 Broken universal joint. Part replaced with stainless steel type. None.
LMEC-Memo-69-7, Vol I 1-147		 Valve Operator / Universal Joint Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (drain tank outlet) V-482 Ambient temperature HNPF, work request No. 1799 	MI 410	MI 59	MI 530	3624	During actuation	 Broken universal joint. Part replaced. Change to stainless steel type.
ź		 Valve Operator / Universal Joint Heat Transfer/Liquid Metals Purification 21 224233 	 HNPF Primary (cold trap inlet) V-447 Ambient temperature HNPF, work request No. 1913 	MI 410	MI 59	MI 530	3750	Direct observation	 Broken universal joint. Part replaced. Change to stainless steel type.
		 Valve Operator/ Universal Joint Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (balancing drain leg) V-308 Ambient temperature HNPF, work request No. 2825 	MI 117	MI 53	MI 530	9432	Direct observation	 Disconnection or loose universal joint. Local repair (welded U-joints to shaft). None.
Ļ			ML = MINOR MALEUNCTION]	<u> </u>			<u> </u>

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

					(Sh	eet 6 of 9)		
	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX	OPERATING	METHOD OF FAILURE	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION
	A 3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	HOURS	DETECTION	3. RECOMMENDATIONS
2	 Valve Operator/ Universal Joint Heat Transfer/ Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (fill line) V-475 Ambient temperature HNPF, work request No. 1984 	MI 410	MI 59	MI 530	4416	During actuation	 Broken universal joint. Part replaced. Change to stainless steel type.
2	 Valve Operator/ Universal Joint Heat Transfer/ Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (sodium fill tank vent) V-419 Ambient temperature HNPF, work request No. 2006 	MI 410	MI 59	MI 530	4056	During actuation	 Broken universal joint. Part replaced. Change to stainless steel type.
2	 Valve Operator/ Universal Joint Heat Transfer/Liquid Metals Purification 21 224235 	 HNPF Primary (plugging meter inlet) V-441 Ambient temperature HNPF, work request No. 2048 	MI 410	MI 59	MI 530	5064	During actuation	 Broken universal joint. Part replaced. Replace with stainless steel type.
2	 Valve Operator/ Universal Joint Heat Transfer/Liquid Metals Purification 21 224235 	 HNPF Primary (cold trap inlet) V-449 Ambient temperature HNPF, work request No.2058 	MI 126	MI 59	MI 530	5136	During actuation	l. Broken universal joint. 2. Part replaced with stainless steel type. 3. None.
3	 Valve Operator/ Universal Joint Heat Transfer/Pri- mary Coolant Piping and Valves 21 221230 	 HNPF Primary (fill tank vent) V-425 Ambient temperature HNPF, work request No. 2326 	MI 410	MI 59	MI 530	5688	During actuation	 Broken universal joint. Part replaced with stainless steel type. None.
	 Valve Operator/ Universal Joint Heat Transfer/ Liquid Metals Purification 21 224235 INCIDENT 	 HNPF Primary (cold trap inlet) V-449 Ambient temperature HNPF, work request No. 1322 MI = MINOR MALFUNCTION 	MI 126	MI 59	MI 530	2160	During actuation	 Broken universal joint. Part replaced. Replace with stainless steel type.

TABLE _________ FAILURE DATA FOR _____ VALVE OPERATORS

MA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol 1 1-148

		FA	ILURE (LVE OPER et 7 of 9)	ATORS	
	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAIL	URE IN CODE*				1. FAILURE DESCRIPTION
M	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
2	 Valve Operator/ Universal Joint Heat Transfer/Liquid Metals Purification 21 224235 	 HNPF Primary (plugging meter outlet) V-444 Ambient temperature HNPF, work request No. 1797 	MI 410	MI 59	MI 530	3600	During actuation	 Broken universal joint. Part replaced. Replace with stainless steel type.
3	 Valve Operator/ Universal Joint Heat Transfer/ Primary Coolant 21 221230 	 HNPF Primary/fill and drain V-465 Ambient temperature Work request No. 1510 	MI 475	MI 59	MI 530	1872	During actuation	 Broken universal joint. Local repair, replaced U-joint and shear pins. Replace with stainless steel type.
1	 Valve Operator/ Universal Joint Heat Transfer/ Primary Coolant 21 221230 	 HNPF Primary/block V-457 Ambient temperature Work request No. 1912 	MI 475	MI 59	MI 530	3600	During actuation	 Broken universal joint. Local repair, replaced with stainless steel joint. None.
5	 Valve Operator/ Universal Joint Heat Transfer/ Primary Coolant 21 	 HNPF Primary/block V-458 Ambient temperature Work request No. 1914 	MI 475	MI 59	MI 530	3600	During actuation	 Broken universal joint. Local repair, replaced with stainless steel joint. None.
6	 Valve Operator/ Universal Joint Heat Transfer/ Primary Coolant 21 	 HNPF Primary/block V-456 Ambient temperature Work request No. 1915 	MI 475	MI 59	MI 530	3572	During actuation	 Broken universal joint. Local repair, replaced with stainless steel joint. None.
7	 Valve Operator/ Universal Joint Heat Transfer/ Primary Coolant 2 	1. HNPF 2. Primary/drain V-463 3. Ambient temperature 4. Work request No. 1916	MI 475	MI 59	MI 530	3572	During actuation	 Broken universal joint. Local repair, replaced with stainless steel type. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

3. 21 221230

•

1. 2. ITEM 3.

32 1.

33 1.

34 1. 2. 3.

35 1. 2. 3.

36 1. 2. 3.

37 1.

TABLE	1-56

FAILURE DATA FOR <u>VALVE OPERATORS</u> (Sheet 8 of 9)

Γ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ľ	тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
-		 Valve Operator/ Universal Joint Heat Transfer/ Primary Coolant 21 221230 	 HNPF Primary/drain V-464 Ambient temperature Work request No. 1922 	MI 475	MI 59	MI 530	3572	During actuation	 Broken universal joint. Local repair, replaced with stainless steel type. None.
LMEC-N		 Valve Operator/ Universal Joint Heat Transfer/ Primary Coolant 21 221230 	 HNPF Primary/drain V-464 Ambient temperature Work request No. 1472 	MI 110	MI 59	MI 530	1800	Direct observation	 Broken universal joint. Local repair, replaced universal joint. Replace with stainless steel type.
LMEC-Memo-69-7, Vol I		 Valve Operator/ Air Line Heat Transfer/ Intermediate Coolant 21 222230 	 SCTI Secondary sodium system - - Incident report No. 77 	MI 479	MI 51	MI 110	115	Direct observation	 Foreign object blocking air line, jammed operator. Instrument air lines were cleaned. All air lines between compressors and operators should be blown free prior to installation.
1 I I	41	 Valve Operator/ Coupling Heat Transfer/ Liquid Metals Purifica- tion 21 224230 	 SRE Main primary/sodium service Ambient temperature Operations log book No. 6, p 70 	MI 120	MI 59	MI 530	3600	Direct observation	 Weak solder joint broken. Part replaced. Use welded steel parts.
	42	 Valve Operator/ Gear Heat Transfer/ Primary Coolant 21 	 SRE Auxiliary primary/sodium Ambient temperature Operations log book No. 13, p 106 	MI 120	MI 51	MI 530	17,300	Direct observation	l. Gear broken. 2. Part replaced. 3. None.
	43	 Valve Operator/ Shear Pin Heat Transfer/ Liquid Metals Purifica- tion 21 224230 	 SRE Main primary/sodium service Ambient temperature Operations log book No. 39, p 75 	MI 120	MI 51	MI 530	12,250	Direct observation	 Shear pin broke three times. Corrective modification (welded). None.
L	- 1	= INCIDENT	MI = MINOR MALFUNCTION		L	L			

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

1-150

FAILURE DATA FOR <u>VALVE OPERATORS</u>

(Sheet 9 of 9)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
44	 Valve Operator / Threaded Spindle Heat Transfer / Primary Coolant 21 221230 	 SRE Main primary Ambient temperature Operations log book No. 36, p 183 	MI 126	MI 50	MI 530	9700	Direct observation	 Stripped threads. Part replaced. None.
	 Valve Operator/ Operator Steam, Condensate and Feedwater Piping and Equipment/Steam 21 282000 	 EBR-II Auxiliary steam supply valve (P3-VC-627B) 1250 to 1265 psig ANL-6965 	MI 500	MI 55	MI 550	1200	Operational monitors	 Valve tended to open fully when stem position reached half open and seemed to stick in full open position. Part replaced with a larger operator. None.
46 46 LMEC-Memo-69-7, Vol I	 Valve Operator/ Position Control Rod Steam, Condensate and Feedwater Piping and Equipment/Valves 21 283300 	 EBR-II Condensate storage tank (P3-UC-615B) 840°F, 1500 psig PMMR-58 	MI 500	MI 59	MI 530	4544	Direct observation	 Position control rod broken. Part replaced. None.
47	 Valve Operator/ Coupling Nuclear Fuel Handling and Storage Equip- ment/Cooling 21 235140 	 EBR-II Fuel unloading machine cooling system (V-"A") - PMMR-56, 12/65 	MI 500	MI 59	MI 530	4400	Operational monitors	 Coupling broken. Part replaced. None.
48	 Valve Operator/ Cylinder Steam, Condensate and Feedwater Piping and Equipment/Valve 21 284300 	 EBR-II Feedwater/motor driven feed pump (P5-VC-596) 364°F, 1500 psig PMMR-107 	MI 500	MI 52	MI 59	1500	Operational monitors	 An air leak in the valve operator cylinder caused the valve malfunction. Local repair. None.
		MI = MINOR MALEUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-57

FAILURE DISTRIBUTION FUNCTIONS

Saluares t/alu		COMPONENT VALVE OPERATORS												
FAILURES (%) 0 10 20 30 40 50 60 70 80 90 100 Image: State of the state of		COMPONENT SUBTYPE VALVE OPERAT	ORS											
Nuclear Power Reactors Component Test Facility Nuclear Test Reactors Image: Strain and Equipment Steam and Equipment Image: Strain and Equipment Condensate Image: Strain and Equipment Feedwater Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Coupling Image: Strain and Equipment Chitch Shaft Gear Image: Strain and Equipment Impurity/contamination Image: Strain and Equipment Impurity/contamination Image: Strain and Equipment Image: Strain cal Image: Strain and Equipment Image: Strain cal Image: Strain and Equipment Image: Strain cal Image: Strain and Equipment Image: Strain and Equipment Image: Strain and Equipment Image: Strain and Equipment <				0	10	20	30) 4	0 !	50 (50 7	0 8	0 9	0 100
Component Test Facility - Muclear Test Reactors - Steam and Equipment - Condensate - Poil Handling - Feedwater - Heat Transfer - Coupling - Clutch - Shaft - Gear - Pin - Kex - Other - Unknown - Environmental - Human error - Inherent - Wechanical - System/component inoperative - Labor and materials loss only - No effect - <td></td> <td>Nuclear Power Reactors</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		Nuclear Power Reactors							_		-			
Image: sector	P H													
Image: second	⊴≿			-	_									
System/component inoperative - - -												1		
System/component inoperative System/component inoperative System/component inoperative System/component inoperative		Steam and Equipment									Τ			
Fuel Handling - - - - - Feedwater - - - - - Heat Transfer - - - - - Coupling - - - - - Coupling - - - - - Clutch Shaft - - - - Gear - - - - - Pin - - - - - Wood - - - - - Other - - - - - Impurity/contamination - - - - Unknown - - - - Environmental - - - - Juma error - - - - Inherent - - - - Joo - - - - Jubar and materials loss only - - - -											1			
Baseline -<	Σ			-										.
Impurity/contamination Unknown Environmental Human error Inherent Mechanical Mechanical System/component inoperative Labor and materials loss only	ΗË													
Impurity/contamination Unknown Environmental Human error Inherent Mechanical Mechanical System/component inoperative Labor and materials loss only	l ∑S				_				<u> </u>		-			
Ard L Chutch Shaft Gear Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Mechanical System/component inoperative Labor and materials loss only No effect														
Ard L Chutch Shaft Gear Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Mechanical System/component inoperative Labor and materials loss only No effect														
Ard L Chutch Shaft Gear Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Mechanical System/component inoperative Labor and materials loss only No effect														
Ard L Chutch Shaft Gear Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Mechanical System/component inoperative Labor and materials loss only No effect											T	Ι	1	
Ard L Chutch Shaft Gear Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical System/component inoperative Labor and materials loss only														
Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Wo System/component inoperative Labor and materials loss only No effect	H	Coupling												
Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Wo System/component inoperative Labor and materials loss only No effect	AR													
Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical W System/component inoperative Labor and materials loss only No effect	L L													
Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Wo System/component inoperative Labor and materials loss only No effect	ΕN	Clutch		-										
Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical W System/component inoperative Labor and materials loss only No effect	00			_	•									
Pin Key Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical W System/component inoperative Labor and materials loss only No effect	MF			-	-									
Key Other Unknown Environmental Human error Inherent Mechanical Wechanical System/component inoperative Labor and materials loss only No effect	ŭ			_										
Other Impurity/contamination Unknown Environmental Human error Inherent Mechanical Mechanical System/component inoperative Labor and materials loss only No effect					.							1		
Impurity/contamination Unknown Environmental Human error Inherent Mechanical System/component inoperative Labor and materials loss only No effect											Î			
Unknown Image: System/component inoperative Unknown System/component inoperative Labor and materials loss only No effect			-											
Unknown Image: System/component inoperative Unknown System/component inoperative Labor and materials loss only No effect		Impurity/contamination		-						Τ	1			
Inherent Mechanical W OP System/component inoperative Labor and materials loss only No effect	ш			_										
Inherent Mechanical W OP System/component inoperative Labor and materials loss only No effect	nsı						_			-		1		
Inherent Mechanical W O System/component inoperative Labor and materials loss only No effect	CA									Ì				
Mechanical Wechanical Wechanical System/component inoperative Labor and materials loss only No effect					_									
W System/component inoperative Labor and materials loss only No effect				Ι										
W System/component inoperative Labor and materials loss only No effect		Mechanical	······.											
System/component inoperative Labor and materials loss only No effect	ω			7										
System/component inoperative Labor and materials loss only No effect	OD			7										
Labor and materials loss only U No effect	Σ	······································		7										
Labor and materials loss only U No effect				1										
Labor and materials loss only U No effect		System/component inoperative			T	T				T		1	<u> </u>	
Interface Interface Interface Interface Interface Interface	5													
Plant availability loss	Ш Ц			-					ľ			Į		
	Ш				_									
				1										

TABLE <u>1-58</u>

GENERAL SUMMARY

	COMPONENT <u>VALVE OPERATORS</u> FAILURES (%)	0	1	0	20)	30	41	0	50	61	0	70	81	0	90)	00
	Impurity/contamination	Ľ			Ţ		Ť			Ť					-			7
	Unknown		_															
CAUSE	Environmental		_			_			<u> </u>									
AU	Human error									{								
0	Inherent	1_	_		_	_												
		1																
	Mechanical									1								
1.1		1			1													
MODE																		
Ν																		
]																
	System/component inoperative				T								Τ					٦
ст	Labor and materials loss only]	_			_				_		_			_			
EFFECT	No effect																	
Ш	Plant availability loss	_			Ì													
_																		
	TOTAL FAILURES PER TYPE	0	1		2		3	4		5	6		7	8		9		10
	Valve operators	_	-			_			_									
		1																
		4																
		4									l							
		4																
		-								İ								
		-																
				~					L			L						
	OPERATING HOURS (THOUSANDS)	0 T —	30	0	60)	90	12	20	150	18	30	210	24	10	27	0 3	
	Valve operators		-				-	-										
		-																
		1			[
Ш	·····	1														1		
ТҮРЕ		1	ĺ		Ì			1										
		1						ĺ										
		1																
														I				
	FAILURE RATE (FAILURES/10 ⁶ hr)	0	10	0	20	0	300	40	00	500	60	00	700	80	00	90	0 1	000
	Valve operators	-	F															7
		1																
]																
		1																
		1																
	· · · · · · · · · · · · · · · · · · ·	1																
		1												1				

E. FUEL HANDLING AND CORE COMPONENTS

1. Fuel and Breeder Elements

Failure data for fuel and breeder elements are presented in Tables 1-59 through 1-61.

a. Reliability Information

Design Features:

Fuel elements are designed to prevent fuel, breeder, and fission product material from contaminating the primary coolant.

Critical Characteristics:

Heat transfer and burn-up limitations.

Mode of Failure:

- 1) Pin holes developed releasing fission products.
- 2) Fuel swelling due to excess burn-up.
- 3) Fabrication defects in cladding undetected until insertion in reactor core.
- 4) Cladding scratched due to improper handling.
- 5) Fuel melting.
- 6) Thermocouple shorted.
- 7) Orifice drive cables stuck or broken.

Failure Description:

- 1) Inadequate quality control permits faulty elements to be used.
- 2) Improper handling procedures result in damage to elements during loading or unloading.
- Plugging of fuel channels by loose foreign material causes fuel melting.
- 4) Thermocouple failure due to improper attachment method or excessive vibration.
- 5) Adjustable fuel bundle orifices in sodium have not yet been proven practical.

Control Methods:

- Thermocouples, fission product monitors, and other devices which give warning of overheated fuel should be fast responding and readily visible to the console operator.
- 2) Quality control inspection and test procedures should be as explicit as cost trade-off will permit.
- Loading and unloading proceeds should be carefully developed and take into consideration such problems as soaking time, dripping time, alignment, cover gas purity, and cooling adequacy.

b. Discussion and Recommendations

None.

TABLE <u>1-59</u>

FAILURE DATA FOR <u>FUEL AND BREEDER ELEMENTS</u> (Sheet 1 of 4)

		L. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1			 Fermi Reactor Core/M-098 Reactor Environment PRDC-EF-47 	MA 111	MA A 3	MA 520	14,94]	Operational monitors	 Fuel melting in subassembly. Part replaced. None.
2 LMEC-M			 Fermi Reactor Core/M-122 Reactor Environment EF-50 	MA 111	MA A l	MA 520	14,941	Direct observation	 A large part of the exterior can wall surface was found to be covered with uranium which had alloyed with the steel. Part replaced. None.
3 LMEC-Memo-69-7, Vol I		 Fuel Subassembly/Rod Reactor Equipment/ Core Components and Supports 46 216300 	2. Reactor Core/M-127	MA 111	MA A 3	MA 520	14,941	Operational monitors	 Fuel melting in subassembly. Part replaced. None.
4		2. Reactor Equipment/	 Fermi Reactor Core/M-140 550°F to 800°F EF-38 and EF-46 	MA 176	MA A l	MA 520	14,941	Operational monitors	 Wrapper can distorted. Part replaced. None
5		 Fuel Element/Orifice Drive Cable Reactor Equipment/ Core Components and Supports 46 216300 	 HNPF Reactor core/element MF-81 Reactor Environment Monthly operating report No. 28 	MA 172	MA 59	MA 550	10,130	Director observation	 Orifice drive cable assembly broke at coupling. Part replaced. None.
							L		

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Merno-69-7, Vol 1-156

TABLE <u>1-59</u>

FAILURE DATA FOR <u>fuel and breeder elements</u> (Sheet 2 of 4)

ſ		 COMPONENT/PART SYSTEM/SUBSYST 	1. FACILITY M 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
	TEM	3. CODE: (Component) (System/Subsysten	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	6	 Fuel Assembly/ Thermocouple Reactor Equipment Core Components a Supports 46 216300 	 HNPF Element C-29/T/C 49-2 Reactor environment Monthly operating report No.21 	MA 15Z	MA . 13	MA 520	10,130	Operational monitors	 Thermocouple shorted to ground, causing scram. Corrective modification. None.
LMEC-Memo-69-	7	 Fuel Element/Orifi Control Reactor Equipment Core Components a Supports 46 216300 	 Reactor core/orifice MF-81 350 to 945°F - sodium 	MA 195	MA 55	MA 550	10,130	Direct observation	 Seven orifice drive cables stuck. Component corrective modification. None.
o-69-7. Vol I	8	 Fuel Element/Orifi Reactor Equipment Core Components a Supports 46 216300 	2. Orifice adjusting mechanism C-164	MA 148	MA 55	MA 550	Unknown	Operational monitors	 Orifice could not be adjusted properly. Removed rod, replaced orifice rod seals, tightened packing nut. None.
	9	 Fuel Element/Orifi Reactor Equipment Core Components a Supports 46 216300 	2. Reactor core/C-81	MI 14Z	MI 55	MI 550	Unknown	Operational monitors	 Orifice drive assembly broke during operation. Replaced. None.
	10	 Fuel Element/Clad. Reactor Equipment Core Components a Supports 46 216300 	2. Primary/reactor core subassembly	MA 500	MA 59	MA 520	Unknown	Operational monitors	 Subassembly X028, fission product release to approx. 30 times the normal level. Reactor bldg.was evacuated Part replaced. None.
L					<u> </u>	1	l		

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

FAILURE DATA FOR FUEL AND BREEDER ELEMENTS

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		Core Components and	 EBR-II Primary/reactor core 300 to 800°F ANL 7082 	MA 500	MA 54	MA 530	2590		 Swelling due to excessive burnout. Part replaced. None.
LMEC-Memo-	12	Core Components and	 EBR-II Primary/reactor core 300 to 800°F ANL 7403 	MA 500	MA 59	MA 520	13,340	Operational monitors	 Small defect in cladding which released bond sodium slowly. Component part replaced. Revise Quality Assurance procedures for acceptance of fuel cladding material.
Memo-69-7, Vol I	13	2. Reactor Equipment/ Core Components and	 EBR-II Primary/reactor core subassembly C-2039 300 to 800°F ANL 7419 	МА 500	МА 54	MA 520	13,380	Inspection of associated systems	 Subassembly was wedged against control rod L-446 and caused the rod to be scratched when it was removed. Component replaced. None.
г	14	Core Components and Supports	 EBR-II Primary/reactor core subassembly XG05 300 to 800°F ANL 7438 	МА 500	MA BZ	MA 520	13,800	Operational monitors	 Fission gas release into primary systems, very slight. Component part replaced. None.
	15	Core Components and Supports	 EBR-II Frimary/reactor core subassembly XA08 300 to 800°F ANL 7438 	MA 500	MA BZ	MA 520	13,850	Operational monitors	 Fission gas release into primary systems, very slight. Component part replaced. None.
		= INCIDENT	MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

1-158

TABLE _______

FAILURE DATA FOR <u>FUEL AND BREEDER ELEMENTS</u> (Sheet 4 of 4)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
16	 Fuel Element/Cladding Reactor Equipment/ Core Components and Supports 46 216300 	 EBR-II Primary/reactor core subassembly XO11 300 to 800°F ANL 7342 	MA 500	MA 59	MA 550	10,270	Operational monitor	 FGM monitor indicated greater than 10 times the normal reading on a portable instrument. Reactor power was reduced for investigation. None.
	 Fuel Element/Cladding Reactor Equipment/ Core Components and Supports 46 216300 	 EBR-II Primary/reactor core C-2111 and C-2113 300 to 800°F ANL 7403 	MA 500	MA BZ	MA 520	12,425	Operational monitor	 Fission gas release was from newly inserted "fresh" fuel assembly. Component replaced. Upgrade Quality Assurance procedure for fuel element inspection.
18	 Fuel Element/Orifice Reactor Equipment/ Core Components and Supports 46 216300 	 HNPF C-178 Reactor environment WR 2819 	MI 9ZZ	MI 59	MI 530	-	Operational monitor	 Orifice housing broke. Replaced. None.
19		 SRE (Core I) Reactor core 950°F sodium NAA-SR-4488 and NAA-SR-4488 Supplement 	I 111	I 66	I 520	16,200	Operational monitor	 Fuel channel clogging caused by tetralin decompo- sition products results in fuel and cladding melting. Sodium pump tetralin freeze seals replaced with NaK freeze seals thereby eliminating the potential source of contaminant. None.

I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-60</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT FUEL AND BREEDER ELEMENTS

- - - -

COMPONENT SUBTYPE FUEL ELEMENTS

		FAILURES (%)	0 1	0	20 2	30 4	10 5	50 é	50 7	70 8	BO 9	90 10
	Nuclear Power Reactor				+	+	T		T	T	T	1
PEN	Nuclear Test Reactor						-					
PLANT TYPE]									1
	Core Components and Supports		-		-		-	1	-	-	-	
			1	j							1	
S			1				[ĺ	1	1	1	
E			1			ļ						
SYSTEM						i				Í		{
]				ļ			ļ		
]									
	Cladding				-		-	T	T	T	T	Î
	Fuel Pins		 	}	1			}	1			
F	Rod		<u> </u>	┢			1					
AR	Wrapper			1	1					1		
E	Exterior Can Wall			Í							ĺ	
VEN	Orifice Control		<u> </u>		÷						1	1
COMPONENT PART	Thermocouple		—									
NO				1	1				1	1	1	
									1			
			[ſ		1		1	1	1	
			ļ]								
					1			1	1	Ĺ	Ĺ	
	Environment				-		-	-	1			
ш	Unknown					[[[
CAUSE				ļ							ļ	
С I												
			l			1]]
	Mechanical			-		F	1	-	[$\overline{\square}$
<u>ы</u> [Reactivity change				┢╍				1			
MODE	Unknown						{			}		
2	Electrical				1						1	
	Metallurgical					1						
	Labor and materials loss only				Ī	Ē——	<u> </u>	T	i		1.	Ħ
5	Plant availability loss				<u> </u>	L			-			
EFFECT	System/component inoperative									ļ		
Ш						Í	((
					J	J						
					<u> </u>	L				r		

TABLE ______

GENERAL SUMMARY

COMPONENT FUEL AND BREEDER ELEMENTS

	COMPONENT <u>FUEL AND BREEDER ELEMEN</u> TS FAILURES (%) 0	1	n	20	30	40) 5) 4	0	70	80	90	100
	Environment	1	-				, ,		<u> </u>	<u>,,,</u>		Ť	
	Unknown												
ш	Unknown												
CAUSE	· · · · · · · · · · · · · · · · · · ·												
ъ С	· · · · · · · · · · · · · · · · · · ·												
					<u> </u>					<u> </u>			
	Mechanical		•	-									
Ы	Reactivity change			-									
MODE	Unknown												
	Electrical												
	Metallurgical												
	Labor and materials loss only		3										
ст	Plant availability loss								+				
EFFECT	System/component inoperative		_	+	•								
Ш													
	TOTAL FAILURES PER TYPE 0	5	5	10	15	20) 2	5 3	30	35	40	45	50
	Fuel and breeder elements		_	_		_			{				
									1				
		1											
	OPERATING HOURS (THOUSANDS) 0	2	5	50	75	10	0 12	5 1	50	175	200	225] 250
	Fuel and breeder elements		,			10		<i>y</i> 1	Ť	<u> </u>			- <u>-</u>
	Tuei and Dieeder elements												
							1						Í
w									ļ				
ТҮРЕ													
									1				
									ł				
		I		<u> </u>		l			1				
	FAILURE RATE (FAILURES/10 ⁶ hr) 0	-10	0	20	30	40) 50	$\frac{1}{1}$	<u>0</u>	70	80	90	100
	Fuel and breeder elements	1	•			11							
[

LMEC-Memo-69-7, Vol I 1-161

,

2. Fuel Handling Equipment (liquid metal, internal) (see Figure 1-6)

Failure data for fuel handling equipment (liquid metal, internal) are presented in Tables 1-62 through 1-64.

a. Reliability Information

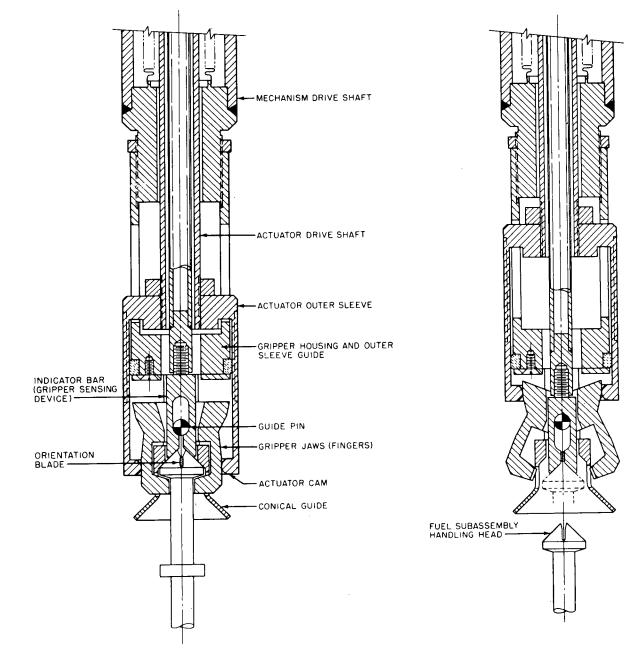
Design Feature:

In-core handling mechanisms are designed to provide motion interlocks for all system operations minimizing damage to equipment. Gripper design utilizes positive actuation for opening and closing to reduce the risk of accidental droppage or unintentional removal of core subassemblies. Operation in sodium minimizes crudding and contamination resulting from frequent insertions and removal from the sodium pool.

Critical Characteristic:

Equipment parts have to survive in liquid sodium and sodium vapor environments.

Mode of Failure:


- 1) Misalignment
- 2) Seal leak
- 3) Wear.

Failure Description:

- 1) Bearing failed due to misalignment.
- 2) O-ring seal leaked.
- 3) Revolving lock in a holddown mechanism wore out.

Control Methods:

- 1) Proper installation and maintenance procedures are required.
- 2) Materials must be selected for their particular use.
- 3) Special parts must be carefully designed with complete knowledge of their requirements.

7-7694-215-70

Figure 1-6. EBR-II Gripper Mechanism

b. Discussion and Recommendations

Bearing failures occurring before the normal projected lifetime are the result of overloading some portion of the race or rolling element. This overload comes from misalignments, direct overloads, too high preloads, foreign objects in the bearings, or changes in stress on bearing due to temperature changes which shift the mounting. In design, select a bearing suitable for the job. Also, design so that the bearing will not loose its lubrication and is properly protected from the entrance of foreign materials. Determine what the logical limit to bearing life should be under the conditions of operation.

Bearings under low speed operation will generally show signs of breakdown before complete failure by binding and making scrapping and clicking sounds. An improperly mounted bearing is usually misaligned and will show this misalignment by binding and freeing as it is rotated.

O-ring failures are due to improper installation, improper compression, or incorrect material for the environment. Make certain that the seal is not damaged during installation. In design, select correct materials and design for correct pressure.

Little can be done to determine incipient failure in an O-ring seal. If the seal is a linear seal, some evidence of the O-ring material might be seen rubbing on the moving element.

Incipient failure in mechanisms is manifested by changes in operating characteristics such as the force to operate, roughness, etc. Some visual evidence, such as metal chips or dust, may indicate future failure.

TABLE ______

FAILURE DATA FOR ______ FUEL HANDLING EQUIPMENT (LIQUID METAL, INTERNAL)

ITEM 3. CODE: (Component) (System/Subsystem) 3. OPERATING CONDITIONS CAUSE MODE EFFECT METHOD OF FAILURE DETECTION 2. CORRECTIVE ACTION 1 1. Fuel Handling Equip- ment/Bearing 1. Fermi 2. Offset handling mechanism MI MI MI MI 11,740 During actuation 1. Bearing misaligned. 2. Operating limits changed to correct erratic latchin of subasemblies. 1 1. Fuel Handling Equip- ment/Bearing 1. Fermi 2. Offset handling mechanism 3.22 56 530 11,740 During actuation 1. Bearing misaligned. 2. Operating limits changed to correct erratic latchin of subasemblies. 3. 47 236100 1. Fermi 2. Offset handling mechanism MI MI MI 52 530 14941 Operational monitors 1. O-ring seal leak. 2. Component design change; the O-ring material was replaced. A "silastic" seal to stop a leak rate of 2 off was installed. 2 1. Fuel Handling Inter- I. Liquid Metal Internal 4. EF-42 MI MI MI MI 13,380 Preventive mainte- ane & Schwarm mechanism 2. Holdidown mechanism 3 1. Fuel Handling Inter- relaced. 1. EBR-II MI MI MI MI 13,380			 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
 I ment/Bearing Nuclear Fuel Handling Equipment/ Liquid Metal Internal 47 236100 I Fuel Handling Equipment/ 2. Nuclear Fuel Handling Internal/ 3. 47 Viscore Equipment/ 2. Offset handling mechanism 4. EF-22 I Fuel Handling Equipment/ 2. Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi Offset handling mechanism I. Fermi I. Fermi Offset handling mechanism I. Fermi I. Fermi I. Fermi I. Fermi I. EBR-II I. EBR-II I. EBR-II I. Fuel Handling Internal/Revolving Lock Nuclear Fuel Handling I. EBR-II I. Holdown mechanism I. Operation weekly report, 1/10/68 MI MI MI MI MI Signification Signification I. Sevolving lock worn out. Revise preventive maintenance inspection interval to permit replacement before total failure. Interval to permit replacement before total failure. 		IEM	3. CODE: (Component)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	HOURS		
K ment/O-ring Seal 2. Nuclear Fuel Handling and Storage Equipment Liquid Metal Internal 3. 47 2361002. Offset handling mechanism 3 4. EF-42417525302. Component design change; the O-ring material was replaced. A "silastic" seal to stop a leak rate of 2 cfh was installed. 3. Improve engineering material evaluation.31. Fuel Handling Inter- nal/Revolving Lock 2. Nuclear Fuel Handling and Storage Equipment 4. EF-421. EBR-II 2. Holddown mechanism 3 4. Operation weekly report, 1/10/68MIMIMIMI13,380Preventive mainte- nance1. Revolving lock worn out. 2. Part replaced.31. Fuel Handling and Storage Equipment 4. Operation weekly report, 1/10/68MIMIMIS25301. S80Preventive mainte- nance1. Revolving lock worn out. 2. Part replaced.43. 47474. Operation weekly report, 1/10/684. Operation weekly report, 1/10/68MIMIS25301. S80Preventive mainte- nance1. Revolving lock worn out. 2. Part replaced.		1	ment/Bearing 2. Nuclear Fuel Handling and Storage Equipment/ Liquid Metal Internal 3. 47	 Offset handling mechanism - 	MI 322			11,740	During actuation	 Operating limits changed to correct erratic latching of subassemblies.
	LMEC-Mem 1-	2	ment/O-ring Seal 2. Nuclear Fuel Handling and Storage Equipment/ Liquid Metal Internal 3. 47	 Offset handling mechanism - 				14941	Operational monitors	 Component design change; the O-ring material was replaced. A "silastic" seal to stop a leak rate of 2 cfh was installed.
	mo-69-7, Vol I - 165	3	nal/Revolving Lock 2. Nuclear Fuel Handling and Storage Equipment, Liquid Metal Internal 3. 47	2. Holddown mechanism 3				13,380		 Part replaced. Revise preventive maintenance inspection interval

I = INCIDENT MI = MINOR MALF MA = MAJOR MALFUNCTION P = PROBLEM UNCTION

TABLE <u>1-63</u>

_

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT FUEL HANDLING EQUIPMENT

		-									
	FAILURES (%)	$\frac{0}{1}$	02	03	0 4	0 5	0 6	0 7	8 0	0 90	0 10
le	Nuclear Power Reactor	-									
PLANT TYPE	Nuclear Test Reactor										
	Nuclear Fuel Handling and Storage Equipment										
SYSTEM											
	Bearing										1
	"O" Ring Seal										
ART	Revolving Lock										
ENT P											
COMPONENT PART	-										
CO											
Ē											
	Human error										
CAUSE	Inherent										
Ϋ́	Unknown										
С С		ļ									
	Mechanical							•			
_	McChanical	1									
MODE		1									
Σ		1									
	Labor and materials loss only										
EFFECT						2					
	· · · · · · · · · · · · · · · · · · ·	l									

TABLE <u>1-64</u>

GENERAL SUMMARY

COMPONENT FUEL HANDLING EQUIPMENT

	FAILURES (%) 0		10	20)	30	40	50	60	70	80	90	100
	Human error		-		_	-							
	Inherent		+			+							
JSE	Unknown	_	-	_									·
CAUSE													
Ŭ										[
	Mechanical				_								
_w													
MODE	······································												
Σ													
	Labor and material loss only		-		-	1	-						
Ъ												2	
EFFECT													
Ш													
	TOTAL FAILURES PER TYPE 0		1	2		3	4	5	6	7	8	9	10
	Fuel handling equipment		Î	Ĵ		Í	Ť	Ť	−ĭ-	-í-	Ť	Ť	Ť
			ł										
													1
													ĺ
				1									
											Í		
1													
	OPERATING HOURS (THOUSANDS) 0	1	.0	20	<u> </u>	30	40	50	60	70	80	90	100
	Fuel handling equipment		-		_	+]
										Ì			
			ļ										
ω	· · ·		ĺ										
ТҮРЕ													
╎┍╴┟													
						i i		1					
	······································												
╞	FAILURE RATE (FAILURES/10 ⁶ hr) 0	1	0	20)	30	40	50	60	70	80	90	100
	Fuel handling equipment												
		1	1.										

F. HEAT TRANSFER SYSTEM COMPONENTS

1. Blowers and Fans

Failure data for blowers and fans are presented in Tables 1-65 through 1-68.

a. Reliability Information

Design Features:

Provide air flow at specified rates for various applications.

Modes of Failure:

- 1) Bearings noisy or races broken
- 2) Gear broken
- 3) Fan blades cracked.

Failure Experience:

Causes have been poorly described, if at all. However, there were several indications of inadequate inspection and incipient failure detection methods. Bearings were the high-frequency failure item, with some indication on inadequate lubrication and possible misalignment.

Control Methods:

- The bearing problem is common to all types of rotating equipment. A concentrated effort should be made to adapt existing methods of incipient failure detection to early awareness of potential bearing failure in order to prevent major damage to other parts of the fan or blower.
- 2) Establish reliable inspection and maintenance procedures including checks on alignment and loading.

b. Discussion and Recommendations

None.

1TE		 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION	
	ITEM			CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
		2. Turbine-Generator				MI 530	7400	Operational monitors	 Bearing broken. Part replaced. Investigate cause for broken bearing and modify accordingly. 	
LMEC-Me 1		2. Turbine-Generator Units and Condenser/		MI 500	MI 59	MI 530	7400	Operational monitors	l. Gear broken. 2. Part replaced. 3. None.	
LMEC-Memo-69-7, Vol I 1-169		2. Turbine-Generator Units and Condenser/				MI 530	7400	Operational monitors	 Bearing broken. Part replaced. Investigate cause of bearing breakage. Check balance of blower, load on bearing, etc. 	
Π		2. Heat Transfer/Conven- tional Fossil Fuel Fired	1. SCTI 2. Primary sodium system/heater (H-1) 3. 1160 rpm, 53,400 cfm 4. Incident report No.320	MA 126	MA 59	MA 550	19,222		 Bearings noisy as both races had broken surfaces and indentations in the outer races caused knocking. Defective parts replaced. Improve maintenance. 	
		2. Heat Transfer/Reactor				MI 530	103	Routine area watch	 Grease seal ring of bearing became loose because of loose setscrew. Flat plate ring and gasket substituted for grease seal ring. None. 	
		 Other Plant Equipment/ Cover Gas Cooling 		MI 500		MI 530	3410	Operational monitors	 Fan blade cracked. Part replaced. None. 	
l	* 1	= INCIDENT	AI = MINOR MALFUNCTION							

TABLE <u>1-65</u>

 \cap

FAILURE DATA FOR <u>BLOWERS AND FANS</u> (Sheet 1 of 3)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

.

FAILURE DATA FOR <u>BLOWERS AND FANS</u> (Sheet 2 of 3)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION	
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE MODE EFFECT		METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS			
		Cover Gas Cooling	1. EBR-II 2. Fuel element rupture detector 3 4. PMMR-34	MI 500	MI 54	MI 530	2590		1. Fan blades bent. 2. Part replaced. 3. None.	
LMEC		2. Fuel Handling/Fuel Handling Machines	l. Fermi 2. No.l argon cask car 3. Min.350°F, argon, 1000 rpm 4. EFAPP MR No.59	MI 128	MI 68	MI 530	7930		 Bearings worn out. Part replaced, remachined galled motor shaft. The use of high-temperature lubricant (melting point 528°F) might help. 	
LMEC-Memo-69-7, Vol I 1-170		 Fuel Handling/Fuel Handling Machines 	l. Fermi 2. No.2 argon cask car 3. Min. 350°F, argon, 1000 rpm 4. PRDC-EF-14	MI 128	MI 54	MI 530	7930		l. Bad bearings. 2. Local repair. 3. None.	
7, Vol I			l. EBR-II 2. Pump M-l cooling air 3 4. PMMR-22	MI 127	MI 58	MI 530	1200	Audio noise	1. Noisy bearing. 2. Part replaced. 3. None.	
		2. Other Reactor Plant Equipment/Auxiliary	1. EBR-II 2. Primary sodium pump (M-2) 3 4. PMMR-22	MI 127	MI 58	MI 530	1200	Audible noise	 Noisy bearing. Part replaced. Revise preventive maintenance inspections interval on blower bearings to provide adequate lubrication. 	
		 Blower/Bearing Other Reactor Plant Equipment/Auxiliary Cooling 28 290000 	1. EBR-II 2. Primary auxiliary EM pump 3 4. Operations weekly report, 2-21-68	MI 148	MI 52	MI 530	13,500	Direct observation	 Outer race of bearings turning in bearing housing. Bearings replaced. None. 	
	* 1	= INCIDENT	MI = MINOR MALFUNCTION							

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-65</u>

FAILURE DATA FOR <u>BLOWERS AND FANS</u> (Sheet 3 of 3)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
13	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	Equipment/Auxiliary	l. EBR-II 2. Primary auxiliary EM pump 3. – 4. PMMR-95	MI 500	MI 52	MI 530	9345	During preventive maintenance	 Bearing worn out. Part replaced. None.
	Gas Supply and Monitoring	 EBR-II Primary argon purification No.2 blower 10 hp, 440 volts, 150 cfm PMMR-96 	MI 500	MI 52	MI 530	9345	maintenance	1. Bad bearings. 2. Replaced bearings. 3. None.
16 1	 Other Plant Equipment/ Cover Gas Cooling 	1. EBR-II 2. Fuel element rupture detector 3. 4. PMMR-92	MI 500	MI 52	MI 530	8960		 Bearings failed. Bearings replaced. None.
	 Other Plant Equipment/ Cover Gas Cooling 	l. EBR-II 2. Fuel element rupture detector 3. – 4. PMMR-92	MI 500		MI 530	8960		l. Gears failed. 2. Part replaced. 3. None.
	= INCIDENT M	I = MINOR MALFUNCTION						

	COMPONENT SUBTYPEBLOWERS											
		AILURES (%) 0	10	2	0 3	30 4	0 5	06	0 7	<u>8 0</u>	09	0 10
	Nuclear Test Reactor							Ì				
PLANT TYPE	Nuclear Power Reactor											
Ч́-												
						<u> </u>	<u> </u>		L		<u> </u>	
	Other Reactor Equipment											
	Fuel Handling	-	+									
Ś	Other Plant Equipment					+	ſ	ĺ				1 1
Ë	Heat Transfer											
SYSTEM-												
			ĺ				[Í			(i I
			ļ].	ļ]			
	Bearings							L				
	Fan Blade											
	Gears				1			ļ				
COMPONENT PART							i					
d L												
N.					1							
NO												
M N	<u> </u>											
8									ł			
	<u></u>											
	<u> </u>		- 1			1				l		
			<u></u> +			+	<u>+</u>	r			I	
	Unknown											
CAUSE	Environmental							ľ				
AU												
U U												
			1				[1			1	
							<u> </u>					
	Metallurgical		+	<u> </u>]]				
щ	Mechanical											
MODE												
2												
			_				1					
	Labor and material loss only					Τ						
						1	1					
ы												
EFFECT												
						1	1					

TABLE <u>1-66</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT BLOWERS AND FANS

	COMPONENT SUBTYPEFANS		-									
		FAILURES (%)	0_1	0 2	<u>0 3</u>	0 4	0 5	06	0 7	0 8	0 9	0 100
	Nuclear Test Reactor											
AN	Component Test Facility					Î						
PLANT TYPE					ĺ							
					<u> </u>			L				
	Turbine Generator				_							
	Fossil Fuel Fired Boilers											
Σ	Reactor Coolant System]									
SYSTEM	·											
	·					ļ						
					<u> </u>		I					
	Shaft Bearing											
	Gear											
	Bearing		<u>}</u>									
COMPONENT PART	Cooler Fan		╞━━━╸									
E												
Ne l		- <u></u>										
PO			1									
MO		······································										
U U												
			ļ									
			ł	(
					<u> </u>	<u> </u>	Ļ					
	Unknown								_			
ш	Environmental											
CAUSE			1									
Û			ļ									
		<u></u> .										
			<u> </u>									
	Metallurgical	د				[_		
ы	Mechanical		-									
MODE						[
	· · · · · · · · · · · · · · · · · · ·											
	· · · · · · · · · · · · · · · · · · ·				L		l					
	Labor and material loss only					ļ						Ī
5	Plant availability loss					Į	l					
EFFECT			1									
Ш			1									

TABLE <u>1-67</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT BLOWERS AND FANS

TABLE <u>1-68</u>

GENERAL SUMMARY

	FAILURES (%) 0	1	<u>, </u>	20	30			0	60	70	80	90	1
	Environmental	_	<u> </u>										
	Unknown	_		+-			- بزر <u>س</u> -		-			(
CAUSE													
Ξ,								1					
			1		1			ł			ł		
								L					
_ [Mechanical			_			_	-	-+-				
ա [Metallurgical			-	-+								
MODE			l										
≥ [1										
	Labor and material loss only				_	-		Ι					
⊢ İ	Plant availability loss												
EFFECT													
Ξ								1				- {	
									_				
	TOTAL FAILURES PER TYPE 0		2	4	6	8	1	.0	12	14	16	18	
T	Fans			İ	Ť	<u> </u>		İ.	Ť	- <u>T</u>	<u> </u>	<u> </u>	
ł	Blowers						_	<u> </u>					
f			1					1					
ł													
ŀ			[1	{		1			1	ĺ	
t			1										
- F													
ł						ŗ							
						ŀ							
-	OPERATING HOURS (THOUSANDS) O	T	0	20	30	40		50	60	70	80	90	
	OPERATING HOURS (THOUSANDS) O	1	0	20	30	40		50	60	70	80	90	
	Fans	1	0	20	30	40	E	50	60	70	80	90	
		1	0	20	30	40	1	50	60	70	80	90	
	Fans	1	0	20	30	40	Ē	50	60	70	80	90	
оЕ 	Fans	1	0	20	30	40		50	60	70	80	90	
TYPE	Fans	1	0	20	30	40	E	50	60	70	80	90	
ТҮРЕ 	Fans	1	0	20	30	40		50	60	70	80	90	
ТҮРЕ	Fans	1	0	20	30	40	E	50	60	70	80	90	
ТҮРЕ	Fans	1	0	20	30	40	<u> </u>	50	60	70	80	90	
ТҮРЕ	Fans	1	0	20	30	40		50	60	70	80	90	
TYPE	Fans Blowers												
ТҮРЕ	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0									70			
түрЕ	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0 Fans												
ТҮРЕ	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0												
түрЕ	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0 Fans												
TYPE	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0 Fans												
TYPE	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0 Fans Blowers												
TYPE	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0 Fans												
TYPE	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0 Fans Blowers												
TYPE	Fans Blowers FAILURE RATE (FAILURES/10 ⁶ hr) 0 Fans Blowers												

2. Cold Traps/Hot Traps (See Figure 1-7)

Failure data for cold traps/hot traps are presented in Tables 1-69 through 1-72.

a. Reliability Information

Design Features:

Hot traps and cold traps are designed to remove impurities from liquid sodium systems.

Mode of Failure:

- 1) Chemical reaction
- 2) Electrical aging or wear
- 3) Mechanical wear or distortion.

Failure Description:

- 1) Sodium leakage at flange or other area
- 2) Plugged trap.

Control Methods:

- Flanges and O-rings should be clean and bolts tightened in a specified manner.
- 2) Location of heaters in area are important.
- 3) Personnel training and proper procedures aid in satisfactory operation of traps.

b. Discussion and Recommendations

None.

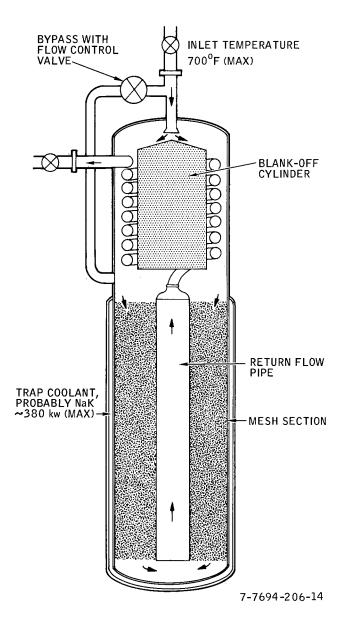


Figure 1-7. Circulating Cold Trap

TABLE <u>1-69</u>

FAILURE DATA FOR <u>COLD TRAPS/HOT TRAPS</u> (Sheet 1 of 2)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITE	:м. <u>-</u>	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	í		1. Fermi 2. Cold trap room 3. 250 to 1000°F 4. EFAPP-MR-44	MA 136	MA 34	MA 550	5643	Protective system	 Sodium leaked through union seal ring joint. Local repair. Determine torque requirements for flange bolts at the upper operating temperatures and torque.
2	1		 HNPF Primary system cell No.2 Design - 100 psig, 650°F Operating - 20 psig Monthly operating report No.6 	MA 136	MA 37	MA 550	Unknown	Operational monitors	 Visual observation through port after alarm annuncia- tion revealed sodium on floor and on nitrogen ducting. Part replaced. None.
3		 Cold Trap/Flange Heat Transfer/ Purification 36 224239 	 HNPF Primary system cell No. 2 Design - 100 psig, 650°F Operating - 20 psig, Max.600°F Monthly operating report No. 7 	MA 326	MA 34	MA 550	Unknown	Operational monitors	 Misalignment of inlet flange caused sodium leak. Local repair. None.
4	1	 Cold Trap/Plugged Heat Transfer/ Purification 36 224239 	 HNPF Secondary system loop No. 2 Sodium flow, 10 gpm Inlet, 602°F; outlet, 295°F Monthly operating report No. 15 	MI 195	MI 51	MI 550	4560	Operational monitors	 Cold trap plugged, sent to AI for cleaning and service. Part replaced. None.
5	1	 Cold Trap/Coupling Heat Transfer/ Purification 36 224239 	 HNPF Primary system Sodium flow, 1700 cfm/trap flow, 10 gpm; inlet, 350°F; outlet, 295°F Monthly operating report No. 4 	MI 321	MI 53	MI 530	Unknown	Operational monitors	 Spacer piece and internal coupling were not installed. Local repair. None.
6		 Cold Traps / - Heat Transfer / Purification 36 224239 	 HNPF Primary system cell No.2 - AI monthly operating report, 2/14/63 	MI 191	MI 19Z	MI 550	768	Operational monitors	 Cold trap filled. Replaced with cold trap from primary cell No. 1. None.
7		 Cold Traps/ - Heat Transfer/ Purification 36 224239 	 HNPF Primary system cell No.1 - Monthly operating report No.9 	MI 191	MI 19Z	MI 550	3528	Operational monitors	 Original trap moved to No.2 primary location. Installed new trap. None.
			MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-69</u>

FAILURE DATA FOR <u>COLD TRAPS/HOT TRAPS</u> (Sheet 2 of 2)

Image: Non-state 1. COMPONENT/PART 1. FACILITY FALLURE INDEX PERATING ITEM 2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION 7. CODE: 0PERATING CONDITIONS 0PERATING 0PERATING 1. FAILURE DESC 2. CORRECTIVE A 2. CORRECTIVE A 2. CORRECTIVE A 3. OPERATING 0PERATING 0PERATING 0PERATING 0PERATING 1. FAILURE DESC 2. CORRECTIVE A 3. RECOMMENDAT ITEM 3. CODE: 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 0PERATING 0PERATING 0PERATING 0PERATING 1. FAILURE DESC 2. CORRECTIVE A 3. RECOMMENDAT 8 1. Cold Traps/- 2. Secondary system 1. HNPF 2. Secondary system 191 192 550 9360 0perational monitors 1. Cold trap filled. 2. Part replaced. 3. None. 3. 36 224239 1. HNPF 2. Sodium purification/carbon trap cell 136 14 136 14 136 2400 Direct observation 1. One man sprayed with sodium but was not burned due to prot 2. Operational procedure change. 3. None. 1. Tom 3. 36 224239 4. Monthly operating report No. 5 14 14 14	
Num 3. CODE: (Component) (System/Subsystem) 3. OPERATING CONDITIONS A. SOURCE DOCUMENT CAUSE MODE EFFECT HOURS DETECTION 3. RECOMMENDAT 8 1. Cold Traps/ - 2. Heat Transfer/ Purification 3. 36 224239 1. HNPF 1. HNPF MI MI MI MI 550 9360 Operational monitors 1. Cold trap filled. 9 1. Hot Trap (carbon)/ Sampler 1. HNPF I I I I I I Source observation 1. One man sprayed with sodium but was not burned due to prot 9 1. Hot Trap (carbon)/ Sampler 1. HNPF I I I I I. One man sprayed with sodium but was not burned due to prot 2. Heat Transfer/ Purification 3. Should be removed at less than 200°F I I I I Operational procedure change. 3. None. 4. Monthly operating report No. 5 5. I I I. One man sprayed with sodium but was not burned due to prot	
0 1. Hord Transfer/ Purification 2. Secondary system 191 192 550 1 2. Part replaced. 3. 36 224239 3 4. Monthly operating report No. 9 1 191 192 550 1 1 1 3. None. 9 1. Hot Trap (carbon)/ Sampler 1. HNPF I I I I 1 0 1. One man sprayed with sodium but was not burned due to prot 2. Heat Transfer/ Purification 3. Should be removed at less than 200°F Purification I I I 550 2400 Direct observation 1. One man sprayed with sodium but was not burned due to prot 2. Heat Transfer/ Purification 3. Should be removed at less than 200°F (Purification) 3. None. 3. None.	
Sampler 2. Sodium purification/carbon trap cell 136 34 550 but was not burned due to prot 2. Heat Transfer/ Purification 3. Should be removed at less than 200°F 2. Operational procedure change. 3. None.	
	tective clothing.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

1-178 5 Ê ⊢

TABLE <u>1-70</u>

FAILURE DISTRIBUTION FUNCTIONS

· · · · · --

. ...

COMPONENT COLD TRAPS/HOT TRAPS

COMPONENT	SUBTYPE	COLD	TRAPS	 	
				- A 11	

·		FAILURES (%)	<u>0 1</u>	02	03	<u>0 4</u>	<u>0 5</u>	06	0 7	08	0 9	0 10
PLANT TYPE	Nuclear Power Reactor											
SYSTEM	Heat Transfer											
COMPONENT PART	Clamp Joint Flange Unknown											
CAUSE	Environmental Human error											
MODE	Chemical Mechanical											
EFFECT	System/component inoperative Labor and materials loss only											

	COMPONENT COLD TRAPS/HOT T	RAPS	_									
	COMPONENT SUBTYPE HOT TRAPS	FAILURES (%)	-	0 2	0 3	0 1	0 5	0 6	0 7	08	n 9	<u>0 10</u> 0
PLANT TYPE	Nuclear Power Reactor											
SYSTEM	Heat Transfer											
COMPONENT PART	Sampler											
CAUSE	Environmental											
MODE	Chemical											
EFFECT	System/component inoperative											

TABLE <u>1-71</u>

FAILURE DISTRIBUTION FUNCTIONS

TABLE ________

GENERAL SUMMARY

COMPONENT COLD TRAPS/HOT TRAPS

	FAILURES (%) 0	10	20	30	40	50	60	70	80	90	100
	Environmental		-	_					-		
	Human error	-									
CAUSE											
AL											
	Chemical							T			
				_			•				
MODE	Meenanical										
ž											
	System/component inoperative			i		T		İ.			
H											
EFFECT											
L.											
—											
]
<u> </u>	TOTAL FAILURES PER TYPE 0	2	4	6	8	10	12	14	16	18	20
	Cold trap										
	Hot trap										
		1									
		10	20	30	40	50	60	70	80	90	100
	Cold trap	T									
	Hot trap										
ш										ĺ	
TYPE										- 1·	
· I											
	· · · · · · · · · · · · · · · · · · ·										
	6									l	
		100	200	300	400	500	600	700	800	900	1000
	Cold trap										
	Hot trap										
	h										
		1									

3. Coolers (other than liquid-metal-to-air)

Failure data for coolers (other than liquid-metal-to-air) are presented in Tables 1-73 through 1-75.

a. Reliability Information

Design Features:

An oil cooler used to cool steam turbine lubricating oil.

Mode of Failure:

Deterioration of unit heads.

Failure Description:

The unit heads were deteriorated.

Control Methods

- 1) To prevent corrosion, chemically treated cooling water can be used.
- 2) To prevent erosion, baffle plates can be installed so that water impingement is minimized.

Heat Exchangers (coolers, oil coolers) generally use chemically treated cooling water to prevent corrosion. If the problem was erosion, then baffle plates are installed to direct the flow so the water doesn't impinge on areas that may erode. Oil coolers have been used in industry for many years; therefore, nearly any operating condition that may be encountered has been experienced. The system designer should be able to avoid problems of corrosion, erosion, galvanic action, etc., if they are considered during design of the system.

b. Discussion and Recommendations

None.

	2	COMPONENT/PART SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*				1. FAILURE DESCRIPTION
ITEN	¹ 3.	CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-183	23.	Oil Cooler Turbine-Generator Units and Condenser/ Central Lubricating 35 350000	<pre>1. EBR-II 2. Turbine water side 3. 140 to 160°F 4. PMMR-87 4. PMMR-87 </pre>	MI 200	MI 91	MI 550	7800	Routine inspection	 Head of one unit deteriorated badly. Head of other unit slightly deteriorated. Flow baffles built in and flange surfaces remachined. None.

TABLE <u>1-73</u>

FAILURE DATA FOR <u>coolers (other than liquid metal-to-air)</u>

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-74</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT COOLERS (OTHER THAN LIQUID METAL TO AIR)

COMPONENT SUBTYPE COOLERS FAILURES (%) 0 50 70 80 90 100 10 20 30 40 60 Nuclear Test Reactor PLANT TYPE Turbine Generator Unit SYSTEM Turbine Lube Oil Cooler COMPONENT PART Impurity/contamination CAUSE Metal corrosion MODE System/component inoperative EFFECT

TABLE ______

· · · · -

GENERAL SUMMARY

	COMPONENT COOLERS (OTHER THAN LIQUID META) FAILURES (%) 0	ட 1)	:0. 1	A1F	ε) 2	0	3()	40	5	0	6	0	7	00	8()	90	10	0
CAUSE	Impurity/contamination																			
MODE	Metal corrosion																			
EFFECT	System/component inoperative																			
	TOTAL FAILURES PER TYPE 0)	1		2		3		4	5	;	6		7		8		9	1)
	Coolers																			
	OPERATING HOURS (THOUSANDS) O)		2	2,0	00		4	,000)		6,0	00		8	,0	00		10,0	00
ТҮРЕ	Coolers																			
	FAILURE RATE (FAILURES/10 ⁶ hr) 0 Coolers		10	0	20	0	30	0	400	50	00	60	00	70	0	80	0	900) 10	

LMEC-Memo-69-7, Vol I 1-185 1

,

4. Desuperheaters

Failure data for desuperheaters are presented in Tables 1-76 through 1-78.

a. Reliability Information

Design Features:

Desuperheaters are used in the main steam system to reduce the temperature of the steam.

Mode of Failure:

- 1) Flange bolts
- 2) Flow vanes.

Failure Description:

- 1) Flange bolts were improperly torqued.
- 2) Flow straightening vanes were plugged.

Control Methods:

- 1) The bolts should be tightened in a predetermined sequence.
- 2) Inspect inlet lines whenever work is done on the system.

b. Discussion and Recommendations

Desuperheaters are standard equipment in high-temperature steam systems; therefore, the problems associated with maintaining them are well known. In view of this fact, the rash of flange leaks reported may be attributed to improper techniques in making up flanges. The bolts should be tightened in a predetermined sequence; that is, tighten one bolt just snug, then move 180 degrees around the flange and another bolt. Continue this sequence until all the flange bolts are snug. Then start torquing the bolts in increments using the sequence described above.

TABLE <u>1-76</u>

FAILURE DATA FOR DESUPERHEATERS (Sheet 1 of 2)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ľ	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Desuperheater No. 1/ Straightening Vanes Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	4. Incident report No. 113	MI 259	MI 51	MI 520	Unknown	Operational monitors	 Flow straightening vanes at flowmeter inlet plugged. Local repair, flow transmitter FR-203 isolated; straightening vane disassembled and cleaned. Keep line section ends sealed during construction; inspect lines before welding sections.
LMEC-Memo-69-7, Vol	2	 Desuperheater No. 1/ Flange Studs Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	4. Incident report No. 121	MI 148	MI 53	MI 136	5875	Direct observation	 Flange studs had not been torqued evenly. Local repair, studs retorqued. Specify torque requirements and procedures for flange bolts.
2-69-7, Vol I	3	 Desuperheater No. 1/ Flange Joint O-ring Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	 SCTI Feedwater system 670 to 1032°F, 1285 to 1825 psig Incident report No. 14 	MI 136	MI 56	MI 520	510	Direct observation	 Bolts improperly torqued and O-ring not seated in groove. Local repair. Piping design should provide gasket change capability without pipe cutting and welding.
		 Desuperheater No. 1/ Bolted Flange Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	 Steam and feedwater system 2200 psig, 1050°F Incident report No. 130 	MA 144	MA 53	MA 136	6030	Direct observation	 Steam leaks developed during an operating period when steam pressure was increased from 1400 to 1850 psig. Component corrective modification. Maintenance manual should include proper flange bolt torquing instructions for each type of flange and gasket.
	5	 Desuperheater No. 1/ Flanged Joint Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	 Feedwater system - Incident report No. 76 	MI 148	MI 53	MI 530	4470	Direct observation	 Bolts improperly torqued. Bolts retorqued. Improved QA procedures at initial contractor level.
Ļ			MI - MINOR MALEUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-76
-------	------

FAILURE DATA FOR DESUPERHEATERS (Sheet 2 of 2)

[1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	1	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Desuperheater / Thermocouple Well Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	1. EBR-II 2. Main steam/desuperheater 3. 740 to 840°F, 1250 psig 4. PMMR-82		MA BZ	MA 520	7400		 Thermocouple well body cracked. Local repair, plant shut down to repair leak. Proper well design, good welding and heat treatment procedures will reduce this type of failure.
LMEC-Memo-69-7, Vol 1-188		Nozzle 2. Steam, Condensate and	 EBR-II Main steam/desuperheater 740 to 840°F, 1250 psig PMMR-81 		MI 53	MI 530	6920		 Spray nozzle loose. Local repair; nozzles removed, cleaned, and set screws were applied to prevent loosening. None.
0-69-7, Vol I 88	8	 Desuperheater/Bellows Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	1. EBR-II 2. Main steam/desuperheater 3. 740 to 840°F, 1250 psig 4. PMMR-12	MI 500	MI BZ	MI 530	1200		 Bellows modified. Part replaced. None.
-		 Desuperheater/Flange Gasket Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	2. Main steam/desuperheater nozzle 3. 740 to 840°F, 1250 psig	MI 500	MI BZ	MI 530	7400		 Gasket worn out. Part replaced. None.
	* 1		MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-77</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT DESUPERHEATER

r		FAILURES (%) 0	<u>J 2</u>	U _:	30 4 I	0 <u>5</u>	0 6	0 7	0 8	5 9	0 10
PLANT TYPE	Component Test Facility Nuclear Test Reactor										
SYSTEM	Steam and Feedwater										
COMPONENT PART	Straightening Vanes Flange Studs Flange Joint "O" Ring Bolted Flange Flange Joint Thermocouple Well Spray Nozzle Bellows Flange Gasket										
CAUSE	Environmental Impurity/contamination Unknown										
MODE	Mechanical Unknown										
EFFECT	Plant availability loss Labor and materials loss only										

GENERAL SUMMARY

	COMPONENT <u>DESUPERHEATERS</u> FAILURES (%) 0		10	2	2	0	3	0	40	C	50	6	0	70	Ę	80	9() I	00
	Environmental		-				-	<u> </u>		_	Ť		Ē	Ť		Ť		- ,	Ť
	Impurity/contamination		_																
SП	Unknown		_					_		-			[
CAUSE																			
0							-												
	Mechanical								.								- I		٦
	Unknown																		
MODE																			
Ň																			
	Plant availability loss										+					1			٦
т	Labor and materials loss only							_	_										
EFFECT																			
EFF																			
_																			
	TOTAL FAILURES PER TYPE 0		1		2	, ,		3	4	l	 5		6	7		8	<u>بـــــ</u>		 10
	Desuperheaters		Ť		-		_	É			Ť		Ĕ	Í		Ĭ	_		Ť
													ŀ						
1																			
									ŀ										
	OPERATING HOURS (THOUSANDS) 0		10)	2	0	3	0	4	0	50	6	0	70	{	30	9	0 1	.00
	Desuperheaters		_	_			-	-		-						T			
																			ŀ
ТҮРЕ																	Ì		
2																			
													ļ						
	FAILURE RATE (FAILURES/10 ⁶ hr) 0		10	0	20	0	3(0	40	0	<u>500</u>	60	00	700	8	00	90	01	00
	Desuperheaters	-	Ť		Ĩ	Ě	Í	ΓŤ	Ť	Ť	Ť	Ť	Ĩ	Ť	Ť	Ĩ	Ĥ	<u> </u>	Ť
	Sesuperintaters					~													
		1																	
														{					
												1							
	· · ·											1							

5. Feedwater Heaters

Failure data for feedwater heaters are presented in Tables 1-79 through 1-81.

a. Reliability Information

Design Features:

Preheat feedwater to steam generator. Tap off steam from the main steam header to heat incoming feedwater.

Critical Characteristics:

Exchange heat between steam generated in process and feedwater to steam generator.

Mode of Failure:

Gasket leakage

Failure Description:

- 1) Flange gasket leakage
- 2) Manhole cover gasket leakage
- 3) Heater nozzle gasket leakage.

Control Methods:

- When using spiral wound gaskets, make sure that mating surfaces of flanges are free of nicks, radial scratchs, or grooves from previous installations.
- 2) Retorque flange bolts after initial installation to account for torque relaxation.

b. Discussion and Recommendations

Gasket failures on feedwater heater connections can generally be attributed to using the wrong gasket material for the application or improper techniques used when the connections were made up; therefore, selecting the proper gaskets and employing the correct installation techniques should eliminate most of the problems.

TABLE _______

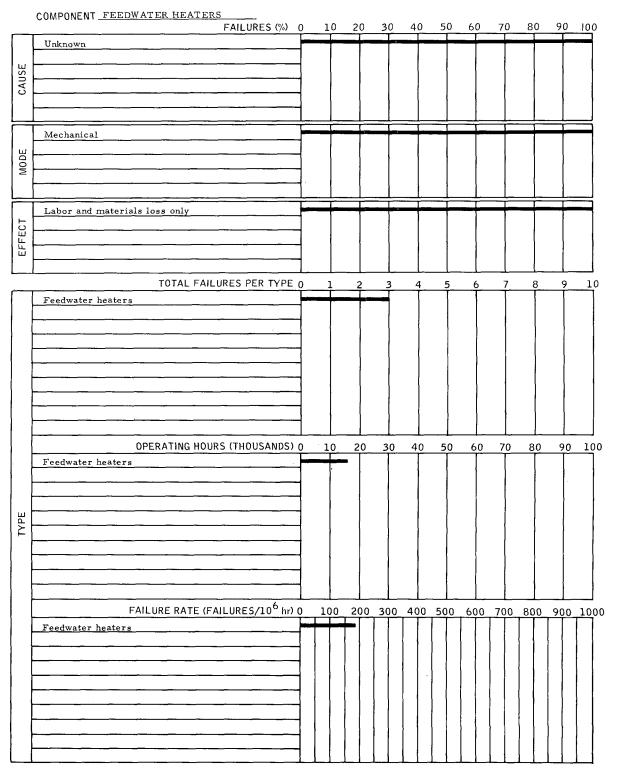
FAILURE DATA FOR <u>FEEDWATER HEATERS</u>

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	1	2. Steam, Condensate and	 EBR-II Feedwater heater No. 4 level control 480 to 565°F Operations maintenance report, 5-29-68 	MI 500	MI 59	MI 530	14,710	Direct observation	 Flange leaking, bad gasket. Component corrective modification, flexitallic gasket replaced original asbestos gasket. None.
LMEC-Memo-69-7, Vol 1-192	2	2. Steam, Condensate and	 EBR-II Feedwater/heater No.2 374°F, 200 psig Operations weekly report, 12-20-67 	MI 500	MI 52	MI 530	780	Preventive maintenance	 Manhole cover gasket leaking. Part replaced. None.
9-7, Vol I	3	 Feedwater Heater / Nozzle Gasket Steam, Condensate and Feedwater Piping and Equipment/Feedwater Heater 54 284200 	 EBR-II Feedwater/heater No.2 374°F, 200 psig PMMR-72 (4-20-66) 	MI 500	MI 32	MI 530	1090	Direct observation	 Heater nozzle gasket leaking. Part replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT FEEDWATER HEATERS							
	COMPONENT SUBTYPE FEEDWATER HEATERS	 _					 	
PLANT TYPE	FAILURES (%) Nuclear Power Reactors		20	30 2	10 5	0 6	8 0	0 100
SYSTEM	Feedwater							
	Gasket				<u> </u>			
COMPONENT PART								
CAUSE	Unknown							
MODE	Mechanical							
EFFECT	Labor and materials loss only							

TABLE <u>1-80</u>


FAILURE DISTRIBUTION FUNCTIONS

LMEC-Memo-69-7, Vol I 1-193

,

LMEC-Memo-69-7, Vol I 1-194

.

6. Filters and Strainers (see Figure 1-8)

Failure data for filters and strainers are presented in Tables 1-82 through 1-86.

a. Reliability Information

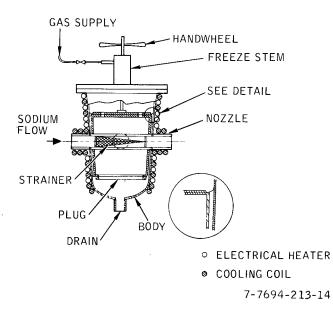
Design Features:

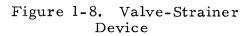
Strainers and filters are used to remove foreign particles from liquid sodium and water systems.

Mode of Failure:

- 1) Misalignment
- 2) Plugging.

Failure Description:


- 1) The torque bolts were torqued improperly.
- 2) The strainers were plugged.


Control Methods:

- 1) Installation procedures should be carefully prepared and adhered to.
- When plugging of a filter or strainer is critical to plant operation, they should be provided with audible alarms against impending problems.
- 3) Better quality assurance should be provided during construction to keep the feedwater system clean.

b. Discussion and Recommendations

Micro-metallic filters are general' j used in sodium service systems, especially when initially filling the system with sodium. The filter vessel usually has bolted O-ring flanges to facilitate changing the filter element. The operating history of sodium filters has been good. The one reported incident of a flange vessel leaking was an isolated incident and was the result of improper installation.

TABLE <u>1-82</u>

FAILURE DATA FOR FILTERS AND STRAINERS

2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION 000000000000000000000000000000000000		1. FAILURE DESCRIP	TION
 Vessel Flange Heat Transfer / Purification 27 24233 1. Filter/Gas Purifier Seal Ring Nuclear Fuel Handling and Storage Equipment/ Cooling 27 235140 1. EBR-II Chain Turbine-Generator Units and Condenser / Lubricating System 27 27 2350000 1. SCTI Seedwater Supply and Treatment/Filters Strainer/Screen Cooling Water 27 270000 27 27 27 230000 27 27 230000 27 27 230000 27 27 27 27 27 27 25 30 31 MI MI 500 MI 51 51 52 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530<	OPERATING HOURS ECT		
 Seal Ring Nuclear Fuel Handling and Storage Equipment/ Cooling 27 235140 1. Filters/Oil Vapor Extractor Bearings Turbine-Generator Units and Condenser/ Lubricating System 27 350000 4 1. Filters/O-Rings 2. Feedwater diatomite filters (F-IR&IL) 3. 1250 psig, 3600 rpm 4. Operations weekly report, 12-20-67 5 5. Strainer/Screen 2. Other Reactor Plant Equipment/Plant Cooling Water 27 270000 5 1. Strainer/Screen 2. Other Reactor Plant Equipment/Plant Cooling Water 27 270000 5 1. Strainer/Screen 2. Pinmary pump eddy current coupling cooling water system 3. Pinmary pump eddy current coupling Cooling water 4. PMMR-99 		 wn Direct observation 1. Sodium leak, flange bolts not torq 2. Retorqued bolts. 3. Specify values for torquing flange 	,
41. Filters/O-Rings 2. Feedwater Supply and Treatment/Filters 2.711001. SCTI 2. Feedwater diatomite filters (F-IR&IL) 3. 140 gpm, 20-in. diameter 4. Incident report No. 59 (11-2-65)P 52P 52P 53051. Strainer/Screen 2. Other Reactor Plant Equipment/Plant Cooling Water 3. 27 2900001. EBR-II 2. Primary pump eddy current coupling a4. PMMR-99MA 273MA 51MA 520	15,240 as of 7-68		
2. Feedwater Supply and Treatment/Filters2. Feedwater diatomite filters (F-IR&IL) 3. 140 gpm, 20-in. diameter 4. Incident report No. 59 (11-2-65)3255253051. Strainer/Screen 2711001. EBR-II 2. Other Reactor Plant Equipment/Plant Cooling Water 3. 27 2900001. EBR-II 2. Primary pump eddy current coupling a. PMMR-99MA 273MA 51MA 520	13,380	Preventive maintenance 2. Part replaced. 3. None.	
2. Other Reactor Plant Equipment/Plant Cooling Water2. Primary pump eddy current coupling cooling water system273515203. 27 2900004. PMMR-99	1534	Direct observation 1. Filters cleaned, O-rings replaced causing water leak. 2. Proper size O-rings installed. 3. Stock proper size components; use tenance procedures.	0
		 Operational monitor Strainer plugging caused low wate primary pumps eddy current coup system which resulted in reactor New type strainer installed. Audible pressure differential alar serve as warning of insipient clog 	ling cooling water scrams. m on strainer to
61. Strainer/Basket1. EBR-IIMIMIMI2. Feedwater Supply and Treatment/Boiler Feed Pump3. 369°F, 1300 psigMI252515303. 27 284100284100	3650	Operational monitors 1. Strainer badly plugged with mud a 2. Local repair. 3. Maintenance personnel training sh tions for proper packing installati	nould include instruc-

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT FILTERS AND STRAIN	NERS										
	COMPONENT SUBTYPE FILTERS, MISCE	ELLANEOUS										
		FAILURES (%) 0	10	20	3	0 4	0 5	0 6	0 7	0 8	0 9	0 100
	Nuclear Test Reactor						<u> </u>	<u> </u>				
12H	Component Test Facility							}			,	
PLANT TYPE												
	Fuel Handling Machine					_		T				
	Turbine Generator Unit				-							
l≥	Instrumentation	-		-+				1				
H				1			1	1	Ì		}	
SYSTEM												
							1	}	ļ	ļ]]
	Gas Purifier Seal Ring	 				_		1			1	
	Oil Vapor Extractor Bearings		-									
-	"O" Rings											
AR	· · · ·			1			[í .		1	ĺ	1 1
COMPONENT PART							1					
IE N				ļ			ļ				}	
00							1					
M												
Ŭ.			İ				}					
				1							_	
	Mechanical				_							
	Unknown		_		_		<u> </u>			ļ	ļ	
USE												
CAUSE									1			
1											}	
	Mechanical						i –			í	İ	
				_		_	1					
MODE	Unknown	ſ										
ž								ļ				
<u> </u>							1					
–	Labor and material loss only											
ы	······································											
EFFECT												
<u> </u>	· · · · · · · · · · · · · · · · · · ·						1	1				
							1	1	1	1		

TABLE <u>1-83</u>

FAILURE DISTRIBUTION FUNCTIONS

	COMPONENT SUBTYPE FILTERS (SODIU)	M) FAILURES (%) () 1	0 2	0 3	so 4	0 5	0 6	0 7	08	09	0 100
PLANT TYPE	Nuclear Test Reactor											
SYSTEM	Heat Transfer											
COMPONENT PART	Vessel Flange											
CAUSE	Human error								•			
MODE	Mechanical											
EFFECT	Labor and material loss only											

TABLE <u>1-84</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT FILTERS AND STRAINERS

	COMPONENT FILTERS AND STRAINERS											
	COMPONENT SUBTYPE STRAINERS											
Г-ш	FAILURE Nuclear Test Reactor	S (%) 0	1	0 2	0 3	04	05	06	0 7	08	09	0 10
PLANT TYPE												
	Feedwater					 			L	<u> </u>	 	
EM	Other Reactor Plant Equipment											
SYSTEM												
	Screen		_			 		-	<u> </u>	<u> </u>	1	
F	Basket											
T PAR												
COMPONENT PART												
COMI										E .		
	Environmental							1	 		1	
CAUSE												
CAL										Ę		
MODE	'Mechanical											
мо												
	Plant availability loss											
EFFECT	Labor and material loss only					·						
EF	· · · · · · · · · · · · · · · · · · ·											. i

TABLE _1-85

FAILURE DISTRIBUTION FUNCTIONS

TABLE ______

GENERAL SUMMARY

.

	COMPONENT FILTERS AND STRAINERS FAILURES (%)O		10		20	30		40	50	6(70	80	9() 10	00
	Environmental		-				•	T								<u>ן</u>
	Mechanical															
CAUSE	Human error		_													
CAU	Unknown				+											
]		<u> </u>				ļ
	Mechanical	_	-+-		+			+-				-				
ш	Unknown		+	كتشب												
MODE																
2									ŀ							
					<u> </u>	4		<u> </u>				<u> </u>				Ļ
	Labor and material loss only				+-	-			-							
EFFECT	Plant availability loss															
EF																
ш	· · · · · · · · · · · · · · · · · · ·															
	TOTAL FAILURES PER TYPE 0				2	. 3		4	5	- 6)	7	8	9 		10 1
	Sodium filters															
	Strainers Miscellaneous filters															
	Wiscenaleous filters								ł							
	OPERATING HOURS (THOUSANDS) 0		10		20	30)	40	50	6	0	70	80	9() 1	00
	Sodium filters															1
	Strainers	-														
	Miscellaneous filters		Ť	. 1								1	ļ	ĺ		
ш	······································															
TΥΡΕ																
,																
	FAILURE RATE (FAILURES/10 ⁶ hr) 0)	100) 2	200	30	0 4	400	500	60	00 7	00	800	90	0 1	000
	Sodium filters		T	Τ	1	ΓŤ	T	T						Π		7
	Strainers	-	-													
	Miscellaneous filters															
					_	<u> </u>			- A		4.4		-

7. Intermediate Heat Exchangers (see Figures 1-9 through 1-13)

Failure data for intermediate heat exchangers are presented in Tables 1-87 through 1-89.

a. Reliability Information

Design Features:

Loop-type shell-and-tube heat exchanger for sodium-to-sodium heat transfer.

Critical Characteristics:

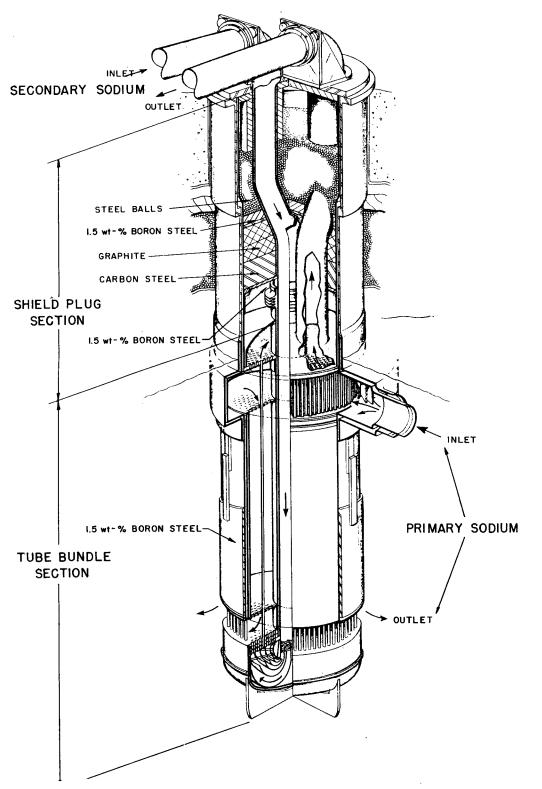
Provide efficient transfer of heat from primary source to secondary system.

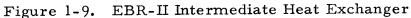
Provide buffer between radioactive primary side and steam generator.

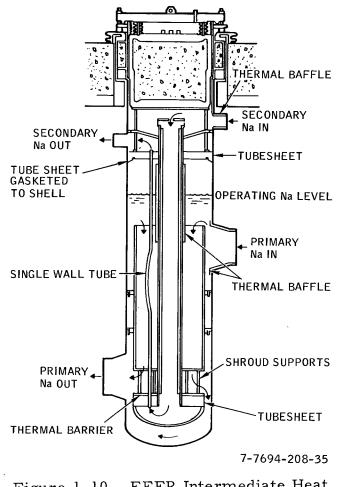
Mode of Failure:

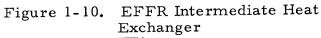
- Gas pocket enclosure in the top of intermediate heat exchanger varied its volume driving pressure and temperature changes, generating strong fluctuation in the primary surge tank level.
- Due to improper matching of tube configuration and liquid metal flow rate, harmonic oscillations produced stress, cracking, and failure of tubes.

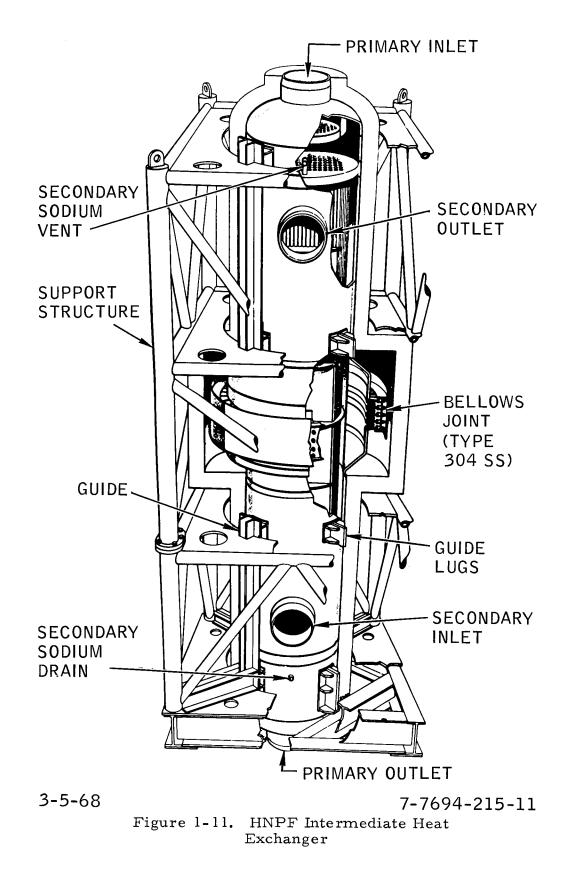
Description of Failure:

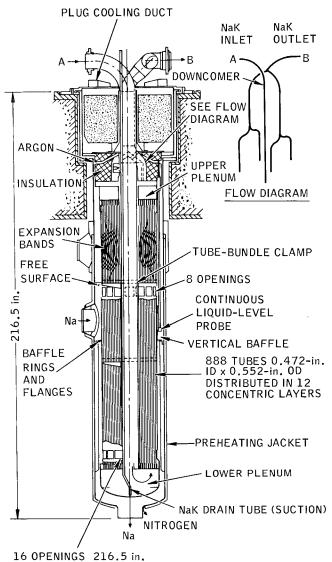

- 1) No vent line on top of intermediate heat exchanger where a large volume of cover gas was trapped, resulting in gas entrainment.
- 2) Liquid metal found leaking through cracked tubing.

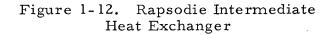

Control Methods:


- Any liquid-carrying loop should be designed for complete filling and drainage. This objective may be accomplished by use of the following:
 - a) Utilization of tools and equipment which do not by themselves introduce cover gas (or air) into the liquid metal while the loop is being filled
 - b) Installation of appropriate venting fixtures and connections where gas pocket buildup is unavoidable.


- c) Adherence to geometric constraints which eliminate low loop fluid pockets during drainage
- d) Implementation of special drain lines where stagnant fluid pockets are unavoidable.
- Any filling or draining procedure should be conducted in accordance with an operational manual which clearly delineates the nature and sequence of steps required for filling and drainage.
- 3) Any construction of large-scale liquid metal components should be preceded by an adequate and complete design review, entailing, if necessary, application of workable and reliable mathematical models to verify the operability of the component prior to its manufacture.
- 4) Any significant uncertainties or inadequacy associated with the design analysis techniques shall be resolved by means of the appropriate development project(s) that should be based upon actual experimental results derived from hardware prototype or mockup units.
- 5) Prior to acceptance and installation of the completed, manufactured unit, an appropriate acceptance test procedure should be devised and utilized to verify satisfactory operation of the component.
- b. Discussion and Recommendations_


None.





7-7694-208-16

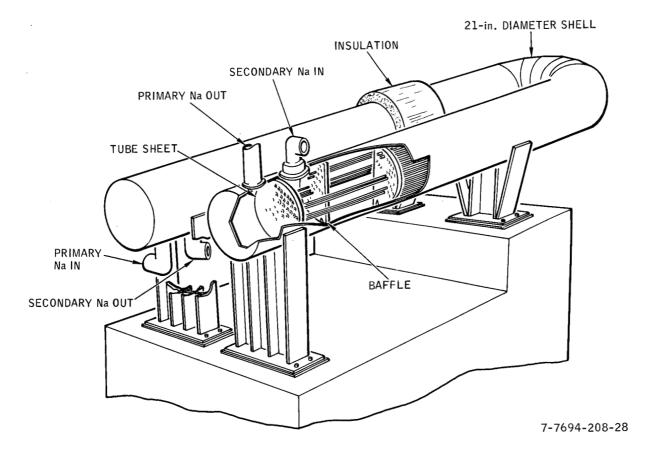


Figure 1-13. SRE Main Intermediate Heat Exchanger

TABLE <u>1-87</u>

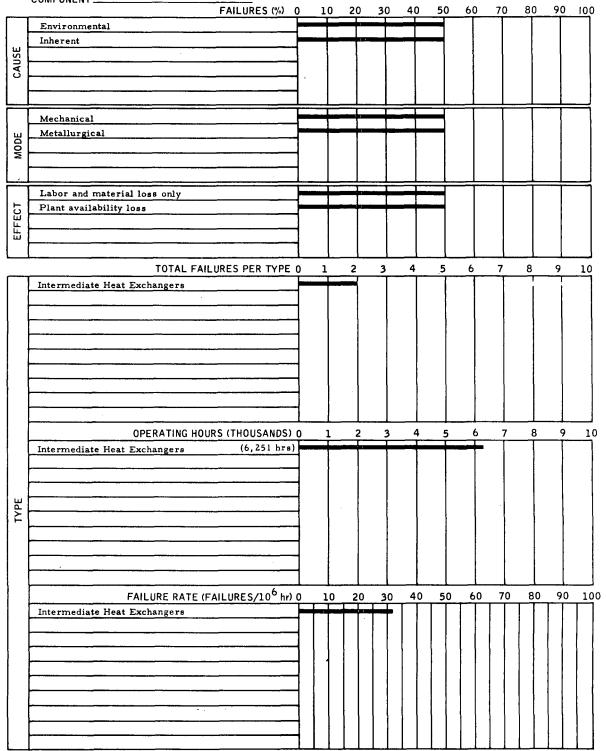
FAILURE DATA FOR ____INTERMEDIATE HEAT EXCHANGER

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY A 2. COMPONENT LOCATION		FAILURE INDEX CODE*			NG METHOD OF FAILURE	1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Intermediate Heat Exchanger/Tubesheet Heat Transfer/Inter- mediate Heat Ex- changer 39 222300 	 SCTI Primary sodium Flow 885,000 lb/hr sodium temperature in/out (°F) 775/1175 SCTI, incident report No. 46 	MI 410	MI 50	MI 530	611	Operational monitor	 Original piping did not include a cover gas vent from the top of the IHX shell side. Gas was trapped be- tween the sodium inlet nozzle and the upper tubesheet. A vent line and a manually operated valve were in- stalled from the shell side of the IHX to the primary expansion tank. None.
2	 Intermediate Heat Exchanger/Tubes Heat Transfer/Inter- mediate Heat Ex- changer 39 222300 . 	1. HNPF 2. IHX No. 1A 3. 4. NAA-SR-10743 (11-18-62)	MA 128	MA 59	MA 520	5,640	Operational monitor	 Tubes cracked and leaked as a result of flow induced vibration. Tube vibration suppressors installed. Provide adequate design analysis and acceptance testing.

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _____88

FAILURE DISTRIBUTION FUNCTIONS


COMPONENT INTERMEDIATE HEAT EXCHANGER

	COMPONENT SUBTYPE <u>INTERMEDIATE HEAT EXCHANG</u> FAILURES (%)		0 2	0 :	30 4	0 5	i0 6	0 7	0 8	09	0 100
	Component Test Facility	Ĭ	<u> </u>	ľ.		T T	Ĩ	Ĭ	Ĭ	ĺ	
PLANT TYPE	Nuclear Power Reactor										
	Heat Transfer						<u> </u>				
SYSTEM		-									
SΥ											
	Tube Sheet						 	 T		[
	Tubes										
RT	1023										
IT PA	·										
ONEN											
COMPONENT PART	· · · · · · · · · · · · · · · · · · ·										
	· · · · · · · · · · · · · · · · · · ·	-									
		<u> </u>								<u> </u>	
	Environmental				+						
. ц	Inherent										
CAUSE											
		ĺ									
	Mechanical						<u> </u>	I		r	
	Metallurgical										
MODE	Metanurgical										
~											
	Plant availability loss						1				
EFFECT	Labor and material loss						1				
Ë											
		ł			1]					

TABLE _____

GENERAL SUMMARY

COMPONENT INTERMEDIATE HEAT EXCHANGER

8. Piping and Associated Fittings (Figure 1-14)

a. Introduction

The piping and fittings data collected for this section include service in gas, steam, water, and sodium. Some gas systems will include sodium vapor and, for this analysis, are identified as a separate subtype. While a large number of different piping materials are used in nuclear systems, the events collected herein are primarily for the stainless steels and high-strength alloys. The 38 failure events collected to date are itemized in Table 1-90.

Evidence of a pipe failure is a leak or, in a limited number of cases, plugging or high-pressure drop. Approximately three-quarters of the reported failures were detected by direct observation and one-quarter of them by monitors. Monitors are categorized as operations and performance measurements that are monitored by means of leak detectors and protective systems.

b. Summary of Tabulated Data

The detailed data of Table 1-90 are summarized in Tables 1-91 through 1-96. The data are subdivided into piping subtypes: water, steam, sodium, sodium vapor, inert gas, and miscellaneous.

Table 1-96 provides a general summary of the data as to cause, mode, effect, and total number of piping failures. Computation of updated failure rate information has been discontinued until a later date. The number of failures collected for any one of these subsystems is not large. The mode of failure is indicated to be in the class of mechanical failures 57% of the time. The effect of the failure is predominantly a labor and material loss (71%).

The water-piping experience presented in Table 1-95 is primarily associated with nuclear power reactors; the feedwater systems contribute the majority of the failures. The failure distribution function for steam piping shows the flange and flange gasket to be the major contributors of malfunctions. In sodium piping (Table 1-92), the bellows convolutions are shown to be a troublesome area. The failures associated with miscellaneous piping (Table 1-91) occur primarily in the fuel handling system and instrument air supply system.

Piping malfunctions can be reduced by following good design practices. Material quality requirements must be carefully considered, material specifications properly written, and the highest quality workmanship used during fabrication.

> LMEC-Memo-69-7, Vol I 1-212

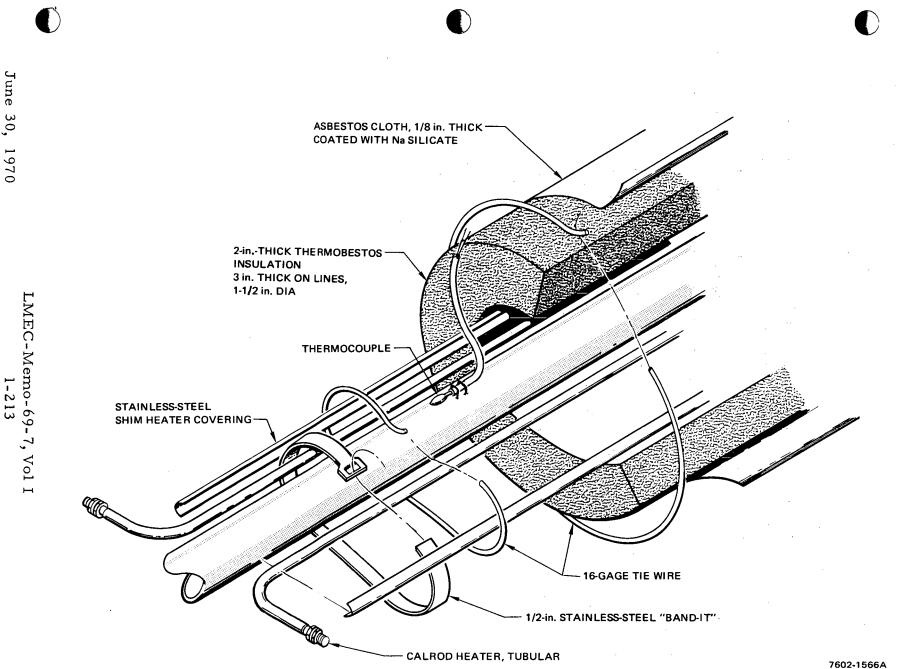


Figure 1-14. Sodium Pipe Section

30, 1970

1-213

Welding procedures are very important; post-mortem examinations of pipe stub welds and joint welds have revealed several cases of very poor penetration and of poor weld fitup. Facility operating procedures should be clearly defined, established, and closely followed.

Fatigue problems under thermal and mechanical cycling loading conditions must be considered in the design of the piping system. When notches or stress risers are incorporated in the piping system, the potential for fatigue failures is increased. Piping wall sections that are subjected to large temperature differentials or mechanical vibrations are areas of special concern with respect to cycle fatigue.

Particular care is required to avoid the initiation of stress corrosion in the Type 300 series stainless steels when using chloride cleaning solvents or acid pickling solutions. If the use of such materials is unavoidable, meticulous cleaning precautions must be used. Insulation must be kept dry to prevent leaching of chlorides present in the insulation onto the pipe surface. Special precautions are required for inactivated systems exposed to the elements. Moist sea air is a particular source of chlorides. To minimize the possibility of stress corrosion due to chlorides from the insulation, choose insulating materials which contain inhibitors or which are low in chloride content. Obviously, the insulating material should be protected from moisture.

After a piping system has been exposed to the sensitizing temperature range of 800 to 1300°F (e.g., a welded region), care must be exercised to protect the pipe surface from corrodents. Sensitized stainless steels are highly susceptible to atmospheric or aqueous corrosion on piping exposed to weather. To reduce potential exposure to the weather, a minimum of penetrations should be made through the insulation and protective covering. A preheat on the pipe minimizes the effect of moisture that contacts the pipe surface.

c. Sodium Systems

A sodium pipe section with a typical arrangement of pipe, calrod heater, insulation, and protective covering is shown in Figure 1-14.

The over-pressurization of sodium systems while thawing frozen lines can be avoided by initiating thawing at a free surface and progressing from there to the rest of the system.

Special consideration should be given to the design of mixing tees in sodium to minimize the effects of cyclic thermal stress fatigue.

In actual operating sodium systems, the normal sodium impurities will not be detrimental to piping, except possibly to thin-walled tubing or fuel cladding. The post-operational examination of the SRE⁽¹⁾ substantiates this conclusion regarding the sodium piping in the system. The primary sodium system was exposed for approximately 44,000 hr to sodium at temperatures ranging from 205 to 1030°F, while the secondary sodium system was exposed for approximately 25,000 hr at temperature from 300 to 1000°F.⁽²⁾ The results of this investigation disclosed no evidence of impending functional failures, cracking, or erosion problems. Some surface layers showed slight evidence of carburization and possible corrosion, but in all cases, materials deterioration was insignificant. The investigators reached a conclusion that "large sodium systems operated under SRE conditions could be expected to have a reliable long life, commensurate with power plant practices."⁽¹⁾

LMFBR systems will be operating at creep temperatures. Creep stress rupture is caused by the combination of steady stress at a temperature where no appreciable strain hardening occurs. Any excessive deformation may point out a creep problem which indicates that pipe deformation or movement should be monitored.

d. Discussion

(1) General

The causes of piping failures can be classified into five categories as follows: (3)

- 1) Service (excessively severe service conditions).
- 2) Materials (selection and handling of base and welding materials).
- 3) Base metal defects (introduced during manufacture).
- 4) Design (structural, design notches, joint location, weld configuration).
- 5) Fabrication (fabrication, welding, heat treatment, or cleaning).

Cyclic loading conditions, whether mechanical or thermal, in piping with inadequate flexibility results in peak stresses of sufficient magnitude to initiate and propagate cracks. These cracks are often initiated at branch connections or anchored supports where motion is restricted.

> LMEC-Memo-69-7, Vol I 1-214a

Incorrect selection of piping materials for exposure conditions has resulted in numerous piping failures. Failures have resulted due to graphitization of carbon and carbon-molybdenum steal piping after service above 800°F. Graphitization has been most commonly found in the weld heat-affected zone when the material has been heated briefly above 1333°F. Specific heat composition as well as heating conditions appear to affect cracking tendencies of Type 347 stainless steel piping in the weld heat-affected zone. This tendency toward hot cracking has been a problem in the past, and has generally been related to a low liquation temperature. High carbon and nitrogen in relation to columbium tend to raise the liquation temperature and increase resistance to cracking.

Between 800 and 1300°F austenitic stainless steels become sensitized. Carbon combines with chromium near the grain boundaries and precipitates out in these grain boundaries as chromium carbides. This precipitation leaves a narrow zone on either side of the grain boundary which has less than the 12% chromium necessary for corrosion resistance. In the presence of a corrosive environment the material is highly susceptible to intergranular attack and possible failure.

Base metal defects such as laps, laminations, seams, porosity, or any significant discontinuities in the microstructure can act as sites for crack nucleation.

Sharp changes in section thickness, hangers, nozzles, branch connections, reinforcement, metallurgical notches (e.g., welds), and built-in residual stresses are all areas for concern under cyclic loading.

Welded piping fabrication is particularly susceptible to careless choice of weld rod, contaminated rod, poor fitup, poor welding technique, lack of penetration, porosity, undercut, cracking, and arc strikes. Austenitic stainless steels are particularly susceptible to stress corrosion especially in the presence of chlorides.

GEAP testing of materials in flowing non-isothermal sodium indicated that corrosion rates: (4)

- 1) Varied directly with the oxide content of the sodium.
- 2) For materials tested (316 SS, 2-1/4 Cr 1 Mo, 5 Cr 1/2 Mo 1/2 TC) were all essentially the same.

- 3) Became linear after an initial period of a few hundred hours.
- 4) Increased three-fold with an increase in temperature from 1100 to 1200°F.
- 5) Were affected by sodium saturation. The first material exposed at a given temperature showed the greatest corrosion rate. Material "downstream" showed progressively lower corrosion rates.
- (2) Detailed Discussion

In the following discussion, specific examples of the effects of stress corrosion, thermal/mechanical cycling, fabrication deficiencies, and human errors are presented.

Stress-Corrosion (Sensitization/Chloride Induced)

Transgranular stress-corrosion cracks were detected⁽⁵⁾ in Type 304 and Type 347 stainless steel components of the homogeneous reactor during tests of remote-maintenance procedures prior to actual startup of the reactor. The cracks were in tubing of the secondary system used for detecting leaks at the flanged joints of the primary system and in the grooves of the flanges in the primary system. Up to 1070 ppm chlorides were found in the fluid drained from the secondary system. Apparently a chlorinated-hydrocarbon lubricating compound was not removed during fabrication and was baked in during subsequent annealing.

During hot-flushing of the piping in the merchant ship, N. S. Savannah, several leaks developed in the primary system which wet the thermal insulation.⁽⁶⁾ Since it was known that the thermal insulation applied to the primary system piping contained chlorides, and that the primary system had been thermally cycled several times after the insulation had been wet, an investigation was initiated to determine whether the system had been damaged. The investigation showed that the proper conditions existed for chloride stress-corrosion cracking of the austenitic stainless steel in the primary system. Laboratory investigation of a sample of pipe removed from the primary system indicated that chloride stress-corrosion cracking had begun but that the reaction had been interrupted before serious damage occurred.

A sodium leak was observed in the secondary expansion tank overflow nozzle at the Hallam Nuclear Power Facility. The subsequent investigation indicated that an earlier leak preceded the observed leak. After removal of the insulation, visual inspection revealed severe corrosion on the external surfaces of the tank wall and 8-in. overflow nozzle from the tank to an 8-in. overflow line. A pinhole was discovered 1/2 in. from a butt-weld joining the nozzle with the overflow line. Further examination showed a massive network of cracks in the tank wall, which metallographic examination showed to be transgranular in nature. This was the initial (primary) leak and sodium-insulation-reaction products from this leak appear to have produced the external corrosion that resulted in the pinhole leak. The primary leak is considered to be due to transgranular stress corrosion resulting from the chloride/fluorine contained in the weld flux discovered in a cavity between a welded internal baffle and the tank wall.

Intergranular corrosion cracking was detected in two Type 304 stainless steel outlet nozzles in high-purity heavy-water moderator service at the Savannah River reactor plant.⁽⁵⁾ The cracks propagated from general intergranular attack that apparently occurred at sensitized grain boundaries as the result of acid pickling during initial fabrication of the nozzles. Cracking was attributed to chlorides, although the bulk heavy water contained only about 6 ppm chloride. The chloride ions were believed to have concentrated in the intergranular pickling cracks.

A 3-in. line of Type 304 stainless steel at the Large Component Test Loop (LCTL) developed a sodium leak.⁽⁷⁾ Metallurgical examination of the failed section revealed the material had been sensitized due to operation over 800° F and that corrosion attack was intergranular. At the point of leakage the thermal insulation had been rain soaked. It was postulated that a corrodent was leached from the insulation and concentrated on the pipe surface. A similar failure occurred in a plugging meter loop at the LCTL.⁽⁸⁾ Again it was attributed to intergranular corrosion due to a corrodent leached from wet thermal insulation.

Three Type 304 stainless steel bellows expansion joints installed in the sodium piping at the Sodium Component Test Installation (SCTI) at LMEC failed after relatively short service.⁽⁹⁾ Failure analysis revealed the bellows had been sensitized during fabrication due to a baking treatment at 1300°F for 30 min to remove volatile materials. There was a 30-mo period between fabrication and

LMEC-Memo-69-7, Vol I 1-214d

installation of the bellows in the SCTI. It was postulated that during this period the material, sensitized by the baking treatment, was attacked by an unidentified corrodent. It was known that moisture, salt, and chemicals were present in the atmosphere at the fabrication, storage, and installation sites.

Thermal/Mechanical Cycling

Thielsch⁽³⁾ reports a steam pipe failure where periodic startups and shutdowns of the boiler resulted in expansion and contraction of the line. "With insufficient flexibility in the system to absorb the stresses over the years, cracking was initiated and gradually spread across the wall thickness." GEAP⁽¹⁰⁾ reports 10 cases where expansion/flexibility is listed as the primary cause of failure. In two instances steam header piping (14- and 16-in.-OD seamless carbon steel pipe) failed due to bending over supports. Thermal and mechanical fatigue was responsible for crack initiation and propagation. Cracking of a drain line near the point of attachment to the main piping resulted in leakage of NaK at the Russian BR-5 plant.⁽¹¹⁾ The cause of this failure was attributed to inadequate provisions for thermal expansion.

A number of service failures resulting from the combination of a stress concentration and cyclic loading are reported.^(3,10) Mechanical notches, metallurgical notches, and high residual stresses due to a socket weld were all present in these cases. One such failure was in a socket weld joining a thermometer well to a steam pipe and another in the thermowell of the SCTI secondary sodium system. Another failure⁽³⁾ occurred at the toe of a fillet weld attaching a hanger lug to a curved pipe section. The failure was attributed to thermal fatigue because of a sharp change in weldment design. Two similar failures resulted from severe design notches. In one case, coupled to thermal fatigue in a 10-in.-OD by 0.690in.-wall main steam line and a hanger lug. In the other, a sharp notch between a reinforcing rib and a 5-in. schedule 40 17-4 Ph stainless steel was coupled to mechanical fatigue.

A 2-1/2-in. Type 304L stainless steel mixing tee revealed numerous cracks after 9500 hr of operation.⁽¹²⁾ Cause of cracking was attributed to thermalstress fatigue (possibly high cycle) due to mixing of hot (\sim 700°F) and cold (\sim 510°F) sodium. Crack propagation under these conditions is relatively slow, with a large number of cycles required to cause failure. The GEAP survey⁽¹⁰⁾ lists 41 cases where graphitization embrittlement was reportedly the cause of failure. The location of failure in 38 of these cases was in the weld-heat-affected zone of a welded pipe joint. Essentially all these failures occurred in carbon-molybdenon steam piping, operating between 900 and 960°F, after long exposure times, and resulted in cracking but not complete severance.

Fabrication

One instance of an inadequate inspection requirement of some Croloy (2-1/4 Cr - 1 Mo) steam pipe was reported at the Sodium Component Test Installation (SCTI) at LMEC.⁽¹³⁾ This material had been purchased to ASME Pressure Vessel Code, Section II, SA335, requiring only visual inspection for surface flows. One length of pipe previously accepted to the above specification requirement was found, during routine spool fabrication, to contain a longitudinal forging lap. Subsequent ultrasonic inspection of all the Cr-Mo pipe resulted in rejection of several of the pipe spools due to forging laps. Plant startup was delayed 69 days.⁽¹⁴⁾

A NaK leak in the primary coolant circuit of the British Dounreay Fast Reactor (DFR)⁽¹⁵⁾ illustrates some of the problems that can be caused by defective welds. The primary coolant piping in this case was enclosed in a vault due to the radioactive nature of the primary circuit. The primary piping was also surrounded by a leak jacket. This situation made it difficult to determine the exact leak location and further complicated repair once the leak had been located. Final metallurgical examination of the leak revealed that it had occurred at a weld joint due to the following weld defects: Joint misalignment, straying of the weld from the line of the butt joint, lack of penetration, and a stress riser where the weld had a double start. Total facility down-time due to this incident was about 11 mo, which illustrates the severe consequences of inadequate control of welding procedures. The GEAP survey⁽¹⁰⁾ reported 31 cases where the primary cause of failure was attributed to some type of weld defect.

Human Error

Improper preheating of a line filled with solid sodium can result in melting of sodium between solid sodium plugs and possible overpressure of pipe lines due to expansion of the melted sodium. Failure of this sort was experienced at Rapsodie during preheating of a system fill line which was full of sodium.⁽¹⁶⁾ This same procedure caused many failures of bellows seals in valves at the Sodium Reactor Experiment (SRE) during early operation.

June 30, 1970

A flanged elbow ruptured instantaneously from the impact of a slug of water accelerated by steam from a valve that had just been opened.⁽³⁾ This incident resulted in the loss of one life.

Discussion with cognizant personnel revealed a pipe failure in the SRE in a 2-in. pipe leading from the sodium service vault to a primary heat transfer line. An electric arc from a shorted line heater made a hole in the pipe which resulted in a sodium leak. Also, a welder inadvertently touched a pipe in the SCTI primary pump sodium line, leaving an undetected hole until the system was filled.

One case was reported⁽³⁾ where an incorrectly identified coupling failed during a pressure test. The coupling had been certified and stamped as Type 304 stainless steel. Examination subsequent to the failure revealed the material to be "Monel." Welding of this "Monel" with stainless steel electrodes resulted in a brittle joint which was responsible for the failure.

The principal investigator of this material was R. C. Calkins. If additional information regarding piping/fitting failures is required, contact J. J. Auleta, R. C. Calkins, or E. Ferguson at LMEC.

LMEC-Memo-69-7, Vol I 1-214g

e. References

- 1. D. A. Mannas, "Effects of Long-Term Sodium Exposure on Materials in the Sodium Reactor Experiment," AI-66-53 (June 15, 1966).
- 2. F. H. Dunbar, "A Summary of SRE Sodium Systems Exposure History," NAA-SR-TDR-10593 (October 1964).
- 3. Helmut Thielsch, Defects and Failures in Pressure Vessels and Piping (Reinbold Publishing Company, New York, 1965).
- M. C. Rowland, D. E. Plumlee, and R. S. Young, "Sodium Mass Transfer: XV. Behavior of Selected Steels Exposed in Flowing Sodium Test Loops," GEAP-4831, March 1965.
- 5. Warren E. Berry, "Some Facts About Stress Corrosion of Austenitic Stainless Steels in Reactor Systems," Reactor Materials, Vol 7, No. 1, Spring 1964, p 1-13.
- 6. L. D. Schaffer and J. A. Kapper, "Investigation of the Effects of Wet, Chloride Bearing, Thermal Insulation on Austenitic Steel Pipe," ORNL-TM-14 (November 1961).
- 7. J. D. Stearns, "Metallurgical Investigation of Leak in LCTL 3-in. Line," TI-01-LME-024 (October 22, 1969).
- 8. J. D. Stearns, "Metallurgical Investigation of Leak in LCTL Plugging Meter Loop," TI-01-LME-032 (February 20, 1970).
- 9. J. A. Leppard, "Review of SCTI Bellows Failures," NAA-SR-Memo-11170 (May 26, 1966).
- 10. W. S. Gibbons and B. D. Hackney, "Survey of Piping Failures for the Reactor Primary Coolant Pipe Rupture Study," GEAP-4574 (May 1964).
- V. V. Orlov et al, "Some Problems of Safe Operation of the BR-5 Plant," Proceedings of the International Conference on Safety of Fast Reactors, Aix-en-Provence, September 18-22, 1967, Conf-670916.
- 12. H. I. Bowers and W. E. Ferguson, "Structural Materials in LASL Liquid Sodium Systems," LADC-5783 (1963).
- P. S. Vandervort, "SCTI Main Steam Cr-Mo Pipe Nondestructive Testing," LMEC-TDR-69-2 (January 15, 1969).
- 14. LMEC Incident, Malfunction, and Maintenance Problem Report No. 338 (September 12, 1969).
- 15. R. R. Mathews and K. J. Henry, "Location and Repair of the DFR Leak," Nuclear Engineering, Vol 13, No.149 (October 1968) p 840-844.
- 16. G. Gajac and L. Reynes, "Experience Gained from the Final Construction Phase and the Approach of Power of Rapsodie," Proceedings of the International Conference on Safety of Fast Reactors, Aix-en-Provence, Sept. 18-22, 1967, Conf-670916.

LMEC-Memo-69-7, Vol I 1-215

June			FA	ILURE	data fo		PING AND eet 1 of 7)	ASSOCIATED FITTINGS	
30, 1970	ITEM	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 	FAIL CAUSE	URE IN CODE*		OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
	1	 IHX Inlet Pipe/ Thermowell Heat Transfer/Hot Leg 18 222211 	 SCTI Secondary sodium system, inlet line to IHX Contains thermocouples to indicate sodium loop temperature Incident report No. 79 	MI 474	MI 128	MI 520	1140	Operational monitors	 Thermowells cracked because of metal fatigue due to vibration. Thermowells removed and replaced with shorter length unit. Deviations from specifications should be routed through a material review board.
LMEC-N	2	 Piping/Bellows Con- volution Heat Transfer/Hot Leg 18 221211 	 SCTI Expansion joint No. 5 1000°F at 125 psi Incident report No. 34 	MI 457	MI 61	MI 530	612	Direct observation	 Bellows cracked. Part replaced. Use of bellows expansion joints in sodium loops is not recommended.
LMEC-Memo-69-7, Vol 1-216	3	 Piping/Suction Line Heat Transfer/Primary Coolant 18 221210 	 SCTI Primary sodium system, sodium pump (P-5) 10 in., schedule 40-304 SS, 1300°F Incident report No.60 	MI 328	MI 34	MI 136	1208	Direct observation sodium fire during loop filling	 Welder inadvertently touched pipe with welding torch creating a hole which remained undetected by visual inspection. Local repair. Any welding on the sodium line should be checked by dye penetration method prior to filling.
1	4	 Piping/Bellows Con- volutions Heat Transfer/Hot Leg 18 222211 	 SCTI Expansion joint XJ-10, line No. 552 1000°F at 125 psig Incident report No. 108 	I 457	I 61	I 520	612	Operational monitors	 This bellows failure was the same as previous failures. The stainless steel had sensitized and subsequently corroded. Part replaced. Avoid use of bellows expansion joints in sodium loops.
	5	 Piping/Bellows Con- volutions Heat Transfer/Hot Leg 18 222211 	 SCTI Expansion joint No. 8 - Incident report No. 114 	I 457	I 61	I 520	887	Protective system, leak detector alarm actuated	 Very small cracks and pin hole leaks developed in the convoluted portion of the bellows due to sensitization of the metal. Part replaced. Avoid use of bellows expansion joints in sodium loops.
	6	 Piping and Fittings/ Gasket Heat Transfer/Coolant Receiving 18 224110 	 HNPF No. 2 drum melt station - AI monthly, 1/11/63 	MI 442	MI 5Z	MI 530	Unknown	Direct observation	 Sodium leak around gasket between piping and drain bung. A new gasket of copper-covered asbestos was installed. None.

TABLE _______

I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-90

FAILURE DATA FOR PIPING AND ASSOCIATED FITTINGS (Sheet 2 of 7)

1TEM 3. CO 7 1. Pi 92 2. He mo 3. 18 22 8 1. Ve Ve	CODE: (Component) (System/Subsystem) Piping and Fittings/ Pipe Heat Transfer/Inter- nediate Cooling	 COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT HNPF Overflow line pump to secondary expansion tank No. 3 - Conference 650620 	CAUSE MI 24Z	MODE MI 94	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
8 1. Ve	Pipe Heat Transfer/Inter- nediate Cooling 8	 Overflow line pump to secondary expansion tank No. 3 - 				15.000		
Ve					530		Direct observation	 Sodium leak occurred in the 8-in. inlet overflow pipe from sodium pump No. 3 to expansion tank No. 3. Failure of the pipe was due to stress corrosion cracking. The pipe spool was removed from the system and replaced with a new section. None.
Re Pi 3. 18	Vent Piping/Pump Vent Line Heat Transfer/ Reactor Coolant Jiping 8 2121210	 HNPF Primary sodium system Vent lines are preheated to 338°F Monthly operating report No. 2 	MI 116	MI 51	MI 530	890	Direct observation	 Vent line plugged. Operating limits change. None.
2. He fic 3. 18	Piping/Vent Line Heat Transfer/Puri- ication (Cold Trap) 8 24239	 HNPF Primary cold trap No. 1/freeze trap No. 3 3-10 psi helium when draining sodium 200 to 350°F Work request No. 2629 	MI 187	MI 51	MI 550	Unknown	During actuation	 Vent piping plugged with sodium. Local repair; (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity ground the cam shaft housing to ensure solidification of any sodium that may flow past the float. Change in operating proce- dure should be made whereby a slight positive sodium pressure is maintained on freeze trap at all times.
CH 2. He Ga 3. 18	Piping/Line to Chromatograph Heat Transfer/Inert Gas Monitor 18 224600	 EBR-II Fission Gas Monitor Ambient Temperature PMMR-104 	MI 500	MI BZ	MI 530	10,380	Routine inspection	 Gas leak from primary system. Local repair. None.
2. H Ga 3. 18	Piping/Joint Heat Transfer/Inert Gas Monitoring 18 24630	 EBR-II Primary/argon system Ambient temperature Operations maintenance report, 5/29/68 	MI 500	MI 43	MI 530	14,710	Operational monitors	 Leaking joint in argon system to chromatograph. Temporary repair. Joint was sealed with RTV. None.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

June	
30,	ſ

 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem) 1. Piping/Piping Plugged 2. Fuel Handling Machine/ Cooling System 3. 18 235140 1. Piping/Argon Seal 2. Fuel Handling/Fuel Handling Machine Cooling 3. 18 235140 1. Piping/Flange 2. Steam-Feedwater/ Piping 	ange 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT 2. Source Document 1. EBR-II 2. Fuel Handling Machine 3 4. ANL-6808, 9/63	MI 218 MI 136	MODE MI 51 MI 54		OPERATING HOURS Unknown 6470	METHOD OF FAILURE DETECTION Operational monitor Direct observation	 FAILURE DESCRIPTION CORRECTIVE ACTION CORRECTIVE ACTION RECOMMENDATIONS Liquid metal condensation clogged piping. Local repair. None. Seal leaking. Part replaced.
 Fuel Handling Machine/ Cooling System 18 235140 Piping/Argon Seal Fuel Handling/Fuel Handling Machine Cooling 18 235140 Piping/Flange Steam-Feedwater/ 	ling Machine/ 2. Fuel Handling Machine rstem 3 4. ANL-6808, 9/63 gon Seal 1. Fermi ling/Fuel 2. Cask car Machine 3 4. EFAPP-47 ange 1. SCTI	218 MI 136	51 MI	530 MI			 Local repair. None. Seal leaking.
 Fuel Handling/Fuel Handling Machine Cooling 18 235140 Piping/Flange Steam-Feedwater/ 	ling/Fuel 2. Cask car Machine 3 4. EFAPP-47 1. SCTI	136			6470	Direct observation	
2. Steam-Feedwater/		МА					3. None.
3. 18 281300	3 4. Incident report No. 129	144	MA 53	MA 136	6030	Direct observation	 Steam leaks developed during an operating period when steam pressure was increased from 1400 to 1850 psig. Component corrective modification. Maintenance manual should include proper flange bolt torquing instructions for each type of flange and gasket.
 Level Sensing Pipe/ Flange Steam-Feedwater/ Feedwater Heater 18 284200 	2. High pressure feedwater heater (E-1) 3. 600°F, 2000 to 2400 psig steam	MI 326	MI 53	MI 530	4935	Direct observation	 Flange bolts unevenly torqued, flange leaking steam. Local repair, bolts properly torqued. Quality control for gasket material and torque of flange connections should be specified.
 Piping/Flange Steam-Feedwater/ Piping 18 281300 	ange 1. SCTI edwater/ 2. Flow nozzle - FRC-200E 3. 0-1200 H ₂ O, 0-146,000 lb/hr 4. Incident report No. 127	MA 136	MA 53	MA 550	6030	Direct observation	 Steam leaks developed during an operating period when steam pressure was increased from 1400 to 1850 psig. Component corrective modification. Maintenance manual should include proper flange bolt torquing instructions for each type of flange and gasket.
 Piping/Flange Gasket Steam-Feedwater/ Piping 18 281300 	2. Steam system/high pressure flash	MI 500	MI BZ	MI 530	4955	Direct observation	 Gasket worn out. Part replaced. Original gasket changed to Flexatallic type. Gasket materials should be selected for temperature and pressure conditions. Proper installation is essential for long lasting operation.
	Feedwater 3. 18 284200 1. Piping/Fla 2. Steam-Fee Piping 3. 18 281300 1. Piping/Fla Gasket 2. Steam-Fee Piping 3. 18	Feedwater Heater 3. 18 284200 1. Piping/Flange 2. Steam-Feedwater/ Piping 3. 18 281300 1. Piping/Flange Gasket 2. Steam-Feedwater/ Piping 3. 18 281300 1. EBR-II 2. Steam-System/high pressure flash tank 3. 578°F, 700 psig 4. Incident report No. 96 4. Incident report No. 96 4. Incident report No. 96 4. Incident report No. 96 4. Incident report No. 96 4. Incident report No. 96 5. O-1200 H ₂ O, 0-146,000 lb/hr 4. Incident report No. 127 5. Steam-System/high pressure flash tank 5. 578°F, 700 psig 4. PMMR-62	Feedwater Heater4. Incident report No. 963. 18 2842004. Incident report No. 961. Piping/Flange1. SCTI 2. Flow nozzle - FRC-200E 3. 0-1200 H ₂ O, 0-146,000 lb/hr3. 18 2813004. Incident report No. 1271. Piping/Flange Gasket 2. Steam-Feedwater/ Piping1. EBR-II 2. Steam system/high pressure flash tank 3. 578°F, 700 psig 4. PMMR-62MI	Feedwater Heater4. Incident report No. 963. 18 2842001. SCTI4. Incident report No. 961. Piping/Flange1. SCTI2. Steam-Feedwater/ Piping2. Flow nozzle - FRC-200E 3. 0-1200 H2O, 0-146,000 lb/hr3. 18 2813001. EBR-II 2. Steam-Feedwater/ Piping1. Piping/Flange Gasket1. EBR-II 2. Steam-Feedwater/ Piping3. 18 2813001. PMMR-62	Feedwater Heater4. Incident report No. 963. 18 2842001. SCTI1. Piping/Flange1. SCTI2. Steam-Feedwater/ Piping2. Flow nozzle - FRC-200E 3. 0-1200 H ₂ O, 0-146,000 lb/hr3. 18 2813001. EBR-II 4. Incident report No. 1271. Piping/Flange Gasket1. EBR-II 2. Steam-Feedwater/ Piping3. 18 2813001. EBR-II 4. PMMR-62	Feedwater Heater 3. 18 2842004. Incident report No. 96MAMA60301. Piping/Flange Piping 3. 0-1200 H ₂ O, 0-146,000 lb/hr 4. Incident report No. 127MAMAMA60301. SCTI Piping 3. 0-1200 H ₂ O, 0-146,000 lb/hr 4. Incident report No. 127MAMAMA60301. Piping/Flange Gasket 2. Steam-Feedwater/ Piping 3. 181. EBR-II 2. Steam system/high pressure flash tank 3. 578°F, 700 psig 3. 18MIMIMI4955	Feedwater Heater 3. 18 2842004. Incident report No. 96MAMAMA1. Piping/Flange 2. Steam-Feedwater/ Piping 3. 0-1200 H ₂ O, 0-146,000 lb/hr 4. Incident report No. 127MAMAMA1. SCTI 2. Flow nozzle - FRC-200E Piping 3. 0-1200 H ₂ O, 0-146,000 lb/hr 4. Incident report No. 127MAMA531. Piping/Flange Gasket 2. Steam-Feedwater/ Piping 3. 181. EBR-II 2. Steam system/high pressure flash tank 3. 578°F, 700 psig 4. PMMR-62MIMIMI BZMI 530Direct observation

r

TABLE _______

FAILURE DATA FOR PIPING AND ASSOCIATED FITTINGS (Sheet 3 of 7)

MA = MAJOR MALFUNCTION P = PROBLEM

FAILURE DATA FOR PIPING AND ASSOCIATED FITTINGS (Sheet 4 of 7)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION				
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
18	 Piping/Elbow Steam-Feedwater/ Piping 18 281300 	 EBR-II Steam system/between the high pressure and low pressure flash tanks - Operating maintenance W/E, 8/21/68 	MI 126	MI 65	MI 530	15,240	Direct observation	 Elbow eroded. Local repair, elbow replaced because of erosion. Heavier wall thickness should be required for elbow than for straight pipes because of high level tur- bulences. 				
19 20 6 21	1. Piping/Line 2. Steam-Feedwater/ Piping 3. 18 281300	 SCTI Steam and feedwater system line 100 PSV-208 600 psig, 580°F, 16,900 lb/hr Incident report No. 316A 	I 121	I 94	I 136	2160	Direct observation	 Steam leakage between two safety valves due to chloride stress corrosion of 347 SS. Four cracks developed, 4 to 6 in. long. Replacement with ASTM-A335-P22, 2-1/4 Cr and 1% Mo. None. 				
	 Piping/Pipe Nipple Steam-Feedwater/ Condensate 18 283400 	 SCTI Feedwater system 121°F, 30 psia, 89,510 lb/hr flow Incident report No. 73 	MI 470	MI 54	MI 530	3570	Direct observation	 Pipe nipple cracked at threads when bent to align during installation. Nipple replaced. Sight glass correctly aligned. Use proper Quality Assurance procedures during construction. 				
21	 Piping/Orifice Steam-Feedwater/ Piping 18 284400 	 EBR-II Feedwater/motor driven feed pump 364°F, 1300 psig PMMR-55 	MI 500	MI 54	MI 530	4100	Preventive mainte- nance	 Orifice plate badly bowed out of shape. Part replaced. A thicker plate with a larger hole was installed. None. 				
22	 Piping/Gland Cooling Discharge Pipe Steam-Feedwater/ Piping 18 284400 	 EBR-II Feedwater/startup boiler feed pump No. 1 cylinder 364°F, 1500 psig Operating weekly report, 11/29/67 	MI 417	MI 51	MI 550	Unknown	Operational monitors	 Pipe diameter too small, pressure drop too high. Part replaced. None. 				
23	 Piping/Orifice Spool Flange Steam-Feedwater/ Piping 18 284400 	 EBR-II Feedwater/recirculating line 364°F, 1500 psig PMMR-78 	MI 456	MI 73	MI 530	6700	Direct observation	 Flange had cracks and porosity holes. Temporary repair. Proper quality control could eliminate this type of malfunction. 				

•

				.		(She	eet 5 of 7)						
		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	 FACILITY COMPONENT LOCATION 	FAILURE INDEX CODE*		OPERATING	METHOD OF FAILURE	1. FAILURE DESCRIPTION					
ITE	. M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
24		 Fitting/Bellows (2 units) Steam-Feedwater/ Piping 18 	 EBR-II Condenser/steam bypass - ANL-6965 	MI 500	MI 59	MI 550	1200	Direct observation	 Bellows ruptured, leaked. Part replaced. Determine cause of failure before replacing bellow to prevent recurrence. 				
25		 Piping and Fittings/ Actuator Fuel Handling/Fuel Handling Machine 18 235130 	 Fermi Cask Car Minimum 350°F, argon EFAPP No. 1 	MI 151	MI 12	MI 530	3650	Operational monitors	 Actuator failed. Vendor repair of component. None. 				
26		 Piping and Fittings/ Actuator Fuel Handling/Fuel Handling Machine 18 235130 	 Fermi Cask Car Minimum 350°F, argon EFAPP No. 47 	MI 110	MI 55	MI 530	2820	Direct observation	 Uneven operation caused actuators to join sealing flange. Vendor repair of component. None. 				
27		 Piping and Fittings/ Actuator Fuel Handling/Fuel Handling Machine 18 235130 	 Fermi Cask Car Minimum 350°F, argon EFAPP No. 59 	MI 172	MI 59	MI 530	Ĭ460	Direct observation	 Cotter key sheared in the actuator drive. Local repair. None. 				
28		 Piping/Air Line Miscellaneous Equipment/Instrument Air Supply 18 540000 	 SCTI Instrument air line/instrument air system - Incident report No. 133 	MI 331	MI 59	MI 530	10,250	Direct observation	 Instrument air line stepped on and broken. Broken section replaced. Install protective device to prevent recurrence. 				
29		 Piping/Nipple Miscellaneous Equipment/Instrument Air Supply 18 540000 	 SCTI Instrument air system Ambient temperature Incident report No. 345 	MI 127	MI 59	MI 530	21,970	Routine area watch	 Cooling water line cracked at pipe nipple threaded area. Replaced broken component. Flex connection should be installed to minimize vibration effects. 				

TABLE _______

FAILURE DATA FOR PIPING AND ASSOCIATED FITTINGS

I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

.

.

		F	AILURE		BLE <u>1-9</u> OR <u>PIP</u> (She		SSOCIATED FITTINGS				
LTC M	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAILURE			OPERATING	METHOD OF FAILURE	1. FAILURE DESCRIPTION			
ITEM	(Comment)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS			
30	 Piping/Pipe Heat Transfer/Piping 18 221210 	 ETR Primary system piping Steady full power (175 Mw) INC-69-124 	I 121	I 61	I 520	Unknown	Direct observation (unscheduled)	 Crack developed in weld near inlet of C-7 primary heat exchanger. Installed new section of piping. None. 			
31	 Piping/Insulation Heat Transfer/Intermediate Cooling 18 222210 	/Inter- 2. Secondary sodium piping 477 99 g 3. Happened over several years 4. EBR-II No. 4		MA 580	Unknown	Direct observation (unscheduled)	 Insulation cracked due to thermal expansion over several years' time. Repaired waterproof lagging cover. Provide adequate preventive maintenance to mainta protection from moisture. 				
32	 Piping/Pipe Steam, Condensate and Feedwater/Main Steam Piping 18 281300 	 SCTI Main steam system Down (unscheduled repair) SCTI-338 	I [₹] 452	I 6Z	I 520	Unknown	Direct observation (unscheduled)	 During preheat a separation in pipe wall was observed to "open up." All new spools were ultrasonically tested and defe sections rejected. Acceptable sections were weld into the system. Improved Quality Assurance procedures. 			
33	 Piping/Pipe Heat Transfer/ Coolant Piping 18 221210 	 LCTL 3-in. sodium loop, Line No. 303 Down (unscheduled maintenance) IMPR No. 012 	I 200	I 90	I 550	Unknown	Routine inspection	 Sodium leak discovered in 2-by-3-in. pump dischaline. Failure due to intergranular corrosion. Pipe removed from system and replaced with new sp Maintain loop in preheat condition (~250°F) when system is in standby. When in operation, protect from elements. 			
34	 Piping/Finned Tube Heat Transfer/ Purification 18 224235 	 LCTL 1-in. plugging loop Startup IMPR No. 021 	I 200	I 90	I 550	Unknown	Direct observation	 Sodium leak discovered in l-in. plugging loop finn tube section. Failure due to intergranular corros Finned tubing removed and replaced with new sect Provide moisture protection for loop when system is in shutdown condition, maintaining loop in preh condition when practical. 			
35	 Piping/Flange Instrumentation and Control/FuelElement Failure Detection 18 26114 	 ANL Fuel failure detection loop Unknown FFDL No. 1 	MA 500	MA 53	MA 550	Unknown	Alarm	 Sodium leak at flange located at base of riser. Unknown. None. Report lacking in sufficient information for complete analysis. 			
36	 Piping/Pipe Heat Transfer/Piping 18 221210 	 BNW Bldg. 324 Test loop Test in progress, 1240°F 324-3-69 	I 15Z	I 59	I 550	Unknown	Direct observation (unscheduled)	 Sodium leak occurred causing sodium fire. Operational procedure changed. System redesign. 			

.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

June 30,			FA	ILURE	data fo	OR <u>PIPI</u> (She	<u>NG AND A</u> et 7 of 7)	SSOCIATED FITTINGS	
1970	ITEM	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM		FAILURE INDEX CODE*			OPERATING	METHOD OF FAILURE	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION
	11 - 10	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		HOURS	DETECTION	3. RECOMMENDATIONS
LMEC-Memo-69-7, voi 1 1-220b	1	 Piping/Flange Reactor Equipment/ In-core Capsules and Test Loops 18 218000 	1. ETR 2. Test loop 3. Down (unscheduled repair) 4. INC-69-120	MI 500	MI 5Z	MI 530	Unknown	Direct observation (unscheduled)	 Flange seal had failed. New flange seal inserted. Additional research and development.
			MI = MINOR MALFUNCTION						

TABLE <u>1-90</u>

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-91</u>

-

· ·

-

.

.

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT _PIPING AND ASSOCIATED FITTINGS

(COMPONENT SUBTYPE MISCELLANEOUS PIPING FAILURES (%)) 1() 2() 3(0 40) 50	0 60) 70) 80	90	100
	Nuclear Power Reactor		_								
PE	Nuclear Test Reactor			_	_						
PLANT TYPE										1	
	Fuel Handling			_							
	Instrument Air Supply										
M	Miscellaneous Equipment	_						1			
SYSTEM											
SΥ											
	Actuator										
	Air Line		-		i						
RT	Nipple									1	
COMPONENT PART											
NT											
ONE										ł	
ΜÞ											
3											
[Environment										
ω	Human error						ļ				
CAUSE	· · · · · · · · · · · · · · · · · · ·										
5	· · · · · · · · · · · · · · · · · · ·						1				
		1	<u> </u>		l		<u> </u>				
	Mechanical				<u> </u>						
В	Electrical										
MODE											
		 	ļ	<u> </u>			<u> </u>				
Ι.	Labor and material loss only										
<u>[</u>]		4					·				
EFFECT		-									
۱ ^ш		{									
1		I	1	1	1	1	1			1	

TABLE _1-92_

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PIPING AND ASSOCIATED FITTINGS

	COMPONENT SUBTYPESODIUM PIPING	FAILURES (%)	0 1	0 2	0 3	0 4	0 5	0 6	0 70	<u>8</u>	9	0 100
	Component Test Facility		_				_			-		
PLANT TYPE	Nuclear Power Reactor		_									
]. Z≻			_		1	1					1	
_							İ					
	Intermediate Cooling											
	Primary Cooling				1						•	1
Σ	Heat Transfer]					-				
SYSTEM	Instrumentation and Control				1							
SΥ			1	ļ	}]				
			4									
			4		1							
			<u></u>		<u> </u>	<u> </u>	ļ					
	Bellows	·	-									
	Thermowell		_					{	1			
L L	Pipe		_				Ī					
ΡA	Gasket		-				1					
COMPONENT PART	Insulation											
E E	Flange		-									
NPC			-	Í		1	[
ι Ο			-									
			-									
			-									
			-					ļ	Į į			
	Inherent			1		1	<u></u> _	1				
	Human error					Τ						
JSE	Impurity/contamination		-									
CAUSE	Environmental	1										
-	Unknown	······································	 	1	1	ł						
			1									
	Metallurgical					T		1				
	Mechanical											
MODE	Chemical		- 	ļ	ļ]				
Σ	Metal corrosion		`			+						
	Other			_								
	Plant availability loss					1						
L I	Labor and material loss only		- <u></u>	ļ		-						
EFFECT	System/component inoperative]			+	÷					
	Potential damage to equipment]									
]									

TABLE <u>1-93</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PIPING AND ASSOCIATED FITTINGS

COMPONENT SUBTYPE SODIUM VAPOR AND INERT GAS PIPING

		FAILURES (%) (<u>) 1</u>	<u>0 2</u>	0 3	<u>30 4</u>	0 5	0 6	0 7	<u> </u>	0 90) 10
E.	Nuclear Power Reactor											
PLANT TYPE	Nuclear Test Reactor				{							
ᆋᄂ						1				l		
			<u> </u>	<u> </u>	<u> </u>							
	Heat Transfer			-		+						
	Fuel Handling					+-	}					
Σ	Coolant Treatment						ļ					
SYSTEM	·	. <u></u>]					
S							}					
				}								
					1		1					
							<u> </u>	<u> </u>				
	Pump Vent Line		-									
	Vent Line				1							
-	Line to Chromatograph				ļ							
AR	Joint		-									
Ē	Piping Plugged											
COMPONENT PART	Argon Seal							ļ	}			
PO								1				
MO					1							
υ					ļ							
	· · · · · · · · · · · · · · · · · · ·						}	ļ				
		······				ļ						
				L	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
[Environmental						+	4				
ш	Unknown					+	1					
CAUSE	Impurity/contamination				ļ		ļ					
ပ်							1	ļ	1]		
						<u> </u>		l	L			
	Mechanical		-									
μ	Unknown		ند سند. ا		1		1]				
MODE	Other											
≥					1		1	ļ]		
	Labor and material loss only										_	
5	System/component inoperative											
EFFECT]	}	}	1	1	1			
EF												
)	1]]			

June 30, 1970

TABLE <u>1-94</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PIPING AND ASSOCIATED FITTINGS

COMPONENT SUBTYPE ______ STEAM PIPING

	FAILURI	ES (%) 0	10) 2	0 3	0 4	0 5	06	0 7	08	0_9	0 100
L	Component Test Facility		- 1		_				_			
PLANT TYPE	Nuclear Test Reactor				r.							
L L L L												
	Main Steam											
	Steam and Feedwater											
EN												
SYSTEM												
Š												
	· · · · · · · · · · · · · · · · · · ·											
	Flange											
	Flange Gasket											
L ا	Elbow											
COMPONENT PART	Pipe											
5												
E.												
NP0												
5 S												
H	Environmental						l I					
	Human error											
CAUSE	Unknown		_									
CA	Inherent			_								
	Mechanical		-									
ш	Metallurgical				•	_						
MODE	Unknown								-			
									-			
Щ												
	Plant availability loss			-		_						
L 2	Labor and material loss only	P	-									
EFFECT												

TABLE <u>1-95</u>

. . . .

.....

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PIPING AND ASSOCIATED FITTINGS

	COMPONENT SUBTYPEWATER PIPING	FAILURES (%) 0	10	0 2	0 3	30 4	10 !	50 6	50 T	70 8	80 9	0 100
	Nuclear Power Reactor	F	- Î			+			Γ	T	Γ	
PENT	Nuclear Test Reactor					+	┿━╸					
PLANT TYPE												
					<u> </u>							
	Feedwater					-			'		1	
	Condensate											1 1
1 S	Heat Transfer		_			1	1	1			ļ	
SYSTEM	Reactor Equipment				1							
Sγ					1							
					l							
								1				[
ļ			-+		<u> </u>	+	<u> </u>	+	<u> </u>	<u> </u>	<u> </u>	\vdash
	Pipe Nipple											1
	Orifice											
RT	Gland Cooling Discharge Pipe	[
PA	Orifice Spool Flange								Į		ł	
NT	Bellows								1			
COMPONENT PART	Flange											
MPI			- 1							ł	1	
3	······											
			_									
	Inherent							Τ				r ī
ш	Unknown		_									
CAUSE	Environmental		_			ł		1				
CA												
								}				
	·										L	
	Mechanical		-							•		
ш (Metallurgical											
MODE												
-	- <u> </u>											
	······································										L	
	Labor and material loss only								_			
EFFECT	System/component inoperative							1		ļ		
	Plant availability loss		-+	-								
]		
			1			1	1	1	1	1		

June 30, 1970

LMEC-Memo-69-7, Vol I 1-225

•

TABLE _______

GENERAL SUMMARY

COMPONENT PIPING AND ASSOCIATED FITTINGS

10 20 30 40 50 60 70 80 90 100 FAILURES (%) 0 Environmental Impurity/contamination CAUSE Human error Inherent Unknown Electrical Chemical NODE Mechanical Metallurgical OtherPlant availability loss EFFECT Labor and material loss only System/component inoperative Potential damage to equipment TOTAL FAILURES PER TYPE 0 2 ... 4 6 8 10 12 14 16 18 20 Sodium vapor and inert gas piping Sodium piping Steam piping Water piping Miscellaneous piping OPERATING HOURS (THOUSANDS) 0 10 20 30 40 50 60 70 80 90 100 Sodium vapor and inert gas piping Sodium piping Steam piping DISCONTINUED Water piping TYPE Miscellaneous piping FAILURE RATE (FAILURES/10⁶ hr) 0 100 200 300 400 500 600 700 800 900 1000 Sodium vapor and inert gas piping Sodium piping Steam piping DISCONTINUED Water piping Miscellaneous piping

June 30, 1970

9. Piping Supports

Failure data for piping supports are presented in Tables 1-97 through 1-99.

a. Reliability Information

Design Features:

Supports sodium piping under all thermal and hydraulic design conditions.

Critical Characteristics:

- 1) Support pipe if adjoining supports fail
- 2) Allow for thermal expansion.

Mode of Failure:

- 1) Misalignment
- 2) Sway braces failed
- 3) Weld failures
- 4) Excessive loads.

Failure Description:

- 1) Pipe hangers misaligned
- 2) Weldment of bracket to vessel wall failed
- 3) Imposed loads exceeded design limits resulting in support failure.

Control Methods:

None.

Alternate Concepts:

The problem of how to support large-diameter, relatively thin-walled hot pipes has not been solved. Pipe hangers as now used are of questionable value. Circumferential stiffeners for local strengthening in support areas may be a possibility, but present additional problems of thermal stresses. Problems relating to pipe support may lead to revising traditional concepts of connecting fluid systems. Short sections of connecting piping might be reasonable. These sections might be similar flexible hoses, with reinforcing rings at the base of the convolutions for added strength.

TABLE _________

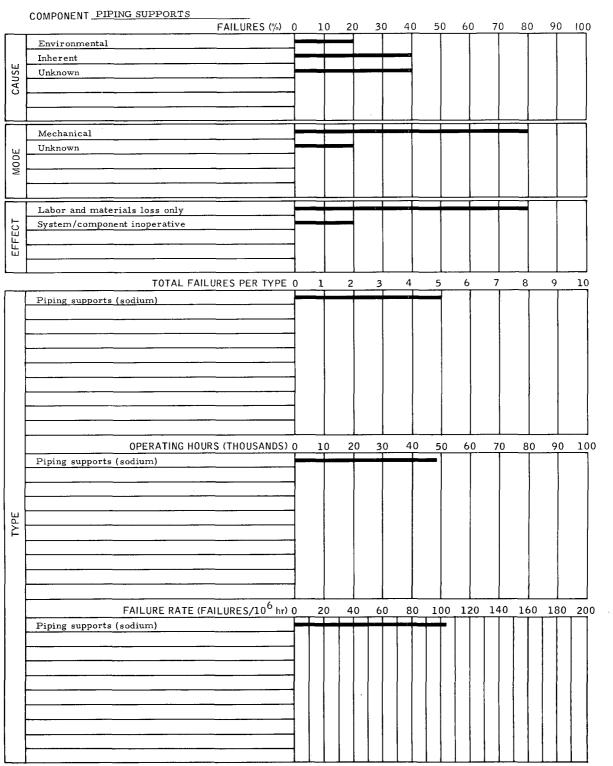
FAILURE DATA FOR <u>PIPING SUPPORTS</u>

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
ITI	ΞM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		2. Steam, Condensate and	Condensate system	MA 416	MA 56	MA 550	12,600	During repair of associated system	 Pipe hangers misaligned. Local repair, pipe hangers were modified. Install thermal expansion joint in turbine exhaust line to prevent loading turbine case.
2 TMEC Mano			1. EBR-II 2. Feedwater system 3 4. PMMR-107		MI 54	MI 550	~11,320	Direct observation	 Sway braces failed. Part replaced. None.
60 7 VAI T		Hanger 2. Steam, Condensate and	1. EBR-II 2. Feedwater system 3 4. PMMR-95		MI BZ	MI 530	~ 541	Direct observation	 Hanger failed. Cause unknown. Part replaced. None.
4		2. Feedwater Supply and Treatment System/	 SCTI Treated water and chemical feed system makeup demineralizer D-1 - Incident report No. 328 	MI 416	MI 59	MI 117	4066	Direct observation	 Weld holding bracket to vessel wall failed. Local repair. None.
5		Manifold Support 2. Feedwater Supply and Treatment System/	 SCTI Treated water and chemical feed system demineralizer D-2 - Incident report No. 315 		MI 54	MI 530	19,380	Direct observation	 Excessive stress on manifold caused support to break. New interface manifold fabricated with the tee socket welded at all three openings. None.
					l			I	

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-98</u>

FAILURE DISTRIBUTION FUNCTIONS


COMPONENT <u>PIPING SUPPORTS</u> COMPONENT SUBTYPE <u>PIPING SUPP</u>ORTS

		FA	ILURES (%)	- 0 1	0 2	0 3	<u> </u>	0 5	0 6	0 7	<u>'0 8</u>	0 9	0 100
1	l. –	Nuclear Test Reactors				+	+						
/	E H	Components Test Facility					+	4					
	PLANT TYPE			1					[[
				1									
		Condensate			Ì		Ī	1	1	Ī		İ	
		Feedwater										1	
	Σ	Feedwater Supply and Treatment											
	SYSTEM			1									
	λ												
											1		
		Hanger											
		Turbine Exhaust Pipe Hangers				4							
	хT	Balance Line Sway Braces								ļ			
1	PAF	Header Support											
	COMPONENT PART	Manifold Support											
	NEN											1	
	POI												
	N												
	с											1	
		a territoria de la constancia de la constancia de la constancia de la constancia de la constancia de la constan											
	ļ											l	
								<u> </u>	<u> </u>				
		Environmental				4							
	щ	Inherent					1	4					
	CAUSE	Unknown											
	υ							l					
ļ													
[Mechanical											
	w	Unknown											
	MODE												
	-					2]					
ļ													
ſ		Labor and materials loss only		_									
	EFFECT	System/component inoperative											
	Ë												
	斮 [
	ſ												

TABLE _______

LMEC-Memo-69-7, Vol I 1-230

the second second second

10. Pumps and Supports

Failure data for pumps and supports are presented in Tables 1-100 through 1-107.

- a. Feedwater
- (1) Reliability Information

Design Features:

- 1) Rotary centrifugal
- 2) Constant speed or variable speed
- 3) Single impeller, double impeller, or scoop tube
- 4) Reciprocating startup pumps.

Critical Characteristics:

- 1) Low-flow operation limit
- 2) Flow control sensitivity vs head
- 3) Pump drive reliability and characteristics are especially critical between different types of drives.

Mode of Failure:

- 1) Wear, score, or break of rotating components or seal elements
- 2) Wiped or scored bearings
- 3) Lubrication control inadequate.

Failure Description:

- 1) Pump cylinder packing worn out
- 2) Pump cylinder packing ruptured
- 3) Pump cylinder O-ring worn out
- 4) Too much packing installed
- 5) Thrust bearing wiped
- 6) Bearing damaged
- 7) Impeller scored

- 8) Discharge flange gasket worn out
- 9) Improper oil in oil reservior
- 10) Too much oil in oil reservoir
- 11) Rubber bushing of control shaft deteriorated on the turbine-driven pump
- 12) Strainer dirty
- 13) Shaft labyrinth seal leaked oil
- 14) Unloader spring malfunctioned on the turbine-driven pump.

Control Methods:

- 1) There should be more frequent maintenance inspections.
- 2) The maintenance procedures should be improved.
- 3) The installation procedures should be available.
- 4) There should be more personnel training.
- 5) In some cases, parts should be better designed.

(2) Discussion and Recommendations

Reciprocating Type Startup Pump:

A large number of malfunctions caused by piston-rod packing failures could be reduced: (1) by using prefabricated packing elements made from proper material, (2) by determining and applying measured torque, (3) by request of manufacturer's suggestions, and (4) by training all maintenance personnel who should perform this type of work.

General:

Maintenance personnel should be equipped and trained to check bearing wear and bearing lubrication; and to follow manufacturer's instructions for lubrication oil selection and oil level check of turbine-driven pumps. An individual preventive maintenance schedule should be determined for each important component, and check points should be detailed.

There are several methods to reduce the possibility that a value is left closed in a pump discharge line:

- 1) Important changes in the operational conditions should be transmitted in written form to the succeeding shift operators.
- 2) Motor start can be prevented by the installation of an interlock between all valves in the pump discharge line and the motor starter.
- 3) Plant layout schematic board can supply visual inspection about the positions of all important loop components.
- 4) Thermal switch in the pump recirculation line can actuate alarm in case of sudden restriction in the pump discharge line.

It is recommended that a periodic course be introduced for the operational personnel, where the dangerous and important sections of the operational manual can be refreshed and discussed. During these occasions the participants can exchange their experiences for the benefit of plant safety and plant availability. A similar periodical course could improve preventive maintenance performance.

b. Miscellaneous

(1) Reliability Information

Design Features:

Generally centrifugal or positive displacement gear or lobe types.

Critical Characteristics:

Proper installation, choice of type, and maintenance are important to pump bearings.

Mode of Failure:

- 1) Clogging of system or filters
- 2) Worn, broken, or ruptured component
- 3) Vibration
- 4) Misalignment

Failure Description:

- 1) Bearing worn out
- 2) Bearing wiped

- 3) Bearing broken, seized
- 4) Shaft seal rings worn
- 5) Impeller and casing vibration
- 6) Belt drive broken
- 7) Air lock supply pump malfunction
- 8) Acid system pump clogged
- 9) Vacuum pump diaphragm ruptured.

(2) Discussion and Recommendations

Worn and misaligned or broken bearings can be detected early using thermocouples, thermoswitches, and vibration detectors. Each sensor could be connected to an alarm.

An interlock between the discharge line value and motor starter can prevent pump damage. The use of settling tank level switches and flow indicators that are inspected frequently can signal clogging or malfunction of water treatment systems.

Other suggestions are:

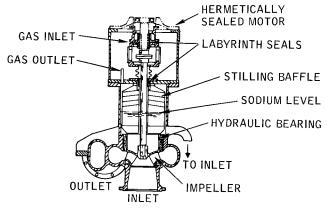
- 1) Maintenance personnel should be equipped and trained for checking bearing wear and lubrication.
- 2) Factory-sealed bearings, and proper installation procedure, should be used.
- Pump failure caused by closed discharge line valve can be eliminated by interlock between valve position sensor and pump starter.
- 4) Corrosion and possible chemical reactions shall be considered in selecting pumps and piping materials for chemicals in a feedwater treatment loop. Manufacturer's proposal for maintenance should be requested and followed.

- c. Free-Surface (see Figures 1-15 through 1-18)
- (1) Reliability Information

Design Features:

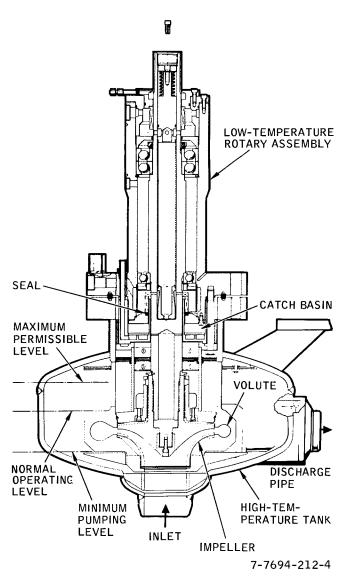
This type of pump maintains a safe sodium level in the pump housing through an intricate balance of wear ring, weep hole, cover gas pressure and sodium return line design characteristics.

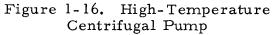
Critical Characteristics:

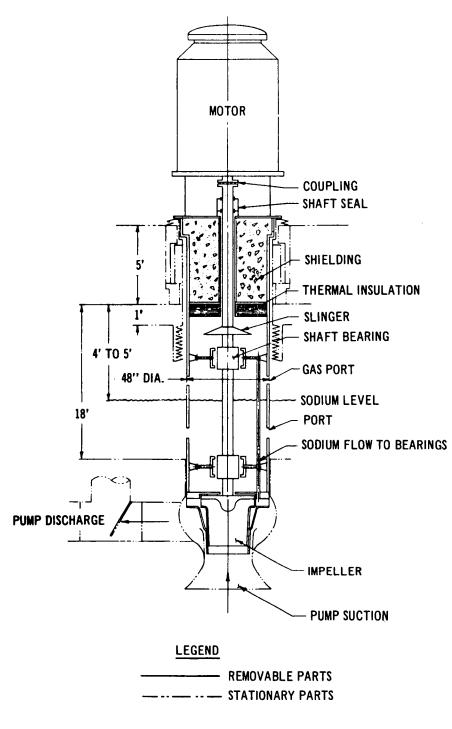

- 1) The alignment and life of bearings, seals, and shafts are important.
- 2) Adequate case cooling is required to prevent thermal distortion during startup or transient.
- 3) Good sodium level control is vital.

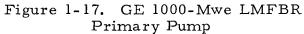
Mode of Failure:

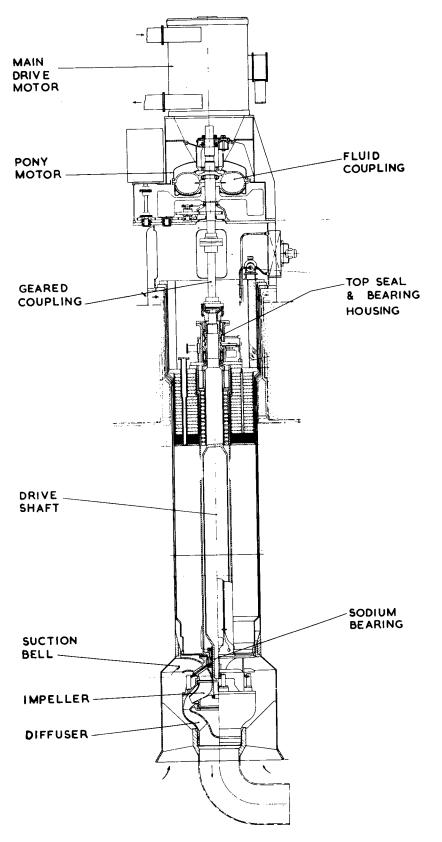
- 1) Restricting flow in system
- 2) Wear
- 3) Misalignment
- 4) Seizure through thermal distortion
- 5) Vibration
- 6) Maintenance deficiency.

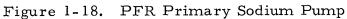

Failure Description:


- 1) Bearing worn out
- 2) Bearing noisy
- 3) Bearing vibrating
- 4) Weep holes sucking sodium into pump casing
- 5) Shaft seal worn out
- 6) Shaft seal misaligned
- 7) Carbon face seal rings chipped
- 8) Foreign material in rotating seal
- 9) O-ring worn out




7-7694-212-2





- 10) Shaft seizure from foreign material in bearings
- 11) Shaft distorted from thermal gradients causing binding
- 12) Shaft deflected
- 13) Sodium frozen to pump shaft and leaked into oil reservior
- 14) Pump squealing
- 15) Piston cups worn out
- 16) Oil leaks into sodium from oil seal.

(2) Discussion and Recommendations

Description:

The free-surface sodium pump is one of the early concepts.

The pump has no internal seals or internal lubricated bearings. The bearings and seals are located on top of the pump floor plate. An unlubricated hydrodynamic guide bearing, located inside the pump, guides the impeller shaft.

These pumps require no internal instrumentation except for sodium level indicators located in thimbles. The sodium level indicators may be located on the exterior surface of the pump case. In either case they are accessible and the pump need not be disturbed to perform maintenance work on the instrumentation.

The sodium level in the free-surface pump is controlled by locating the pump at the high point in the system or the pump case can be fitted with an overflow line that returns excess sodium to a balancing leg which in turn is connected to the pump suction line.

Problems:

The following are some of the more serious problems encountered with free-surface pumps:

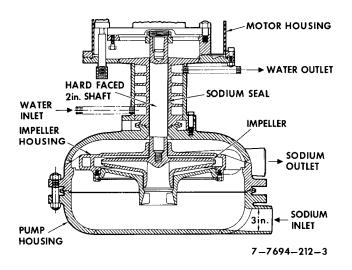
- 1) Preheating the system prior to filling with sodium has caused warpage that resulted in binding the impeller shaft.
- 2) Foreign matter (metal cuttings) have deposited in the hydrodynamic bearing and caused seizure of the impeller shaft.

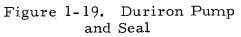
- 3) An impeller shaft was bent during the installation of the bearing seal assembly on the pump floor plate resulting in loss of plant availability.
- 4) Mechanical oil seals located in the bearing seal assembly (top of pump floor plate) have failed resulting in downtime.
- 5) Mechanical oil seals have failed resulting in oil leakage into the sodium system. This is an unacceptable incident and the bearing seal assembly must be designed to make it impossible to leak oil into the sodium system.
- 6) Magnetic clutches used for driving some free-surface pumps have operated at higher-than-specified temperatures. This was the result of inadequate air circulation inside buildings.
- 7) Problems with belt-driven tachometers have resulted in unnecessary shutdowns.
- Permitting pump drive motors to be exposed to the elements (rain) has caused motor failure resulting in downtime.
- 9) The lack of adequate operator training has resulted in downtime, including getting oil into the sodium system.
- The impeller shaft guide bearing journal has been scored in some pumps; however, this has not caused pump failure.
- Bearings have failed in the bearing seal assembly on some pumps; however, other pumps have operated for thousands of hours without bearing problems.
- 12) Pumps equipped with balancing legs have been flooded by improper operation of inert cover gas systems, resulting in downtime and and plugged vent systems.
- 13) Carbon (oil in sodium system) has deposited in bellows, actuated level indicators on the pump cases, and rendered them inoperative, resulting in pump downtime.
- 14) Pump downtime has resulted because of pump instrument thimbles vibrating. The thimbles were attached on the upper end only.

Summary:

Free surface pumps have been used quite extensively in the industry. There have been many problems encountered with the pumps; however, the operating history of these pumps is relatively good. After about one year of debugging the SRE, free-surface pumps were considered very reliable.

Recommendations:


The free-surface concept of sodium pumps should be further developed. The pump floor plate should be designed to make it nearly impossible to leak oil into the pump case. The bearing seal assembly leak-off chambers should be sized to hold the entire quantity of oil in the bearing housing.


Mechanical seals that are presently used in the bearing seal assemblies inherently leak oil; therefore, a method of knowing precisely how much oil is leaking across the seal should be designed into the assembly. Knowing the quantity of oil leaked and the amount of makeup is necessary for a free surface pump.

Pumps that can be flooded for any reason should be equipped with protective devices to detect the incipient stage of such an occurrence.

Other recommendations are:

- 1) Better designed bearings
- 2) Adequate preventive maintenance schedule
- 3) Sensors to detect bearing malfunctions
- 4) Provision for tolerance checking of bearings
- 5) Provisions for aligning bearings and seals during maintenance operations
- 6) Selection of proper materials for parts
- 7) Improvement of cover gas oil seals
- 8) Designing for uniform pump casing cooling.

d. Freeze Seal (see Figure 1-19)

(1) Reliability Information

Design Features:

Impeller region is sealed from the pump bearing case by a frozen column of sodium between the case and the shaft. Freezing is maintained by a cooling system.

Critical Characteristics:

The freeze seals have small operating tolerances and require frequent inspection.

Mode of Failure:

- 1) Seizure of shaft
- 2) Misalignment
- 3) Broken
- 4) Cracked.

Failure Description:

- 1) Pump shaft seizure by freeze seal or wear-ring area
- 2) Loss of freeze seal
- 3) Bearing alignment was performed improperly during maintenance
- 4) Crack in thermowell welding, an organic material deposit
- 5) Magnetic seal leakage.

Control Methods:

- 1) Procedure which set controls at proper limits.
- 2) Better maintenance schedules and procedures.
- 3) Design wide clearance between wear-rings.
- 4) Determine proper ratio between wear-ring and weep-hole areas; maintain same ratio for all subsequent modifications.

(2) Discussion and Recommendations

The freeze seal sodium pump is one of the first concepts that was developed. Sodium is frozen around the periphery of the pump bucket and the impeller shaft to act as seals. The pump case seal can be easily maintained and is quite reliable. The pump impeller shaft seal is a problem because it is affected by several variables.

The impeller shaft seal requires almost constant surveillance and then on occasion the seal appears to operate unpredictably.

Loss of a freeze seal renders the pump inoperative. A complicated maintenance activity is required to return the pump to an operable status. If the pump is used to circulate radioactive sodium, then the time required to overhaul the pump after losing a freeze seal will increase because the radioactive sodium must be permitted to decay.

The sodium in the seal regions is kept frozen by an auxiliary cooling system. The coolant in this auxiliary system may present a hazard if a leak should develop permitting the coolant to come in contact with the sodium. (Note: SRE fuel badly damaged by leaking shaft seal; coolant - tetralin.)

Losing a freeze seal requires stem cleaning the pump, replacing the pump bearings, cutting, and welding freeze seal coolant lines, and generally involves extensive thermocouple work.

Extensive experiments in water loops and subsequent experience on the SRE, indicated that, for the SRE pumps, a two-to-one area ratio between the wear-ring annulus and the impeller weep-holes would give an approximately constant pressure at the base of the freeze seal for all pump speeds, thus reducing the problem of blowing one of the seals either by too much sodium pressure at the base of the seal or too much cover gas pressure above the seal. This could differ for another system.

Summary:

Freeze seal sodium pumps have a poor reliability record, they are difficult to operate, require almost constant operator attention, are costly to maintain, and require support systems that are not required by other pumps. Plant or system availability has been greatly reduced where these pumps were used, due to their failure history.

Recommendations:

Freeze seals should be kept under close surveillance, supported by frequent inspection of pump functional indicators or recorders. Preventive maintenance shall keep close check on the temperature control system of the freeze seal.

Freeze seal can prevent sodium leakage at the pump shaft if the sodium is kept at certain low viscosity level in the seal area. Since the required low viscosity exists only in a very narrow temperature range, a close temperature control is required for the freeze seal. Varying pump loads vary the pump speeds, changing friction heat generation, which requires elaborate heatingcooling sodium control.

At the present the free-surface pump shaft seals are in an advanced development stage compared with the freeze seal; therefore, free-surface pumps are more highly recommended.

- e. Electromagnetic (see Figure 1-20)
- (1) Reliability Information

Design Features:

Electromagnetic pumps are widely varied in design, each having specific advantages and disadvantages which are described in the text. Four fundamental types are AC conduction, DC conduction, rotary, and stationary magnet. Critical Characteristics:

Thin-walled pump duct, delicate electrical equipment, overtemperature of liquid metal.

Mode of Failure:

- 1) Clogged
- 2) Cracks
- 3) Electrical.

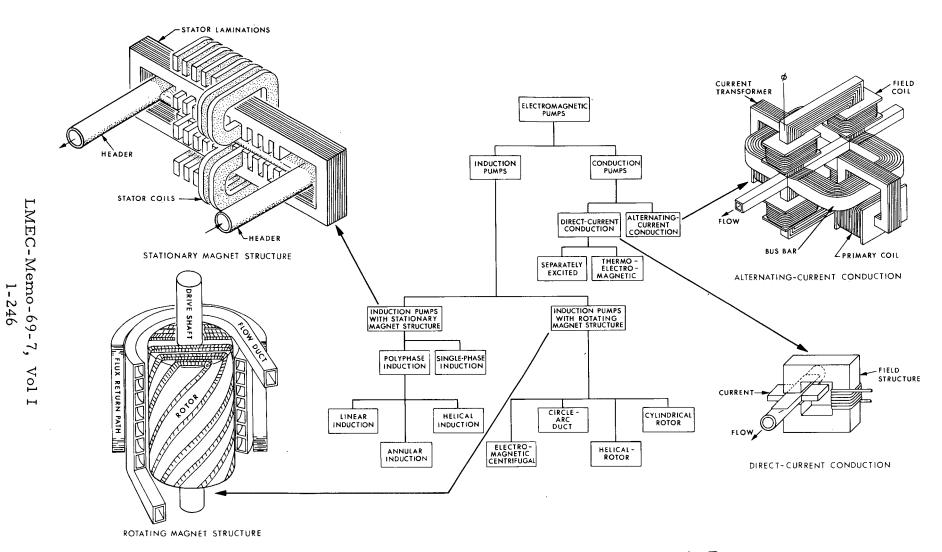


Figure 1-20. Principal Subclassification of Electromagnetic Pumps

Failure Description:

- 1) Clogged cooling lines
- 2) Cooling jacket clogged
- 3) Coolant void.

Control Methods:

- 1) Establish a preventive maintenance schedule.
- 2) Install a differential pressure gage to indicate filter congestion.

(2) Discussion and Recommendations:

General:

Experience with electromagnetic pumps has shown that reliability and efficiency are adversely affected by the following:

- Coolant void formation in the pump duct, accompanied by inadvertant electrical energizing of the pump circuit will damage conductiontype pumps due to the high current density in high ohmic resistance joints, such as the duct-to-bus bar connection.
- 2) Pressure fluctuations will fatigue the thin-walled pump duct.
- 3) Overtemperature in the liquid metal. This can reduce the performance and life of all types of electromagnetic pumps.
- 4) Loss of pump cooling. This adversely affects any of the various types of electromagnetic pumps by increasing coil resistivities, reducing magnetic material performance, and deteriorating electrical insulation.
- 5) The pump duct is a thin-walled member requiring extreme care in design and fabrication and possibly a hermetically sealed secondary enclosure.
- 6) Electrical insulation breakdown may result if exposed to gamma or neutron radiation.

- 7) Fabrication techniques are not as conventional as for centrifugal pumps and require special inspection and test techniques.
- B) Delicate electrical equipment including field windings and bus bars are frequently damaged during installation and maintenance if not adquately protected by cages or covers.

Only four of the major subtypes of pumps shown in Figure 1-20 are discussed due to the limited availability of failure data. As an example, one failed annular induction pump is the only data on this pump subtype.

Alternating-Current Conduction Pumps:

Alternating-current pulsations can produce mechanical vibrations of the pump components. High temperature (1000 to 1200°F) fatigue and stress concentration problems occur where the magnet poles and electrodes are attached to the duct. A detailed and careful piping stress analysis is required for the connected loops. If the required EM pump output temperature is below the maximum design allowable for copper, copper bus bars are recommended since copper is not susceptible to magnetostriction and would not vibrate under the influence of the magnetic field. For higher temperature application, nickel bus bars are acceptable. When operating below the curie point of nickel (676.4°F), the pump power level should be maintained below the point where forces generate unacceptable vibration.

Electrical components exposed to mechanical vibration should have their coils periodically inspected and, if necessary, reimpregnated with insulating compounds before turn-to-turn shorts develop.

Operation is limited to temperatures that exceed the sodium plugging temperature by several hundred degrees fahrenheit. The oxides of sodium having poor electrical conductivity tend to preferentially deposit at the poles.

Alternating-current conduction pumps should not be operated under conditions where the pump duct is empty, or that allow gas bubbles to pass into the pumps, since either will cause the current passing through the sodium liquid to decrease. This, due to magnetic coupling with the secondary, results in increased current passing through the duct walls. Overheating and failure of the bond connecting the electrode or bus bar to the duct walls may result. To eliminate the possibility of energizing an ac conduction pump when there is no liquid metal in the pump duct, it is recommended that the pump startup circuit be interlocked with a liquid sensor (spark-plug type).

Direct-Current Conduction Pumps:

Direct-current conduction pumps are suitable for flow rates up to 200 gpm, but the maximum liquid metal temperature is limited to approximately 500°F due to:

- 1) Oxidation of the bus bar conductor which is bonded to the pump duct.
- Deterioration of the direct-current source (rectifiers or generators) due to heat conducted into the source by the bus bars from the pump duct.

The pressure rise that can be produced by a dc conduction pump can be increased by multiple-staging; that is, by exposing the liquid metal to the magnetic field at several places within the pump where current from the bus bars passes through the liquid. However, this introduces problems due to the multiplicity of bonded joints that become necessary.

Designers should consider the magnetostrictive forces acting on the duct wall in attempting to eliminate failures due to self-induced vibration.

To eliminate the possibility of mass transfer, material compatibility should be investigated before final design of any components that are in direct contact with the liquid metal.

Where cooling fans are used for cooling of the pump coils, it is recommended that the unit be provided with factory-sealed bearings.

As with the ac conduction-type pumps, in order to eliminate the possibility of energizing a dc conduction pump when there is no liquid metal in the pump duct, the existing pump startup circuit should be interlocked with a liquid sensor (spark-plug type). New designs should also provide this same protective feature.

Improper bonding of the bus bar to the pump duct permits oxide corrosion, and eventual reduction in pump performance will occur.

Induction Pumps:

Mechanical vibration and metal fatigue that result from magnetostrictive forces should be considered in linear induction electromagnetic pump design.

Curves showing the fatigue strengths of EM pump duct materials are included in the AC Conduction Pump Standard being prepared by the LMEC. Vibration limits have been established in this standard which will also apply to linear induction pumps.

Where environmental conditions, such as temperature, humidity, fumes, etc., can adversely affect the electrical controls for ac induction pumps (i.e., circuit breakers, relays, variacs, etc.), designers should recommend sealed, instead of open contacts.

Component and system designers should consider the high startup in-rush currents whenever electrical ac components are used.

AC magnetic coil design should include the special insulation requirements in connection with laminated magnetic cores.

Designers should follow the design standard recommendations developed for proper bolting of laminated ac magnet cores. Standards for 1/4 to 20 NC stud bolts are 35 to 105 in.-lb, and for 5/16 to 18 NC are 80 to 260 in.-lb. Torque all bolts to minimum standards of 35 in.-lb for 1/4-in. bolts and 80 in.lb for 5/16 in. bolts.

Linear induction pumps are suitable for much higher flow rates than conduction pumps but practical problems such as increase in weight, size, cost of flow control equipment, and power conditioning apparatus limit the pressure rise.

Cooling water systems used to control the pump temperature should offer the same degree of purification control as used for feedwater purity to the steam generators. Obstruction to coolant flow in cooling jackets can adversely affect pump life.

The annular induction pump was designed to provide easy installation of the excitation magnet and the central iron core around the pump duct.

Mechanical vibration and metal fatigue that result from magnetostrictive forces should be considered for all types of induction pump designs.

Annular induction pumps are suitable for the same flows and pressures as linear induction pumps but are temperature limited because the stator winding cannot be cooled as effectively as in a linear induction pump.

This is a "one-of-a-kind" pump and was considered developmental. Difficulties experienced with this particular pump may not be applicable to other concepts based on the annular duct induction principle.

EM Pump Water Cooling System:

- 1) Apply differential pressure gages to indicate the state of the filters for the maintenance personnel.
- 2) Install sight glasses to inspect sediments in settling pockets if they cannot be eliminated.
- 3) Change filters to finer mesh if larger-size particles cause clogging.
- 4) Build settling tanks in the loop if the piping slope is not adequate.
- 5) Preventive maintenance schedules should be established to check the above-mentioned gages and sight glasses if they are not connected to an automatic alarm system.

For New Loops or Loops Which Must be Rebuilt:

- Water source purity check, cooling loop orifice size, and available slope should determine the application of filter and settling tank dimensions.
- 2) Use redundant filtering and settling equipment where uninterrupted service is at premium.
- 3) If backwash is considered for filter and settling tank cleaning, provide adequate drain and sewer pipe sizes for mud and dirt removal.
- 4) Apply temporary pipe end caps during loop construction to avoid entrance of foreign material into the loop.
- 5) After the loop construction is completed, wash it out with pressurized water to secure as clean a loop as possible.
- 6) Provide penalty and/or premium for the construction company if such accident may or may not occur.

TABLE	1-100

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 1 of 37)

1		L. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
ITEN	V -	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Pump/Shaft Bearing Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 17 283100 	 EBR-II Condensate/turbine drive condensate pump 9700 RPM, 150 psig Operations weekly report, 11-21-67 	MA 125	MA 52	MA 530	12,425	Operational monitors	 Bad bearing. Bearing replaced. Correct installation and sufficient lubricating procedures should be maintained.
2		 Pump/Journal Bearing Steam, Condensate, and Feedwater Piping and Equipment/Con- densate Booster Pump 17 283200 	 Condensate/motor driven condensate pump 364°F, 1500 psig, 3580 RPM 	MI 500	MI 52	MI 530	2590	Preventive Maintenance	 Bearing worn out. Part replaced. None.
3		 Pump/Bearing Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 17 283100 	 EBR-II Condensate system/turbine driven condensate pump 9700 RPM, 150 psig Operations weekly report, 11-29-67 	MA 146	MA 52	MA 550	12,600	Operational monitors, bearing temperature high	 Bearing worn. Part replaced. None.
4		 Pump/Shaft Bearing Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 17 283100 	 EBR-II Condensate system/turbine driven condensate pump 9700 RPM, 150 psig Operations weekly report, 12-13-67 	MA 500	MA 52	MA 530	12,390	Operational monitors	 Bearings were completely worn. Part replaced. Check alignment of pump and drive turbine.
5		 Pump/Bearing Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 17 283100 	 EBR-II Condensate/turbine driven condensate pump 9700 RPM, 150 psig PMMR-113 	MA 136	MA 59	MA 550	12,390	Operational monitors	 Bearing broken. Part replaced. Request factory assistance.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE _ 1-100

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 2 of 37)

ITEM 3. CODE: 3. OPERATING CONDITIONS CAUSE MODE DEFECT MORS METOD OF FAILURE DETECTION 2. CORRECTIVE ACTION 6 1. Pump/Shaft Sleve 2. Steam, Condensate, and Equipment/Con- and Equipment/Con- and Equipment/Con- and Equipment/Main Condensate Pump 1. EBR.II 2. Condensate/ and Equipment/Con- and Equipment/Main Condensate Pump 1. EBR.II 2. Condensate/ and Equipment/Con- and Equipment/Con- and Equipment/Main Condensate Pump 1. EBR.II 2. Condensate/ and Fedwater Piping 3. Condensate Pump 1. EBR.II 2. Condensate/ and Fedwater Piping 3. Condensate Pump 1. EBR.II 2. Condensate/ and Fedwater Piping 3. Condensate Pump 1. EBR.II 2. Condensate/ and Fedwater Piping 3. Condensate Pump MI MI MI MI S10 1. Seal rings worn out. 2. Part replaced. 3. None. 7 1. Condensate/ and Fedwater Piping and Equipment/Main Condensate Pump 1. SCTI 2. Societar system (condensate) MI MI MI MI MI MI 2700 Routine area watch 1. Mechanical shift seal leaked. 2. Part replaced. 3. Maintenance schedule should be revised. 7 1. Demp/Sasting 1. SCTI 2. Condensate Pump 1. SCTI 2. Condensate Pump MI MI MI MI MI MI MI MI I. Outbact bearing scied - inspection revealed water 2. Part replaced. 3. Maintenance schedule should be revised. 9 1. Pump/Sasting 1. SCTI 2. SIGN RPM 1. SCTI SC SIGN RPM MI <th></th> <th></th> <th>1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM</th> <th>1. FACILITY 2. COMPONENT LOCATION</th> <th>FAIL</th> <th>URE IN CODE*</th> <th>DEX</th> <th></th> <th></th> <th>1. FAILURE DESCRIPTION</th>			1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
 2. Fundaministic datasetset, 2. Condensate/motor driven condensate graph and Equipment/Condensate Boster Pump 3. 364*T, 1500 psig. 3580 RPM 3. Trong Salar Pump 4. PBMR-35 4. Deraidon and equipment/Main Condensate, and Feedwater Pump 7. 17 5. Condensate/motor driven condensate, and Feedwater Pump 7. 17 5. Condensate/motor driven condensate, and Feedwater Pump 7. 17 5. Condensate Pump 1. SCTI 2. Steam, Condensate, Pump 7. 17 5. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 7. 17 7. Trong Salar Pump 7. 17 7. Trong Salar Pump 7. 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 1. SCTI 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 2. Steam, Condensate, Pump 2. 3. 150 GPM, 225°F 3. Sto RPM 3. 4. Incident report No. 326 1. Pumps and Supports 2. Steam, Condensate, Pump 2. 3. 150 GPM, 225°F 3. Sto RPM 3. 4. Incident report No. 134 1. SCTI 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 3. 17 2. Steam, Condensate, Pump 4. 1. Store PUM 3. Store PUM 3. Store PUM 3. Store PUM 3. Store PUM 3. Store	ITE	M	3. CODE: (Component)	3. OPERATING CONDITIONS	CAUSE	MODE		HOURS		
 A. Rings A. Schollensste, and Feedwater Piping and Equipment/Main Condensate Pump 3. 7 B. Condensate/turbine driven conden- sate pump 3. 7 Condensate/turbine driven conden- sate pump 3. 7 Condensate/turbine driven conden- sate pump 3. 7 Condensate Pump 3. 7 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 283100 SCTI 2 Steam, Condensate Pump 3. 7 SCTI 2 Steam, Condensate Pump 3. 7 SCTI 2 Steam, Condensate Pump 3. 7 SCTI 2 Steam, Condensate Pump 3. 7 SCTI 2 Steam, Condensate Pump 3. 7 SCTI 2 Steam, Condensate Pump 3. 7 SCTI 2 Steam, Condensate Pump 3. 7 Steam and Feedwater 3 3550 GPM, 225°F 4. Incident report No. 326 MI 500 MI 500 MI 500 ST SCTI 2 Steam, Condensate Pump 3. 7 Steam and feedwater 3 350 GPM, 225°F 4. Incident report No. 326 Steam and feedwater 4. Incident report No. 326 Steam and feedwater 500 ST ST ST Steam and feedwater 3 350 GPM, 225°F 4. Incident report No. 134 Steam and feedwater 500 ST Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feedwater 500 Steam and feed	6		 Steam, Condensate, and Feedwater Piping and Equipment/Con- densate Booster Pump 17 	 Condensate/motor driven condensate pump 364°F, 1500 psig, 3580 RPM 				Unknown		2. Unknown.
 And Feedwater Piping and Equipment/Main Condensate Pump Pump/Bearing SCTI SCTI Condensate, and Feedwater Piping and Equipment/Main Condensate, and Feedwater Piping and Equipment/Main Condensate Pump I. SCTI Condensate, and Feedwater Piping and Equipment/Main Condensate Pump I. SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI SCTI Incident report No. 326 MI MI MI ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO ST SO SO ST <			Rings 2. Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 3. 17	 Condensate/turbine driven condensate pump - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <l< td=""><td></td><td></td><td></td><td>Unknown</td><td></td><td>2. Part replaced.</td></l<>				Unknown		2. Part replaced.
 10 1. Setam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 3. 17 283100 10 1. Pumps and Supports 2. Steam and feedwater and Feedwater Piping and Equipment/Main Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 3. 17 283100 1. SCTI 3. Steam and feedwater 3. 350 GPM, 225°F 4. Incident report No. 134 500 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 530 57 500 57 530 57 530 57	60 8 7 Vol 1		 (P-4)/Mechanical Seal Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 17 	 Feedwater system (condensate) 350 GPM, 225°F 				2700	Routine area watch	2. Part replaced.
10 1. Fullips and Supports 1. Soft 1. Soft 2. Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 2. Steam and feedwater 500 BZ 520 3. 17 283100 3.17 2. Steam and feedwater 500 BZ 520 1. Incident report No. 134	9		 Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 17 	2. Condensate Pump (P-4) 3. 3550 RPM				5200	Direct observation	2. Replaced component part.
	10		 Steam, Condensate, and Feedwater Piping and Equipment/Main Condensate Pump 17 	 Steam and feedwater 350 GPM, 225°F 				4427	Operational monitors	 Thermal insulation was placed on the primary expan- sion tank vapor trap to eliminate sodium solidification in similar future cases. As no trouble could be found, pumps restarted.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-100

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 3 of 37)

,

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*				1. FAILURE DESCRIPTION
IT	ΞM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Pump/Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	1. EBR-II 2. Startup 3. 364°F, 1300 psig 4. PMMR-69	MI 328	MI 59	MI 530	1137	Direct observation	 Too much packing installed, caused failure. Part replaced. Request packing manufacturer to provide assistance with failure problem.
LMEC-Memo-69-7, 1-254		 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	1. EBR-II 2. Startup 3. 364°F, 1300 psig 4. PMMR-80	MI 500	MI BZ	MI 530	1945	Preventive maintenance	 Packing work out. Part replaced. Request packing manufacturer to provide assistance with failure problem.
-7, Vol I		 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Startup 364°F, 1300 psig PMMR-82 	MI 126	MI 52	MI 530	500	Direct observation	 Packing worn out. Part replaced. Request packing manufacturer to provide assistance with failure problem.
1		 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Startup 364°F, 1300 psig PMMR-87 	MI 126	MI 59	MI 530	400	Routine area watch	 Packing leaking. Part replaced. Request packing manufacturer to provide assistance with failure problem.
1		 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Startup 364°F, 1300 psig PMMR-93 	MI 500	MI BZ	MI 530	1404	Preventive maintenance	 Packing work out. Part replaced. Request packing manufacturer to provide assistance with failure problem.

 $I = INCIDENT \qquad MI = MINOR MALFUNCTION$ MA = MAJOR MALFUNCTION P = PROBLEM

\square

TABLE _______

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 4 of 37)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITEM	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
16	 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	1. EBR-II 2. Startup, Cylinder 1 3. 364°F, 1300 psig 4. PMMR-96	MI 500	MI BZ	MI 530	141	Preventive maintenance	 Packing worn out. Part replaced. Request packing manufacturer to provide assistance with failure problem.
17	 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	1. EBR-II 2. Startup, Cylinder 2 3. 364°F, 1300 psig 4. PMMR-96	MI 500	MI BZ	MI 530	141	Preventive maintenance	 Packing worn out. Part replaced. Request packing manufacturer to provide assistance with failure problem.
18	 Pump/Bearings (Inner Thrust) Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/motor driven feed pump 364°F, 1500 psig Operating monthly report 11/67 	MI 500	MI 52	MI 530	Unknown	Operational monitors High oil temperature	 Bearing was found to be worn. Part replaced. None.
19	 Pump/Oil Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/turbine driven feed pump 364°F, 1500 psig, 3580 RPM Operating weekly report, 12-20-67 	MI 500	MI BZ	MI 530	Unknown	Preventive maintenance	 Chemical analysis indicated high viscosity. Local repair. None.
20	 Pump/Oil Reservoir Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/turbine driven feed pump 364°F, 1500 psig, 3580 RPM PMMR-52 	MI 310	MI 33	MI 530	Unknown	Direct observation	 Too much oil in pump caused smoke. Local repair, oil was removed. Follow manufacturer's recommendations on quantit of oil to be used.

* I = INCIDENT MI = MINOR MAL MA = MAJOR MALFUNCTION P = PROBLEM

•

٠

				_			
 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAII	LURE IN CODE*		,		1. FAILURE DESCRIPTION
3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	l	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Pump/Shaft Bushing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/turbine driven feed pump governor control - PMMR-78 	MI 187	MI 52	MI 530	Unknown	Preventive maintenance	 Shaft bushing (rubber) deteriorated due to excessive heat. Part replaced with bronze bushing. None.
 Pump/Bearings Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/motor driven feed pump 364°F, 670 to 90 GPM, 1500 psig, 3580 RPM ANL-6808 	MI 122	MI 54	MI 530	Unknown	Operational monitors	 Bearings damaged due to overloading caused by a closed valve. Part replaced. Upgrade operator training on pump.
 Pump/Impeller Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/motor driven feed pump 364°F, 670 to 90 GPM, 1500 psig 3580 RPM ANL-6808 	MI 122	MI 54	MI 530	Unknown	Operational monitors	 Impeller scored, was remachined. Part replaced. None.
 Pump/Strainer Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/turbine driven feed pump 900 HP, 9700 RPM, 150 psig PMMR-24 	MI 500	MI BZ	MI 530	Unknown	Preventive maintenance	 Strainer dirty. Cleaned and replaced strainer. None.
 Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 	 EBR-II Feedwater/turbine driven feed pump 900 HP, 9700 RPM, 150 psig PMMR-35 	MI 500	MI BZ	MI 530	Unknown	Direct observation	 Labyrinth seal leaking oil. Local repair. None.
	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) Pump/Shaft Bushing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 Pump/Bearings Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 Pump/Impeller Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 Pump/Impeller Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 Pump/Strainer Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 Pump/Labyrinth Seal Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 Pump/Labyrinth Seal Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) Pump/Shaft Bushing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump BER-II Feedwater/motor driven feed pump 364°F, 670 to 90 GPM, 1500 psig, 3580 RPM EBR-II Feedwater Piping and Equipment/Boiler Feed Pump Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump IEBR-II Feedwater/motor driven feed pump 364°F, 670 to 90 GPM, 1500 psig 3580 RPM EBR-II Feedwater /motor driven feed pump 364°F, 670 to 90 GPM, 1500 psig Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump PUmp/Strainer EBR-II Feed Pump 900 HP, 9700 RPM, 150 psig PMMR-24 EBR-II Feedwater/turbine driven feed pump 900 HP, 9700 RPM, 150 psig PMMR-24 Feedwater/turbine driven feed pump 900 HP, 9700 RPM, 150 psig PMMR-35 	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION 3. CODE: (Component) (System/Subsystem) 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT CAUSE 1. Pump/Shaft Bushing 2. Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3. 17 284100 1. EBR-II MI 1. Pump/Bearings 2. Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3. 17 284100 1. EBR-II MI 1. Pump/Impeller 1. EBR-II MI 122 3. Sta*F, 670 to 90 GPM, 1500 psig, and Equipment/Boiler Feed Pump 3. 364°F, 670 to 90 GPM, 1500 psig 3580 RPM MI 1. Pump/Impeller 1. EBR-II MI 122 2. Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI 2. Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI 1. Pump/Strainer 1. EBR-II MI 122 3. 17 1. EBR-II Feedwater/turbine driven feed pump 500 1. Pump/Labyrinth Seal 1. EBR-II MI 500 1. Pump/Labyrinth Seal 1. EBR-II MI 500 1. Pump/Labyrinth Seal 1. EBR-II Feedwater/turbine driven feed pump 500 1. Pump/Labyrinth Seal	2.SYSTEM/SUBSYSTEM2.COMPONENT LOCATIONCODE*3.CODE: (Component) (System/Subsystem)3.OPERATING CONDITIONSCAUSEMODE1.Pump/Shaft Bushing 2.4.SOURCE DOCUMENTCAUSEMODE2.Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump1.EBR-II 2.Feedwater/turbine driven feed pump governor control 3.MI 187MI 523.17 2841001.EBR-II 2.Feedwater/motor driven feed pump 3.MI 364°F, 670 to 90 GPM, 1500 psig, 3580 RPMMI 122MI 543.17 2841001.EBR-II 2.Feedwater fiping 3.MI 122MI 543.17 2841001.EBR-II 2.Feedwater/motor driven feed pump 3.MI 364°F, 670 to 90 GPM, 1500 psig 3580 RPMMI 1223.17 2841001.EBR-II 2.Feedwater/motor driven feed pump 3.MI 122MI 543.17 2841001.EBR-II 2.Feedwater/turbine driven feed pump 3.MI 500 psig 3580 RPMMI 5001.Pump/Strainer 2.1.EBR-II 2.Feedwater/turbine driven feed pump 3.MI 5001.Pump/Labyrinth Seal 2.1.EBR-II 2.Feedwater/turbine driven feed pump 3.MI 5001.Pump/Labyrinth Seal 2.1.EBR-II 2.Feedwater/turbine driven feed pump 3.MI 5001.Pump/Labyrinth Seal 2. <t< td=""><td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* 3. CODE: 3. OPERATING CONDITIONS A. SOURCE DOCUMENT CAUSE MODE EFFECT 1. Pump/Shaft Bushing and Equipment/Boiler Feed Pump 1. EBR-II 2. Feedwater/turbine driven feed pump governor control MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan Staan Staan MI Staan <td< td=""><td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: (Component) 4. SOURCE DOCUMENT CAUSE MODE EFFECT OPERATING 1. Pump/Shaft Bushing 1. EBR-II 2. Feedwater/turbine driven feed MI MI MI MI MI MI Source particle 530 Unknown 3. 17 284100 1. EBR-II Feedwater Piping 3.64°F, 670 to 90 GPM, 1500 psig, MI MI MI MI MI Unknown 2. Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3.64°F, 670 to 90 GPM, 1500 psig, 3580 RPM MI MI MI MI Unknown 3. 17 284100 1. EBR-II EFFECT Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3.64°F, 670 to 90 GPM, 1500 psig MI 122 54 530 Unknown 3. 17 284100 1. EBR-II EFFECT MI MI S30 Unknown 3. 17 24100 1. EBR-II Feedwater/turbine driven feed pump S4 S40 S30 Unknown</td><td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS MU MU MU DETECTION DETECTION 1. Pump/Shaft Bushing 1. EER-II Source DOCUMENT CAUSE MI MI MI Source Preventive 2. Steam, Condensate, 1. EER-II 2. Freedwater / furbine driven feed pump governor control MI MI Source Preventive Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig MI MI MI Source Preventive 2. Steam, Condensate, 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig, 364°F, 670 to 90 GPM, 1500 psig MI MI Source Preventive Operational monitore 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI MI MI Source Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI MI MI MI Source Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI<</td></td<></td></t<>	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* 3. CODE: 3. OPERATING CONDITIONS A. SOURCE DOCUMENT CAUSE MODE EFFECT 1. Pump/Shaft Bushing and Equipment/Boiler Feed Pump 1. EBR-II 2. Feedwater/turbine driven feed pump governor control MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II MI MI Staan Staan Staan MI Staan <td< td=""><td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: (Component) 4. SOURCE DOCUMENT CAUSE MODE EFFECT OPERATING 1. Pump/Shaft Bushing 1. EBR-II 2. Feedwater/turbine driven feed MI MI MI MI MI MI Source particle 530 Unknown 3. 17 284100 1. EBR-II Feedwater Piping 3.64°F, 670 to 90 GPM, 1500 psig, MI MI MI MI MI Unknown 2. Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3.64°F, 670 to 90 GPM, 1500 psig, 3580 RPM MI MI MI MI Unknown 3. 17 284100 1. EBR-II EFFECT Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3.64°F, 670 to 90 GPM, 1500 psig MI 122 54 530 Unknown 3. 17 284100 1. EBR-II EFFECT MI MI S30 Unknown 3. 17 24100 1. EBR-II Feedwater/turbine driven feed pump S4 S40 S30 Unknown</td><td>2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS MU MU MU DETECTION DETECTION 1. Pump/Shaft Bushing 1. EER-II Source DOCUMENT CAUSE MI MI MI Source Preventive 2. Steam, Condensate, 1. EER-II 2. Freedwater / furbine driven feed pump governor control MI MI Source Preventive Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig MI MI MI Source Preventive 2. Steam, Condensate, 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig, 364°F, 670 to 90 GPM, 1500 psig MI MI Source Preventive Operational monitore 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI MI MI Source Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI MI MI MI Source Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI<</td></td<>	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: (Component) 4. SOURCE DOCUMENT CAUSE MODE EFFECT OPERATING 1. Pump/Shaft Bushing 1. EBR-II 2. Feedwater/turbine driven feed MI MI MI MI MI MI Source particle 530 Unknown 3. 17 284100 1. EBR-II Feedwater Piping 3.64°F, 670 to 90 GPM, 1500 psig, MI MI MI MI MI Unknown 2. Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 1. EBR-II Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3.64°F, 670 to 90 GPM, 1500 psig, 3580 RPM MI MI MI MI Unknown 3. 17 284100 1. EBR-II EFFECT Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 3.64°F, 670 to 90 GPM, 1500 psig MI 122 54 530 Unknown 3. 17 284100 1. EBR-II EFFECT MI MI S30 Unknown 3. 17 24100 1. EBR-II Feedwater/turbine driven feed pump S4 S40 S30 Unknown	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS MU MU MU DETECTION DETECTION 1. Pump/Shaft Bushing 1. EER-II Source DOCUMENT CAUSE MI MI MI Source Preventive 2. Steam, Condensate, 1. EER-II 2. Freedwater / furbine driven feed pump governor control MI MI Source Preventive Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig, 3564°F, 670 to 90 GPM, 1500 psig MI MI MI Source Preventive 2. Steam, Condensate, 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig, 364°F, 670 to 90 GPM, 1500 psig MI MI Source Preventive Operational monitore 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI MI MI Source Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI MI MI MI Source Preventive 3. 17 284100 1. EER-II 2. Freedwater / for to 90 GPM, 1500 psig MI<

LMEC-Memo-69-7, Vol I 1-256

TABLE ______

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 5 of 37)

TABLE ______

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 6 of 37)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Pump/Manual Trip Plunger Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/turbine driven feed pump 900 HP, 9700 RPM, 150 psig Weekly report, 5-15-68 	MA 500	MA 53	MA 520	14,480	Direct observation	 Spring malfunctioning, Spring and spring retainer were modified by installing a roll pin. None.
LMEC-Memo-69-7, Vol I 1-257		 Pump/Cylinder No. 3 Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-96 	MI 500	MI BZ	MI 530	141	Preventive maintenance	 Packing worn out. Part replaced. Schedule preventive maintenance inspections as required to prevent leakage.
-69-7, Vol I 7		 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-102 	MI 500	MI 59	MI 550	496	Operational monitors	 Packing ruptured. Part replaced. Uneven repacking periods show that maintenance personnel should be trained for proper repacking procedures.
		 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-104 	MI 500	MI 52	MI 530	680	Preventive maintenance	 Packing worn out. Part replaced. None.
	30	 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-105 	MI 500	MI 59	MI 530	200	Direct observation	 Packing ruptured. Part replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-100

FAILURE DATA FOR	PUMPS AND SUPPORTS	
------------------	--------------------	--

(Sheet 7 of 37)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	IDEX			1. FAILURE DESCRIPTION
	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Pump/Cylinder No. 2 Plunger Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig Operations maintenance report 5-22-68 	MI 500	MI 52	MI 530	4020	Routine area watch, direct observation	 Packing worn out. Local repair, repacked cylinder. With improved maintenance procedure, even this record (10 days operation) could be improved.
LMEC-Memo-69-7, 1-258		 Pump/Cylinder No. 3 Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig Operations maintenance report 8-14-68 	MI 500	MI 52	MI 530	640	During preventive maintenance	 Packing worn out. Local repair, cylinder repacked. None.
		 Pump/Packing and Plungers Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig ANL-6749 	MI 270	MI 52	MI 530	Unknown	Unknown	 Coolant deficiency caused damage to plungers and packing. Modifications were made to improve the gland-cooling system, using condensate rather than raw water. None.
ι.		 Pump/Cylinder No. 2 O-rings Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startupboiler feed pump 364°F, 1300 psig PMMR-3 	MI 500	MI 52	MI 530	Unknown	Direct observation	 O-rings worn out. Parts replaced. None.
		 Pump/Cylinder O-rings Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 INCIDENT 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-8 	MI 187	MI 59	MI 530	Unknown	Routine inspection	 O-rings worn out. Part replaced, Removed Neoprene O-rings and installed high temperature Viton O-rings on cylinders. None.

,

I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _________

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
36	 Pump/Discharge Flange Gasket Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/motor driven feed pump 364°F, 1300 psig PMMR-36 	MI 500	MI BZ	MI 530	2190	Preventive maintenance	 Gasket worn out. Part replaced. Apply predetermined torques to flange bolts and gasket materials.
37	 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-4 	MI 126	MI 52	MI 530	1200	Operational monitors	 Packing worh out. Part replaced. None.
38	 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-21 	MI 126	MI 52	MI 530	1200	Operational monitors	 Packing worn out. Part replaced. None.
39	 Pump/Cylinder Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-23 	MI 126	MI 52	MI 530	84	Operational monitors	 Packing worn out. Part replaced. Factory representative will guarantee pump if he oversees the pump modifications.
40	 Pump/Cylinder No. 1 Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-33 MI = MINOR MALFUNCTION	MI 500	MI BZ	MI 530	1016	Preventive maintenance	 Packing worn out. Part replaced. None.

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-100

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 9 of 37)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
1	ТЕМ	(Commonwell)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Pump/Cylinder No. 2 Packing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-33 	MI 500	MI BZ	MI 530	1016	Preventiv e maintenance	 Packing worn out. Part replaced. None.
LMEC-Memo-69-7,		2. Steam, Condensate,	 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-33 	MI 500	MI BZ	MI 530	. 1016	Preventive mainténance	 Packing worn out. Part replaced. None.
9-7, Vol I			 EBR-II Feedwater/startup boiler feed pump 364°F, 1300 psig PMMR-51 	MI 500	MI BZ	MI 530	2534	Preventive maintenance	 Packing worn out. Part replaced. None.
		 Pump/No. 2 Unloader Plunger Rod Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 EBR-II Feedwater/startup boiler feed pump 364°F, 1500 psig Operations maintenance report 7-3-68 	MI 172	MI 54	MI 530	Unknown	Direct observation	 Pump not functioning properly - disassembled and found plunger rod bent. Part replaced; spare unloader was installed. None.
	45	 Pump/Bearing Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 SCTI Feedwater system 345 GPM, 7450 RPM Incident report No. 19 (7-28-65) 	P 33Z	P 5Z	P 590	1580	Direct observation	 Inboard bearing threw oil when drive motor was started. Motor pump combination shut down and restarted o.k. Assure sufficient operation personnel experience or training.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

1-260 5

TABLE 1-100

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 10 of 37)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
46	 Pump/Shaft Seal Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 SCTI Feedwater system 345 GPM, 7450 RPM Incident report No. 102 (2-7-66) 	MI 126	MI 52	MI 550	5183	Direct observation	 Feedwater leaking at pump shaft seal. Shaft seal replaced. Improve maintenance schedule. Consider all pump drive components in accord with manufac- turers' schedules.
47 LMEC-Memo-69-7,		 SCTI Feedwater system 345 GPM, 7450 RPM Incident report No. 105 (2-10-66) 	MI 126	MI 52	MI 550	5225	Direct observation	 Feedwater leaking at pump shaft seal due to lack of adequate cooling to inboard mechanical seal. Installed new source of water to provide greater pressure head. Improve maintenance schedule.
48 48 10-69-7, Vol I	 Pump/Shaft Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 SCTI Feedwater system 345 GPM, 7450 RPM Incident report No. 303 (6-6-66) 	MI 192	MI 55	MI 520	6075	Operational monitors	 Pump cavitation following scram. Pump drive shaft seized. Seal replaced, and a modified boiler feed reservoir tank and a condensate booster pump system (with a 40-second time delay for shutoff in case of scram) were installed. Design should specify precautions to prevent pump from running dry.
49	 Boiler (P-1) Feed Pump/Outboard Mechanical Seal Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 SCTI Feedwater system 900 HP, 7450 RPM, 165 psig Incident report No. 102 	MI 126	MI 52	MI 530	5183	Direct observation, feedwater leakage at pump shaft seal	 Fragments of the worn seal ring rims destroyed the sealing effect between shaft and seal. Part replaced. Improved maintenance schedule shall be established considering all pump and drive components in accordance with pump manufacturer.
50	 Pump Rotating Ele- ment/Wear Rings Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	 SCTI Boiler Feed Pump (P-1) 7450 RPM, 165 psi, 345 GPM Incident report No. 303 	I 111	I 57	I 45	6075	During activation	 Pump cavitation following scram. Three casing wear rings seized to impeller wear rings. Vendor repair; seal replaced, then modified boiler feed reservoir tank and condensate booster pump system. Include design precautions to prevent pump from running dry.
*	284100	MI = MINOR MALFUNCTION				 		

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

.

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
ITE	ΕM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		Seal	 SCTI Steam and feedwater system - Incident report No. 105 	MA 275	MA 51	MA 136	5225	Direct observation	 Feedwater leakage at pump shaft seal. Part replaced. None.
5		Reactor Coolant	 FERMI Primary system/overflow expansion tank No. 1 pump 100 GPM, 75 ft discharge head EFAPP No. 82 	MI 125	MI 52	MI 530	2,920	Direct observation	 Shaft seal worn out. Part replaced. Determine operating life of seal from operating experience and schedule replacement accordingly.
5		Reactor Coolant	 FERMI Primary system/overflow expansion tank No. 1 pump 100 GPM, 75 ft discharge head EFAPP-MR No. 82 	MI 321	MI 53	MI 530	168	During actuation	l. Shaft seal loose, leaking. 2. Part replaced. 3. None.
5.		2. Heat Transfer/	 FERMI Primary system/overflow expansion tank No. 1 pump 100 GPM, 75 ft discharge head EF-42 	MI 125	MI 52	MI 530	14,941	Direct observation	 Carbon face seal rings chipped. Part replaced. None.
5		Reactor Coolant 3. 17	 FERMI Primary system/overflow expansion tank No. 1 pump 100 GPM, 75 ft discharge head EF-42 	MI 125	MI 52	MI 530	14, 941	Direct observation	 Piston cups worn out. Part replaced. None.
5		Reactor Coolant	 FERMI Primary system/overflow expansion tank No. 1 pump 100 GPM, 75 ft discharge head EF-42 	MI 125	MI 52	MI 530	14,941	Direct observation	 O-rings worn out. Part replaced. None.
Ļ		= INCIDENT	MI = MINOR MALFUNCTION			L			

I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-262

TABLE _____

FAILURE DATA FOR <u>pumps and supports</u>

(Sheet	12	of	37)	
--------	----	----	-----	--

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS		2. CORRECTIVE ACTION 3. RECOMMENDATIONS
57	 Pump/Lower Face Seals Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 1 pump 100 GPM, 75 ft discharge head EF-42 	MI 125	MI 52	MI 530	14, 941	Direct observation	 Carbon face seal rings chipped. Parts replaced. Follow manufacturer's instructions on installation and operation of the seals.
58 LMEC	 Pump/Piston Cups Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 1 pump 100 GPM, 75 ft discharge head EF-42 	MI 125	MI 52	MI 530	14,941	Direct observation	 Piston cups worn out. Parts replaced. None.
59 60 LMEC-Memo-69-7, Vol I	 Pump/Oil Seal Heat Transfer/ Reactor Coolant 17 221110 	 HNPF Primary sodium system pump No. 2 7200 GPM WR 927 	MI 126	MI 52	MI 530	Unknown	Direct observation	 Oil seal failed resulting in oil leakage. Seals changed, oil replaced. None.
7, Vol I	1. Pump 2. Heat Transfer/ Reactor Coolant 3. 17 221110	 HNPF Primary sodium system pump No. 1 7200 GPM ROAP Report (AI) 11-18-62 	MI 183	MI 57	MI 530	5000	Direct observation	 Pump case flooded with sodium as a result of IHX tube failure, preventing pump startup. Pump removed and cleaned. Pump modified by plugging 4 of 8 impeller weep holes to maintain proper case sodium level. None.
61	 Pump/Impeller Heat Transfer/ Reactor Coolant 17 221110 	 HNPF Primary sodium system pump No. 2 7200 GPM WR 2671 	MI 113	MI 5Z	MI 530	7623	Operational monitors	 Low sodium level in pump case suspected as resulting in gas entrainment. Pump removed and 4 weep holes in impeller plugged to maintain proper case sodium level. None.
62	 Pump/Impeller Heat Transfer/ Reactor Coolant 17 221110 	 HNPF Primary sodium system pump No. 3 7200 GPM WR 2672 	MI 113	MI 5Z	MI 530	7591	Operational monitors	 Low sodium level in pump case suspected of resulting in gas entrainment. Pump removed and 4 weep holes in impeller plugged to maintain proper case sodium level. None.
	I = INCIDENT	MI = MINOR MALFUNCTION						

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-100
THEFT	

FAILURE DATA FOR _______ PUMPS AND SUPPORTS (Sheet 13 of 37)

	2	COMPONENT/PART SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
ITE	M	 CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
6	í	 Pump/Piston Cups Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow No. 2 pump 100 GPM, 75 ft discharge head EF-43 	MI 126	MI 68	MI 530	14,941	Direct observation	l. Piston cups worn out. 2. Part replaced. 3. None.
	1	 Pump/O-Rings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 2 pump 100 GPM, 75 ft discharge head EF-43 	MI 126	MI 52	MI 530	14,941	Direct observation	l. O-rings worn out. 2. Part replaced. 3. None.
emo-69-7, 1-264	2	 Pump/Lower Face Seals Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 2 pump 100 GPM, 75 ft discharge head EF-43 	MI 146	MI 56	MI 530	14, 941	Direct observation	 Inadequate spring pressure on face seals. Part replaced. None.
Vol I	Ĩ	L. Pump/Piston Cups 2. Heat Transfer/ Reactor Coolant 3. 17 221110	 FERMI Primary system/overflow expansion tank No. 2 pump 100 GPM, 75 ft discharge head EF-43 	MI 146	MI 56	MI 530	14,941	Direct observation	l. Piston cups worn out. 2. Part replaced. 3. None.
6'	2	 Pump/O-Rings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 2 pump 100 GPM, 75 ft discharge head EF-43 	MI 146	MI 56	MI 530	14,941	Direct observation	l. O-rings worn. 2. Part replaced. 3. None.
61	2	 Pump/Pump Shaft Argon Seal Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 2 pump 100 GPM, 75 ft discharge head EF-61 	MI 125	MI 52	MI 530	14,941	Direct observation	1. Seal worn out. 2. Part replaced. 3. None.
*			M = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

-

					(,		
	 COMPONENT/PART SYSTEM/SUBSYSTEM 	EM 2. COMPONENT LOCATION CODE* OPERATING METHOD OF FAILURE	1. FAILURE DESCRIPTION						
M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
9	 Pump/Elastomer Seals Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 2 pump 100 GPM, 75 ft discharge head EF-61 	MI 18Z	MI 52	MI 530	14, 941	Direct observation	 Elastomer seals leaking, worn out. Part replaced. Request manufacturer's assistance on seals. 	
0	 Pump/Shaft Heat Transfer/ Reactor Coolant 17 221110 	 EBR-II Primary sodium pump No. 1 5500 GPM, 350 HP ANL-7082 7/65 	MI 218	MI 55	MI 550	2590	During activation	 Pump failed to rotate when activated. Impeller drive shaft freed by vertical moveme of drive shaft. None. 	
1	 Pump/Shaft Heat Transfer/ Reactor Coolant 17 	1. EBR-II 2. Primary sodium pump No. 1 3. 5500 GPM, 350 HP 4. ANL 7082, 7/65	MI 218	MI 55	MI 550	2590	During activation	 Pump failed to rotate when activated. Impeller drive shaft freed by vertical moveme of drive shaft. None. 	

TABLE ________

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 14 of 37)

		(pires

1-265 AEC-Memo-69-7, Vol I
EC-Memo-69-7, Vol I 1-265

	69	 Pump/Elastomer Seals Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow expansion tank No. 2 pump 100 GPM, 75 ft discharge head EF-61 	MI 18Z	MI 52	MI 530	14, 941	Direct observation	 Elastomer seals leaking, worn out. Part replaced. Request manufacturer's assistance on seals.
LMEC	70	 Pump/Shaft Heat Transfer/ Reactor Coolant 17 221110 	1. EBR-II 2. Primary sodium pump No. 1 3. 5500 GPM, 350 HP 4. ANL-7082 7/65	MI 218	MI 55	MI 550	2590	During activation	 Pump failed to rotate when activated. Impeller drive shaft freed by vertical movement of drive shaft. None.
LMEC-Memo-69- 1-265	71	 Pump/Shaft Heat Transfer/ Reactor Coolant 17 221110 	1. EBR-II 2. Primary sodium pump No. 1 3. 5500 GPM, 350 HP 4. ANL 7082, 7/65	MI 218	MI 55	M1 550	2590	During activation	 Pump failed to rotate when activated. Impeller drive shaft freed by vertical movement of drive shaft. None.
7, Vol I	72	 Pump/Shaft Heat Transfer/ Reactor Coolant 17 221110 	1. EBR-II 2. Primary Sodium pump No. 2 3. 5500 GPM, 350 HP 4. ANL-6780, 8/63	MI 412	MI 57	MI 550	Unknown	Audio noise	 Impeller drive shaft seized as a result of shaft bowing. Part replaced. None.
	73	 Pump/Shaft Gas Seal Heat Transfer/Reactor Coolant 17 221110 	 SCTI Primary sodium pump P-5 200°F Incident report No. 346, 1/15/69 	MI 344	MI 54	MI 520	8530	Routine area watch	 Excessive amounts of oil observed leaking from the seal vent line due to seal of the rotating face separated from the stationary face by carborized oil preventing faces from repositioning against each other. Replaced part. Procedure changed to reduce probability of carburization.
	74	 Sodium Pump P-5/ Cover Plate Heat Transfer/ Reactor Coolant 17 221110 	 SCTI Primary sodium system 1750 RPM, 840°F Incident report No. 29, 8/17/65 	MA 145	MA 59	MA 136	586	Direct observation	 Cover plate was not secured to the pump casing. Part replaced. Upgrade maintenance procedures on sodium pumps.
	* [= INCIDENT = MAJOR MALFUNCTION	MI = MINOR MALFUNCTION P = PROBLEM	I	L	L	J		L

MA = MAJOR MALFUNCTION P = PROBLEM

ITEM 3. CODE:

TABLE	1-100

.

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 15 of 37)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
IT.	EM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
7		 Pump/Shaft Bearings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary/expansion tank No. 1 pump 100 GPM, 75 ft discharge head EFAPP No. 55 	MI 348	MI 52	MI 530	1628	Direct observation	 Bearings worn out. Part replaced. None.
LMEC-N		 Pump/Thrust Bearing Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary No. 3 pump 350 HP, 11,800 GPM, 900 RPM PRDC-EF-17 	MI 125	MI 52	MI 530	9390	Direct observation	 Thrust bearing worn out. Part replaced. Upgrade maintenance procedures.
0-69-7, 266		 Pump/Shaft Seal Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary No. 3 pump 350 HP, 11,800 GPM, 900 RPM EFAPP No. 74 	MI 126	MI 52	MI 530	10,120	Direct observation	 Shaft seal worn out. Part replaced. Upgrade maintenance procedure.
Vol I		 Pump/Shaft Seal Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium No. 3 pump 350 HP, 11,800 GPM, 900 RPM PRCD-EF-19 	MI 126	MI 68	MI 530	72	Direct observation	 Shaft seal scored and galled. Parts replaced. Upgrade maintenance procedures.
7		 Pump/Face Seals Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium pump No. 3 350 HP, 11,800 GPM, 900 RPM EF-22 	MI 125	MI 52	MI 530	235	Direct observation	 Seals leaking. Part replaced. Upgrade maintenance procedures.
		 Pump/O-Rings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium No. 3 pump 350 HP, 11,800 GPM, 900 RPM EF-22 	MI 125	MI 52	MI 530	235	Direct observation	l. O-rings worn out. 2. Parts replaced. 3. Upgrade maintenance procedures.
{		 Pump/ U-Cup Seal Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium No. 3 pump 350 HP, 11,800 GPM, 900 RPM EF-22 	MI 125	MI 52	MI 530	11,740	Direct observation	l. U-cup seals leaking. 2. Parts replaced 3. Upgrade maintenance procedures.
*		= INCIDENT	MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______

ſ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	SYSTEM/SUBSYSTEM2. COMPONENT LOCATIONCODE:3. OPERATING CONDITIONS	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
1		3. CODE: (Component)		CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	82	2. Heat Transfer/	 FERMI Primary sodium No. 3 pump 350 HP, 11,800 GPM, 900 RPM EF-27 	MI 125	MI 52	MI 530	13,200	Direct observation	 Face seals worn out. Parts replaced. Upgrade maintenance procedures.
LM		Reactor Coolant 3. 17	 FERMI Primary sodium system/ expansion tank No. 1 pump 100 GPM, 75 ft discharge head EFAPP No. 20 	MI 135	MI 56	MI 530	3650	Direct observation	 Shaft seal leak due to misalignment. Part replaced. None.
LMEC-Memo-69- 1-267	84		 FERMI Primary sodium system/ expansion tank No. 1 pump 100 GPM, 75 ft discharge head PRDC-EF-6 	MI 125	MI 52	MI 530	4015	Direct observation	 Seal worn out. Part replaced. None.
9-7, Vol I	85		 FERMI Primary sodium system/ expansion tank No. 1 pump 100 GPM, 75 ft discharge head PRDC-EF-10 	MI 126	MI 52	MI 530	11,740	Direct observation	 Gears and bearing worn out. Part replaced. None.
	86	 Pump/Shaft Seal Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium system/ expansion tank No. 1 pump 100 GPM, 75 ft discharge head PRDC-EF-12 	MI 136	MI 56	MI 530	3550	Direct observation	 Pump shaft seal, backing spring improperly fit. Local repair, collar was relieved and the seal reassembled. Upgrade maintenance procedures.
	87	 Pump/Shaft Seal Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary/expansion tank No. 1 pump 100 GPM, 75 ft discharge head EFAPP No. 55 	MI 348	MI 52	MI 530	3550	Direct observation	 Shaft seal worn out. Part replaced. None.
	88	 Pump/O-Rings Heat Transfer/ Reactor Coolant 17 221110 	1. FERMI 2. No. 3 3. 350 HP, 11,800 GPM, 900 RPM 4. EF-27	MI 125	MI 52	MI 530	13, 200	Direct observation	l. O-rings worn out. 2. Parts replaced. 3. None.
L								·	

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

ABLE	1-100

FAILURE DATA FOR ______ AND SUPPORTS

_											
	ITEM	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION		
				CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS		
		 Pump/Shaft Seal (Upper) Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow pump No. 2 100 GPM, 75 ft discharge head EFAPP No. 42 	MI 110	MI 87	MI 530	5643	Direct observation	 Black foreign material on shaft sleeve beneath the upper rotating face seal. Part replaced. None. 		
LME	90	 Pump/Pump Shaft Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow pump No. 2 100 GPM, 75 ft discharge head PRDC-EF No. 17 	MI 110	MI 57	MI 530	9390	During activation	 Shaft seized at the upper labyrinth seal. Local repair. None. 		
LMEC-Memo-69-7, 1-268	91	 Pump/Face Seals (Upper) Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow pump No. 2 100 GPM, 75 ft discharge head EF-43 	MI 126	MI 68	MI 530	14, 941	Direct observation	 Seals scored. Parts replaced. None. 		
Vol I	92	 Pump/All Argon Seals Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium, No. 1 350 HP, 11,800 GPM, 900 RPM EF-61 	MI 120	MI 52	MI 530	14, 941	Operational monitors	 Seals worn out. Part replaced. Revise preventive maintenance inspection intervals on pumps to detect problems before unscheduled outage occurs. Inspections to be made during reactor shutdown. 		
	93	 Pump/Shaft Seal Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium, seal oil pump No. 2 4. PRDC-EF-1 	MI 120	MI 52	MI 530	2190	Direct observation	 Drive gear failure. Part replaced. Revise preventive maintenance inspection intervals on pumps to detect problems before unscheduled outage occurs. Inspections to be made during reactor shutdown. 		
	94	 Pump/Bearings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium, No. 2 350 HP, 11,800 GPM, 900 RPM PRDC-EF-25 	MI 120	MI 58	MI 530	13,368	Audio noise	 Bearings noisy. Part replaced. Revise preventive maintenance inspection intervals on pumps to detect problems before unscheduled outage occurs. Inspections to be made during reactor shutdown. 		
	* 1	= INCIDENT	11 = MINOR MALFUNCTION								

(Sheet 17 of 37)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______

FAILURE DATA FOR ______ PUMPS AND SUPPORTS (Sheet 18 of 37)

ITE	1		 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
	EM	3. CODE: (Component) (System/Subsystem)		CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		Reactor Coolant	 FERMI Primary sodium, No. 2 350 HP, 11,800 GPM, 900 RPM PRDC-EF-29 	MI 120	MI 58	MI 530	992	Audio noise	 Bearings noisy. Part replaced. Revise preventive maintenance inspection intervals on pumps to detect problems before unscheduled outage occurs. Inspections to be made during reactor shutdown.
		2. Heat Transfer/ Reactor Coolant	 FERMI Primary sodium, No. 3 350 HP, 11,800 GPM, 900 RPM PRDC-EF-6 	MI 120	MI 58	MI 530	4245	Direct Observation	 Bearings vibrating. Part replaced. Revise preventive maintenance inspection intervals on pumps to detect problems before unscheduled outage occurs. Inspections to be made during reactor shutdown.
LMEC-Memo-69-7, Vol		Reactor Coolant	 FERMI Primary sodium, No. 3 350 HP, 11,800 GPM, 900 RPM EFAPP No. 68 	MI 120	MI 52	MI 530	4245	During preventive maintenance	 Shaft seal worn out. Part replaced. Revise preventive maintenance inspection intervals on pumps to detect problems before unscheduled outage occurs. Inspections to be made during reactor shutdown.
7, Vol I	98	 Pump/Bearings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium, No. 3 350 HP, 11,800 GPM, 900 RPM EFAPP No. 68 	MI 120	MI 52	MI 530	4245	During preventive maintenance	 Bearings worn out. Parts replaced. Revise preventive maintenance inspection intervals on pumps to detect problems before unscheduled outage occurs. Inspections to be made during reactor shutdown.
	99	 Pump/O-Rings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow pump No. 1 100 GPM, 75 ft discharge head EF-42 	MI 125	МІ 52	MI 530	14, 941	Direct observation	l. O-rings worn out. 2. Parts replaced. 3. None.
I	00	 Pump/Argon Seal (Upper) Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow pump No. 1 100 GPM, 75 ft discharge head EF-61 	MI 125	MI 52	MI 530	14,941	Direct observation	 Seal worn out. Parts replaced. None.
Ļ		= INCIDENT	MI = MINOR MALFUNCTION	l			 		

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-100

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	 Pump/Elastomer Seals Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary system/overflow pump No. 1 100 GPM, 75 ft discharge head EF-61 	MI 18Z	MI 52	MI 530	14, 941	Direct observation	 Constriction of elastomer seals caused leaking. Part replaced. None.
	 Pump/Shaft Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium No. 1 pump 350 HP, 11,800 GPM, 900 RPM PRDC-EF-9 	MI 110	MI 54	MI 530	5643	Direct observation	 Shaft distorted and rubbing. Part replaced. None.
		 FERMI Primary sodium No. 3 pump 350 HP, 11,800 GPM, 900 RPM EF-30 	MI 321	MI 5Z	MI 530	1328	Direct observation	 O-rings worn out. Parts replaced. None.
	 Pump/Face Seals Heat Transfer/ Reactor Coolant 17 221110 	1. FERMI 2. Primary sodium No. 3 pump 3. 350 HP, 11,800 GPM, 900 RPM 4. EF-30	MI 321	MI 5Z	MI 530	1328	Direct observation	 Face seals leaking. Part replaced. None.
	Reactor Coolant	 FERMI Primary sodium No. 1 pump - EF-33 	MI 125	MI 52	MI 530	14,702	Direct observation	 Face seals worn out. Part replaced. None.
	Reactor Coolant	 FERMI Primary sodium No. 1 pump - EF-33 	MI 125	MI 52	MI 530	14,702	Direct observation	 O-rings worn out. Part replaced. None.

FAILURE DATA FOR _______ PUMPS AND SUPPORTS (Sheet 20 of 37)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS		2. CORRECTIVE ACTION 3. RECOMMENDATIONS
107	 Pump/Slip Rings Heat Transfer/ Reactor Coolant 17 221110 	 FERMI Primary sodium No. 1 pump - EF-33 	MI 125	MI 68	MI 530	14,702	During repair	 Slip rings scored. Local repair. Upgrade preventive maintenance procedure to include inspection of slip rings. Check brush tension, cleanliness, etc. Follow manufacturer's recommendations on care of slip rings.
	 Pump/Thrust Bearings Heat Transfer/Reactor Coolant 17 221100 	 FERMI Primary sodium No. 1 pump - EF-33 	MI 125	MI 58	MI 530	14,702	Audio noise	 Bearings vibrating. Part replaced. Dynamically balance pump.
T MEC 109	 Pump/Bearings Heat Transfer/ Intermediate Cooling 17 222110 	 HNPF Secondary/pump P102 350 to 945°F, 350 HP, 7200 GPM HNPF, monthly operating report No. 11, 6/8/63 	MI 200	MI 55	MI 550	Shake- down	Direct observation	 Bearings jammed. Local repair. None.
7 110 Vol 1	 Sodium Pump/Shaft Heat Transfer/ Intermediate Cooling 17 222110 	 HNPF Secondary/pump P102 350 to 945°F, 350 HP, 7200 GPM HNPF, monthly operating report No. 15, 10/63 	MI 137	MI 51	MI 550	4560	Direct observation	l. Pump shaft plug (internal leak). 2. Local repair. 3. None.
111	 Sodium Pump/Shaft Heat Transfer/ Intermediate Cooling 17 222110 	 HNPF Secondary/pump P102 350 to 945 *F, 350 HP, 7200 GPM Weekly hilites, 1/4/64 	MI 137	MI 55	MI 550	10, 487	Direct observation	 Pump shaft plug. Sodium deposition on shaft between shaft and case caused obstruction. Temporary repair. None.
112	 Sodium Pump/Shaft Heat Transfer/ Intermediate Cooling 17 222110 	1. HNPF 2. Secondary/sodium 3. 350 to 925°F, 350 HP, 7200 GPM 4. Weekly site report, 10/9/63	MA 187	MA 54	MA 530	9173	Audio noise	 Shaft distorted, poor case temperature distribution. Component corrective modification. None.
113	 Sodium Pump/Bearing Heat Transfer/ Intermediate Cooling 17 222110 	 HNPF Secondary/sodium 350 to 925 °F, 350 HP, 7200 GPM Work request No. 2601, CPPD 1/30/64 	MA 414	MA 52	MA 530	10, 592	Audio noise	 Lack of lubrication to bearing - bearing worn out. Component corrective modification. None.
								·

FAILURE DATA FOR _______ PUMPS AND SUPPORTS (Sheet 21 of 37)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	114	Intermediate Cooling	 HNPF Secondary/sodium 350 to 925°F, 350 HP, 7200 GPM CPPD monthly, 4/30/64 	MA 9ZZ	MA BZ	MA 550	16, 286	Audio noise, squealing	 Pump shaft squealing. None; 6 hours inspection time only. None.
		2. Heat Transfer/ Intermediate Cooling	 HNPF Secondary/sodium 350 to 950°F, 7200 GPM, 160 to 170 ft head, 0-850 RMP Monthly operating report No. 15, 10/13/63 	MA 137	MA 51	MA 550	4560	Direct observation	 Sodium froze on pump shaft and leaked into secondary oil reservoir. Local repair. Upgrade operator training on filling loop.
LMEC-Memo-69-7, 1-272		Intermediate Cooling	 HNPF Secondary/sodium 350 to 950°F, 7200 GPM, 350 HP Weekly hilites, 12/15/63 	MA 413	MA 55	MA 530	10,851	Audio noise	 Shaft expansion or clearance provision incorrect. Component corrective modification. None.
7, Vol I			1. HNPF 2. Secondary/sodium 3. 350 to 950°F, 7200 GPM, 350 HP 4. NAA-SR-TDR-11485, 3/6/64	MA 413	MA 55	MA 530	12,804	Direct observation	 Shaft stuck, persuader bar used to rotate the shaft. Component corrective modification. None.
			 HNPF Secondary/sodium 350 to 950°F, 7200 GPM, 350 HP CPPD monthly NAA-SR-TDR-1485, 4/20/64 	MA 413	MA 55	MA 530	14,112	Direct observation	 Shaft stuck, persuader bar used to rotate the shaft. Component corrective modification. None.
	119	Holes 2. Heat Transfer/	 HNPF Main primary sodium 350 to 945 °F, 850 RPM, 7200 GPM Monthly operating report No. 9, 3/63 	MI 137	MI A7	MI 550	3490	During preventive maintenance	 Weep holes sucking sodium into pump casings. Corrective modification - four of the eight holes welded closed. None.
	* 1	= INCIDENT	MI = MINOR MALFUNCTION						

FAILURE DATA FOR _______ PUMPS AND SUPPORTS (Sheet 22 of 37)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	120	 Pumps/Impeller Weep Holes Heat Transfer/ Reactor Coolant 17 221110 	 HNPF Primary/sodium 350 to 945°F, 350 HP, 7200 GPM AI Monthly ROAP Report, 8/29/63 	MA 137	MA 55	MA 530	4450	Direct observation	 Shaft leaking. Corrective modification - four of eight weep holes welded closed. None.
LMEC.	121	 Pump/Shaft Heat Transfer/ Intermediate Cooling 17 222110 	1. HNPF 2. Secondary/sodium 3. 350 to 925°F, 7200 GPM, 350 HP 4. NAA-SR-TDR-11485, 6/8/63	MI 413	MI 55	MI 530	7711	Direct observation	 Pump shaft binding. Component corrective modification. None.
LMEC-Memo-69-7, 1-273	122	 Sodium Pump/P-202 Heat Transfer/ Intermediate Cooling 17 222110 	1. HNPF 2. Secondary/sodium 3. 350 to 925°F, 350 HP, 7200 GPM 4. Work request No. 909, 4/6/62	MI 136	MI 53	MI 530	Pre-Op Testing	Direct observation	l. Loose bolts caused leak. 2. Local repair. 3. None.
, Vol I	123	 Sodium Pump/Shaft Heat Transfer/ Intermediate Cooling 17 222110 	 1. HNPF 2. Secondary/sodium 3. 350 to 925°F, 350 HP, 7200 GPM 4. Daily site wire, 2/4/63 	MI 413	MI 55	MI 530	3250	Audio noise	 Sound of metal-to-metal interference. Component corrective modification; shaft machined, internal parts cleaned and inspected. None.
	124	 Sodium Pump/Shaft Heat Transfer/ Intermediate Cooling 17 222110 	1. HNPF 2. Secondary/sodium 3. 350 to 925°F, 350 HP, 7200 GPM 4. ANS No. 101,Daily Wire, 6/8/63	MI 413	MI 55	MI 530	1200	Direct observation	 Pump shaft deflected with slight changes in temperature distribution. Unknown. None.
	125	 Pump/Bearing Heat Transfer/ Intermediate Cooling 17 222110 	 1. HNPF 2. Secondary/sodium pump P102 3. 350 to 945°F, 350 HP, 7200 GPM 4. Internal letter, 1/11/64 	MA 187	MA 54	MA 530	10, 592	Direct observation	 Bearing noise due to poor case temperature distribution distorting pump barrel. Component corrective modification. None.
	126	 Pump/Shaft Heat Transfer/ Intermediate Cooling 17 222110 	 I. HNPF Secondary/sodium pump P102 350 to 945°F, 350 HP, 7200 GPM CPPD monthly, 2/16/64 	MA 137	MA 55	MA 550	11,309	Direct observation	 Shaft would not rotate by hand. Component corrective modification. None.
									·

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 23 of 37)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
127	Intermediate Cooling	 HNPF Secondary/sodium pump P102 350 to 945°F, 350 HP, 7200 GPM CPPD Monthly, 4/30/64 	MA 9ZZ	MA BZ	MA 550	12,685	Audio noise	 Pump squealing. None; 6 hours inspection only. None.
128	Intermediate Cooling	 HNPF Secondary sodium system pump No. 3 7200 GPM Weekly site report, 10/9/63 	MI 111	MI 58	MI 530	9173	Audible noise	 Rubbing noise noted within pump. Increased rpm and changed cooling distribution to barrel. None.
129	 Pump/Bearing Heat Transfer/ Intermediate Cooling 17 222110 	 HNPF Secondary sodium system pump No. 1 7200 GPM Internal letter, 1/11/64 	MI 111	MI 58	MI 530	10,592	Audible noise	 Rubbing noise from upper bearing. Altered cooling distribution on barrel. None.
130	 Pump/Oil Seal Heat Transfer/ Reactor Coolant 17 221110 	 HNPF Primary sodium system pump No. 1 upper oil seal 7200 GPM MOR 10102, 2/10/64 	MI 126	MI 52	MI 530	14,076	Direct observation	 Oil seal leaked. Seal and gaskets replaced. None.
131		 HNPF Secondary sodium system No. 1 7200 GPM CPPD monthly, 3/6/64 	MI 11Z	MI 57	MI 530	11,725	During startup	 Pump failed to rotate. Persuader bar used to initiate shaft rotation. None.
132	Intermediate Cooling	 HNPF Secondary sodium system No. 2 7200 GPM CPPD monthly, 3/6/64 	MI 11Z	MI 57	MI 530	12,804	During startup	 Pump failed to rotate. Persuader bar used to initiate shaft rotation. None.
	 Pump/Cooling Coils Heat Transfer/ Intermediate Cooling 17 222000 	 EBR-II Secondary No. 2 sodium pump 30 GPM, water ANL-6944-9-64 	MI 274	MI 51	MI 530	790	Direct observation	 Cooling lines plugged with debris. Local repair. Install parallel filters with differential pressure indicator to indicate filter plugging.
	= INCIDENT = MAJOR MALFUNCTION	MI = MINOR MALFUNCTION						~#

FAILURE DATA FOR ______ PUMPS AND SUPPORTS_____

(Sheet 24 of 37)

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ТЕМ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Pump/Cooling Water Jacket Heat Transfer/ Intermediate Cooling 17 222000 	 EBR-II Secondary No. 2 sodium pump 30 GPM, water PMMR 17-2-19 	MI 273	MI 51	MI 550	1200	Operational monitors	 Cooling jacket plugged with debris. Local repair. Install parallel filters with differential pressure indicator to indicate filter plugging.
		2. Heat Transfer/	 EBR-II Secondary No. 2 sodium pump 30 GPM, water PMMR-26-4-22 	MI 273	MI 51	MI 550	1610	Operational monitors	 Cooling jacket plugged with debris. Local repair, unit was back-flushed. Install parallel filters with differential pressure indicator to indicate filter plugging.
LMEC-Memo-69-7, Vol		 Pump/Cooling Water Jacket Heat Transfer/ Intermediate Cooling 17 222000 	1. EBR-U 2. Secondary No. 2 sodium pump 3. 30 GPM, water 4. PMMR-29-5-12-65	MI 273	MI 51	MI 550	1850	Operational monitors	 Cooling jacket plugged with debris Local repair, unit was back-flushed. Install parallel filters with differential pressure indicator to indicate filter plugging.
		 Pump/Cooling Water Jacket Heat Transfer/ Intermediate Cooling 17 222000 	 EBR-II Secondary No. 1 sodium pump 30 GPM, water PMMR 29-5-12-65 	MI 273	MI 51	MI 550	1850	Operational monitors	 Cooling jacket plugged with debris. Local repair, unit was back-flushed. Install parallel filters with differential pressure indicator to indicate filter plugging.
1		 Pump/Cooling Water Jacket Heat Transfer/ Intermediate Cooling 17 222000 	 EBR-II Secondary No. 2 sodium pump 30 GPM, water Operation weekly report 1/3/68 	MI 273	MI 51	MI 530	13, 380	Operational monitors	 System plugged. Local repair, unit was back-flushed. Install parallel filters with differential pressure indicator to indicate filter plugging.
]	139	 AC Conduction Pump/ Pumping Duct Heat Transfer/ Intermediate Cooling 17 222110 	 Aerojet-General Corp., Von Karman Center AGN loop No. 3, S/N 607 8 KW, 240 V, 1 phase, 60 cycle, 1500°F, 1 in. OD duct AGC TM 9436:66-393, MSA EP-3 	I 339	I 61	I 136	1	Direct observation (unscheduled)	 Pump duct overheated and ruptured due to lack of liquid metal in duct when pump was started. Leak external. Component part replaced. Equip the pump duct with a temperature controlling sensor, including audible alarm.
Ľ		= INCIDENT	MI = MINOR MALFUNCTION						

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
140	 AC Conduction Pump/ Pumping Duct Heat Transfer/ Intermediate Cooling 17 221110 	 Aerojet-General Corp., Von Karman Center RPL-2 primary NaK loop (RPL-2 floating mount) S/N 651 55 KW, 480 V, 1 phase, 60 cycle, 1500°F, 52,000 lb/hr AGC TM 9436:66-393, MSA EP-3 	I 339	I 61	I 136	287	Direct observation (unscheduled)	 No liquid metal in pumping duct - pump duct damaged (duct overheated and melted) where bus bar attached to duct. Replaced pump with spare EM pump S/N 564 from RPL-1. Equip pumping duct with a temperature controlling sensor, including audible alarm.
141	 AC Conduction Pump/ Connection Duct Heat Transfer/ Intermediate Cooling 17 222110 	 Aerojet-General Corp., Von Karman Center RPL-2 heat rejection loop (RPL-2 floating mount) 55 KW, 480 V, 1 phase, 60 cycle, 1500°F, 52,000 lb/hr, 1-1/2 in. OD duct AGC TM 9436:66-393, MSA EP-3 	I 128	I 61	I 136	1943	Direct observation (unscheduled)	 Vibration caused pump tube to crack at suction end where bus bar attached. NaK leak, external. Part replaced. EM pumps operated below the curie point of Ni (676, 4°F) power level should be reduced to a value where the pump vibration caused by magnetostricti forces is acceptable.
142	 AC Conduction Pump/ Pump Duct Heat Transfer/ Intermediate Cooling 17 222110 	 Aerojet-General Corp., Von Karman Center SL-1 primary NaK test loop (SL-1 solid anchoring-heater circuit)S/N54(55 KW, 480 V, 1 phase, 60 cycle, 1500°F, 52,000 lb/hr = 210 GPM, 1-1/2 in. OD duct AGC TM 9436:66-393 MSA EP-3 	339	I 61	I 136	551	Direct observation (unscheduled)	 Pump duct overheated and ruptured due to the lack of liquid metal in the duct when the pump was started. Leak external. Component part replaced. Equip pumping duct with temperature controlling sensor, including audible alarm.
143	 AC Conduction Pump/ Field Stator Coils Heat Transfer/ Intermediate Cooling 17 222110 	 Aerojet-General Corp., Von Karman Center SL-1 heat rejection loop (SL-1 solid anchoring) S/N 651 55 KW, 480 V, 1 phase, 60 cycle, 1500°F, 52,000 lb/hr AGC internal letter 4931-65-0066 	MA 454	MA 15	MA 151	1302	Protective system	 Vibrations damaged electrical insulation field coil "C." Resultant short on circuit caused power cables to melt. Component part replaced. Pump should be checked for excessive vibration as part of acceptance procedures after completion of installation.
144	 AC Conduction Pump/ Pumping Duct Heat Transfer/ Primary Cooling 17 221110 	 Aerojet-General Corp., Von Karman Center PCS-1 primary NaK loop S/N 564 55 KW, 480 V, 1 phase, 60 cycle, 1500°F, 52,000 lb/hr Snap 8-D. of A. G. C. F. C. MSA EM P. F. 	MI 195	MI 51	MI 116	669	Routine instrument reading (direct observation)	 Pump duct partially plugged with oxide deposits at poles - pumping capability dropped to 40,000 lb/hr Pump duct replaced. Pump should not be operated at more than 600°F if the NaK plugging temperature is >300°F.

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 26 of 37)

1		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	145	 AC Conduction Pump/ Supporting Structure Heat Transfer/Inter- mediate Cooling 17 222110 	 Aerojet-General Corp., Von Karman Center RPL-2 heat rejection loop 55 KW, 480 V, 1 phase, 60 cycle, 1500°F, 52,000 lb/hr., 1-1/2 in. OD duct AGC TM 9436:66-393, MSA EP-3 	MI 127	MI 24	MI 148	Unknown	Direct observation (unscheduled)	 Excessive magnetostrictive vibration of the heavy nickel bus bar caused bus bar to work loose. Operating limits changed. Nickel bus bars should not be used where tempera- ture of bar will be below curie temperature of nickel (676.4°F).
LMEC-Mem	.146	 AC Annular Induction Pump/Stator Heat transfer/Primary Cooling 17 221100 	 APDA, quarry test facility NaK system - NASA C. R. CR-380 APDA AECU-3700 	I 137	I 15	I 111	Unknown	Operational monitors	 Shield can surrounding iron core in center of pump failed, allowing NaK to leak into and around poles - short circuit resulted. Component part replaced. Pump development work incomplete, therefore problems are to be expected. (Einstein-Szilard reversed flow type.)
LMEC-Memo-69-7, Vol I 1-277	147	 AC Conduction Pump/ Electrode Heat Transfer/ Purification 17 224233 	 KAPL, ALPLAUS site MARK "A" cold trap 700°F, 260 V NASA C.R. No. CR-380 KAPL-M-JJM-1 	MI 127	MI 21	MI 156	36	Direct observation (unscheduled)	 Vibrations produced by pulsating frequency resulted in broken electrode. Redesigned component to prevent recurrence. Design specifications should consider vibrations produced by pulsating frequencies.
	148	 AC Conduction Pump/ Electrode Heat Transfer/ Emergency Cooling 17 224233 	 KAPL, ALPLAUS site (No. 60500) MARK "A" cold trap 700°F NASA C. R. No. CR-380 KAPL-M-JJM-1 	I 127	I 61	I 134	78	Direct observation (unscheduled)	 Vibrations produced by pulsating frequency resulted in broken electrode. Redesigned component to prevent recurrence. Design specifications should consider vibrations produced by pulsating frequency.
	149	 AC Conduction Pump/ Electrode Heat Transfer/ Purification 17 224233 	 KAPL, ALPLAUS site (No. 60500) MARK ''A'' cold trap 700°F, 190 V KAPL-M-JJM-1 	MI 127	MI 127	MI 156	83	Direct observation (unscheduled)	 Vibrations caused by frequency pulsation resulted in broken electrode. Modify design to prevent recurrence. Design specifications should consider vibrations caused by pulsating frequencies.
	* 1		MI = MINOR MALFUNCTION						· · · · · · · · · · · · · · · · · · ·

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 27 of 37)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	4. SOURCE DOCUMENT CAUSE MODE EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS		
150	1. AC Conduction Pump/ Electrode 2. Heat Transfer/ Purification . 17 224233	1. KAPL, ALPLAUS site (No. 60500) 2. MARK "A" cold trap 3. 700°F, 200 V 4. KAPL-M-JJM-1	MI 127	MI 21	MI 134	400	Direct observation (unscheduled)	 Vibrations in piping caused by pulsation of frequency from zero to peak resulted in broken electrode. Modify design to prevent recurrence. Design specifications should consider vibrations caused by pulsating frequencies.
1	 AC Conduction Pump/ Pump Duct Heat Transfer/ Emergency Cooling 17 214400 	 KAPL, ALPLAUS site (No. 60500) Emergency cooling loop 700°F KAPL-M-JJM-1 	I 127	I 61	I 134	400	Direct observation (unscheduled)	 Crack generation, sodium leak, and fire. Analyzed and redesigned duct to prevent recurrence. Pulsating frequency from zero to peak produced vibration in piping, therefore, this phenomena should be considered during design of pump.
LMEC-Memo-69-7. Vol	 AC Conduction Pump/ Pump Duct Heat Transfer/ Purification 17 224233 	 KAPL, ALPLAUS site (No. 60500) Cold trap 515°F, 150 V NASA C.R. No.CR-380, KAPL-M-JJM-1 	I 127	I 61	I 134	42	Direct observation (unscheduled)	 Crack generation, sodium leak, and fire. Revised design to prevent recurrence. Pulsation frequency from zero to peak produced vibrations in piping resulting in damage; therefore, designer should consider these criteria.
	 AC Conduction Pump/ Pump Duct Heat Transfer/Main Cooling 17 221110 	 KAPL, ALPLAUS site (No. 60500) Main system 600°F, 270 V, zero flow at time of failure KAPL-M-JJM-1 	MI 127	MI 21	MI 156	528	Direct observation (unscheduled)	 Pulsating frequencies produced vibrations that resulted in broken electrode. Modified design to prevent recurrence. Design specifications should consider vibrations produced by pulsating frequencies.
154	 AC Conduction Pump/ Electrode Heat Transfer/Main Cooling 17 221110 	 KAPL, ALPLAUS site (No. 60500) Main system 600°F, 270 V KAPL-M-JJM-1 	MI 127	MI 21	MI 156	1754	Direct observation (unscheduled)	 Electrode broken by vibrations caused by pulsating frequencies. Modified design to prevent recurrence. Design specifications should consider vibrations produced by pulsating frequencies.
	= INCIDENT	MI = MINOR MALFUNCTION						

.

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 28 of 37)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	a. OPERATING CONDITIONS 4. SOURCE DOCUMENT em) A. SOURCE DOCUMENT CAUSE MODE EFFECT	OPERATING METHOD OF FAILURE HOURS DETECTION T	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
155	 DC Conduction Pump/ Pump Duct Heat Transfer/Main Cooling 17 221110 	 ANL, Lemont facility Pump No. 1 150 gpm, 75 psig head, 1000°F LMEC, NAA-SR-12585 	I 339	I 66	I 530	1000	Direct observation (routine instrument reading)	 Pump duct overheated and ruptured due to lack of sodium in duct when pump was started. Component part replaced. Suggest pump duct be equipped with temperature controlling sensor, including audible alarm.
	 DC Conduction Pump/ Pump Duct Heat Transfer/Main Cooling 17 221110 	 ANL, Lemont facility Pump No. 2 100 gpm, 75 psig head, 1000°F NASA C.R. No. 380, LMEC, NAA-SR-12585 	I 339	I 66	I 530	50,000	Direct observation (routine instrument reading) shakedown test	 Pump duct overheated and damaged due to lack of sodium in duct when pump was started. Component part replaced. Suggest pump duct be equipped with temperature controlling sensor, including audible alarm.
157	 DC Conduction Pump/ Copper Electrodes Heat Transfer/Main Cooling 17 221110 	 ANL, Lemont facility Pump No. 3 500 gpm, 700°F NASA C.R. No. 380, LMEC, NAA-SR-12585 	MA 445	MA 87	MA 630	30,000	Direct observation (routine instrument reading) shakedown test	 Metallurgical - surface deposition (mass transfer) copper transferred from pump electrodes to pluggin meter valve. Redesigned electrodes to prevent recurrence. Copper and sodium are incompatible; therefore, design accordingly.
158	 DC Conduction Pump/ Bus Bar Heat Transfer/Main Cooling 17 221110 	 ANL, Lemont facility Pump No. 4 250 gpm, 75 psig head, 1000°F NASA C.R. No. CR-380, LMEC, NAA-SR-12585 	MI 162	MI 86	MI 530	40,000	Protective system	 Air initiated corrosive attack on copper conductors. Component design modified. Modify design to prevent air entrainment.
159	 AC Linear Induction Pump/Pump Duct Heat Transfer/Main Cooling 17 221110 	 ANL, Lemont facility Pump No. 1 5000 gpm LMEC, NAA-SR-12585 	MI 124	MI 61	MI 136	6600	Direct observation (routine area watch)	 Fatigue cracks around top of spacers. Round holes cut and discs welded in to close holes. Designers should consider the magneto-motive and magneto-strictive forces acting on the duct materia
*	= INCIDENT	MI = MINOR MALFUNCTION						

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 29 of 37)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
160	 DC Conduction Pump/ Pump Duct Heat Transfer/ Purification 17 224232 	 ANL, EBR-II Sodium purification system (temporary) 350°F ANL-6739 	MA 500	MA 61	MA 136	Unknown	Direct observation (unscheduled)	 Pump duct leaked sodium. Pump duct removed. None.
į	 AC Conduction Pump/ Copper Bus Bar Heat Transfer/ Purification 17 224233 	 ANL, EBR-II Sodium purification system/cold trap 275 - 700°F, 60 gpm ANL-6885, EBR-II S. T. P. Vol. C-9 	MI 456	MI 14	MI 550	550	Unknown	 Poor electrical contact at bus bar terminal. Repaired. None.
1emo-69-7,	 AC Linear Induction Pump/Pump Duct Heat Transfer/ Intermediate Cooling 17 222110 	 ANL, EBR-II Main secondary 6500 gpm, 700°F Pressure head 53 psi, 480 V, 3 phase, 60 cycle, required KW-450 ANL-6885, ANL-6904, EBR-II S. T. P. Vol. C-9, ANS-100 	MI 500	MI 61	MI 136	Unknown	Operational monitors	 Cracks resulted from a combination of very low inlet pressure to the duct at a high flow rate. Repaired in field by cutting circular disks containing the cracks from the duct and welding in new disks. Flow rate was limited to 75% after repair. Revise pump operating procedure to prevent recur- rence of incident.
Vol 163	 DC Conduction Pump/ Electrodes Heat Transfer/ Primary Cooling 17 221110 	 ANL, EBR-II Primary/auxiliary Operating voltage-1.4 V, 500 gpm, 0.15 psi, 900°F sodium ANL-7317, ANL-7329, EBR-II PMMR No.99, ANL-Idaho Div Operations report 1-1-67 	MI 445	MI 87	MI 250	Unknown	Operational monitors	 Copper dissolved in sodium. Approximately 10 lb eroded away from copper electrodes. Dissolved copper was removed from primary sodium by cold trapping. Copper and sodium are incompatible; therefore, design accordingly.
164	 AC Linear Induction Pump/Cooling Water Jacket Heat Transfer/ Intermediate Cooling 17 222110 	 ANL, EBR-II No. 2 secondary coolant 6500 gpm at 53 psi, 700°F, 3 phase, 60 cycle required at 450 KW, water requirement 30 gpm NASA CR No. 380, EBR-II Operations weekly report 2-21-68 	MI 127	MI 61	MI 136	1200	Operational monitors	 Obstruction of coolant passage by impurities in plant cooling water. Coolant passage back flushed. Install filters for removing particulate matter from cooling system.
	= INCIDENT	MI = MINOR MALFUNCTION						

FAILURE DAT	A FOR <u>pume</u>	PS AND SUPPORTS	

(Sheet 30 of 37)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT		MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	 AC Linear Polyphase Induction Pump/Coils Heat Transfer/ Intermediate Cooling 17 221110 	 HNPF Secondary/sodium service 480 V, 3 phase, 60 cycle, 40 psi, 900°F, 30 amp, 100 gpm, 3 in. diameter piping HNPF W. R. No. 273, HNPF Const. Log Book No. 6, P. 32, TWX to R. S. Baker "HNPF EM Pumps." 	MA 151	MA 13	MA 151	80	Protective system	 Full line voltage applied at startup caused excessive heat to develop in magnetic field coils thereby deteriorating the insulation and allowing the coils to short circuit the system. Installed Powerstat in line. Component and system design should consider the startup in-rush currents, whenever electrical AC components are installed. AC magnetic coil design should observe the special insulation requirements in connection with laminated magnetic cores.
166 LMEC-Memo-69-7, Vol I	 AC Linear Poly-phase Induction Pump/Coils Heat Transfer/ Main Cooling 17 221110 	 HNPF Primary/sodium service No. 2 Pump 480 V, 30 amp, 100 gpm, 950°F, 60 cycle, 40 psi, 3 phase, 3 in. diameter piping AI letter No. 63AT33, 4, HNPF monthly report No. 8, AI letter No. 63AT4480, HNPF work request No. 2764, HNPF work request No. 2135 	MA 151	MA 13	MA 550	Unknown	Protective system	 Full line voltage at startup caused excessive heat to develop in magnetic field colls, thereby deteriorating the insulation and allowing colls to short circuit. New colls were fitted into the old pump frame. Revise startup procedure to prevent recurrence of incident. Install temperature alarms on colls and voltage control devices on power supply.
167	 AC Linear Poly-phase Induction Pump/Coils Heat Transfer/Main Cooling 17 221110 	 HNPF Primary/sodium service No. 1 and No. 2 pumps 480 V, 3 phase, 60 cycle, 30 amp, 100 gpm, 40 psi, 950°F, 3 in. diameter piping AI letter No. 63AT334, HNPF work request No. 2135 	MI 329	MI 54	MI 530	Unknown	Direct observation	 Cage over 480 V bus bar bent out of shape by personnel using it for a working platform. Installed angle iron supports. Work platform should be part of original installation.
168	 AC Linear Poly-phase Induction Pump/ Jumpers Heat Transfer/Main Cooling 17 221110 	 HNPF Primary/sodium service No. 1 and No. 2 pumps 480 V, 3 phase, 60 cycle, 30 amp, 100 gpm, 40 psi, 950°F, 3 in. diameter piping HNPF Construction log No. 6 	MI 410	MI 13	MI 580	Unknown	Direct observation	 Electrical insulation deteriorated on jumper wires. All jumper wires insulated with glass tape. Component and system design should consider the effects of the in-rush currents during startup when- ever electrical AC components are installed.
*	= INCIDENT	MI = MINOR MALFUNCTION						

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-100</u>

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 31 of 37)

. |

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	Bolts	 HNPF Primary/sodium service No. 1 and No. 2 pumps 480 V, 3 phase, 60 cycle, 30 amp, 100 gpm, 40 psi, 950°F, 3 in. diameter piping HNPF Construction log No. 6, AI letter No. 63AT334 	MI 473	MI 52	MI 590	Unknown	Audio noise	 AG hum from laminated magnet cores. Torque bolts to 80 inIb. Follow design specifications for assembly laminated AC magnet cores.
LMEC-Memo-69-	 Pump/Shaft Freeze Seal Reactor Equipment/ Primary Decay Heat Removal 17 214210 	 SRE Auxiliary primary sodium system pump 1000°F, 70 gpm Operations log No. 47, 10-15-62 	MA 185	MA 66	MA 550	Unknown	Operational monitors	 Loss of shaft freeze seal due to excessive temperature. Removed, cleaned, and replaced seal. Operate seal within specified limits.
9-7. Vol I	 Pump/Radial Bearing Heat Transfer/ Intermediate Cooling 17 222110 	 SRE Main secondary sodium system pump 600°F, 1500 gpm Incident report, 9-17-63 	MI 110	MI 57	MI 520	Unknown	During actuation	 Radial bearing failure because of improper installation of bearing on shaft. Removed and replaced. Position bearings on shaft with a press.
172	 Pump/Case Freeze Seal Reactor Equipment/ Secondary Decay Heat Removal 17 214220 	 SRÉ Auxiliary secondary sodium system pump 600°F, 70 gpm Operations log No. 41 	MA 338	MA 66	MA 550	Unknown	Operational monitors	 Case freeze seal failure due to inadequate cooling. Removed, cleaned, and replaced pump. Upgrade operator training for pump operation.
173	 Pump/Shaft Freeze Seal Reactor Equipment/ Secondary Decay Heat Removal 17 214220 	 SRE Auxiliary secondary sodium system pump 600°F, 70 gpm Operations log No. 36 	MI 113	MI 51	MI 550	Unknown	Alarm	 Loss of shaft freeze seal due to excessive temperature. Pressurized, and blew sodium back into the system. Upgrade operator training program for pump operation.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

/

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 32 of 37)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
IT	ΕM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Pump/Shaft Freeze Seal Heat Transfer/ Reactor Coolant 17 221110 	 SRE Main primary sodium system pump 1000°F, 1500 gpm Incident report, 11-20-63 	MI 157	MI 57	MI 520	Unknown	Operational monitors	 Pump shaft seizure due to low shaft freeze seal temperatures. Reheated shaft seal. Upgrade operator training program for pump operation.
		 Pump/Shaft Freeze Seal Heat Transfer/ Reactor Coolant 17 221110 	 SRE Main primary sodium system pump 1000°F, 70 gpm Incident report, 10-19-61 	MI 110	MI 57	MI 550	Unknown	During actuation	 Pump shaft seizure because of low freeze seal temperature. Reheated shaft seal. Upgrade operator training program for pump operation.
LMEC-Memo-69-7, Vol I		 Pump/Shaft Gas Seal Reactor Equipment/ Primary Decay Heat Removal 17 214210 	 SRE Auxiliary primary sodium system 1000°F, 70 gpm Operations log, 2-2-59 	MI 114	MI 68	MI 530	Unknown	Operational monitors	1. Loss of lubrication in bearing. 2. Removed and replaced galled bearing. 3. None.
		 Pump/Shaft Freeze Seal Heat Transfer/ Intermediate Cooling 17 222110 	 SRE Main secondary sodium system 1000°F - 1500 gpm Incident report 1-17-59 	MI 110	MI 17	MI 520	Unknown	Protective system	 Pump shaft seized due to low shaft seal temperature. Reheated shaft freeze seal. Operate pump shaft freeze seal at design temperature to prevent seizure.
1		 Pump/Shaft Freeze Seal Heat Transfer/ Intermediate Cooling 17 222110 	 SRE Main secondary sodium system 1000°F, 1500 gpm Incident report, 11-25-62 	MI 110	MI 57	MI 520	Unknown	Protective system	 Pump shaft seized due to low shaft seal temperature. Reheated shaft freeze seal. Operate pump shaft freeze seal at design temperature to prevent seizure.
		= INCIDENT	MI = MINOR MALFUNCTION						

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 33 of 37)

ITEM 3. ODE: 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT CAUSE MODE EFFECT MOURS METHOD OF FAILURE DETECTION 2. CORRECTIVE ACTION 179 1. Pump/Shaft Bearing 2. Heat Transfer/ 10* mediate Cooling 3. 10* 222110 I. SRE 2. Main secondary sodium pump 3. 600* F, 1800 gpm 4. Incident report 9-25-58 MA 50 <th></th> <th> COMPONENT/PART SYSTEM/SUBSYSTEM </th> <th colspan="2">1. FACILITY 2. COMPONENT LOCATION</th> <th colspan="3">FAILURE INDEX CODE*</th> <th></th> <th>1. FAILURE DESCRIPTION</th>		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION					
2. Heat Transfer/ 3. 17 222110 2. Main secondary sodium system 4. Incident report 9-17-63 321 56 520 3. Upgrade maintenance procedure for installing pump shaft bearings. 180 1. Pump/Shaft Freeze Seal Thermediate Cooling 3. 17 222110 1. SRE 2. Main secondary sodium pump 4. Incident report 9-25-58 I 500 °F, 1800 °F, 1800 °F, 1800 °F, 100 °F 1. SRE 2. Auxiliary primary sodium pump 4. Incident report 10-4-62 I 57 I 50 I 50 Unknown Operational monitors 57 1. Organic leaked into sodium system through crack in shaft seal thermowell. 2. Seal removed modified, and replaced. 3. None. 180 1. Pump/Shaft Freeze Seal Thermowell 3. 17 1. SRE 2. Auxiliary primary sodium pump 3. 17 I 1. SRE 2. Auxiliary primary sodium pump 3. 17 I 1. SRE 2. Auxiliary primary sodium pump 3. 17 MI 10 MI 57 MI 520 Unknown Protective system 1. Pump shaft seized due to low shaft seal temperat 2. Reheated shaft freeze seal at design temperat 2. Auxiliary primary sodium pump 3. 17 182 1. Pump/Shaft Freeze Seal 2. Heator Equipment/ 3. 16 1. SRE 2. Auxiliary primary sodium pump 3. 17 MI 3. 10 MI 57 MI 520 Unknown Direct observation 3. 17 1. Pump shaft seized due to low shaft seal temperat 2. Reheated shaft freeze seal 3. 0perate pump shaft freeze seal 3. 0perate pump shaft seized due to low shaft seal temperat 2. Auxiliary primary sodium pump 3. 17 1. SRE 3. 00°F, 7.0 gpm 183 1. Pump/Shaft	ITEM	3. CODE: (Component)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	HOURS							
Seal Thermowell2. Main secondary sodium pump25661530in shaft seal thermowell.2. Heat Transfer/ Intermediate Cooling3. 600°F, 100 gpm25661530	179	 Heat Transfer/ Intermediate Cooling 17 	 Main secondary sodium system 600°F, 1800 gpm 				Unknown	Direct observation	2. Removed and repaired. 3. Upgrade maintenance procedure for installing					
 Pump/Shaft Freeze Seal Reactor Equipment/ Primary Decay Heat Removal Pump/Shaft Freeze Seal SRE Auxiliary primary sodium pump MI 10 MI 10 MI 57 MI 10 MI 57 MI 10 MI 57 MI 10 S7 MI 10 S7 MI 10 S7 MI 10 S7 MI 10 S7 MI 10 S7 MI 10 S7 MI 10 MI 57 MI 10 S7 MI 10 S7 MI 10 S7 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 S7 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 MI 10 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 110 MI 100 MI 110 MI 100 MI	180	Seal Thermowell 2. Heat Transfer/ Intermediate Cooling 3. 17	2. Main secondary sodium pump 3. 600°F, 1800 gpm				Unknown	Operational monitors	2. Seal removed, modified, and replaced.					
Seal 2. Auxiliary primary sodium pump 110 57 520 2. Reheated shaft freeze seal. 2. Reactor Equipment/ Primary Decay Heat Removal 3. 17 100°F, 70 gpm 110 57 520 2. Reheated shaft freeze seal. 183 1. Pump/Shaft Freeze Seal 1. SRE 1. SRE 2. Auxiliary primary sodium pump MI MI MI MI 100 57 520 2. Reheated shaft freeze seal. 3. Operate pump shaft freeze seal. 183 1. Pump/Shaft Freeze Seal 1. SRE 2. Auxiliary primary sodium pump MI MI MI 57 520 Primary Decay Heat Removal 1. Incident report 11-15-63 3. 17 17 3. 17 110 57 520 Unknown Protective system 1. Pump shaft seized due to low shaft seal temperate 2. Reheated shaft freeze seal. 3. Operate pump shaft freeze seal. 3. Operate pump shaft freeze seal. 3. Operate pump shaft freeze seal. 3. 17 1. Incident report 11-15-63 1. Incident report 11-15-63 1. Incident report 11-15-63 1. Incident report 11-15-63	181	Seal 2. Reactor Equipment/ Primary Decay Heat Removal 3. 17	2. Auxiliary primary sodium pump 3. 600°F, 70 gpm				Unknown	Protective system	3. Operate pump shaft freeze seal at design tempera-					
Seal 2. Auxiliary primary sodium pump 110 57 520 2. Reheated shaft freeze seal. 2. Reactor Equipment/ Primary Decay Heat Removal 3. 600°F, 70 gpm 110 57 520 3. Operate pump shaft freeze seal. 3. 17 17 10 57 520 520 520	182	Seal 2. Reactor Equipment/ Primary Decay Heat Removal 3. 17	2. Auxiliary primary sodium pump 3. 600°F, 70 gpm				Unknown	Direct observation	3. Operate pump shaft freeze seal at design tempera-					
		Seal 2. Reactor Equipment/ Primary Decay Heat Removal 3. 17	 Auxiliary primary sodium pump 600°F, 70 gpm 				Unknown	Protective system	3. Operate pump shaft freeze seal at design temperatu					

.

.

\mathcal{V}	

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 34 of 37)

	1	L. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	CODE*		DEX			1. FAILURE DESCRIPTION				
ITE	M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
18	2	2. Heat Transfer/	 SRE Main primary sodium system 1000°F, 1500 gpm Incident report 3-6-63 	MI 110	MI 57	MI 520	Unknown	Operational monitors	 Pump shaft seized due to low shaft seal temperature. Reheated shaft freeze seal. Operate pump shaft freeze seal at design temperature to prevent seizure. 				
18	2	2. Heat Transfer/	 SRE Main primary sodium system pump - Operations log No. 3, 4-27-57 	I 331	I 66	I 550	Unknown	Operational monitors	 Loss of shaft freeze seal and seizure of shaft. Removed pump and cleaned. Operate seal within specified limits. 				
18	2	2. Heat Transfer/	 SRE Main primary sodium system pump - Operations log No. 13, 4-19-59 	I 331	I 66	I 550	Unknown	Operational monitors	 Loss of shaft freeze seal and seizure of shaft. Removed pump and cleaned. Operate seal within specified limits. 				
18	2	Seal	 SRE Main primary sodium system pump - Operations log No. 45, 6-15-62 	I 331	I 66	I 550	Unknown	Operational monitors	 Loss of shaft freeze seal and seizure of shaft. Removed pump and cleaned. Operate seal within specified limits. 				
18	1	 Pump/Shaft Freeze Seal Heat Transfer/ Reactor Coolant 17 221110 	 SRE Main primary sodium system pump - Operations log No. 51, 2-14-63 	MI 153	MI 57	MI 550	Unknown	Operational monitors	 Pump shaft seizure. Reheated shaft freeze seal. Operate seal within specified limits. 				
18		 Pump/Shaft Freeze Seal Reactor Equipment/ Secondary Decay Heat Removal 17 214220 	 SRE Auxiliary primary sodium system pump - Incident report 5-10-62 	MI 113	MI 66	MI 550	Unknown	During actuation	 Loss of shaft freeze seal. Reheated shaft freeze seal. Operate seal with specified limits. 				
	1				L	L							

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

Γ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY A 2. COMPONENT LOCATION		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
	тем	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Pump/Shaft Freeze Seal Heat Transfer/ Reactor Coolant 17 221110 	 SRE Main primary sodium system 1000°F, 1500 gpm Incident report 5-27-63 	MI 110	MI 57	MI 520	Unknown	Operational monitors	 Pump shaft seized due to low shaft seal temperature. Reheated shaft freeze seal. Operate pump shaft freeze seal at design temperature to prevent seizure.
		Reactor Coolant	 LCTL LCTL/6 x 8 sodium loop pump 310 gpm, 550°F LCTL log book, 9-29-60 	MI 128	MI 52	MI 530	Unknown	Operational monitors	 Seal vibrating, faces worn out. Part replaced. Upgrade preventive maintenance inspections of seals to prevent unscheduled outage.
LMEC-Memo-69-7,	192	Reactor Coolant	 LCTL LCTL/sodium system 2 x 3 LCTL log book, 10-16-59 	MI 125	MI 52	MI 530	Unknown	Direct observation	 Magnetic seal leaking. Part replaced. None.
, Vol I	193	 Nuclear Fuel Handling and Equipment/Fuel Handling Machine 	 SRE Fuel handling machine contaminated vent system - Operating log No. 16, 1-25-60 	MA 316	MA 59	MA 550	Unknown	Direct observation	 Pump placed in service without opening discharge valve - pump ruptured. Component replaced. Install rupture disc or relief valve on pump discharge line.
	194		 EBR-II No. 2 silicone pump 75 gpm, 75 psig PMMR-35 	MI 500	MI BZ	MI 530	Unknown	Preventive maintenance	 Drive belt broken. Part replaced. None.

J

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 35 of 37)

1-286

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 36 of 37)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
ТІ	ЕМ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Pump Reactor Containment Structure and Building/ Air Lock 17 194220 	 EBR-II Personnel air lock No. 2 locking pin drive 40 psig on inflatable seal, ambient temperature PMMR-81 	MI 500	MI 52	MI 530	6920	Preventive maintenance	 Pump malfunction. Part replaced. None.
1 LMEC-Memo-69-7, 1-287	96	 Pump/Discharge Valve Turbine-Generator Units and Condenser/ Circulating water Systems 17 330000 	 SCTI Sulphuric acid system pump, cool- ing tower water treatment 600 lb rating Incident report No. 62 	MI 445	MI 51	MI 278	5020	Operational monitors	 Valve was plugged with ferrous sulphate and iron oxide, and corroded. Part replaced. Consider material compatibility in component selection for chemical process loops.
	97	 Pump/Diaphragm Heat Transfer/Inert Gas Monitoring 17 224600 	 EBR-II Loop B fission gas monitor loop - Weekly report 2-21-68 	MI 126	MI 59	MI 530	13,500	Operational monitors	 Diaphragm ruptured. Part replaced. None.
	199 1 •	 Pump/Rotor Bearings Turbine-Generator Units and Condenser Turbine Side 17 310000 	 EBR-II Turbine generator/nash pump 75 gpm, 100 psi PMMR-95 	MI 500	MI 52	MI 530	Unknown	Preventive maintenance	 Bearings worn out. Fart replaced. None.
		 Pump/Casing Turbine-Generator Units and Condenser/ Circulating Water System 17 330000 	 EBR-II Turbine Generator/nash pump 75 gpm, 100 psi PMMR-95 	MI 500	MI BZ	MI 530	Unknown	Preventive maintenance	 Oscillation caused scoring of rotor and casing. Local repair. Perform engineering study of problem and institute remedy before returning machine to service.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

~ _

FAILURE DATA FOR <u>PUMPS AND SUPPORTS</u> (Sheet 37 of 37)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		FAILURE INDEX CODE*			· ·	1. FAILURE DESCRIPTION				
ITEM	3. CODE: (Component) (Systèm/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
200	 Pump/Rotor Turbine-Generator Units and Condenser/ Circulating Water System 17 330000 	 EBR-II Turbine generator/nash pump 75 gpm, 100 psi PMMR-95 	MI 500	MI BZ	MI 530	Unknown	Preventive maintenance	 Oscillation caused scoring of rotor and casing. Local repair. Perform engineering study of problem and institute remedy before returning machine to service. 				
201	 Pump/Bearing Generator Units and Condenser/Circulat- ing Water System 17 330000 	 SCTI Circulating water system (P-2) 9000 gpm, 200 hp, 4160 V Incident report No. 21 	MI 500	MI 52	MI 530	2790	Direct observation	 Bearing worn out. Part replaced. Stock of factory sealed bearings is recommended. 				
202	1. Pump/Case 2. Heat Transfer/Pump 3. 17 221110	 Sodium pump tower Pump test loop 300 to 1200°F Personal communication C. W. Griffin 	МА	ΜΑ	MA	2677	Direct observation	 Erosion/corrosion of suction side of pump case. 410 series stainless steel pump was replaced with a 304 series. None. 				

TABLE <u>1-101</u>

- --- -

. _

.

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PUMPS AND SUPPORTS

	COMPONENT SUBTYPE	PUMPS,CONDE	NSATE	_									
			FAILURES (%)	0 1	0 20	0 3	0 4	0 5	0 6	0 70) 80	<u> </u>	<u>100</u>
	Nuclear Test Re												
PLANT TYPE	Component Test	Facility											
같다													
	Condensate							_	_				
Σ													
SYSTEM													
γ				4									
		· · · · · · · · · · · · · · · · · · ·											
	Bearing				1 2 1								
	Other		·····										
납				4									ľ
PA													
Ę				4									
COMPONENT PART				1							:		
MP													
<u>.</u>													
				1									
	Environmental												
ш Ш	Unknown			himme	_								
CAUSE													
ນັ 🛛													
	Mechanical						-						
щ	Unknown												
MODE													
~													
	Labor and mater	ial loss only											
5	System/compone												
EFFECT	Plant availability												
Ш		,,											
				1									

FAILURE DISTRIBUTION FUNCTIONS

- --

COMPONENT PUMPS AND SUPPORTS

	COMPONENT SUBTYPE <u>PUMPS</u> , FEEDW	FAILURES (%)	-0 1	02	0 3	30 4	0 5	06	0 70) 80) 9	0 100
Ŀш	Nuclear Test Reactor		_									
PLANT TYPE	Component Test Facility											
Ľ			<u> </u>			<u> </u>		<u> </u>				
	Steam, Condensate and Feedwater		_							·]		
	Piping and Equipment		-		Į							
TEM			-									
SYSTEM												
l °												
			-									
	Cylinder Packing		-	 		+	<u> </u>	 				
	Cylinder "O" Rings											
۲,	Bearings											
PAF	Other		_									
COMPONENT PART	Seal		-									
ONE			-									
MP												
Ŭ		·	_									
			-									
	Environmental					-						
ы	Impurity											
CAUSE	Human error							L				
	Unknown		-					Γ				
	Chemical		j.									
MODE	Mechanical							Ì –				
B	Unknown		-									
<u> </u>	Plant availability loss											
Ш <u></u>	Labor and material loss only					Ť	1		1			
EFFECT	System/component inoperative											
"	No effect		ſ									

.....

-

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT ______ PUMPS AND SUPPORTS

- -- --

	COMPONENT SUBTYPE	FAILURES (%) 0	10	2	0	30	40) 5	06	0 7	<u>0</u>	0 9	0 10
	Nuclear Power Reactor			8	_							+	
LNH LNH	Nuclear Test Reactor		,									1	
PLANT TYPE	Component Test Facility		•										
					<u> </u>								
	Heat Transfer				[+	_						
Σ													
SYSTEM												· ·	
SΥ													
					ĺ					ĺ			
				-:	<u> </u>		_		<u> </u>	i	<u> </u>	<u> </u>	<u> </u>
	Shaft												
	"O" Rings												
R1	Face Seals												
COMPONENT PART	Bearings												
N I	Piston Cup												
NE	Shaft Seal			1. • I	1		· .						
ЧЬС	Elastomer Seal		.										
õ	Impeller Weep Holes												
	Other						1						
	<u></u>												
	Environmental				<u> </u>		_			<u> </u>		Ţ	
ш	Impurity or contamination												
CAUSE	Human error									l	ł		
ບັ ບ	Inherent												
	Unknown								İ				
					<u> </u>				<u> </u>			<u> </u>	
	Mechanical			a a chuir a ch		-	_						
ш	Metallurgical		-						i		i i		
MODE	Reactivity Change Mechanism	P											
-	Other	P			ĺ					1	1	1	
									<u> </u>				
									1				
CT	Plant availability loss	_						ł					
EFFECT	Labor and material loss only			i				n			1		
Ξ	System/component inoperative		_							l	1		
					1	- 1			1	1	1	1	1

TABLE <u>1-104</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PUMPS AND SUPPORTS

	COMPONENT SUBTYPE PUMPS, ELECTRON	MAGNETIC AILURES (%) 0	10	20	30	4() 5	06	0 7	0 8	0 9	0 10
	Nuclear Test Reactor			Ĩ	Ť	Ť	<u> </u>	ř	ř	Ť	Г	Ĩ
ĮĘΨ	Nuclear Power Reactor		_	_								
PLANT TYPE	Component Test Loop											
Γ.	Component Test Hoop											
	Heat Transfer		-									
EM												
SYSTEM												
S												
	Cooling Water Jacket			•					I			
	Pumping Duct					•						
RT	Stator Coils											
COMPONENT PART	Electrode											
N I	Supports											
Ш	Jumper Wires											
ЪО	Other										· ·	
NO												
			1					L	<u> </u>	<u> </u>		
	Environmental		<u> </u>			_		-				
ш	Human error					ł						
CAUSE	Inherent		_		•							
CA	Natural phenomena		•									
	Unknown		•			1						
	Mechanical				•				Ī	1		
ω	Electrical		-	_								
MODE	Chemical				1							
2	Metallurgical		-									
									l			
	Labor and material loss			_								
CT	System/component inoperative							-				
EFFECT	No effect			•					1			
Ш	Caused damage to other component(s)		•						[
	Unknown		.	1								

LMEC-Memo-69-7, Vol I 1-292

.

TABLE <u>1-105</u>

-

÷ ...

.

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PUMPS AND SUPPORTS

(COMPONENT SUBTYPE	<u>SEAL</u> 5 (%) 0	10) 2() 3	0 4	05	06	0 7) 80	90	100	
	Nuclear Test Reactor	-											
ЪЧ	Component Test Facility	-											
PLANT TYPE													
-								L					
	Heat Transfer	•		_									
	Decay Heat Removal				_	—		1					
Σ													
SYSTEM												1	
SYS													
	······································												
											1		
							<u> </u>	<u> </u>					
	Shaft Freeze Seal												
	Other												
RT													
COMPONENT PART													
NT					-								
NE													
MPC													
CO CO													
							1	1					
	Environmental	-		المنصب وع			<u> </u>			_			
ш	Impurity/contamination												
CAUSE	Human error				•								
ð												1	
										1		ĺ	
						<u> </u>	ļ	1	<u> </u>		i		
	Electrical												
Щ	Mechanical			و بي المن الكر									
MODE	Metallurgical												
_							1						
						<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	l		
	Plant availability loss	þ¤		1 6 1			†	ŀ	1				
5	Labor and material loss only									}			
EFFECT	System/component inoperative	{	-										
ω					1		ł					İ	
						1	1	1	1	<u> </u>			

TABLE <u>1-106</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT PUMPS AND SUPPORTS

COMPONENT SUBTYPE PUMPS, MISCELLANEOUS

		FAILURES (%) () 1	02	0 3	04	0 5	0 6	0 7	0 8	09	0 10
PLANT TYPE	Nuclear Test Reactors Component Test Facility											
	Turbine Generator Units Other											
SYSTEM												
S												
	Bearings											
КТ	Case Other						 					
COMPONENT PART			4									
APONE												
CON			4									
	-			:								
	Environmental											
CAUSE	Human error Unknown			-		,						
Ű	· · · · · · · · · · · · · · · · · · ·											
	Mechanical	······································										
MODE	Unknown											
MC												
	Labor and material loss only											
EFFECT	System/component inoperative											
EFF	·											

LMEC-Memo-69-7, Vol I 1-294

.

.....

~ ~

GENERAL SUMMARY

	COMPONENT <u>PUMPS AND SUPPORTS</u> FAILURES (%) 0		10)	20	I	30		40	5	0	60	-	70	80	9	0	100
	Environmental	_	Ţ	• .			Ì		1					1	T	_		
	Impurity/contamination	-																
CAUSE	Human error		_															
AU	Inherent		-															ł
	Natural phenomena		-		•													
	Unknown																	
	Electrical		- [Т					1			Γ	
	Mechanical				_				-									
MODE	Metallurgical		-+															
Ň	Chemical																	
	Other								ſ									
	Plant availability loss						T		T			Ī					Ī	
H	Labor and material loss		_	1	_		_	_	_			_						
ECT	System/component inoperative		_		_	_												
EFFI																		
	Other																	
L	TOTAL FAILURES PER TYPE 0		10)	20)	30)	40	5	0	60)	70	80	9	0	100
	Pumps, condensate				T							1						
	Pumps, feedwater			1			-	-										
	Pumps, sodium - centrifugal, free surface		-+				_					-		+	-			
	Pumps, sodium - EM	ŝ			-		-		-									
	Pumps, sodium - freeze seal		-	Å										1				
	Pumps, miscellaneous		-															
																	1	
	OPERATING HOURS (THOUSANDS) 0		10	0	20	0	30	0	400	50	0	60	07	00	800) 9(00	1000
	Pumps, condensate		•											Τ				
	Pumps, feedwater		-1															
	Pumps, sodium centrifugal, free surface					-	-		-			-		+				
	Pumps, sodium EM	-	-															ļ
Ъ	Pumps, sodium freeze seal			1			-							1				
בׂ	Pumps, miscellaneous																	ł
											İ							
											L							
	FAILURE RATE (FAILURES/10 ⁶ hr) 0		50)	10	0	15	0.	200	2	50	30	0 3	50	40) 4	50	500
	Pumps, condensate	-						•										
	Pumps, feedwater	-	-+			-	-+	_	_					+	+	+	+	
	Pumps, sodium centrifugal, free surface	+	+	7		-	1											
	Pumps, sodium EM	+	-		-	-	-											
	Pumps, sodium freeze seal	+	-															
	Pumps, miscellaneous	-							-			+						
													1					
1																	1	

11. Rupture Discs

Failure data for rupture discs are presented in Tables 1-108 through 1-110.

a. Reliability Information

Design Feature:

Rupture disc for protection of steam generator sodium side from overpressure.

Critical Characteristics:

- 1) Controlled burst pressure after prolonged exposure to hightemperature sodium
- 2) Fatigue of assembly due to pressure and temperature cycling.

Mode of Failure:

- 1) Fatigue crack resulted from pressure or temperature cycling.
- 2) Sodium impurities migrated to crevices and corroded disc.
- 3) Long-term corrosion, decarburization, or other constituents attacked by sodium.
- 4) Long-term creep rupture.
- 5) Intergranular corrosion reduces strength.
- 6) Stress corrosion reduces strength.

Failure Description:

- 1) Leakage through fatigue crack
- 2) Leakage from excessive corrosion in crevices
- 3) Premature burst from reductions in ultimate strength or stress rupture life
- 4) Sodium spill from rupture.

Control Methods:

- 1) Design to eliminate fatigue failure.
- 2) Design to avoid crevices for collection of sodium impurities.

- 3) Maintain proper sodium purity level.
- 4) Protect from exterior contamination.
- 5) Replace rupture discs used in creep range at periodic intervals of equipment life.

Alternate Concepts:

Use cover gas in vessel and place rupture disc in gas area instead of sodium system.

b. Discussion and Recommendations

The particular rupture disc seal weld failure was typical of failures that occur in interim or hurried fixes. The original rupture disc installed did not incorporate a seal weld and consequently would not contain the sodium. An interim fix was initiated by making a seal weld at the flange joint. After about 5000 hours of operation time a leak was discovered during a routine inspection. The leak was described as a "pin-hole leak." No post-failure metallurgical evaluation was performed to definitely characterize this failure as to fatigue or poor weld quality. A pin hole would be characteristic of inclusions or porosity whereas a fatigue failure would be identified by a crack. Possibly a combination of both was the cause of the leak where a weld defect, resulting in a stress riser, initiated a low-cycle fatigue failure.

A heavier weld joint design was incorporated and has operated without incident for over three years. More weld metal in a seal weld will not necessarily correct a design problem and the later joint configuration may also fail in time due to temperature and pressure cycling.

Any motion of the retaining ring relative to the flange caused by pressure or thermal conditions must be resisted by the seal weld. An examination of joint component movements in any design must be made to verify that a nonstructural member such as a seal weld is not subjected to high cyclic stresses induced by relative motion of stiffer structural members.

TABLE <u>1-108</u>

FAILURE DATA FOR _______ RUPTURE DISCS

L DODE: DOREATING CONDITIONS 1 1. SOURCE DOCUMENT CAUSE MI MI MI DEFECTION 2. CORRECTIVE ACTION 1 1. Nappare Disc/Seal Weld 1. SOURCE DOCUMENT MI MI MI 11 1. A loak developed in a seal weld where the rupture disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing were welded to the face of disc and its support fing. 2 1. Steam and feedwater rupture disc 3. 221240 1. SCTI 2. Steam and feedwater rupture disc 3. 223 1. 1. 1. 2 2. Steam face for/Steam 3. 223000 1. Steam and feedwater rupture disc 3. 12 im, 125 psi # 5 at 950°F 1. 1. 1. 4. Incident report No. 93 3. 1. 1. 1. 1. 4. Incident report No. 93 3. 1. 1. 1. 5. 1.		2	. COMPONENT/PART . SYSTEM/SUBSYSTEM	1. FACILITY FAILURE IND 2. COMPONENT LOCATION CODE*		DEX			1. FAILURE DESCRIPTION	
 1 N. Weldt Observation Weldt Transfer/ Reactor Coolant Piping 2 1. Rupture Disc/Disc 2 1. Rupture Disc/Disc 2 1. Rupture Disc/Disc 2 1. Rupture Disc/Disc 3. 23 221240 2 1. Rupture Disc/Disc 3. 23 221240 2 1. Rupture Disc/Disc 3. 23 221240 4. Incident report No. 93 1. SCTI 2. Steam and feedwater rupture disc RD-2 3. 12 in., 125 psi ± 5 at 950°F 4. Incident report No. 98 1 I 1 1 520 1,150 1,150 1,150 1,150 1,150 1. A crack developed from the rupture disc into the support flange. 2. A double rupture disc assembly of all welded construction was designed, fabricated and installed. 3. None. 	ITE	M 3	(Component)		CAUSE	MODE	EFFECT	HOURS		
 2 1. Rupture Disc/Disc 2. Heat Transfer/Steam Generators 3. 23 3. 23 3. 12 in., 125 psi ± 5 at 950°F 4. Incident report No. 98 500 61 520 61 520 61 520 61 520 61 520 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 51 500 500 61 520 500 61 520 500 51 500 500 61 520 500 500 61 520 500 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 520 500 61 500 61 500 61 500 61 500 61 500 61 500 61 500 61 500 61 500 61 61 500 61<	1	1	Weld 2. Heat Transfer/ Reactor Coolant Piping 3. 23	 Secondary sodium system/steam generator 3. 				5,302		disc and its support ring were welded to the face of of the support flange. 2. Part replaced.
	MEC-Memo-69-7.		 Heat Transfer/Steam Generators 23 	 Steam and feedwater rupture disc RD-2 12 in., 125 psi ± 5 at 950°F 		I		1,150	Direct observation	support flange. 2. A double rupture disc assembly of all welded con- struction was designed, fabricated and installed.

TABLE _1-109___

-

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT RUPTURE DISC

- ----

.

	COMPONENT SUBTYPE RUPTURE DISC	FAILURES (%)	D 10	0 2	0 3	0 4	0 5	0 6	0 7	0 8	<u>) 90</u>	100
PLANT TYPE	Component Test Facility		1									
SYSTEM	Heat Transfer											
COMPONENT PART	Seal Weld Disc											
CAUSE	Environmental Unknown											
MODE	Metallurgical											
EFFECT	Plant availability loss											

÷

GENERAL SUMMARY

	COMPONENT RUPTURE DISC FAILURES (%) 0	1	0	2	0	30)	40	5	0	60	7	0	80	90)];	00
	Environmental	-	Ĕ	2	Ĺ	Ĵ		Ť			Ť			Ť	Ĥ		ĩ
	Unknown																
ш																	
CAUSE																	
U U																	
			ŀ														
[F			-					╈						5
	Metallurgical																
MODE			Ì														
₽ ₩																	
								<u>+</u>			<u> </u>				_		1
	Plant availability loss					-		+									-
EFFECT																	
Ш																	
						1											
	TOTAL FAILURES PER TYPE 0]	1	í	2	3		4		5	6	-	7	8	9		10
	Rupture disc	-	_								1						
[
					1												
									İ								
	OPERATING HOURS (THOUSANDS) 0	3	1	2	,	3		4	5	5	6	7	,	8	9		10
ł	Rupture disc 6452	_	_			Í		Ť			Ĵ.			Ť	Ť		Ī
ľ																	
щ																	1
ТҮРЕ																	
			ĺ														
															[
	<u> </u>																
	FAILURE RATE (FAILURES/10 ⁶ hr) 0				L	L				_					ł		_
		$\frac{10}{10}$	00	20	0	30	<u>0</u>	<u>400</u>	50	0	<u>600</u>	70	10	<u>800</u>	90	$\frac{0}{1}$	<u>0</u> 00
	Rupture disc						'										
	· · · · · · · · · · · · · · · · ·																
	<u>۱</u>																
																	1
	· · · · · · · · · · · · · · · · · · ·																
	h																
						1			1 1	- 1	1	1	- 1		1	1	1

12. Steam Generators

a. Introduction

The steam generator types for which failure data are considered in this section include four sodium-water designs and three water-water designs. A total of 40 incidents (49 failures) were collected and listed in Table 1-111.

The failures were evaluated with respect to failure cause, mode, and effect. The results of this evaluation are summarized in Tables 1-112 and 1-113.

b. Summary of Tabulated Data

The "Plant Type" section of Table 1-112 shows that approximately 80% of the steam generator incidents collected occurred in liquid metal facilities; the remainder (20%) occurred in water facilities. This distribution is a result of information availability and should not be used for a reliability comparison between liquid metal - water steam generators and water-water steam generators.

The "Component Part" section of Table 1-112 shows that tubes, tube-sheet welds, and manifold gaskets account for 88% of the steam generator failures. Individually, tubes, tube-sheet welds, and manifold gaskets accounted for 37%, 29%, and 22% of the failures, respectively. Pressure drop devices, manway flanges, shells, and steam generator instability accounted for the remainder (12%). From this failure distribution it is apparent that any upgrading of tube or tube-sheet weld reliability would significantly improve steam generator reliability. Although the manifold gasket failures were numerous, these failures were associated with only one facility, and therefore are not as generally important as tube or tube-sheet weld failures.

The "Cause" section of Table 1-112 shows the proportion of failures associated with each cause. As can be observed, the most frequent cause (71%) is "Unknown." This is unfortunate since, if the cause of the failure is unknown, the chance of a repair being truly successful is doubtful.

Of the failures with known causes, about 50% were "Environmental,"14% were "Impurity/Contamination," and 36% were "Inherent." All tube failures were considered to be failures from environmental causes, including damage from hydraulically induced vibrations, erosion from high coolant velocities, and operational instability from boiling in the feedwater downcomer tubes. These problems were corrected by installing flow baffles and pressure drop devices to modify unfavorable flow characteristics and installing tube supports to prevent damaging tube vibrations.

June 30, 1970

Tubes and pressure drop devices accounted for all the failures caused by impurities or contamination. Tube failures resulted from caustic stress corrosion due to improper water chemistry, and pressure drop device failure resulted from unsatisfactory operation due to small-scale particle contamination. The tube problem was corrected by improving the water treatment to eliminate boiler water alkalinity, and the pressure drop device problem was corrected by cleaning the devices.

Tubes and manway flange accounted for all the inherent failure causes. Tube failures were caused by stress corrosion from residual alkaline cleaning solution, poor workmanship during tube fabrication, improper stress relief, and an installation accident. Improved cleaning procedures were developed to preclude stress corrosion failures from residual cleaning agents. The manway flange failure was caused by inadequate flange design. The flange was reworked and modified to prevent this failure from happening again.

The "Mode" section of Table 1-112 shows the proportion of failures associated with each failure mode. Of the modes observed, 59.2% were "Metallurgical -Physical," 28.5% were "Other," 6.2% were "Mechanical," and 6.1% were "Metal Corrosion." All of the failures which failed by the metallurgical-physical mode were either tubes or tube-sheet welds; the manway flange was the only exception.

The manifold gaskets and the feedwater downcomer tubes accounted for all of the failures listed under the "Other" classification. The manifold gasket failures were undiagnosed and the exact modes of failure are not known. The feedwater downcomer tubes failed by exceeding temperature operating limits.

Tubes and pressure drop devices accounted for all mechanical mode failures. Tubes failed by breaking and fragmentation when they sustained hydraulically induced vibrations, and by distortion when the steam generator was accidently dropped. The pressure drop devices failed by movement obstruction when satisfactory seating could not be achieved due to small-scale particle interference.

Tubes and shell accounted for all metal corrosion mode failures. Tubes failed by stress corrosion and the shell failed by corrosion undiagnosed as to type.

The "Effect" section of Table 1-112 shows the proportion of failures associated with each plant effect. Of the effects observed, 81.6% resulted in a plant availability loss, 12.3% resulted in acceptable incipient damage, 4.1% resulted in potential damage to equipment, and 2.0% resulted in a labor and material loss only. From these figures it is apparent that the great majority of steam generator failures result in significant plant availability loss.

LMEC-Memo-69-7, Vol I

June 30, 1970

1-302

c. Discussion

The following section describes steam generator designs and discusses their failures.

Fermi

The Fermi steam generators (Figure 1-21) are vertical, combination cross and counterflow, single-wall-tube, shell-and-tube, once-through-type heat exchangers, with water and steam inside the tubes and sodium on the shell side.

In the event of a tube failure, a sodium-water reaction will take place. A relief system and an isolation system are provided to minimize possible damage from this reaction. The large quantities of hydrogen gas evolved from a reaction would increase the cover gas pressure over the sodium inside the steam generator. At 60 psig a 24-in.-diameter rupture disk will open up and the gas and reaction products will be relieved through a 30-in. vent pipe to the atmosphere. The isolation system is designed to isolate the steam generator from the feed-water and steam systems and open dump valves to permit the steam and water inside the tubes to vent to the atmosphere. The relief system opens a cover gas vent valve to the atmosphere. This system is actuated by high cover gas pressure, one of two detectors attached to the rupture disk, or by a manually operated switch in the control room. The argon cover gas over the sodium is analyzed by a gas chromatograph and by a thermal conductivity instrument. Both are recorded in the control room.

Three cases of steam generator tube failure occurred at Fermi. Tube cracks resulted in leakage during a hydrotest. Metallographic examination of the cracked tubes disclosed that the tubes failed as a result of stress corrosion cracking. The cause of stress corrosion was attributed to the omission of stress relief after tube bending during fabrication, and to the incomplete removal of the alkaline agent used to clean the tubes. The unit was completely retubed, stress-relieved, and then returned to service.

A failure due to tube wear resulted in a sodium-water reaction. Examination of the damaged tubes showed that the failures had been caused by wear due to vibration and attendant impacting of the tubes in the support bars. The vibration was induced in the tubes by the sodium flow. The tube damage was limited to the steam risers and the uppermost bend sections where the tubes make the first horizontal pass through the inner support bars. The support bar clearances were

June 30, 1970

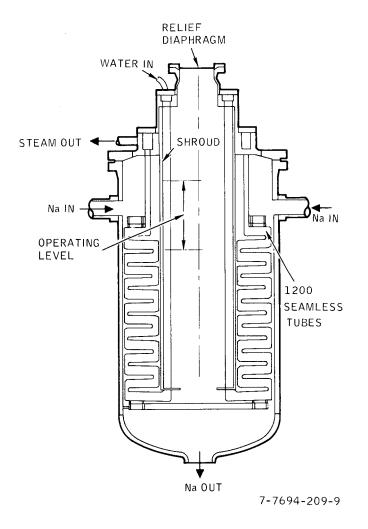


Figure 1-21. Fermi Steam Generator

relatively large and the tubes apparently were worn thin due to vibration-induced impacting and rubbing of the tubes against the support bars. Several tubes were severed completely. These tubes caused considerable rubbing damage to adjacent tubes. The unit was repaired and flow impingement baffles and tube lacing clips were installed on all units to preclude similar failures.

In another failure event, tube leaks resulted in a sodium-water reaction. The cause of the failure is unknown. The tubes were repaired and the unit was returned to service.

Fourteen water and steam tube-to-tube-sheet weld failure incidents occurred, some of which resulted in sodium-water reactions. The nature of the leaks at the seal welds was generally found to be that of pinholes, probably caused by oil or dirt deposits in the tube-to-tube-sheet joints. A weld procedure was devised to repair the tube-to-tube-sheet welds. The process appears to yield satisfactory results based on a borescope inspection of the welds.

Only the failure due to hydraulically induced tube vibration (of approximately nine incidents) had an attendant sodium-water reaction which was serious enough to actuate the relief and isolation systems. The systems functioned properly to limit the reaction.

During this incident the hydrogen recorder measured increasing amounts of hydrogen in the cover gas for at least 20 min prior to the bursting of the rupture disk. Almost simultaneously with action taken to dump water from the steam generator tubes, the rupture disk burst, releasing hydrogen and other reaction products to the atmosphere. Rupture of the disk indicated a cover gas pressure of 64 psig; normal cover gas pressure is 4 psig.

The sodium-water reactions which accompanied the remainder of the incidents were discovered with cover gas hydrogen gas concentration detectors and terminated while the reactions were still at a low level.

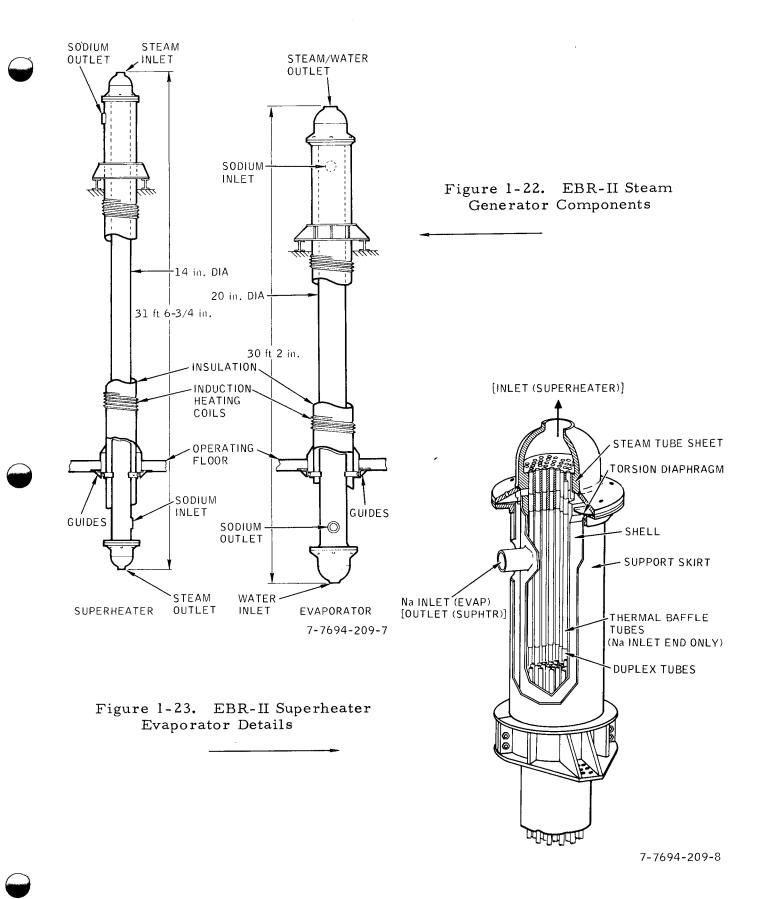
Nine water and steam manifold gasket failures occurred. The causes of these failures are unknown; however, hardness tests of several gaskets showed values higher than expected for soft annealed iron. The steam generators were repaired by replacing the leaking gaskets with annealed gaskets.

Three cases of steam generator operational instability occurred. These instabilities have been attributed to boiling in the downcomer tubes. Restriction of

> LMEC-Memo-69-7, Vol I 1-305

June 30, 1970

the operating parameters to limit the preheat area reduced this problem. In addition, poppet-type orifices were installed in the inlets of the water downcomer tubes to increase the pressure drop, provide more even water distribution to all tubes, and, hopefully, eliminate the instability altogether. Considerable tuning of the control system was necessary before efficient operation was achieved.


One case of a pressure drop device (poppet-type orifices) failure was encountered. Inspection of the devices showed that several were held off the valve seats by small-scale particles.

EBR-II

The EBR-II steam generator system consists of a natural-circulation evaporating section, a conventional steam drum, and a once-through superheating section. The evaporating section is comprised of eight identical shell-and-tube heat exchangers connected in parallel on the tube side to a horizontal steam drum with internal moisture separation. Dry saturated steam leaves the top of the steam drum and flows downward to what, in the original design, were four identical shell-and-tube superheater units in parallel. However, the superheaters were not completed and two evaporators were modified and substituted.

The external design of the evaporators and superheaters is shown in Figure 1-22. The internal details are shown in Figure 1-23. Both evaporator and superheater shells are constructed of 2-1/4 Cr - 1 Mo steel.

A routine inspection of the steam generators while the plant was shut down in October 1964 for control rod repairs disclosed the presence of water in the space between the sodium and water upper tube sheets in evaporator No.702. Subsequent testing confirmed that a leak existed in the water-side tube sheet of one of its contained tubes. The interconnecting pipe between the evaporator and the steam drum was removed, giving access to the water side of the tube sheet. The air side of the tube sheet was pressurized and bubble-testing pinpointed the location of the leak. A pinhole in a weld crater of a machine-made tube-to-tubesheet weld was discovered. Since it was accessible, the weld was partially ground out and manually rewelded without having to remove the evaporator. A subsequent helium mass spectrometer leak test showed the repair to be successful. The riser pipe was then rewelded into the system, and the plant was prepared for further operation.

LMEC-Memo-69-7, Vol I 1-306a

June 30, 1970

SCTI Alco/BLH

The Alco/BLH steam generator (Figure 1-24) is of the vertical once-through type. The unit is 45 ft long and 32 in. in diameter. The sodium enters the shell at the top of the unit, passes through 54 disk-and-doughnut baffles in the shell, and leaves at the bottom shell nozzle. The nozzle courses of the shellare thicker (1-1/8 in.) than the main body (7/16 in.) to accommodate the thrusts and moments applied by the piping to the shell nozzles.

The shell side is designed to operate with a free sodium surface in the region just above the weir baffle. The relatively large gas space between the sodium surface and upper tube sheet is provided to ensure that the upper tube sheet is not subjected to rapid temperature fluctuations resulting from the severe transients that occur in the sodium. The lower tube sheet is protected from such temperature changes by a thermal baffle which consists of ten 1/4 in. stainlesssteel plates spaced 1/8 in. apart. Both tube sheets are 6-5/8 in. thick.

Inconel cladding is provided for all steam generator surfaces contacted by water or steam to minimize the effects of chloride stress corrosion on austenitic stainless steel. The shell heads and tube sheets are clad using Inconel weld metal in multiple layers. The tubes are bimetallic; i.e., Type 316 stainless steel on the sodium (shell) side and Inconel on the steam side. The two materials are metallurgically bonded by coextrusion to act as a single-wall tube.

Great care was required during assembly of the steam generator to maintain the integrity of the cladding. Differential thermal expansion between shell and tubes is accomplished by the sine-wave bends incorporated in the upper end of the tubes. There are 360 tubes, 1/2 in. OD by 0.104-in. wall, in the unit.

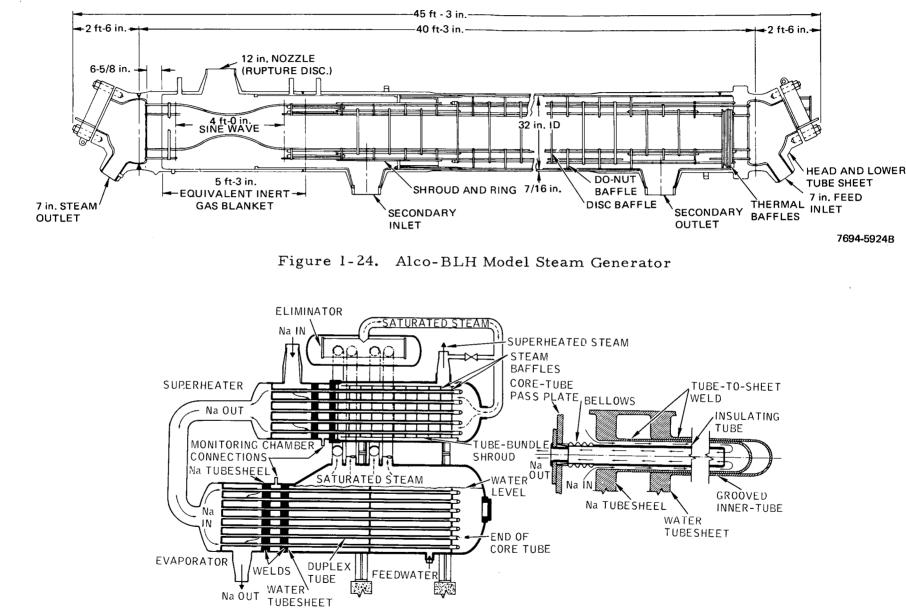
To protect the shell in the event of a steam tube rupture with accompanying sodium-steam-water reaction, a separate nozzle equipped with a double rupture disk has been provided in the gas space of the unit. A separate disk assembly is also incorporated in the first tee at the sodium outlet. The rupture disks are connected to tanks maintained under inert atmosphere which serve to contain the reaction products that are ejected from the steam generator.

Two cases of tube failure, one case of tube-to-tube-sheet weld failure, a manway flange failure, and a shell failure were observed. After each failure except the last, the steam generator was repaired and returned to test. The causes of all the failures, except the manway flange, are unknown. The manway flange failed because of inadequate flange design.

June 30, 1970

During both cases of tube failure the resultant sodium-water reaction was of such low level that the relief and isolation systems were not required. The failures were detected by sensing (1) hydrogen gas concentration and (2) humidity in the cover gas. Upon detection of these conditions, manual shutdowns were effected and the steam generator was secured in each case.

Hallam


The Hallam steam generators are natural-circulation, horizontally mounted units composed of an evaporator, a steam drum, and a superheater (Figure 1-25). Sodium in the evaporators and superheaters is contained in reentrant thimbles. Hot sodium enters down a thermally insulated central tube, reverses flow at the end of the tube by impinging on an end cap on the outer tube, and flows back toward the inlet in an annulus between inner and outer tubes. Heat is lost by evaporating and superheating steam in contact with the outside of the outer tubes. The outer double-wall tube contains helium passages between the inner and outer portions, and inner and outer sections are swaged together for maximum heat transfer. Leaks in inner or outer sections produce a change in helium pressure. The use of double-walled bayonet tubes reduces thermal stresses.

Two unusual fabrication techniques are automatic butt welding of tube sheets and tube caps and two-way ultrasonic testing of tubes. It is estimated that doublewall construction and the leak-monitoring system triple the cost.

Volatile chemicals are used to aid in maintaining low boiler solids. The use of high solids concentration in boiler water comparable to conventional boiler practice would result in plugging of the orifice-type baffles in the superheater.

Three cases of steam generator tube failure occurred. A weld crack in the superheater center tube end cap resulted in an increase in third fluid pressure. A radiograph of the weld region showed a mechanical interference between the inner tube end cap and the outer tube cap weld. The tube was rewelded, stressrelieved, and the unit returned to service.

A crack in the evaporator tube 18 end cap weld was visually detected when the tube bundle was removed from the natural circulation shell so that it could be installed in the kettle-type evaporator shell. The tube was rewelded and stress-relieved and the tube bundle installed in the kettle-type evaporation shell. The cause of this failure is unknown.

7-7694-209-5

Figure 1-25. Hallam (SGR) Steam Generator

LMEC-Memo-69-7, 1-306d

Vol I

June

30,

1970

Cracks in four evaporator core tube welds were detected when sodium was found in the annulus of one bellows-type core tube during a destructive examination. All of the cracks observed were attributed to the additive effects of metallurgical, mechanical, and thermal factors. Metallurgical factors include the existence of a weld metal quite different from the parent metal and the lack of heat treatment before and after welding. Mechanical factors involve stress concentrations imposed by laps in the weld head and the drastic change in the crosssection of the material at the weld. Thermal considerations concern the stresses imposed by heating and cooling during welding, differential thermal expansion of the different weld and base materials, and the operating thermal gradients and temperature cycling during the transient testing.

Dresden

Four cases of steam generator tube failure have occurred at the Dresden facility. All of the failures were in the secondary steam generators.

San Onofre

Two cases of steam generator tube failure have occurred at the San Onofre facility. Tube deformation was the result of an accident; the unit was dropped during installation and sustained some minor damage. The unit was subsequently put into service without any repairs. Tube leaks were detected in this same unit during operation; however, it has operated for some time without tube problems.

Shippingport

The steam generators are shell- and tube-type units in which reactor coolant inside the tubes heats secondary water in the shell. Both straight and U-bend generators were used.

The two straight-tube heat exchangers each contain 2096 stainless steel tubes, 31 ft long with 1/2-in. outside diameter. These tubes are rolled and welded into a stainless steel tube sheet and are enclosed by a stainless steel shell 43 in. in diameter. The ends of the heat exchanger portion of the unit have hemispherical heads of stainless steel with 18-in. pipe connections.

The two U-bend heat exchangers each contain 921 stainless steel tubes having a length of 50 ft and an outside diameter of 3/4 in. Rolled and welded into stainlessclad carbon-steel tube sheets, these are enclosed by a U-shaped shell 38 in. in diameter. The ends of the heat-exchanger portion of the unit have hemispherical

> LMEC-Memo-69-7, Vol I 1-306e

June 30, 1970

·

.

.

.

carbon-steel heads. Internal surfaces of these heads, as well as the face of the tube sheet in contact with coolant water, are clad with stainless steel.

Four cases of steam generator tube failure have occurred at the Shippingport facility. The causes of these failures were attributed to steam blanketing, caustic stress corrosion, wall thinning, and thermal expansion heading to tube wear. These conditions were corrected by adding two steam risers to the heat exchangers, improving the water chemistry, and installing a flow blocking plate.

The principal investigator of this subject was J. M. Blanco. If additional information regarding steam generator failure experience is required, contact J. M. Blanco, E. Ferguson, or G. S. Budney at LMEC.

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Steam Generator/Tube to-Tube Sheet Joint Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Sodium (shell) side: 1000°F, 175 psig Water (tube) side: 900°F, 1000 psig NAA-SR-12534 	MA 277	MA 92	MA 136	13,000	Dye penetrant and bubble tests	 Possible chemical attack, with thermal cycling flow instability as a contributing factor, result tube damage and leakage of water into sodium. Nicrobraze No. 180 overlay deposited over orig welds. None.
2	 Steam Generator/Tube to-Tube Sheet Joint Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Sodium (shell) side: 1000°F, 175 psig Water (tube) side: 900°F, 1000 psig NAA-SR-12534 	MA 277	MA 92	MA 136	13,000	Dye penetrant and bubble tests	 Possible chemical attack due to foreign materia thermal cycling as a contributing factor, result water-to-sodium leakage in seal weld area. Internal bore weld through tube wall. Field rep 3. None.
3	 Steam Generator/ - Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Sodium (shell) side: 1000°F, 175 psig Water (tube) side: 900°F, 1000 psig NAA-SR-12534 	MA 197	MA 58	MA 123	13,000	Sodium outlet temper- ature oscillations on monitors	 Boiling in a large number of downcomer tubes. Installed feedwater flow orifices to increase pr drop between water and steam manifolds. None.
4	 Steam Generator / - Heat Transfer/Steam Generator 40 223100 	 HNPF Secondary sodium system Water (shell) side: 550°F, 1000 psig Sodium (tube) side: 950°F, 100 psig NAA-SR-12534 	P 253	P 51	P 133	13,000	Plugging meter	 Sodium plugging temperature increase gave ris hypothesis that hydrogen being generated by an water reaction was diffusing through the tubes a the sodium. None. None.
5	 Steam Generator/Tube- to-Tube Sheet Weld Heat Transfer/Steam Generator 40 223100 	 EBR-II Secondary sodium system 800°F and 1500 psig on water side NAA-SR-12534 PMMR-16 	MA 454	MA 59	MA 136	1200	Routine inspection	 Faulty tube-to-tubesheet machine weld resulted water leakage into air space between sodium ar water tubesheets. Weld partially ground out, then manually rewel and helium leak checked. None.
6	 Steam Generator/Tubes Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Sodium (shell) side: 1000°F, 175 psig Water (tube) side: 900°F,1000 psig NAA-SR-12534 	MA 479	MA 94	MA 136	Unknown	Pressure test	 Stress corrosion cracking, attributed to residu cleaning solution containing sodium hydroxide, resulted in water leakage into sodium. Units retubed and partially stress relieved. None.

FAILURE DATA FOR <u>STEAM GENERATORS</u> (Sheet 1 of 15)

TABLE ______

6

TABLE 1-111

FAILURE DATA FOR ______ GENERATORS

(Sheet 2 of 15)

June 3		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
30, 1970	1 12	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	7	 Steam Generator/Tube- to-Tube Sheet Joint Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Sodium (shell) side: 1000°F, 175 psig Water (tube) side: 900°F, 1000 psig NAA-SR-12534 	MA 197	MA 59	MA 136	350	Gas chromatograph	 Hydraulically induced tube vibration caused tube cracking and resultant water leakage into sodium. Baffle placed in front of sodium inlet nozzle and tubes laced at two elevations on the outer vertical section. None.
LMEC-	8	 Steam Generator/Tube- to-Tube Sheet Welds Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Sodium (shell) side: 1000°F, 175 psig Water (tube) side: 900°F, 1000 psig NAA-SR-12534 	MA 277	MA 92	MA 136	8760	Dye penetrant inspection	 Oil and dirt deposits on joints reacted to form pits. Pits and flaws were ground out and rewelded. None.
LMEC-Memo-69-7, Vol I 1-308a	9	 Steam Generator No. 2/ Tubes Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Preoperational pressure test NAA-SR-12534, 11/1/67 TI-095-14-009, 8/29/69 	I 479	I 94	I 520	None	Pressure test	 During preoperational testing extensive stress corrosion cracking was discovered in the tubes of one of the steam generators. This was caused by salts remaining in the tubes after a cleaning operation at the manufacturer's facilities. In addition, several manufacturing defects were discovered: (1) One tube was carbon steel instead of Croloy, (2) one tube had a defect that penetrated the tube wall, and (3) one tube had a lap defect. The corroded generator was retubed and all three generators were stress relieved by circulating hot argon through the shell. Upgrade chemical process control.
	10	 Steam Generator No. 1 Tubes Heat Transfer/Steam generator 40 223100 	 Fermi Secondary sodium system Isothermal operation at 470°F NAA-SR-12534, 11/1/67 EF-8, 4/64 	I 127	I 59	I 520	350	Cover gas hydrogen detector	 A sodium-water reaction occurred during initial operation of the unit in 1962. The leak detection, reaction relief, and isolation and dump systems operated satisfactorily to contain and terminate the reaction. The failure resulted from tube vibration opposite one of the sodium inlets. Subsequent water tests on a tube bundle confirmed that installing impingement baffles and tube lacing clips would be adequate to reduce vibration damage, four of the tubes in the reaction area exhibited pressure failures (resulting from corrosion and thinning caused by the reaction products). The tube bundle was removed and cleaned in ethyl alcohol. This was the first removal of sodium and sodium-water reaction products from such a large piece of equipment. The damaged area was retubed. Upgrade chemical process control.

	TABLE	1-111
--	-------	-------

June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
30, 1970	ITEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	11	 Steam Generator No. 2 Water Manifold Tube Sheet Steam Manifold Tube Sheet Welds Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Unit was being cut into the mainten- ance cooling loop EF-16, 12/64 	I 500	I 61	I 520	Unknow	n Cover gas hydrogen detector	 Unit was manually isolated when the cover gas hydro- gen concentration increased rapidly to 400 ppm. The rate of increase was 21 ppm/min. Bubble and dye penetrant tests were used to locate defects. A total of 28 seal welds joining the tubes and tube sheets were repaired. Additional research and development required.
LMEC-Memo-69-7, 1-308b	12	 Steam Generator No. 3/ Water Manifold Tube Sheet Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system Out of service for inspection EF-30, 2/66 	I 500	I 6I	I 520	Unknown	Bubble Test	 Tests conducted on the tube bundle indicated a leak rate increase to 335 cc/day compared to an earlier leak rate of 65 cc/day. The tube sheet was cleaned with aluminum oxide and the tube sheet welds were dye-penetrant tested. Nine small cracks and 276 flaws were found in the welds. The cracks were ground out and repaired with 2 l/4 Cr - 1 Mo filler metal, using inert arc. The flaws were repaired by nicrobrazing. Additional research and development required.
Vol I	13	 Steam Generator No. 1/ Water Manifold Gasket Heat Transfer/Steam Generator 40 223100 	2. Secondary sodium system	I 500	I BZ	I 520	Unknown	Unknown	 Water manifold gasket leaked. Gasket was replaced. Materials: select for the enviroment.
	14	 Steam Generator No. 3, a. Water Manifold Tube Sheet b. Steam Manifold Tube Sheet 2. Heat Transfer/Steam Generator 3. 40 223100 	 Fermi Secondary sodium system In service EF-32, 4/66 	I 500	I 61	I 520	Unknown	Cover gas hydrogen detector	 An increase in the hydrogen concentration of the cover gas was detected. Mass spectrometer and bubble testing revealed two ligament cracks in the water manifold tube sheet and one suspected leaking tube in the steam manifold tube sheet. The ligament cracks were ground out and welded and the two tubes bridged by the crack were plugged. The sus- pected tube in the steam manifold was also plugged. Both tube sheets were also completely dye-penetrant checked. Additional cracks in the seal welds of the inner row of the water manifold will be counterbored to remove the old seal welds and will be rewelded. The ligaments between these tubes were reinforced by additional weld material. The pitted welds found by the dye-penetrant check were overlayed with Nicrobraze. This amounted to several hundred tubes.

FAILURE DATA FOR ______

(Sheet 3 of 15)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

3. Additional research and development required.

FAILURE DATA FOR ______STEAM GENERATORS

(Sheet 4 of 15)

J ITEM	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
15 I.MEC. Memo	 Steam Generator No. 1/ Water Manifold Tube Sheet Steam Manifold Tube Sheet Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system In service EF-33, 5/66 	I 500	I 61	I 520	Unknown	Cover gas hydrogen	 An increase in cover gas hydrogen concentration was detected. Tests conducted on the unit revealed increased leakage compared to previous results. A total of 898 tube end repairs were made to the unit which consisted of the following: (a) 567 tube welds overlayed with Nicobraze, (b) 331 tube ends were repaired with 2-1/4 CR - 1 Mo filler material, (c) 4 tubes plugged. The pitted welds found by dye- penetrant check were overlayed with Nicobraze. The remaining defective welds were repaired using 2-1/4 Cr - 1 Mo filler material and the tungsten inert gas technique. All inner row tubes in the water inlet tube sheet were counterbored and rewelded adding 2-1/4 Cr - 1 Mo filler rod. Additional research and development required.
mo 66-7 Vol I		 Fermi Secondary sodium system In service EF-33, 5/66 	I 500	I 61	I 520	Unknown	Cover gas hydrogen	 A steady increase of hydrogen leakage into the cover gas was observed over a period of time. Consequent it was decided to remove the manifold covers for investigation and necessary repairs. Bubble testing revealed two tube weld leaks in the water manifold tube sheet. Dye penetrant checking showed an additional 164 questionable welds of which 11 appeared to have flaws. A total of 179 tube end welds were repaired by counterboring out the welds and rewelding with 2-1/4 Cr - 1 Mo filler rod. Bubble testing after repairs was satisfactory. Additional research and development required.
17	gasket	 Fermi Secondary sodium system In service EF-34, 6/66 EF-35, 7/66 	I 500	I BZ	I • 520	Unknown	Unknown	 Steam manifold cover gasket leaked. Steam manifold cover gasket was replaced. Materials: select for the enviroment.

						(Sh	eet 5 of 15)	
June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAİL	LURE IN CODE*				1. FAILURE DESCRIPTION
30, 1970	ITEM	2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	RCE DOCUMENT CAUSE MODE EF		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
LMEC-Memo-69-7, 1-308d	18	Sheet	 Fermi Secondary sodium system In service EF-36, 8/66 	I 500	I 61	I 520	Unknown	Unknown	 The unit was taken out of service for tube-to-shell- side leakage. A pressure test revealed a nitrogen leak rate of 430 cc/day. Three leaks were found in the water manifold tube sheet by means of bubble testing. Two were tube weld leaks which were repaired by removing the defect area and refilling with 2-1/4 Cr - 1 Mo welding rod using the inert arc technique. One of the leaks appeared just below the weld in the tube roll. This tube was plugged. Both tube sheets were completely dye-penetrant checked. This revealed a number of weld defects in the water manifold most of which were in nicobraze overlays that were applied during the last repair period. Repairs were made by re- moving the nicobraze and rewelding with 2-1/4 Cr - Mo filler rod. Additional research and development required.
69-7, Vol I 8d	19	 Steam Generator No. 2, Water Manifold Tube Sheet Heat Transfer/Steam Generator 40 223100 	 Secondary sodium system In service 	I 500	I 61	I 520	Unknown	Unknown	 Water manifold tube sheet leak. Tube welds in the water side manifold were repaired. Bubble testing and nitrogen pressure testing showed the unit to be leak tight. Additional research and development required.
	20	 Steam Generator No. 3/ Water Manifold Gasket Heat Transfer/Steam Generator 40 223100 	 Fermi Secondary sodium system In service EF - 37, 9/66 	I 500	I BZ	I 520	Unknown	Unknown	 Water manifold gasket leak. Water manifold gasket was replaced. Materials: select for the environment.
	*	= INCIDENT	MI = MINOR MALFUNCTION	.I	1	L		l	L

.

FAILURE DATA FOR ______ STEAM GENERATORS

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE _____

TABLE 1-111

FAILURE DATA FOR STEAM GENERATORS (Sheet 6 of 15)

June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
30, 1970	M	 STSTEM/SUBSTSTEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
21 LMEC-Memo-69-7, Vol I 1-308e	2	Sheet Steam Manifold Tube Sheet 2. Heat Transfer/Steam Generator 3. 40 22310	 Secondary sodium system In service EF - 42, 2/67 EF - 43, 3/67 EF - 44, 4/67 EF - 45, 5/67 EF - 47, 7/67 Image: Secondary sodium system 	I 500 I 500	I 61 I BZ 61	I 520 I 520	Unknown	Unknown Cover gas hydrogen detector	 Both water and steam manifold tube sheets have been tested for leaks. Two leaking tube end welds were found in the water manifold in the inner tube row. The water side manifold was also dye-penetrant checked. Seven additional tube end welds were found to have questionable defects. Four tube end welds were trepanned as part of a metallographic study to determine the nature of the weld failures. A welding technique developed by Foster-Wheeler Corporation was used on this unit in an effort to eliminate the problem of leaking tube joints. This method employs a special welding head which is inserted into a steam generator tube, and using the tungsten inert gas method, fusion welds the tube to the tube'sheet. Internal bore welding of the tube-to-tube-sheet joints in the water side tube sheet of the unit was completed. A total of 1184 tube welds were plugged. Leak testing of the unit after repairs were completed was satisfactory. The water manifold tube ends on steam generators 2 and 3 will be welded using the internal bore welding technique. Additional research and development required. An increase in hydrogen concentration in the shell side cover gas on steam generator No. 1 indicated tube-to-shell-side leakage. The unit was dismantled as a result of water and steam manifold gasket leaks as well as tube leaks. Subsequently, three tube leaks were found. Two tubes (No. 112-3 and No. 150-1) was leaking approximately 10 to 10-1/2 ft below the top of the steam manifold tube sheet. The distance was determined by installing a plastic hose with a valve over the defective steam tube. The shell of the steam generator was pressurized with nitrogen to 38 psig which passed through the valve at an ultrasonic velocity. The ultrasonic frequency changed while the water level was maintained either above or below the leak. The unit was repaired.

		1-1	. 1	1	
TAE	BLE.		_		

FAILURE DATA FOR STEAM GENERATORS (Sheet 7 of 15)

June 30,		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
30, 1970	ITEM	 STSTEM/SUBSTSTEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	23	b. Steam Manifold Gasket 2. Heat Transfer/Steam	 Fermi Secondary sodium system Pressure test of steam side with water EF - 61, 9/68 	I 500	I BZ	I 520	Unknown	Visual	 Water and steam manifold gasket leaks were experi- enced on the unit. Hardness tests of the gaskets showed values higher than expected for soft annealed iron. Water and steam manifold gaskets were replaced with annealed gaskets. None.
LMEC-M		 b. Steam Manifold Gasket 2. Heat Transfer/Steam 	 Fermi Secondary sodium system Pressure test of steam side with water EF - 61, 9/68 	I 500	I BZ	I 520	Unknown	Visual	 Water and steam manifold gasket leaks were experi- enced on the unit. Hardness tests of the gaskets showed values higher than expected for soft annealed iron. Water and steam manifold gaskets were replaced with annealed gaskets. None.
LMEC-Memo-69-7, Vol I 1-308f	25	 Heat Transfer/Steam Generator 	 Fermi Secondary sodium system Pressure test of steam side with water EF - 61, 9/68 	I 500	I BZ	I 520	Unknown	Visual	 Water manifold gasket leak was experienced on the unit. Hardness test of the gasket showed values higher than expected for soft annealed iron. Water manifold gasket was replaced with annealed gasket. Materials: select for the environment.
11		2. Heat Transfer/Steam	2. Secondary sodium system	I 27Z	1 51	I 520	Unknown	Test instrumentation	 Feedwater flow tests were conducted on the unit after a series of isolation checks. Results of the flow tests indicate that some of the pressure drop devices did not reseat after the isolation checks. Inspection of the pressure drop orifices showed that all had reseated after isolation tests except for several that were held off their seats because of small-scale particles. The orifices were cleaned and returned to service. Upgrade chemical process control.
	27	Gasket 2. Heat Transfer/Steam	 Fermi Secondary sodium system Unit was water filled to run feedwater flow test EF-69, 5/69 EF-70, 6/69 		I BZ	I 520	Unknown	Visual	 The unit was water filled in preparation for running a feedwater flow test but a leak developed at the steam manifold cover plate. The tube side was water filled following retorquing of the steam manifold cover. Retorquing failed to elim- inate the gasket leak; therefore, the leak was re- paired by replacing the steam manifold gasket. Materials: select for the environment.
	* 1	= INCIDENT	MI = MINOR MALFUNCTION						

TABLE <u>1-111</u>

FAILURE DATA FOR STEAM GENERATORS (Sheet 8 of 15)

June 3		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
30, 1970	TEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, 1-308g	28	 Steam Generator No. 1/ Downcomer Tubes Heat Transfer/Steam Generator 40 223100 Steam Generator No. 1/ 	 Secondary sodium system Steam pressure: 750 psia Sodium temp: 510°F NAA-SR-12534, 11/1/87 TI-095-14-009 	I 197	I BA	I 520	Unknown	perature oscillations on monitors	 During a 67-Mwt, two-loop run, instability occurred as the steam pressure was being ramped from 900 psi down to 600 psi. When the steam pressure reached approximately 750 psia and the sodium outlet temper- ature 510°F, large oscillations with a maximum am- plitude of 100°F were observed in the sodium outlet temperature of one steam generator. The high tem- perature initiated a single-circuit shutdown which, in iurn, resulted in a multicircuit shutdown and scram. Restriction of the operating parameters to limit the preheat area reduced this problem. In addition, poppet- type orifices were installed in the inlets of the water downcomer tubes to increase the pressure drop, pro- vide more even water distribution to all the tubes, and, hopefully, eliminate the instability altogether. Con- siderable tuning of the control system was necessary before efficient operation was achieved. Additional research and development required.
, Vol I		Downcomer Tubes	 Fernin (LMF BK) Secondary sodium system Steam pressure: 950 psi Sodium temp: 540°F NAA-SR-12534, 11/1/67 TI-095-14-009 	I 197	I BA	I 520	Unknown	Sodium outlet tem- perature oscillations on monitors	 During a 100-Mwt, 3-loop run, large oscillations with a maximum amplitude of 100°F were observed on loop No. 2 after the sodium outlet temperature drifted from 517°F to approximately 540°F when operating at a steam pressure of 950 psia. Approximately 5 min after operation of this loop was terminated by a single- circuit shutdown from the oscillations, loop No.1 exhibited the same behavior, thereby terminating the run with a multicircuit shutdown scram. The outlet steam temperature during both these runs was approx- imately 600°F. Both instabilities developed when the steam generator sodium outlet temperature coincided with the saturation temperature of the feedwater at its operating pressure. Restriction of the operating parameters to limit the preheat area reduced this problem. In addition, poppet- type orifices were installed in the inlets of the water downcomer tubes to increase the pressure drop, pro- vide more even water distribution to all the tubes, and, hopefully, eliminate the instability altogether. Con- siderable tuning of the control system was necessary before efficient operation was achieved. Additional research and development required.

TABLE	1-111
THE	

FAILURE DATA FOR	STEAM GENERATORS
------------------	------------------

(Sheet 9 of 15)

June	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
30, 1970	⁴ 3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
30 LMEC-Memo-69-7, Vo 1-308h	 Steam Generator No. 2/ Downcomer Tubes Heat Transfer/Steam Generator 40 223100 	 Fermi (LMFBR) Secondary sodium system Steam pressure: 950 psia Sodium temp: 540°F NAA-SR-12534, 11/1/67 TI-095-014-009 	I 197	I BA	I 520	Unknown	Sodium outlet tem- perature oscillations on monitors	 During a 100-Mwt, 3-loop run, large oscillations, with a maximum amplitude of 100°F were observed on loop No. 2 after the sodium outlet temperature drifted from 517°F to approximately 540°F when operating at a steam pressure of 950 psia. Approximately 5 min after operation of this loop was terminated by a single- circuit shutdown from the oscillations, loop No. 1 ex- hibited the same behavior, thereby terminating the run with a multicircuit shutdown scram. The outlet steam temperature during both these runs was approximately 600°F. Both instabilities developed when the steam generator sodium outlet temperature coincided with the saturation of the feedwater at its operating pressure. Restriction of the operating parameters to limit the preheat area reduced this problem. In addition, poppet- type orifices were installed in the inlets of the water downcomer tubes to increase the pressure drop, pro- vide more even water distribution to all the tubes, and, hopefully, eliminate the instability altogether. Con- siderable tuning of the control system was necessary before efficient operation was achieved. Additional research and development required.
H 31	 Steam Generator/ Water-Side Tube Sheet Heat Transfer/Steam Generator 40 223100 	 EBR-II (LMFBR) Secondary sodium system Plant was shut down for control rod repairs NAA-SR-12534, 11/1/67 	MA 500	MA 6Z	MA 580	1200	Routine inspection	 A routine inspection of the steam generators while the plant was shut down in October 1964 for control rod repairs disclosed the presence of water in the space between the sodium and water upper tube sheets in evaporator No. 702. Subsequent testing confirmed that a leak existed in the water side tube sheet of one of its contained tubes. The interconnecting pipe between the evaporator and the steam drum was removed, giving access to the water side of the tube sheet. The air side of the tube sheet was pressurized and bubble-testing pinpointed the location of the leak. It was a pinhole in a weld crater of a machine-made tube-to-tube-sheet weld. Since it was accessible, the weld was partially ground out and manually rewelded without having to remove the evaporator. A subsequent helium mass spectrom- eter leak test showed the repair to be successful. The riser pipe was then rewelded into the system, and the plant was prepared for further operation. None.

June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC	32	 Steam Generator / Tubes Heat Transfer /Steam Generator 40 223100 	 SCTI (non-nuclear test facility) Secondary sodium system Startup IMPR-370, 6/22/70 	I 500	I 6Z	I 520	2300	Hydrogen recorder	 Steam generator hydrogen recorder showed H2 presence in excess of 200 ppm. Temperatures increased. Peak steam temperature was 550°F, as compared with a sodium inlet temperature of 410°F. Feedwater inlet temperature was 370°F. This temperature response was indicative of a sodium-water reaction on the steam side of the steam generator. Tubes 2-47 and 4-27 were plugged and seal welded using a special weld procedure. Dye-penetrant exam- ination and helium leak test verified weld integrity. A hydrostatic test also served to assure the soundness of the bundle at operating pressure. Additional research and development required.
Memo-69-7, Vol I	33	 Steam Generator/ Manway Flange Heat Transfer/Steam Generator 40 223100 	 SCTI (non-nuclear test facility) Secondary sodium system Steam generator undergoing repair for tube leak IMPR-374, 8/6/69 	I 413	I 61	1 530	3380	Visual	 Following removal of ring seal from upper steam generator manway flange, cracks were observed at the bottom of the groove around the entire periphery. The cracks are believed to be structural failures due to high radial loading on the relatively small area within the ring diameter. Plastic deformation of the lip, internal to the O-ring groove, is evidenced by the fact that ID measurements at the top of the manway opening indicate a 50-mil deflection. Similar deformation is also evident at the lower manway flange but no cracks exist in this latter region. Upon completion of crack removal, the machined areas in the groove were overlaid with Inconel to reestablish a protective surface. Diaphragms fabricated from Incoloy 800 were installed over the manway opening. Additional research and development required.
	34	 Steam Generator / a. Tubes b. Steam Side Tube Sheet 2. Heat Transfer/Steam Generator 3. 40 	 SCTI (non-nuclear test facility) Secondary sodium system Startup operation LMEC Monthly Progress Reports for 3/69 and 4/69 	I 500	I 6Z	I 520	3410	Instrumentation and visual	 Steaming operation was terminated when evidence of water vapor was found in the cover gas over the sodiur Leakage was confirmed and the water side of the steam generator was opened to permit detailed inspection and isolation of defects. Five defective tubes were found. Liquid penetrant inspections of the upper tube sheet fillet welds revealed a number of porosity and crack indication. The five defective tubes were plugged and tube sheet discrepancies were repaired. Additional research and development required.

TABLE	1-111

(Sheet 11 of 15)

June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
30, 1970	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-308j	35	 Heat Transfer/ Steam Generator 40 223100 Steam Generator/ Tubes Heat Transfer/Steam 	 SCTI (non-nuclear test facility) Secondary sodium system Steam generator hydrostatic test IMPR - 383, 5-20-70 IMPR - 383, 5-20-70 IMPR - 383, 5-20-70 Secondary sodium system Secondary sodium system Reactor in shutdown condition NAA-SR-12534, 11-1-67 	I 500	I 99	I 520	3410	Visual Third fluid pressure buildup	 Feedwater flow was established through the Alco test steam generator in preparation for hydrostatic test per Special Procedure No. 123. This hydrostatic test was to be conducted at 2300 psig and 350°F. A preliminary inspection of the diaphragm and manway cover areas was being conducted in preparation for heating the steam generator to 350°F and increasing feedwater pressure to 2300 psig. The feedwater pressure in the steam generator was 580 psig and 90°F. The inspection indicated that there was a series of cracks in the steam generator feedwater chest in the vicinity of the lower channel head and tube sheet area. The presence of sodium oxide deposits on the tube sheet edge and undersurface, and of rust-colored stains beneath several of the visible cracks, indicate that cracking and leakage occurred prior to the end of the last operating interval. Pending (under investigation). Additional research and development required. A gradual third fluid pressure buildup indicated the probability of a leak in the superheater between the third fluid and steam. The third fluid pressure was bled to 300 psig. After a short time, the pressure to 345 psig and again allowing its pressure to approach the steam pressure. The tube bundle was removed from the shell, and the leak was located in the center tube of the tube bundle. A radiograph of the defective tube showed the inner tube cap pushed ahead and rubbing the weld of the outer tube during the roller expansion and caused this interference fit, which could have caused the failure by setting up residual stresses in this area which were not stress relieved after fabrication. The combination of this residual stress enclived, and the tube bundle reinstalled. The shell was rewelded, stress relieved, and hydrostatically tested at 900 psig for 1 hr, steaming operations were resumed. Additional research and development required.

TABLE ______

FAILURE DATA FOR _____STEAM GENERATORS_____ (Sheet 12 of 15)

June 3		 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAI	LURE IN CODE*	IDEX			1. FAILURE DESCRIPTION
30, 1970	ITEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69- 1-308k	37	 Steam Generator/ Tube Heat Transfer/ Steam Generator 40 223100 	 HNPF (LMFBR) Secondary sodium system Steam generator out of service for modifications NAA-SR-12534, 11-1-67 	MA 500	MA 61	MA 520	4926	Visual	 While preparing to stress relieve the end cap welds of the heat transfer tube bundle, a crack was found in the end cap weld of Tube No. 18. This crack was repaired and all other end caps were radiographed to check for cracks and interference fits between the cap welds of the inner and outer tubes. Seven tubes which had not been stress relieved during fabrication were stress relieved. These tubes (No's. 3, 6, 8, 9, 10, 13, and 20) were wrapped with a heating coil, heated at a controlled rate to 1200°F, and then cooled at a controlled rate to stress-relieve them. The stress-relieved tubes were then checked with penetrant dye and mass spectrometer, then leak tested and radiographed. No defects were found and the tube bundle was installed in the kettle-type evaporator shell. Additional research and development required.
9-7, Vol I <	38	 Steam Generator/ Tube Heat Transfer/ Steam Generator 40 223100 	 HNPF (LMFBR) Secondary sodium system Destructive examination of steam generator NAA-SR-12534 	MA 452	MA 61	MA 580	8541	Visual	 Sodium was found in the annulus of one bellows-type core tube while attempting to cut it apart. The annulus was almost completely filled with solidified sodium, which prevented separation of the inner and outer tubes. No sodium was found in the annulus of any of the other core tubes. Four core tubes were found in which numerous cracks were observed in the weld between the inner and outer tubes on the bellows end of the tube. Although the cracks found in these tube end pieces penetrated through both tube walls and the weld, the annulus space peculiarly enough, was absent of sodium. After all of the bellows-type core tubes had been disassembled, each piece, including the bellows, was individually helium leak-tested. The bellows and all of the welds on the core tube were dye-checked. No leaks were found in any of the length of tubing nor in the bellows. The only leaks found were those in the end pieces in which the welds were cracked. None (destructive examination of steam generator only).

TABLE _______

(Sheet 13 of 15)

June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	EM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
3		 Steam Generator/ Tubes Heat Transfer/ Steam Generator 40 223100 	 Dresden (BWR) Secondary water loop Full power operation TI-095-14-010, 11-15-69 	MA 500	MA 6Z	MA 510	Unknown	Unknown	 Dresden I has five steam generators: one primary and four secondary. As steam producers, there is no record of any operating difficulty with them except for tube leaks in the secondary generators. Unknown. Additional research and development required.
		 Steam Generator/ Tubes Heat Transfer/ Steam Generator 40 223100 	 Dresden (BWR) Secondary water loop Full power operation TI-095-14-010, 11-15-69 	MA 500	MA 6Z	MA 510	Unknown	Unknown	 Dresden I has five steam generators: one primary and four secondary. As steam producers, there is no record of any operating difficulty with them except for tube leaks in the secondary generators. Unknown Additional research and development required.
emo-69-7, 1-3081		 Steam Generator/ Tubes Heat Transfer/ Steam Generator 40 223100 	 Dresden (BWR) Secondary water loop Full power operation TI-095-14-010, 11-15-69 	MA 500	MA 6Z	MA 510	Unknown	Unknown	 Dresden I has five steam generators: one primary and four secondary. As steam producers, there is no record of any operating difficulty with them except for tube leaks in the secondary generators. Unknown. Additional research and development required.
Vol I		 Steam Generator/ Tubes Heat Transfer/ Steam Generator 40 223100 	 Dresden (BWR) Secondary water loop Full power operation TI-095-14-010, 11-15-69 	MA 500	MA 6Z	MA 510	Unknown	Unknown	 Dresden I has five steam generators: one primary and four secondary. As steam producers, there is no record of any operating difficulty with them except for tube leaks in the secondary generators. Unknown. Additional research and development required.
4		 Steam Generator/ Tubes Heat Transfer/Steam Generator 40 223100 	 San Onofre (PWR) Primary coolant loop Steam generator installation during plant construction TI-095-14-007, 6-25-69 	MI 47Z	MI 54	MI 510	None	Visual	 On November 16, 1965, during construction, the rigging contractor dropped the No. 3 steam generator as it was being lifted into the vapor container. The lifting gear in the special portable bridge crane failed and the gen- erator (which was horizontal at the time) dropped 12 in. onto wooden blocking. No nozzles were damaged; how- ever, some tubes in the upper support structure were deformed from a nominal of 0.640 to a deformed value of 0.340 in. Collapse test, metallurgical investigations; velocity measurements, and other tests were performed on similarly deformed tubes. Westinghouse and Bechtel's recommendation was that the unit be operated as-is without tube replacement or plugging. Improve handling technique of large components.

)

TABLE ______

FAILURE DATA FOR ______ STEAM GENERATORS

(Sheet 14 of 15)

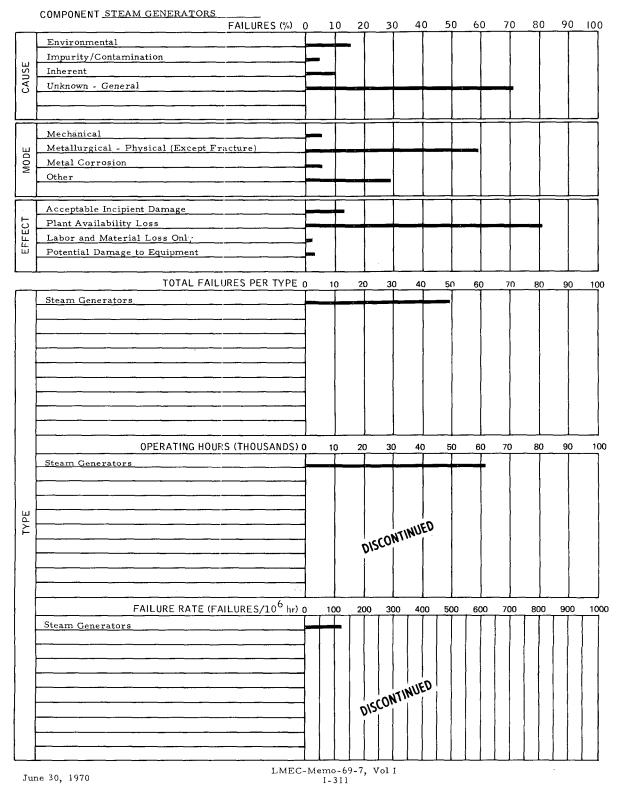
June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAII	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
30, 1970	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	44	2. Heat Transfer/	 San Onofre (PWR) Primary coolant loop Full power operation TI-095-14-007, Change No. 1, 3-70 	MI 500	MI 6Z	MI 510	Unknown	Unknown	 The steam generator, dropped during construction, developed a 2 gal/day leak (determined by the mea- sured tritium concentration in the feedwater). Unknown. Additional research and development required.
LMEC-Memo-69-7, Vol I 1-308m	45	Tubes 2. Heat Transfer/Steam	 Shippingport (PWR) Primary coolant loop Unknown TI-095-14-006, 7-7-69 	MA 278	MA 94	MA 520	Unknown	Unknown	 In 1958 a leak was discovered between the primary and secondary sides of a heat exchanger. Testing revealed that 2 tubes were leaking, 15 had significant wall thick- ness defects, and there were defects between the sec- ondary face of the inlet-end tube sheet and the first tube baffle. Examinations revealed that the failures were caused by a combination of steam blanketing and caustic stress corrosion as a result of operations out of boiler water chemistry specifications (during initial plant operations when excessive blowdown was required). There were also quite a few other occasions in which the plant experienced heat exchanger leak problems. To correct the condition, two additional steam risers were added to the heat exchangers, and the water chemistry was improved to assure the complete ab- sence of "free" alkalinity in the boiler water. All four Core 1 steam generators were replaced for the oper- ation of Core 2. Continued upgrading of chemical process control.
	46	 Heat Transfer/Steam Generator 40 223100 	 Shippingport (PWR) Primary coolant loop Unknown TI-095-14-006, 7-7-69 	MA 194	MA 65	MA 520	Unknown	Unknown	 Tube failures have occurred on at least three occasions during Core 2, Seed 1 operations. Severe wall thinning was found and eventually a flow blocking plate was in- stalled. The following novel method was used to pin- point the failures. A long plastic tube was affixed to an ordinary aspirator at one end and a rubber balloon at the other. The balloon was moved along the tube in in- crements, inflated and deflated in turn. With the other end of a tube plugged, inflating the balloon over a hole stopped leakage and thus gave proof of failure. Some of the failures were caused by thermal expansion lead- ing to wear of certain tube banks on a stiffener brace. The steam generator deficiencies were repaired. Additional research and development required.

FAILURE DATA FOR ______ STEAM GENERATORS

(Sheet 15 of 15)

June		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
<u> </u>	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69- 1-309	47	 Steam Generator/ Tubes Heat Transfer/Steam Generator 40 223100 	 Shippingport (PWR) Primary coolant system Unknown TI-095-14-006, 7-7-69 	MA 194	MA 65	MA 520	Unknown	Unknown	 Tube failures have occurred on at least three occasions during Core 2, Seed 1 operations. Severe wall thinning was found and eventually a flow blocking plate was in- stalled. The following novel method was used to pin- point the failures. A long plastic tube was affixed to an ordinary aspirator at one end and a rubber balloon at the other. The balloon was moved along the tube in in- crements, inflated and deflated in turn. With the other end of a tube plugged, inflating the balloon over a hole stopped leakage and thus gave proof of failure. Some of the failures were caused by thermal expansion lead- ing to wear of certain tube banks on a stiffener brace. The steam generator deficiencies were repaired.
lemo-69-7, Vol I 1-309		2. Heat Transfer/Steam	 Shippingport (PWR) Primary coolant system Unknown TI-095-14-006, 7-7-69 	MA 194	MA 65	MA 520	Unknown	Unknown	 Tube failures have occurred on at least three occasions during Core 2, Seed 1 operations. Severe wall thinning was found and eventually a flow blocking plate was in- stalled. The following novel method was used to pin- point the failures. A long plastic tube was affixed to an ordinary aspirator at one end and a rubber balloon at the other. The balloon was moved along the tube in in- crements, inflated and deflated in turn. With the other end of a tube plugged, inflating the balloon over a hole stopped leakage and thus gave proof of failure. Some of the failures were caused by thermal expansion lead- ing to wear of certain tube banks on a stiffener brace. The steam generator deficiencies were repaired. Additional research and development required.

TABLE <u>1-112</u>


0

FAILURE DISTRIBUTION FUNCTIONS

	COMPONENT STEAM GENERATORS	<u> </u>									
	COMPONENT SUBTYPESTEAM GENERATORS										
	FAILURES (%	() 0	10	20	30	40	50	60	70	80	90 10
	Liquid Metal Nuclear Power Reactor										
TZ H	Pressurized Water Reactor										
PLANT TYPE	Boiling Water Reactor										
1	Liquid Metal Test Facility										
	Heat Transfer			[
					. T						
Ιs											
12											
SYSTEM											
	Tubes										
	Water-Side Tube Sheet										
F	Steam-Wide Tube Sheet										
PART	Water Manifold Gasket										
L P	Steam Manifold Gasket										
EN	Pressure Drop Devices										
NO	Manway Flange										
COMPONENT	Shell		•		[
U N	Other (Performance Instability)		-								
				Í							
	Environmental										
ι ω	Impurity/Contamination			- (Í		Í	Í		
CAUSE	Inherent										
CA	Unknown - General							_			
							(Ì		
	Mechanical							Ĩ			
ш	Metallurgical - Physical (Except Fracture)								_		
MODE	Metal Corrosion								_		
2	Other		-						ł		
	Acceptable Incipient Damage								\top		
5	Plant Availability Loss		Γ								
EFFECT	Labor and Material Loss Only							T		T	
1	Potential Damage to Equipment										
		MEC-			, Vol	I					·
June	e 30, 1970		1 - 3	310							

TABLE <u>1-113</u>

GENERAL SUMMARY

13. Traps (General) (see Figures 1-27 through 1-30)

Failure data for traps (general) are presented in Tables 1-114 through 1-118.

a. Reliability Information

Critical Characteristics:

The proper installation and operation of traps is important to their use. They should not be any more complex than necessary.

Mode of Failure:

- 1) Instrumentation error
- 2) Clogging
- 3) Wear
- 4) Disconnection
- 5) Distortion
- 6) Movement obstructed
- 7) Broken
- 8) Erosion.

Failure Description:

- 1) Overheating
- 2) Packing worn out
- 3) Springs stuck
- 4) Plugging of vapor traps
- 5) Parts broken (shaft, steel balls).

Control Methods

- 1) Redesign of traps that are not adequate to do the job.
- 2) Further investigation of failures within a trap.
- 3) Do not over-design a part.

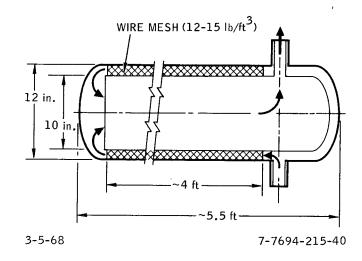


Figure 1-27. HNPF Vapor Trap

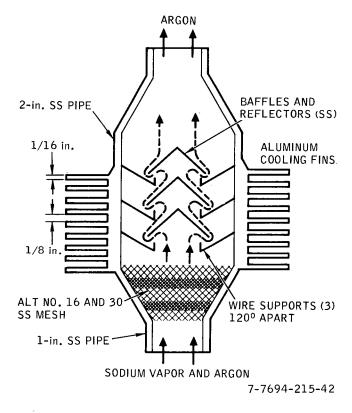
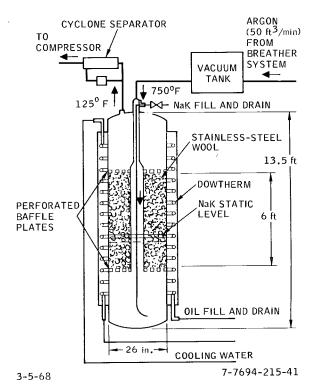
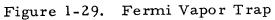
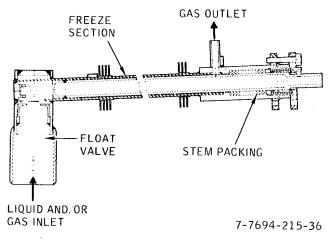
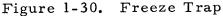






Figure 1-28. ANL Refluxing Type Trap

4) Improve training of personnel.

- -

5) Electrical heaters used with freeze traps should be designed to prevent overheating (spring-loaded circuit breaker, etc.).

- - -

b. Discussion and Recommendations

None.

TABLE <u>1-114</u>

FAILURE DATA FOR TRAPS (GENERAL) (Sheet 1 of 12)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	EM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
5		 Freeze Trap No. 1/ Float Heat Transfer/Coolant Storage 33 224400 	 HNPF Primary sodium service/drain tank 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1682 	MI 144	MI 5Z	MI 550	Unknown	Operational monitors	 Float not seated properly. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap to melt sodium around shaft in housing, (c) pressurized housing with helium to clean out sodium. Install another cooling device and/or allow sufficient air flow and clearance around freeze trap housing in order to minimize the chance of overheating housing. Thus, molten sodium can flow through rather than solidifying around the cool shaft, as designed.
2	2	 Freeze Trap No. 1/ Housing Heat Transfer/Coolant Storage No. 33 224400 	 HNPF Primary sodium service/drain tank 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1682 	MI 137	MI 44	MI 550	Unknown	Operational monitors	 Housing overheated. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap to melt sodium around shaft in housing, (c) pressurized housing with helium to clean out sodium. Install another cooling device and/or allow sufficient air flow and clearance around freeze trap housing in order to minimize the chance of overheating housing. Thus, molten helium can flow through rather than solidifying around the cool shaft, as designed.
3	3	 Freeze Trap No. 1/ Vent Heat Transfer/Coolant Storage 33 224400 	 HNPF Primary sodium service/drain tank 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1682 	MI 187	MI 51	MI 550	Unknown	Operational monitors	 Vent piping plugged with sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap to melt sodium around shaft in housing, (c) pressurized housing with helium to clean out sodium. Install another cooling device and/or allow sufficient air flow and clearance around freeze trap housing in order to minimize the chance of overheating housing. Thus, molten sodium can flow through rather than solidifying around the cool shaft, as designed.
4	1	 Freeze Trap No. 1/ Shaft Stop Heat Transfer/Coolant Storage 33 224400 	 HNPF Primary sodium service/drain tank 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2134 	MI 331	MI 59	MI 550	Unknown	During actuation	 Shaft stop broken. Local repair, welded stop for cam actuator. Procedures should be written cautioning against rotating the cam shaft control with excessive force or speed to save the stops.

MA = MAJOR MALFUNCTION P = PROBLEM

1-316

TABLE <u>1-114</u>

FAILURE DATA FOR <u>TRAPS (GENERAL)</u> (Sheet 2 of 12)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
5	 Freeze Trap No. 2/ Housing Heat Transfer/ Reactor Coolant Piping 33 221210 	 HNPF Primary sodium 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2252 	MI 137	MI 44	MI 550	Unknown	Operational monitors	 Warmed housing did not solidify sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.
6	 Freeze Trap No. 2/ Vent Heat Transfer/ Reactor Coolant Piping 33 221210 	 HNPF Primary sodium 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2252 	MI 187	MI 51	MI 550	Unknown	Operational monitors	 Vent piping plugged with sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that ma flow past the float.
7	 Freeze Trap No. 3/ Cam Actuator Heat Transfer/ Reactor Coolant Piping 33 221210 	 HNPF Primary cold trap No. l/actuator 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 925 	MI 47Z	MI 53	MI 550	Unknown	During actuation	 Reach rod that actuates valve cam on freeze trap was disengaged. Tapered pins missing. Part replaced. None.
8	 Freeze Trap No. 3/ Float Heat Transfer/ Reactor Coolant Piping 33 221210 	 HNPF Primary cold trap No.3 3-10 psi helium when draining sodium, 200 to 350°F Work request No.2187 	MI 144	MI 5Z	MI 550	Unknown	Operational monitors	 Float not seated properly. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that ma flow past the float.
9	 Freeze Trap/Cam Shaft Housing Heat Transfer/ Intermediate Heat Exchanger 33 222300 	 HNPF IHX-1/freeze trap No.11 3-10 psi helium when draining sodium, 200 to 350°F Work request No.2331 	MI 137	MI 51	MI 550	Unknown	During actuation	 Cam shaft housing full of sodium. Local repairs: (a) removed freeze trap, (b) removed cam shaft, (c) steam cleaned cam shaft housing of sodium obstruction. None.

TABLE _____1_14____

FAILURE DATA FOR	TRAPS (GENERAL)	
	(Sheet 3 of 12)	

.

	2	COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*				,	1. FAILURE DESCRIPTION
ITEN	A 3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
10		 Freeze Trap No. 12/ Spring Heat Transfer/Inter- mediate Heat Exchanger 33 222300 	 HNPF IHX-2 3. 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1003 	MI 410	MI 55	MI 530	Unknown	During actuation	 Spring stuck. Component corrective modification; retainer spring replaced with a solid follower (steel spacer). None.
11	1	 Freeze Trap No. 10/ Packing Heat Transfer/Inter- mediate Coolant Piping 33 222210 	 HNPF Secondary sodium service 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 73 	MI 454	MI 5Z	MI 550	Unknown	Direct observation	 Helium leak through packing. Component corrective modification; added two rings of packing. None.
12		 Freeze Trap No. 10/ Spring Heat Transfer/Inter- mediate Coolant Piping 33 222210 	 HNPF Secondary sodium service 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 275 	MI 410	MI 53	MI 550	Unknown	Direct observation	 Spring loose, helium leak through packing. Component corrective modification; retainer springs replaced with steel spacers. Use steel spacers as integral design component and spring of sufficient tension and made of a suitable material for this type of atmosphere in order to improve reliability.
13		 Freeze Trap No. 7/ Cam Drive Shaft Heat Transfer/Inter- mediate Coolant Piping 33 222210 	 HNPF Secondary cold trap (outlet) 3.10 psi helium when draining so- dium, 200 to 350°F Work request No.115 	MI 339	MI 54	MI 550	Unknown	Operational monitors	 Cam drive shaft bent at packing. Local repairs: (a) cam shaft straightened, (b) re- moved rough spots inside cam shaft housing. None.
14	:	 Freeze Trap No. 7/ Packing Heat Transfer/Inter- mediate Coolant Piping 33 222210 	 HNPF Secondary cold trap (outlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 115 	MI 115	MI 54	MI 550	Unknown	Operational monitors	 Gap at packing allowed helium to leak out of system. Local repair, replaced two rings of Jones packing. None.
		= INCIDENT N = MAJOR MALFUNCTION	MI = MINOR MALFUNCTION P = PROBLEM						

TABLE ______1__14____

FAILURE DATA FOR TRAPS (GENERAL) (Sheet 4 of 12)

N

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
15	 Freeze Trap No.7/ Spring Heat Transfer/Inter- mediate Coolant Piping 33 222210 	 HNPF Secondary cold trap (outlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 275 	MI	MI	MI	Unknown	Operational monitors	 Helium leak, through packing. Component corrective modification. None.
16	 Freeze Trap No. 11/ Spring Heat Transfer/Inter- mediate Heat Ex- changer 33 222300 	 HNPF IHX-1 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1003 	MI 410	MI 55	MI 530	3495	During actuation	 Spring stuck. Component corrective modification, retainer springs replaced with a solid follower (steel spacers). None.
17	 Freeze Trap No. 2/ Float Heat Transfer/ Reactor Coolant Piping 33 221210 	 HNPF Primary/sodium 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2252 	MI 144	MI 5Z	MI 550	2320	Operational monitors	 Float not seated properly. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear out sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.
18	 Freeze Trap No. 2/ Float Heat Transfer/ Reactor Cooling Piping 33 221210 	 HNPF Primary/sodium 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2629 	MI 144	MI 5Z	MI 550	3250	During actuation	 Float not properly seated. Local repairs: (a) cut helium lines, cleaned out sodium, replaced lines, (b) heated freeze trap housing to clear out sodium. Allow sufficient cooling. Change in operating proce- dures should be made whereby a slight positive pres- sure is maintained on freeze trap at all times. Also a good look at a replacement component is in order.
19	 Freeze Trap No. 2/ Housing Heat Transfer/ Reactor Coolant Piping 33 221210 	 HNPF Primary/sodium 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2629 	MI 137	MI 44	MI 550	3250	During actuation	 Thermocouple on housing failed to indicate rise in temperature. Local repairs: (a) cut helium lines, cleaned out sodium, replaced lines, (b) heated freeze trap housing to melt sodium in housing, (c) pressurized housing to clear out sodium. Allow sufficient cooling. Change in operating proce- dures should be made whereby a slight positive pres- sure is maintained on the freeze trap at all times. Also a good look at a replacement component is in order.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-114</u>

FAILURE DATA FOR TRAPS (GENERAL) (Sheet 5 of 12)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
	FEM	3. CODE: (Component) (System/Subsystem)		CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LN	20	 Freeze Trap No. 2/ Vent Heat Transfer/ Reactor Coolant Piping 33 221210 	 HNPF Primary/sodium 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2629 	MI 187	MI 51	MI 550	3250	During actuation	 Vent clogged with sodium blocking helium flow. Local repair: (a) cut helium lines, cleaned out sodium, replaced lines, (b) heated freeze trap housing to melt sodium in housing, (c) pressurized housing to clear out sodium. Allow sufficient cooling. Change in operating proce- dures should be made whereby a slight positive pres- sure is maintained on the freeze trap at all times. Also a good look at a replacement component is in order.
LMEC-Memo-69-	21	 Freeze Trap No. 4/ Packing Heat Transfer/Purification (Cold Trap) 33 224234 	 HNPF Primary cold trap No. 2 (inlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1054 	MI 115	MI 52	MI 530	Unknown	Operational monitors	 Packing worn out. Local repair; added 11 rings of packing. Packing rings should be insulated from heat and hot sodium vapors which evidently contribute to wear and degradation of the packing ring.
9-7, Vol I	22	 Freeze Trap No. 5/ Packing Heat Transfer/Purification (Cold Trap) 33 224234 	 HNPF Primary cold trap No.2 (outlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1054 	MI 115	MI 52	MI 530	Unknown	Operational monitors	 Packing worn out. Local repair; added 11 rings of packing. Packing rings should be insulated from heat and hot sodium vapors which evidently contribute to wear and degradation of the packing ring.
	23	 Freeze Trap No. 3/ Housing Heat Transfer/Purification 33 224234 	 HNPF Primary cold trap No. 1 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2187 	MI 137	MI 44	MI 550	Unknown	Operational monitors	 Warmed housing did not solidify sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.
	24	 Freeze Trap No. 3/ Vent Heat Transfer/Purification 33 224234 	 HNPF Primary cold trap No. 1 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 2187 	MI 187	MI 51	MI 550	Unknown	Operational monitors	 Vent piping plugged with sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.

()

MA = MAJOR MALFUNCTION P = PROBLEM

1-320 .

۱.

~

TABLE <u>1-114</u>

	1. COMPONENT/PA 2. SYSTEM/SUBSY		FAI	FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsys	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
25	 Freeze Trap No Float Heat Transfer/F cation 33 224234 	2. Primary cold trap No. 1	MI 144	MI 5Z	MI 550	Unknown	Operational monitors	 Float not seated properly. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.
26 LMEC-Memo-69- 1-321	 Freeze Trap No Housing Heat Transfer/F cation 33 224234 	Primary cold trap No. 1	MI 137	MI 44	MI 550	Unknown	Operational monitors	 Warmed housing did not solidify sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.
9-7, Vol I	 Freeze Trap No Vent Heat Transfer/F cation 33 224234 	2. Primary cold trap No. 1	MI 187	MI 51	MI 550	Unknown	Operational monitors	 Vent piping plugged with sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.
28	 Freeze Trap No Float Heat Transfer/F cation 33 224234 	2. Primary cold trap No. 1	MI 144	MI 5Z	MI 550	Unknown	During actuation	 Float not seated properly. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.
29	 Freeze Trap No Housing Heat Transfer/F cation 33 224234 	2. Primary cold trap No. 1	MI 137	MI 44	MI 550	Unknown	During actuation	 Warmed housing did not solidify sodium. Local repairs: (a) replaced plugged section of vent piping, (b) heated freeze trap housing to melt sodium in shaft housing, (c) pressurized housing to clear sodium. Allow sufficient cooling capacity around the cam shaft housing to ensure solidification of any sodium that may flow past the float.

TABLE <u>1-114</u>

FAILURE DATA FOR <u>TRAPS (GENERAL)</u> (Sheet 7 of 12)

•

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
1.	ΕM	3. CODE:	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	30	 Freeze Trap No. 10/ Packing Heat Transfer/ Coolant Storage 33 224400 	 HNPF Secondary drain tank 3-10 psi helium when draining sodium, 200 to 350°F Work request No.2447 	MI 115	MI 52	MI 530	3250	Operational monitors	 Packing worn out. Part replaced. Packing rings should be insulated from heat and hot sodium vapors which evidently contribute to wear and degradation of the packing rings.
LMEC-N	31	 Freeze Trap No. 5/ Shaft Stop Heat Transfer/Purification 33 224234 	 HNPF Primary cold trap No. 2 (outlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1079 	MI 321	MI 5Z	MI 550	Unknown	During actuation	 Shaft stop missing. Local repair, installed shaft stop in shaft assembly. Tighter quality control and inspection on components that have been overhauled.
LMEC-Memo-69-7, Vol I	32	 Freeze Trap/Cam Drive Heat Transfer/Purification 33 224234 	 HNPF Secondary cold trap (inlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 115 	MI 339	MI 54	MI 550	Unknown	Operational monitors	 Cam drive shaft sagged and bent at packing. Local repair; cam shaft straightened. Post instructions that cal rod heaters are not to be used to heat freeze trap assemblies. Possible shortening of drive shaft may help to prevent this type of failure.
1 I		Packing	 HNPF Secondary cold trap (inlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 115 	MI 115	MI 52	MI 550	Unknown	Operational monitors	 Gap at packing allowed helium to leak out of system. Local repair; removed rough spots inside cam shaft housing. Post instructions that cal rod heaters are not to be used to heat freeze trap assemblies. Possible shortening of drive shaft may help to prevent this type of failure.
		 Freeze Trap/Spring Heat Transfer/Purification 33 224234 	 HNPF Secondary cold trap (inlet) 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 275 	MI 410	MI 53	MI 550	Unknown	Operational monitors	 Spring loose. Component corrective modification; retainer springs replaced with steel spacers. Either use steel spacers as integral design component or a spring of sufficient tension and material com- patible with this type of atmosphere.
	35	 Freeze Trap/Spring Heat Transfer/Intermediate Heat Exchanger 33 222300 	 HNPF IHX-3/freeze trap No. 13 3-10 psi helium when draining sodium, 200 to 350°F Work request No. 1003 	MI 410	MI 55	MI 530	Unknown	During actuation	 Spring stuck. Component corrective modification; retainer spring replaced with a solid follower (steel spacer). None.
Ļ		= INCIDENT	MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______

FAILURE DATA FOR <u>TRAPS (GENERAL)</u> (Sheet 8 of 12)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*			· · · · · · · · · · · · · · · · · · ·	1. FAILURE DESCRIPTION
ITE	M 3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
36	 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 	 EBR-II Fuel handling machine - PMMR-57 	MI 218	MI 51	MI 530	330	Operational monitors	 Vapor trap plugged. Part replaced. None.
	 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 		MI 218	MI 51	MI 530	400	During inspection of system associated to failure component	 Vapor trap plugged. Part replaced. None.
LMEC-Memo-69-7, Vol I	 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 		MI 218	MI 51	MI 530	1100	Operational monitors	 Vapor trap plugged. Part replaced. None.
	 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 		MI 500	MI BZ	MI 530	960	Operational monitors	 Vapor trap plugged. Trap replaced. Perform engineering analysis of problem and redesign.
40	 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 		MI 500	MI BZ	MI 530	576	Operational monitors	 Vapor trap plugged. Trap replaced. Recurring problem. Analyze and redesign.
41	 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 	 EBR-II Fuel handling machine - PMMR-99 	MI 500	MI BZ	MI 530	720	Operational monitors	 Vapor trap plugged. Trap replaced. None.
		MI = MINOR MALEUNCTION				L		

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-114

FAILURE DATA FOR ______ TRAPS (GENERAL)

(Sheet 9 of 12)

	1	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITE	M	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
4	:	 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 	 EBR-II Fuel handling machine - - Operations weekly report, 1/68 	MI 500	MI BZ	MI 530	954	During preventive maintenance	 Vapor trap plugged. Trap replaced. None.
4		 Traps/Argon Line Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 	 EBR-II Fuel handling machine - Operations weekly report, 2/68 	MI 218	MI 51	MI 530	13,380	During preventive maintenance	1. Vapor trap plugged. 2. Part replaced. 3. None.
4		 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 	 EBR-II Fuel handling machine - PMMR-40, 8/65 	MI 218	MI 51	MI 530	2670	Operational monitors	 Vapor trap plugged with liquid metal condensation. Part replaced. Perhaps a longer drip time of fuel assembly in transfer port plus a slower rate of removal from molten sodium.
4		 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 	 EBR-II Fuel handling machine - PMMR-43, 9/65 	MI 218	MI 51	MI 530	400	Operational monitors	 Vapor trap plugged. Part replaced. None.
4		 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 		MI 500	MI BZ	MI 530	1860	During actuation	1. Vapor trap plugged. 2. Trap replaced. 3. None.
4		 Traps/Wire Mesh Nuclear Fuel Handling and Storage Equipment /Cooling 33 235140 	 EBR-II Fuel handling machine - Operation maintenance report, 8/68 	MI 218	MI 51	MI 530	1440	During routine inspection	 Vapor trap plugged. Part replaced. None.
Ļ	Ļ	= INCIDENT	MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-324

1

4 1	
. /	
. /	

TABLE _____1_114____

FAILURE DATA FOR _______ TRAPS (GENERAL) (Sheet 10 of 12)

			(She	eet 10 of 12	:)	
LITY PONENT LOCATION RATING CONDITIONS RCE DOCUMENT		URE IN CODE*		OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
	_	<u></u>				
II nandling machine tion maintenance report, 9/68	218	MI 51	MI 530	720	Routine instrument reading, direct observation	 Vapor trap plugged. Part replaced. None.
II handling machine tion maintenance report, 10/6	500	MI BZ	MI 530	720	During preventive maintenance	 Vapor trap plugged. Trap replaced. Perform engineering analysis of problem and recommend change in design.
II ary/argon system tions weekly report, 7-31-68	218	MI 51	MI 550	15,240	Operational monitors	 Vapor trap plugged. Local repair; trap was removed, cleaned, and reinstalled. Install heaters on trap to permit blowing down without removal of trap.
II dary/gas bleed off tion maintenance report, 8	118	MI 51	MI 550	14,880	During actuation	 Vapor trap plugged. Temporary repair. Closely monitor vapor trap level indicator when filling vessel. Periodically test and operate vapor trap.
II ary/temporary cold trap loop 6705	I 500	I BZ	I 530	1000	Protective systems	 Vent pipe developed a small hole in its wall. Dama was under \$25, but one person slightly burned by sodium. Unknown. Requires more stringent quality assurance on pipe inspections before installation.
II ary/fission gas monitor R-31		MI 12	MI 530	2190	Direct observation	 Heater burned out. Part replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______1-114___

FAILURE DATA FOR <u>TRAPS (GENERAL)</u> (Sheet 11 of 12)

.

	2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE:	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
54	2. Heat Transfer/Driers and Traps	 EBR-II Primary/fission gas monitor - PMMR-57 	MI 218	MI 51	MI 530	4400	Operational monitors	 Vapor trap plugged with sodium. Local repair; unit was heated and sodium drained. If space permits, increase size of trap for longer service.
55	2. Heat Transfer/Driers and Traps	 EBR-II Primary/argon purification - PMMR-108 	MI 218	MI 51	MI 530	11,320	Operational monitors	 Wire mesh plugged. Part replaced. None.
56	2. Nuclear Fuel Handling and Storage Equipment		MI 218	MI 51	MI 530	475	Operational monitors	 Vapor trap plugged. Part replaced. None.
57	2. Nuclear Fuel Handling and Storage Equipment	 EBR-II Fuel handling machine - Operation weekly report, 11/67 	MI 500	MI BZ	MI 530	2156	Operational monitors	 Vapor trap plugged. Trap replaced. None.
58		2. Main steam (trap PVT-5) 3	MI 500	MI 59	MI 530	1200	Repair of primary failure	 Adjusting shaft broken. Part replaced. Determine cause of failure and confer with manufacturer before replacing part. Redesign of part may be necessary.
59		 EBR-II Main steam (trap PVT-5) - PMMR-4 	MI 500	MI BZ	MI 530	1200	Direct observation	 Gasket worn out. Part replaced. Determine cause of failure and confer with manufacturer before replacing part. Redesign of part may be necessary.
*	= INCIDENT M	M = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______1-114

FAILURE DATA FOR TRAPS (GENERAL) (Sheet 12 of 12)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
1	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	60	 Traps/Gasket Steam, Condensate and Feedwater Piping and Equipment/Main Steam 33 281000 	1. EBR-II 2. Main steam (trap PVT-2) 3 4. PMMR-75	MI 500	MI BZ	MI 530	5990	Preventive maintenance	 Gasket worn out. Part replaced. Determine cause of failure and confer with manufacturer before replacing part. Redesign of part may be necessary.
LMEC-I	61	 Traps/Steel Ball Steam, Condensate and Feedwater Piping and Equipment/MainSteam 33 281000 	1. EBR-II 2. Main steam (trap PVT-5) 3 4. PMMR-4	MI 500	MI BZ	MI 530	1200	Repair of primary failure	 Steel ball lost. Part replaced. Determine cause of failure and confer with manufac- turer before replacing part. Redesign of part may be necessary.
LMEC-Memo-69-7, Vol I 1-327	62	 Traps/Drain Steam, Condensate and Feedwater Piping and Equipment/Main Steam 33 283000 	 EBR-II Condensate system/air ejector 92°F at 230 psig PMMR-39 	MI 500	MI 65	MI 530	2670	Routine inspection	 Failure of drain trap occurred twice in three months - chemical or electrochemical reaction. Local repair. Faulty casting - replace trap.
		= INCIDENT	MI = MINOR MALFUNCTION						

MA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT TRAPS (GENERAL)																	
1	COMPONENT SUBTYPE SODIUM FREEZE TRAPS	5																
	FAILURE	ES (%) 0	10	20	3	0 4	0 5	0 6	0 70) 80) 90	0 10						
	Nuclear Power Reactors																	
PLANT TYPE																		
ן⊽ך																		
			I	Ē							_							
	Heat Transfer																	
_																		
μ																		
SYSTEM																		
ŝ																		
	Float			-				1										
	Housing			-														
F	Vent			•														
AF	Shaft Stop		-	Í														
E	Cam Actuator		•															
COMPONENT PART	Cam Shaft Housing		•															
PO A	Spring																	
No.	Packing			-														
õ	Cam Drive Shaft		•	ļ														
	Cam Drive		•															
								ļ										
	Environmental							I	_									
	Human error																	
CAUSE	Inherent																	
CAL								[
				1			1											
	· · · · · · · · · · · · · · · · · · ·			ļ														
<u> </u>	Manhaming 1	L		h		[Ì										
	Mechanical	<u>[</u>									_							
MODE	Other	Г		-				1										
M0				-														
						L	I	<u> </u>										
	System/component inoperative						-											
EFFECT	Labor and materials loss only			-						'								
								1				l						
Ш							ŀ											
						[l								

TABLE <u>1-115</u>

FAILURE DISTRIBUTION FUNCTIONS

.

TABLE <u>1-116</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT TRAPS (GENERAL)

_ _

.

. ...

	COMPONENT SUBTYPESODIUM VAPOR TRAPS FAILURES (%)	- 0 1	.0 2	0_3	0 4	0.5	06	07	0 8	09	0 10
PLANT TYPE	Nuclear Test Reactors										
SYSTEM	Fuel Handling Inert Gas Supply Steam Heat Transfer										-
COMPONENT PART	Wire Mesh Argon Line Vapor Trap Drain Trap Vapor Trap Vent Pipe Vapor Trap Heater										
CAUSE	Impurity/contamination Environmental Unknown										
MODE	Mechanical Electrical Metallurgical Unknown										
EFFECT	Labor and materials loss only System/component inoperative										

	COMPONENT TRAPS (GENERAL)		_									
	COMPONENT SUBTYPESTEAM TRAPS											
		FAILURES (%)	- 0 1	0 2	0 3	<u>60 4</u>	0 5	0 6	0 7	0 8	0 9	0 10
PLANT TYPE	Nuclear Test Reactors											
	Steam, Condensate, Feedwater		<u> </u>							 		
SYSTEM												
<u>}</u>	Gasket				1					 	t	
CAUSE COMPONENT PART	Unknown											
	Mechanical									}		
MODE	Unknown											
	Labor and materials loss only											
EFFECT												

TABLE <u>1-117</u>

FAILURE DISTRIBUTION FUNCTIONS

· .

TABLE ______

,

а

GENERAL SUMMARY

	COMPONENT TRAPS (GENERAL)	`		^	~	^	-		40		50	,	^	70	0	^	~	,	
	FAILURES (%) (ر 	1	U	2		30 T	,	40		50	6	0	70	8	0	-90 	,	100
	Impurity/contamination																		
щ	Human error		_		-									•					
CAUSE	Inherent															ļ			
U U	Unknown				_														
													{			ļ			1
$\overline{\Box}$	Electrical	-		Ē			Ť		Ť	-	T		İ	Ť		Í			Ħ
	Mechanical			_	_				_	_	-								ļ
MODE	_Metallurgical	•														-	[
Σ	Unknown	-																	
	Other	-								_		_							
	Labor and materials loss only			1			Ţ		-			_	T			Γ			Ħ
5	System/component inoperative	 		<u> </u>	_				+		-		1						
EFFECT		1																	
Ш		1																	
																		_	
	TOTAL FAILURES PER TYPE	0	1	0	2	0	30)	40		50	e	50	70	8	30	9	2	100
	Sodium freeze traps	-		<u> </u>	_	4	-		·							Γ			
	Sodium vapor traps	-		-	i na														
	Steam traps	┝╸																	
		ļ		ŀ									1			{			
		ł																	
	<u> </u>																		
	·····	{		l		ľ													
							Í									1			
	OPERATING HOURS (THOUSANDS)	1 ^		<u>بــــــــــــــــــــــــــــــــــــ</u>	4	0		 `	ــــــ 80		100	1	20	140		L	لـــــ	0	
	Sodium freeze traps			ř-		Ē	Ť	<u>,</u>	Ť	<u> </u>	<u>100</u>		Ť	140			10		-100
	Sodium vapor traps				_	21							ļ						
	Steam traps															Ì			
		1																	
ТҮРЕ																			
≿]		ĺ															
]		İ.		1			Ĩ							1.			
	FAILURE RATE (FAILURES/10 ⁶ hr)	<u>D</u>	1	00	2(00	30	0	40	0	500	6	00	700	8 (00	90	0	<u>io</u> 0
	Sodium freeze traps	F					Π	Τ	Τ	Τ	Т	Γ		T	Τ			Τ	Γ
	Sodium vapor traps		+	-	+														
	Steam traps	 	+	-					-							1			
			[l									1						
	· · · · · · · · · · · · · · · · · · ·			1															
				1												ĺ			
		ł		ŀ															
				1												[
1 1			1	1	1			1											
			1	1	1	1	I I		1		1	1			1	1	1		1

LMEC-Memo-69-7, Vol I 1-331

·

14. Valves

a. Introduction

The valve types for which malfunction data are considered in this section include: gate, globe, butterfly, check, and safety valves. The failure experience includes service in gases, steam, water, and sodium. A total of 287 failure reports collected from plants, facilities, and loops in connection with nuclear reactors are included in this section. The collected information is itemized in Table 1-119.

Typical valve failure experience includes: (1) external leaks, internal leaks, mechanical damage to component parts, and non-operation. Approximately threequarters of these reported failures were detected by direct observation and onequarter by monitors. Of the failures discovered by observation, about one-third were found during preventive maintenance.

b. Summary of Tabulated Data

The data in Table 1-119 are summarized in Tables 1-120 to 1-126. The data are subdivided into water loops: circulating, condensate, and feedwater; then into steam, miscellaneous, and sodium loops.

Under the above headings, the data are further grouped into:

- 1) Type of plants where the information came from.
- 2) Systems where the valves actually operated.
- 3) Valve components which failed.
- 4) Failure cause.
- 5) Failure mode.
- 6) Failure effect.

The majority of information, as indicated in the Failure Distribution Tables 1-120 to 1-125, comes from experience collected from nuclear test reactors and component test facilities, where valve operating environments and requirements are perhaps more severe than in regular power generating plants. The tables give failure occurrence percentages for the main valve components for each group of fluids. As would be expected, the circulating water table shows no valve body failures, since low pressure and temperature requirements can be

> LMEC-Memo-69-7, Vol I 1-332

easily fulfilled with high reliability. Low temperature and somewhat higher pressures of condensate water shows some failures, including flange gasket failures. Feedwater with medium temperatures but high pressures show an increase in failures with the accent again on the flanges. Valve body failures in the high temperature and pressure steam lines show the occurrence of compatibility problems between seldom-used housing materials and water contaminants (chlorides). The miscellaneous valve body failures are the result of experiments for material compatibilities. Sodium valve body problems are mainly grouped around the reinforcements after replacing bellows seals with freeze seals. The subject experience on sodium service valves is probably not representative of future service, because so many of the valves have been reworked.

Valve seat problems for valves in water account for a much larger percent of the problems compared to the valves in steam and sodium service.

The explanation for the large ratio of stem failures in the circulating water systems is probably due to the fact that the water is not chemically treated and that the valves are more frequently used than those in other loops.

Actuator and linkage data are presented in Section D.5, Valve Operators.

Table 1-126 provides a general summary of the data as to cause, mode, effect, and the total number of valve failures. Computation of updated failure rate information has been discontinued until a later date.

c. Discussion

To aid in understanding the following discussion, characteristics of the various valve types are given in the following discussion.

(1) General

Components in the primary loop of a nuclear reactor must have a high degree of reliability since accessibility for repair is limited and depends in part on the radioactive decay time of the primary loop fluid. Valve redundancy tends to generate rather than solve problems. Valves with internal components removable from the reactor containment without too much disturbance to the loop are under test now to facilitate maintenance of seldom-used valves. Compatibility of value component materials with the fluid carried in the piping is important to reduce maintenance problems. This requirement is sometimes neglected during repairs if proper spare parts are not stocked, and substitutions made.

Improperly performed quality assurance and quality control lead to startup troubles and malfunctions. Some of these problems become evident only after a long period of operation.

Even the best designed and manufactured values will perhaps malfunction if servicing and shipping instructions are not followed, foreign material is left in the loop, or value actuators are improperly installed.

Plant operators' manual should instruct operators that values are not to be torqued beyond values given by the manufacturer for each extreme position.

Each value in the loop shall be marked in accordance with the plant operators' manual to reduce the likelihood of actuating a wrong value, particularly during emergencies. The marking should include the normal and the special value positions as an aid in emergency applications.

Valves can be connected to the piping by flanges, by screw connections or by welding.

Flanged Connections

Use of flanged connections shall be reduced to a minimum in sodium systems or systems with high bending stresses and thermal transients.

Manufacturer recommendations with respect to gasket material and specifications, for bolts and nuts material (heat-treated state), and for applicable maximum torques in cold and in hot conditions should be used or References 1, 2, and 3 should be consulted. Good practice dictates the replacement of gaskets whenever the joints are loosened.

Bolts exposed to high temperature (600°F and above) are subject to creep; therefore, after each major temperature cycle the flange bolts should be checked for tightness.

A series of steam and water leaks reported at flange connections previously reported in this handbook were corrected by using improved gasket materials.

> LMEC-Memo-69-7, Vol I 1-334

Threaded Connections

Threaded connections are mainly for small-sized valves in low temperature (300°F and below) and pressure (150 psig) applications. Seal ring and torquing instructions supplied by the manufacturer should be followed. Do not overtorque sizes of 1 in. and below, since cracking of the material at the root of the thread is the usual consequence. Crack propagation is sometimes so slow that the leak appears only after a few weeks or even months.

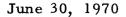
Welded Connections

Two types of welded connections are used. For small pipe sizes (3 in. and below) socket welds are acceptable and for larger sizes butt-welded connections are typical.

Welding instructions are given in codes, usually listed in the procurement specifications of the valves. Welding quality tests should be performed even for small surface welds applied during maintenance repairs.

(2) Detailed Discussion

For the detailed discussion below, the valves will be grouped in accordance with the fluids carried: gas, steam, water, and liquid sodium.


Failures of valve components are discussed in the following groups: body, including bonnets and yokes; seat, considering also discs, plugs, and diaphragms; and steam, including stem extensions, bushings, packings, and glands. At the end of each discussion, recommendations are given based on the analyzed failures.

Gas Valves

The following gaseous fluids are considered: air for instrumentation signal transfer and for valve actuator systems and inert gases (e.g., nitrogen, argon, and helium) used as cover gases above the free surface of liquid sodium. Air is usually at environmental temperatures of 50 to 90°F and pressures not higher than 200 psig. Cover gas temperatures approximate 900°F and the pressure is seldom above 300 psig.

Body – Valves carrying high-temperature cover gases required bonnet and stem reinforcement.

Seat – A valve supplying air for a control valve actuator leaked enough to actuate the control valve intermittently, causing serious plant disturbances.

Such seat leakage problems were the results of foreign particles carried to and partially impressed into the valve seats. Corrosive vapors in gas/air lines have developed sufficient corrosion to leak through the valve seats. In one case, corrosion caused the valve plug to stick in the valve seat. Valve component damage occurred due to a fast-acting, high-force actuator.

In a special value, the spring load was so high that the ball type plug stuck in the seat. A new spring with a reduced coefficient solved the problem.

<u>Stem</u> – One case of bushing and stem galling and one case of worn packing is reported in the listing. Shafts and bushings of air dampers became stuck in a venting system.

<u>Other</u> – O-rings wore out in some valves causing frequent maintenance. The valves were redesigned.

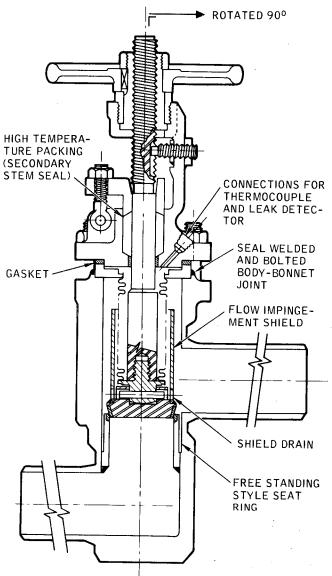
Recommendations — As was earlier suggested, gaskets should be replaced whenever the seal is loosened. Keep spare seal rings in stock and follow bolt torquing instructions.

Use upstream filters and desiccants to maintain clean, smooth value seats and eliminate leakage.

Keep valve stems clean and free from paints or corrosive lubricants.

The use of extreme force in closing valves should be avoided. Back off manually operated valves slightly from the end positions.

Apply packing materials and torquing procedures as suggested by the manufacturer. Accurate maintenance records will help to determine the time intervals for packing changes.


Selection of proper value types (Figures 1-31 through 1-35), sizes, and materials compatibility is stressed.

Steam Valves


Since industrial and electrical power generating plants have used the basic types of these values for a long period of time, the following discussions refer to types built more specifically for nuclear fueled plants.

<u>Body</u> – Where flanged connections are still in use, new-type gaskets and bolts have improved the leakage problems.

LMEC-Memo-69-7, Vol I 1-336

7-7694-213-6

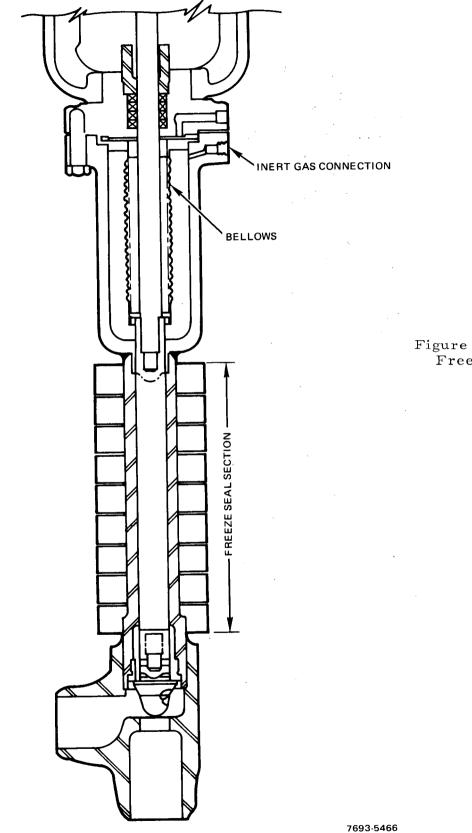
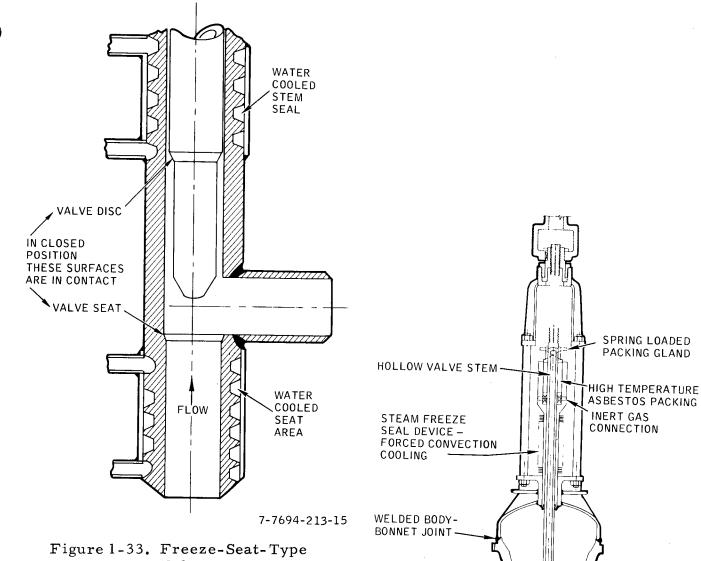



Figure 1-32. Combination Freeze-Stem Bellows Seal Valve

Valve

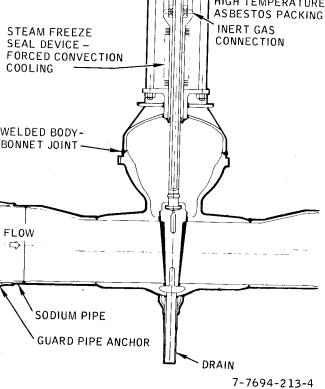
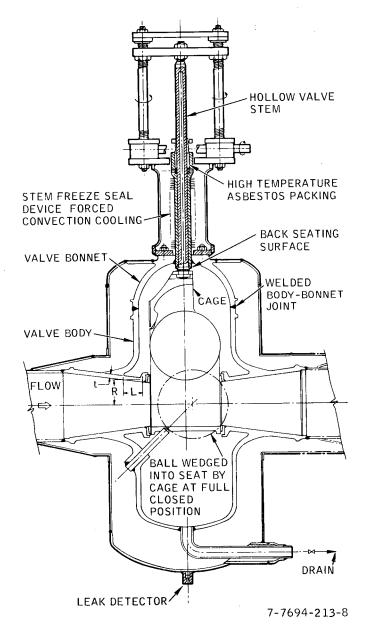
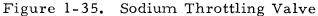




Figure 1-34. Sodium Blocking Valve

.

Valve bodies of Type 347 SS material developed strong chloride stress corrosion cracks, which can result in long plant operational delays. Type 347 SS valves were replaced by valves of 2-1/4 Cr - 1 Mo type material.

High-velocity, low-quality steam generates erosion damage on the internal surface of a valve body. This damage may be restored by fill-in welding.

<u>Seat</u> – The majority of internal valve leakage is the result of seat or plug erosion at high steam velocities.

Steam also leaks through cracked seats, which frequently is the consequence of extreme closing force applied.

Valve seat cracks are occasionally developed by thermal stresses following steep thermal gradients in high-temperature plant operations.

<u>Stem</u> – Frequently used valves naturally wear faster. Wear is accelerated by tight tolerances between stem and guides at high temperatures. Noncompatible packing material can also reduce the service life of a stem and improperly installed packing will leak earlier.

Recommendations -

<u>Body</u> – The danger of chloride stress corrosion exists in high-temperature (over 1000° F), high-pressure pipe loops fabricated from Type 300 stainless steels. If hydrostatic testing with water rather than some other fluid is necessary, use highly purified water with chloride content below 0.1 ppm.

Select system conditions so as to reduce the probability of flashing inside the valve body since this will cause erosion, or corrosion, thereby reducing valve life expectancy. If a valve in a near-saturated steam loop may experience high-flow velocity of degrading steam quality, placing a condensate separator upstream will improve valve function and life span by reducing erosion.

<u>Seat</u> – The seat at plug surfaces contact point should be properly lapped with hard materials (usually Stellite) to provide longer service life.

Valve operators' manual should contain instruction to avoid application of excessive forces (by wrench or cheaters) in either of the extreme valve positions, which may result in either seat welding or seat cracking.

> LMEC-Memo-69-7, Vol I 1-341

In high-temperature, high-pressure steam lines, valve seat cracking caused by thermal transients can be greatly reduced by requesting a uniform wall thickness. Some flexibility in the seat carrying section assures less leakage through the equalizing of small distortions.

<u>Stem</u> – A major percent of valve stem leaks are the result of improper packing methods. The valve maintenance manual must include proper instructions for valve stem packing procedures. The valve maintenance schedule must consider the frequency of operation of each valve in the plant.

Water Valves

Valves built for water show a great variety in type and size. Usually the temperature ratings are below the steam saturation point; pressure rating may reach the critical pressure. Since water valve development is well advanced, problems are mainly associated with the high-pressure, fast-acting type valves.

<u>Body</u> — The problems with flanged steam values are also valid for hightemperature and high-pressure water applications. For low pressures and temperatures, carbon or ferritic steels are used; however, near critical pressures, alloy steels should be used. Bronze values are used only in low-pressure and low-temperature pipe lines.

Flanged or even screw type connections may be justified at lower pressure in order to facilitate maintenance of frequently actuated valves. Facility design should minimize load input to the valve and the higher corrosion sensitivity of the threaded connections should be considered in the maintenance requirements.

Lack of proper quality control has resulted in: body leakage and even rupture, while smaller failures have required early valve repairs. Improper material selection and the resulting incompatibility yielded failures of plastic valves.

<u>Seat</u> – Valve plug and seat cracking probably resulted from the use of closing forces above the safe limit. Similar damage can be the consequence of maladjusted valve actuators, or spring loading mechanism for safety valves. A loose valve seat was perhaps the result of poor workmanship and quality control.

Relapping of closing seat surfaces have eliminated seat leakages in safety and control valves. The same applies to seldom-used valves such as sight glass valves or cooling-water-spray shut-off valves.

> LMEC-Memo-69-7, Vol I 1-342

If possible plant control malfunctions are not considered in selecting valve sizes, unstable subsystem operations may result.

Solenoid value diaphragm cracking can be the result of high closing force, or fluid incompatibility with the diaphragm.

<u>Stem</u> - Problems with these valve components are similar to those for steam valves. Force applied to the stem above the buckling limit caused permanent bending or worn stem threads. Packing and consequent gland galling resulted either in rough control operation or the stem jamming in the open position. Improper thermal expansion tolerances between stem and gland can make a valve inoperative. Good packing material should have enough resiliency to seal slightly above design pressure for a short period of time. Dried out and worn packings will leak. Instability of valve spring constants or improper adjustment may have caused the early opening of a safety valve or the poor closing characteristics.

<u>Recommendations</u> – Many of the recommendations given for steam valves also apply to valves for water service:

- Select valves with material compatibility or protect the valves from water impurities like chlorides, boron, hydrogen, etc. Type 300 SS material may be sensitive to each in the few-ppb range.
- 2) Since nuclear reactor scrams reduce heat generation at a faster rate than fossil-fuel-operated plants, thermal stresses will tend to be more severe in the valve body and seat area. Increased attention must be given to the design and selection of valves for this service.
- 3) Fast-acting control valve actuation is needed to meet reactor scram requirements.
- 4) High pressure drops in control values can excite vibration and cavitation problems.
- 5) Materials should be selected so as to have compatibility between body, seat, plug disc, and lapping materials.
- 6) Maintenance followup programs should be introduced in each plant to establish maintenance schedules for: seat-plug lapping periods, stem wear checking, changing dried out or worn out packing, and operator linkage-wear inspection.

- Manufacturers' instructions should be requested or plant maintenance experiences collected for packing material selection, packing procedures, and torquing values for high pressure values in each plant.
- 8) Valve identification marking methods should be defined and tags attached to the valves showing normal and emergency positionings. Plant operators' manual should require checking of the position of manually operated valves after maintenance and repair periods.

Liquid Sodium Valves

Functions of the liquid sodium valves are similar to water types; however, differences are: in the material selection because of sodium compatibility problems, in the in-leakage limitations because of the high chemical affinity of sodium for oxygen (in air), in the stress analysis because of the higher heat transfer and conductivity coefficients of sodium as compared to water, and in the sizes. Some variations in conventional valve designs that have performed satisfactorily in sodium systems are illustrated in Figures 1-31 through 1-35.

Basic value materials for liquid sodium service are alloy steels (Cr-Mo types) and stainless steels (Type 300 or Type 400 series). Welded connections are used almost exclusively. The welding of these dissimilar materials may represent a problem area.

Presently the value stem seal types depend on the value size. Small values tend to use bellows seals, with the maximum deflection and allowable fatigue stresses vs operating cycles as the limiting parameters. Larger-size values are built with freeze seal stems to reduce extreme value dimensions. Exotic types of seals are under consideration with some in the testing stage.

<u>Body</u> — When flanged connections are in the loop, loose bolt connections would be expected after thermal transients and the resulting leak may develop into sodium fire. A similar situation could be the consequence of O-ring deformation after expansions and contractions.

A number of bellows-sealed valves were modified to freeze-seal stems, with the result that the bonnets and actuator linkages had to be reinforced to handle the increased actuating force required to shear residual oxides. <u>Seat</u> — If in high-temperature sodium (at and over 1000°F) the seat surface pressures are sufficiently high to bring the disc-seat materials within molecular distance of each other, seat welding may occur, rendering the valve inoperative. As indicated in References 5 and 9, harder seat lapping materials (e.g., Stellite) resist seat welding even at high surface pressures.

Sodium leakage may develop at the back seat of a fully open value if the primary (and secondary) seals fail and the contacting surfaces are not maintained in good condition. Seat and plug relapping restores value seat seals.

Improper quality assurance and control can lead to early malfunctions of valves with inherent design errors or manufacturing misalignment between seat and plug/disc.

Forcing a plug into the seat may distort the seat so that leakage develops. This is possible in either the fully open or fully closed position. Under certain circumstances this extreme force can cause seat-self-welding (References 4 and 5).

<u>Stem</u> - Different configurations of bellows-type stem seals have been used. As seen in Figure 1-31, the bellows are welded at the bottom part of the stem and at the bonnet flange at the top. This gives a complete mechanical seal with a moving flexibility for the plug. Incomplete empirical design of the bellows and the increasing valve sizes resulted in such a high frequency of bellows failures that many of the sodium valves have been converted into frozen seal types, as shown in Figure 1-32. The freeze seal can be cooled by environmental air using fins around the bonnet, or by other fluids with temperature control within the bonnet. Safety requirements suggest a combination of the presently used seals. Forced air freeze seal and graphite asbestos gland packing is used for the gate valve in Figure 1-33. A series of freeze bellows-packing gland seals are depicted in Figure 1-34. Freeze seal and backup seat combination can be seen in Figure 1-35 for ball-type flow-control valve.

The failure reports list bellows cracks as a result of intergranular attack in the heat-affected zone of the weld and fatigue cracks in the welding. Fatigue stress cracks followed by sodium leaks can be blamed for the great majority of failures in bellows-sealed sodium valves.

Some failures were caused by sodium solidification in the bellows convolutions as a consequence of relatively high oxygen content. During the line thawing period, the valve was actuated before complete melting, thereby breaking the bellows.

> LMEC-Memo-69-7, Vol I 1-345

In a solidified sodium line section, operation of the valve actuator was attempted, consequently rupturing the bellows. A frozen piping loop was heated in the middle section which contained a bellows-sealed valve, with the result that thermal expansion overpressure ruptured the bellows.

Bellows failures introduced by valve components are listed as follows: (1) uneven expansion of convolutions because of lack of guidance resulted in local overstresses which accelerated cracking, (2) bend valve stem rubbed the bellows wall and produced leaking hole failures, (3) vibration transmitted to a valve abbreviated the fatigue life of the bellows, (4) flow fluctuations which generated vibration, led to reduced bellows fatigue life, and (5) direct impingement of sodium stream on a bellows resulted in early fatigue failure.

The increased use of freeze seals in valves has identified several problem areas. When the stem is removed from the sodium seal area, a thin sodium layer clings to the surface of the stem. This thin layer forms an oxide, which is considerably harder than the pure sodium. After several strokes of the valve stem, sodium oxide may fill the seal gap, thereby substantially increasing the break-away torque required. The higher actuating torque leads to a malfunction which requires valve top work (bonnet) and stem reinforcements. Small gap tolerances aggravate the problem. Valves which are seldom actuated require additional heating because of the higher melting temperature of the oxidized material in the seal area.

Related failures, but independent of the seal type, resulted in three cases of non-concentricity of the stem and bushing.

A unique valve malfunction occurred due to interference between the moving stem and the electrical wires of the sodium leak detectors in the valve bonnet.

A discussion of freeze seal problem areas and proposed techniques for improving freeze seal design are given in References 7 and 8.

Recommendations - For value bodies, body shapes which are adaptable to reliable stress analyses should be selected. Abrupt body cross section changes are to be avoided in order to reduce stress concentrations, thermal stresses, and seat distortions. However, slightly flexible seat supports tend to give a tighter seal.

Minimizing flow directional changes tends to improve value operation by reducing flow-induced vibrations, and tends to provide lower pressure loss across the value.

> LMEC-Memo-69-7, Vol I 1-346

The high chemical affinity of sodium excludes the use of organic materials (e.g., Teflon) in values even in such applications as in the presence of sodium vapor at low pressures and temperatures (e.g., in cover-gas exhaust line values).

Check valve leak problems are less likely if the disc is closing in the vertical position. Horizontally seated check valves are spring loaded; however, springs with stable characteristics over a long period of time in a high-temperature environment are yet to be developed.

In general, safety values are not necessary in liquid sodium loops. Overpressures due to fluid hammer effects can be controlled by properly selecting value closing times in consideration of pump-motor inertias. Pressures generated by release of chemical energy can be safely controlled by rupture discs.

The use of bellows seals is satisfactory for valve sizes up to 4 in., if the physical dimensions are acceptable and the fatigue life of the bellows is compatible with the expected actuation cycles. New bellows are being designed using theoretical methods and incorporating materials tested for long fatigue life at high temperatures (Reference 6).

Important design considerations are as follows:

- 1) Bellows stresses are greatly reduced if the inert gas pressure applied outside the bellows is equal to that of sodium.
- 2) Elimination of vibrations enhances fatigue life expectancy.
- 3) Limit seating force to avoid seat distortion.
- 4) Provide for complete sodium drainage in any valve position.
- 5) Install some type of sodium leak detector in the valve bonnet area.
- 6) Plant operators' manual should contain filling, drainage, and thawing instructions emphasizing that thawing be started at that end of the line where adequate space is available for sodium expansion without pressure rise.

The freeze seal is a relatively thin layer of sodium between the stem and guide at a temperature which can maintain the seal but with a shear stress low enough to allow valve stem movement with reasonable torque loads. The main design and operation considerations are:

- 1) Use of cover gas with low oxygen content to reduce the oxidization process.
- 2) Actuating force can be reduced with only rotating motion in the seal area.
- 3) Seal reliability is improved with the addition of other types of seals and the inclusion of backup valve seats.
- 4) The valve actuator must be able to apply the break-away force as well as properly position the valve and supply a sufficient but not excessive seat closing force.
- 5) Fast valve stroking action may also be required.
- 6) Heaters in the seal area of seldom-used valves may be required to melt the seal material with high sodium oxide content.

The selection of an actuator requires careful consideration of material compatibility, not only of liquid and vapors of sodium, but also with the different cover gases. The effect on the electrical insulation of electrical motors or the solenoid actuator must be included.

The principal investigator of this material was K. A. Bonyhady. If additional information regarding valve failure experience is required, contact K. A. Bonyhady, E. Ferguson, or B. S. Pilling at LMEC.

Pages 1-349 through 1-352 deleted.

d. References

- 1. ASME Pressure Vessel Code, Article 1-12 (1968), p 164-167.
- M. J. Siegel, V. L. Malev, and J. B. Hartman, Mechanical Design of Machines (4th Ed., International Textbook Co., Scranton, Pennsylvania, 1965), p 282-319.
- 3. W. P. White and N. A. C. Bromidge, "High Temperature Bolted Flanged Joints," TRC-Report-1404 (May 1966), p 9-32.
- 4. D. E. Smith, "Final Report, LCRE Valve Development," PWAC-401, Part II (May 1964).
- 5. O. S. Seim, "Large Valves for Liquid Metal Cooled Reactors," RFPR-A-11/3-127-68 (1969).
- 6. W. F. Anderson, "Analysis of Stresses in Bellows," Vols I and II, NAA-SR-4527 (May 27, 1965).
- 7. P. K. Salzman and F. N. Shell, "S2G Valve Sodium Freeze Seal Evaluation Phase II," KAPL-M-EDL-124 (Nov. 1956).
- 8. R. Cygan and A. M. Stelle, "Design and Operation of Freeze Seal Valves and Pumps," CEPR-52-157-56 (April 1956).
- 9. D. E. Smith, "Final Report, LCRE Valve Development," PWAC-401, Part II (May 1964).

TAB	LE	1-1	19

FAILURE DATA FOR ______

June				LONE		(Sh	eet 1 of 52)		
30,		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
1970	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	1	 Valve/Float Feedwater Supply and Treatment System/ Chemical Treatment Facility 20 273300 	 SCTI Treated water system valve to precoat filter and demineralizer - Incident report No. 314 (11-3-66) 	MI 182	MI 17	MI 550	4015	Direct observation	 Circuit breaker to pump P-7 tripped as demand for water from P-7 was excessive, causing overload to pump. Thermal overload burned out. Valve throttled to reduce flow and pump P-7 restarted. Keep flow demand at system design limits.
LMEC-Memo-69- 1-354	2	 Valve/Float Feedwater Supply and Treatment System/ Chemical Treatment Facility 20 273300 	 SCTI Treated water system deaerator valve - Incident report No. 313 (11-2-66) 	MI 182	МІ 17	MI 550	3568	Direct observation	 Circuit breaker to pump P-9 tripped due to excessive demand. Deaerator float valve stuck open. Pump P-7 started to continue operation. System to P-9 returned to normal. Keep flow demand at system design limits so that pump motors are not overloaded.
emo-69-7, Vol 1-354	3	 Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Startup boiler feed pump - Operations weekly report (2-28-68) 	MI 500	MI BZ	MI 530	13,620	Direct observation	 Seal ring surface was worn out. Local repair, surface was remachined. None.
11	4	 Valve/Lower Bushing Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (P5-VC- 596) 1250°F, 1265 psig PMMR-27 	MI 500	MI 52	MI 530	72	Operational monitors	 Valve leaking. Local repair. Irregular control characteristics and noise during valve operation should be observed earlier. Plant operators' training should be improved.
	5	 Valve/Upper Seat Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor drived feed pump (P5-VC-596) - PMMR-27 	MI 500	MI 52	MI 530	72	Operational monitors	 Valve leaking. Local repair. Irregular control characteristics and noise during, valve operation should be observed earlier. Plant operators' training should be improved.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

-

TABLE <u>1-119</u>

FAILURE DATA FOR <u>VALVES</u>

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		LURE IN CODE*	IDEX		METHOD OF FAILURE DETECTION	1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)		CAUSE	MODE	EFFECT	OPERATING HOURS		2. CORRECTIVE ACTION 3. RECOMMENDATIONS
6	 Valve/Lower Seat Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (P5-VC-596) - PMMR-27 	MI 500	MI 53	MI 530	72	Operational monitors	 Valve leaking. Local repair. Irregular control characteristics and noise during valve operation should be observed earlier. Plant operators' training should be improved.
	and Feedwater Piping and Equipment/Valves	 EBR-II Motor driven feed pump (P5-VC-596) - PMMR-36 	MI 500 -	MI 53	MI 530	908	Routine inspection	 Valve seat worked loose. Local repair, seat was retightened and spot welded into place. Since the seats were welded in place not too long before, better workmanship could avoid this failure. Improve quality control over repairs. Assembly procedure needed.
	 Valve/Stem Connector Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 Motor driven feed pump (P5-VC-596) 	MI 500	MI 59	MI 530	480	Preventive maintenance	 Valve thread connecting stem to operator was stripped. Part replaced. Assembly procedure needed.
	 and Feedwater Piping and Equipment/Valves 	 EBR-II Motor driven feed pump (P5-VC-596) - PMMR-72 	MI 456	MI 55	MI 530	1610	Operational monitors	 This was reported as a failure in a new valve. Local repair. Better receiving inspection or Quality Assurance before installation can prevent such malfunctions.
	 Valve/Nipple Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (P5-VC-596) - PMMR-25 	MI 475	MI 73	MI 550	1610	Direct observation	 Nipple cracked. Part replaced. Welding of 1-1/4 Cr-1/2 Mosteel to carbon steel shal conform to code requirement. Improper welding car result in cracks at small thermal expansion differ- ences. With proper construction supervision such errors could be avoided. Use proper specification and procedures.

-

 $I = INCIDENT \qquad MI = MINUK WAL$ MA = MAJOR MALFUNCTION P = PROBLEM

2

						(She	et 3 of 52)		
ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
	TEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	11	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (P5-VC-596) - PMMR-44 	MA 122	MA 59	MA 520	144	Direct observation	 Plant shutdown due to packing blowout. Part replaced. Pressure control valves should be able to resist certain over-pressures. Using higher rated lubri- cants is advisable in case of valve lubricator rupture. Review procedures to assure proper assembly of parts and use of materials.
LMEC-Mem	12	Piston) 2. Steam, Condensate,	 EBR-II Motor driven feed pump (P5-VC-596) - PMMR-91 	MI 172	MI 59	MI 550	3314	Operational monitors	1. Broken stop. 2. Local repair. 3. None.
LMEC-Memo-69-7, Vol I	13	 Valve/Upper Bushing Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (P5-VC-596) - PMMR-27 	MI 500	MI 53	MI 530	72	Operational monitors	 Valve leaking. Local repair. Irregular control characteristics and noise during valve operation should be observed earlier. Plant operators' training should be improved. Review procedure to assure proper assembly.
	14	 Valve/Lower Bushing Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (P5-VC-596) - ANL-7122, PMMR-52 	MA 500	MA 59	MA 520	508	Operational monitors	 Valve failed and is not repairable. Temporary jury rig - an orifice was installed in the discharge line from the pump and pressure drop was controlled with 2 valves downstream. Previous repair time seemed to be too short for the described work. Closer quality control should be exercised for such critical repair.
	15	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater heater No. 4 (P5-VC-609) - PMMR-75 	MI 500	MI BZ	MI 530	3400	Preventive maintenance	 Packing deteriorated and leaking. Part replaced. None.
	16	 Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater heater No. 4 (P5-VC-609) - PMMR-36 MI = MINOR MALFUNCTION 	MI 500	MI BZ	MI 530	770	Routine inspection	 Packing deteriorated and leaking. Part replaced. None.

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

FAILURE DATA FOR VALVES

June 30, 1970

1-356

FAILURE DATA FOR <u>VALVES</u> (Sheet 4 of 52)

.

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*				1. FAILURE DESCRIPTION
ITI	EM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Valve/Flange Gasket Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater heater No. 3 (P3-VC-508) - PMMR-51 	MI 500	MI BZ	MI 530	3850	Preventive maintenance	 Flange gasket leaking. Part replaced. None.
		 Valve/Gasket Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater heater No. 3 (P3-VC-508) - PMMR-75 	MI 500	MI BZ	MI 530	2140	Preventive maintenance	1. Gasket leaking. 2. Part replaced. 3. None.
LMEC-Memo-69-7, Vol		 Valve/Body Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater heater No. 3 (P3-VC-508) - PMMR-92 	MI 454	MI BZ	MI 530	2910	Direct observation	 Leakage through porous valve body. Repair was performed by internal grinding and welding the affected area. Proper quality assurance test could detect this fault of the valve body.
		 Valve/Solenoid Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Startup boiler feed pump 364°F - 1300 psig PMMR-49 	MI 500	MI 12	MI 530	Unknown	Operational monitors	 Solenoid coil burned out. Loading valve on No. 3 cylinder. Part replaced. None.
2		 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (governor valve) - PMMR-52 	MI 500	MI 54	MI 550	3890	Direct observation	 Stem was bent. Local repair, stem was straightened. None.
2		 Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (relief valve) - PMMR-42 	MI 500	MI BZ	MI 530	3722	Direct observation	 Valve would not seat, stuck open. Part replaced. None.

MI = INCIDENT MI = MINOR MAL MA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

1-357

	1	. COMPONENT/PART . SYSTEM/SUBSYSTEM	3. OPERATING CONDITIONS	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
ITE	M 3	CODE: (Component) (System/Subsystem)		CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
23	2	 Valve/Disk Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (warmup line) PF-13 - PMMR-58 	MI 122	MI 59	MI 530	3460	Preventive maintenance	 Valve received considerable punishment due to excessive pressure drop across the seat. Part replaced. If the life period of a valve repair is less than the plant preventive maintenance cycle, it should be replaced with a better design.
	2	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump (warmup line) PF-13 - - 	MI 500	MI BZ	MI 530	1200	Direct observation	 Packing worn out. Part replaced and tie rod installed to limit vibration Since vibration aggravates the wear of the valve packing, installation of a tie rod is only a temporary solution. Longer, reliable service requires elimi- nation or reduction of piping vibration.
LMEC-Memo-69-7, Vol	2	 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater - motor driven feed pump warmup line (PF-13) - PMMR-69 	MI 500	MI BZ	MI 530	540	Preventive maintenance	 Valve plug and stem failure due to severe working conditions. Parts replaced. None.
° ¹ – 26	2	 Valve/Plug Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater - motor driven feed pump warmup line (PF-13) - PMMR-69 	MI 500	MI 59	MI 530	540	Preventive maintenance	 Valve plug and stem failure due to severe working conditions. Parts replaced. None.
27	2	 Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Motor driven feed pump - PMMR-5 	MI 500	MI BZ	MI 550	1200	Direct observation	 Valve relieved at lower than set pressure. Part replaced. None.

FAILURE DATA FOR VALVES

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-119

FAILURE DATA FOR <u>VALVES</u> (Sheet 6 of 52)

- -		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
1070	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	28	 Valve/Seat (Locked Open) Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater/motor driven feed pump 364°F, 670 to 90 gpm, 1500 psig, 3580 RPM ANL 6808 	MI 333	MI 51	MI 530	Start up	Operational monitors	 Valve locked in open position. Vendor repair of component. Operating procedures should be more closely followed: (a) A signoff system should be used on the preventive maintenance work when completed, (b) step-by-step checkoff sheet system should be used for plant operation, (c) back off valve one-half turn when fully opening valve.
LMEC-Memo-69- 1-359	29	 Valve/Plug Feedwater Supply and Treatment/Feedwater Purification 20 273100 	 SCT1 Steam and feedwater system valve (FR-201V) 3. 375°F IMPR No. 344 	MA 122	MA 59	MA 520	1500	Direct observation	 Valve rework, revealed cracked and broken valve plug Replaced part. None.
69-7, Vol I	30	 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II motor driven feed pump (PS-VC-596) - PMMR-102 	MI 456	MI 55	MI 530	1016	Operational monitors	 Valve stem stuck. Local repair, out of tolerance part was remachined. Quality control could eliminate improperly manufactured parts.
	31	 Valve/Body Feedwater Supply and Treatment/Storage Facilities 20 272400 	 SCTI Treated motor system 100 psi at 130°F Incident report No. 36 	MI 417	MI 59	MI 35	1668	Direct observation	 PVC (plastic) material split open in the body section. Component corrective modification, plastic valve and associated plactic system replaced with metal valve and piping. More careful selection if used under special conditions.
	32	 Valve/Body Feedwater Supply and Treatment/Storage Facilities 20 272400 	 SCTI Treated water system 2 in., 150 psi, 100°F Incident report No. 42 	MI 417	MI 59	MI 35	2397	Direct observation	 Body of valve cracked. Part replaced. None.

* I = INCIDENT MI = MINOR MAL MA = MAJOR MALFUNCTION P = PROBLEM

June 30.					DATA FO	(She	LVES eet 7 of 52)		
- 1	ITEM	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	33	 Valve/O-Rings Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater (No. 1 and 3 suction valves) - Operation weekly report, 5/1/68 	MI 500	MI BZ	MI 530	13,620	Preventive maintenance	 O-rings worn out. Part replaced. Possibly select O-ring of different material.
LMEC-Memo-69-	34	 Valve/Nipple Steam, Condensate, and Feedwater Piping and Equipment/Valve 20 284300 	1. EBR-II 2. Feedwater 3. 364°F, 1500 psig 4. PMMR-27	MI 452	MI 59	MI 530	1682	Direct observation	 Nipple ruptured. Part replaced. Properly managed quality control could eliminate this failure.
lemo-69-7, Vol I	35	 Valve/Body Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Feedwater 364°F, 1500 psig PMMR-27 	MI 452	MI 59	MI 530	1682	Direct observation	 Valve ruptured. Part replaced. Properly managed quality control could eliminate this failure.
11	36	 Solenoid Valve/ Diaphragm Feedwater Supply and Treatment/ Demineralizers 20 272200 	 SCTI Treated water system valve SV-D. Demineralizer D-1 35 gpm at 30-100 psig Incident report No. 342 	MI 131	МІ 59	MI 530	4210	Routine area watch	 Valve diaphragm cracked. Replaced part. Determine, from analysis, compatibility of materials.
t	37	 Relief Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Startup boiler feed pump relief - Operating maintenance report, 6/26/68 	MI 500	MI BZ	MI 530	15, 168	Operational monitors	 Seat worn out. Local repair. Relief valves should be checked periodically as a par of a preventive maintenance schedule.
	38	 Valve/Spring Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 		MI 500	MI 55	MI 530	3722	Operational monitor	 Safety valve opened and would not reseat. Part replaced. None.

r

TABLE <u>1-119</u>

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ______1-119____

FAILURE DATA FOR <u>VALVES</u> (Sheet 8 of 52)

June	
30,	
-	

30,							eet 6 01 52)		
1970		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		URE IN CODE*		OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
		 Steam, Condensate, and Feedwater Piping and Equipment/Valves 	 EBR-II Startup boiler feed pump No. 2 suction valve - PMMR-96 	MI 500	MI 52	MI 530	Unknown	Preventive maintenance	 O-ring worn out. Part replaced. Investigate use of different O-ring material.
LMEC-J		 Valve/Gasket Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	l. EBR-II 2. Startup boiler feed pump 3. – 4. PMMR-42	MI 500	МІ 59	MI 530	3722	Operational monitor	 Gasket blew out. Part replaced. None.
LMEC-Memo-69-7, Vol 1-361	41	 Valve/O-Ring Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Startup boiler feed pump (No. 3 suction valve) - - PMMR-96 	MI 500	MI 52	MI 530	Unknown	Preventive maintenance	 O- ring worn out. Part replaced. Investigate use of different O-ring material.
ol I	44	 Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Startup boiler feed pump (pressure relief valve) - Operations monthly report, 11/67 	MI 500	MI 65	MI 530	12,594	During repair of associated system	1. Valve seat erosion. 2. Local repair. 3. None.
	43	 Valve/Nipple Steam, Condensate, and Feedwater Piping and Equipment/Valves 20 284300 	 EBR-II Startup boiler feed pump (pressure relief valve) - Operations monthly report, 11/67 	MI 122	MI 59	MI 530	12, 594	Direct observation	1. Nipple broken. 2. Part replaced. 3. None.
	44	Deleted							
	L			1	<u> </u>	1	1	L	1

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

-

		COMPONENT/PART SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITE	^N 3.	CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
45	2.	Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/ Feedwater Heater 20 284200	 EBR-II Feedwater heater No. 4 Shell side - 480°F, 1200 psig Tube side - 565°F, 1500 psig PMMR-72 	MI 500	MI BZ	MI 530	1840	Direct observation	 Packing worn out. Packing replaced. None.
46	2.	Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/ Feedwater Heater 20 284200	l. EBR-II 2. Feedwater heater No. 3 sightglass 3. – 4. PMMR-76	MI 500	MI 52	MI 530	144	Direct observation	 Valve leaking past seat. Local repair, repaired valve seat. No requirement needed.
47	2.	Valve/Gasket Steam, Condensate, and Feedwater Piping and Equipment/ Feedwater Heater 20 284200	1. EBR-II 2. Feedwater heater No. 4 3 4. PMMR-29	MI 500	MI 59	MI 530	1850 	Operational monitors	 Gasket ruptured. Part replaced. None.
48	2.	Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/ Feedwater Heater 20 284200	1. EBR-II 2. Feedwater heater No. 4 3 4. PMMR-30	MA 126	MA 52	MA 520	2000	Direct observation	 Packing ruptured, valve leaking. Part replaced. Ensure that the valve packing material be insta properly and that the valve is not subjected to excessive pressures.
49	2.	Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/ Feedwater Heater 20 284200	 EBR-II Feedwater heater No. 4 - Weekly maintenance report, 5/21/68 	MI 500	MI BZ	MI 530	14,500	Routine area watch, direct observation	 Valve leaked. Local repair, was reconditioned. None.

TABLE <u>1-119</u>

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

.

FAILURE DATA FOR <u>VALVES</u> (Sheet 10 of 52)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
50	 Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/ Feedwater Heater 20 284200 	1. EBR-II 2. Feedwater heater No. 2 3. ~ 4. PMMR-46	MI 500	MI BZ	MI 530	3410	Operational monitors	 Valve leaked. Local repair, seat and disc cleaned, lapped, checked, new packing and lubricator nipple installed. Preventive maintenance repair should be performed periodically before leak develops.
51	 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II High pressure flash tank 578 °F, 700 psig PMMR-80 	MI 500 ⁻	MI BZ	MI 530	6900	Preventive maintenance	 Stem worn. Local repair, valve removed and stem remachined. Better sightglass material would reduce the frequence of the valve operation, saving valve and stem wear. Investigate use of different material.
52	 Valves/Seat Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II Main steam/condensate valve (P5-VC-620) 150 psig PMMR-25 	MI 500	MI 59	MI 530	1610	Operational monitor	 Valve seat broken. Temporarily reassembled for continued operation (no parts). As the state-of-the-art advances with larger FBR's, adequate storage of spare parts should be more closely planned. Do not close valve as tight as pos- sible, especially when valve is cold.
53	 Valve/Body Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II Main steam/condensate valve (P5-VC-620) 150 psig Operations maintenance report, 6/26/68 	MI 500	MI BZ	MI 530	13,630	Direct observation	 Valve repairs completed (only information available). Parts replaced. Periodical checking should be a part of the preventive maintenance schedule.
54	 Valve/Bushing (Upper) Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II Main steam/condensate valve (P5-VC-620) 150 psig PMMR-25 	MI 500	MI 68	MI 530	1610	During repair of primary component	 Valve bushings were galled. Temporarily reassembled for continued operation (no parts). As the state-of-the-art advances with larger FBR's, adequate storing of spare parts should be more closely planned.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

20 1070		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	55	 Valve/Bushing (Lower) Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II Main steam/condensate valve (P5-VC-620) 150 psig PMMR-25 	MI 500	MI 68	MI 530	1610	During repair of primary component	 Valve bushings were galled. Temporarily reassembled for continued operation (no parts). As the state-of-the-art advances with larger FBR's, adequate storing of spare parts should be more closely planned.
LMEC-Mer	56	 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II Main steam/condensate valve (P5-VC-620) 150 psig PMMR-25 	MI 500	MI 68	MI 530	1610	During repair of primary component	 Valve stem was galled. Temporarily reassembled for continued operation (no parts). As the state-of-the-art advances with larger FBR's adequate storing of spare parts should be more closely planned.
57 LMEC-Memo-69-7, Vol I	57	 Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II Main steam/condensate high pressure flash tank 700 psig, 578 °F Operations maintenance report, week ending 8/14/68 	MI 500	MI BZ	MI 530	15,240	During preventive maintenance	 Valve seat worn. Local repair, valve disassembled and the seat was repaired. Possibly different seat material might improve duration.
	58	 Valve/Flange Gasket Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 EBR-II Main steam/condenser bypass valve (P3-VC-544D) 150 psig PMMR-80 	MI 500	MI BZ	MI 530	6900	Preventive maintenance	 Leak at gasket. Part replaced. None.
	59	 Valve/Support Valves Steam, Condensate, and Feedwater Piping and Equipment/ Condensate Valves 20 283300 	 SCTI Valves HIC 209 and HIC 210 controlling flow through condensate pump P-4 Open valves Incident report No. 330 	MI 346	MI 5Z	• MI 111	6215	Routine instrument reading, direct observation	 Zero flow on indicators F1-201 and F1-202 indicativalves were closed or clogged - valves HIC 209 and 210 closed - standard operating procedures not followed. Opened valves. Standard operating procedure should be followed at a system instituted to provide verification of concurrence.

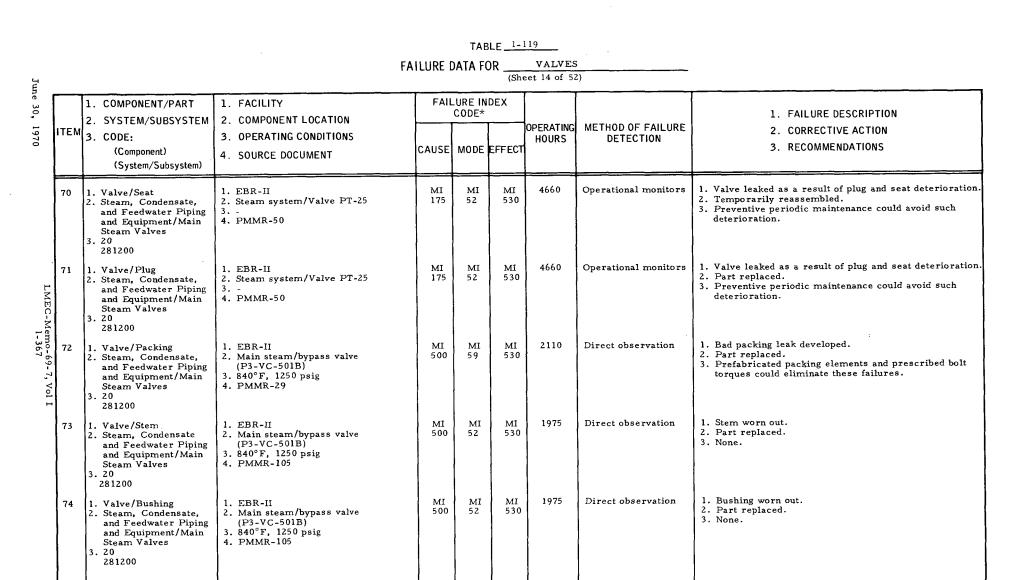
M = MINOR MALMA = MAJOR MALFUNCTION P = PROBLEM

TABLE ________

.

TABLE 1-119

FAILURE DATA FOR VALVES (Sheet 12 of 52)


ne 30, 1		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*				1. FAILURE DESCRIPTION
1970	ΙΤΕΜ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	60	Units and Condenser/ Circulating Water	 SCTI Cooling water system/cooling tower E-5 150 lb WOG Incident report No. 300 	MI 144	MI 52	MI 530	Unknown	Direct observation	 Cooling tower dump valve opened, leaking valve seat on air control valve. Valve replaced. Upgrade preventive maintenance on items.
LMEC-Memo-69- 1-365	61	Units and Condenser/	 EBR-II Cooling tower (by pass value) 84°F PMMR-97 	MI 172	MI 54	MI 550	9345	Operational monitors	 Shaft was bent. Part replaced. Protect valve handle, verify proper operating procedures.
emo-69-7, Vol I 1-365	62		1. EBR-II 2. Cooling tower (YW-10) 3. 84°F 4. PMMR-101	MI 500	MI 55	MI 530	9345	Direct observation	 Bushings jammed. Part replaced. Revise preventive maintenance procedure to require more frequent valve operation, stem lubrication to prevent sticking.
	63		1. EBR-II 2. Cooling tower (north riser) (YW-10) 3. 84°F 4. PMMR-107	MI 500	MI 59	MI 530	1975	Operational monitors	 Seat worn out. Part replaced. None.
	64	 Valve/Stem Turbine-Generator Units and Condenser/ Circulating Water System 20 330000 	 EBR-II Cooling tower riser 84°F PMMR-109 	MI 500	MI BZ	MI 530	11,420	Direct observation	1. Valve stuck. 2. Local repair. 3. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

Ju			FA	ILURE I	data f($\frac{VA}{(She}$	LVES eet 13 of 52)	
June 30, 1970	ITEM	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		LURE IN CODE*		OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
	65	 Valve/Stem Turbine-Generator Units and Condenser/ Circulating Water System 20 330000 	 EBR-II Cooling tower/spraywater 84°F Oper. maint. 8/14/68 	MI 500	MI BZ	MI 530	11,320	During preventive maintenance	 Valves binding. Local repair. None.
LMEC-Memo-69-7, Vol 1-366	66	 Turbine-Generator Units and Condenser/ 	 SCTI Cooling tower basin dump valve (CR-300V) 3 in., 300 psig, 316 SS Incident report No. 97 	MI 410	MI 5Z	MI 590	Unknown	Operational monitors	 Conductivity alarm from cooling water system opened dump valve. Raw water add valve opened dumping cooling water and adding raw water lowers conduc- tivity to acceptable limits. Dump rate exceeds makeup rate so available water level drops. Control air to CR-300V shut off closing dump valve allowing water level to build up. Outlet of dump valve fitted with reducers to reduce flow. Design of valve sizes should take possibility of problems like above into account.
7, Vol I	67	 Valves/Valve Turbine-Generator Units and Condenser/ Circulating Water System 20 330000 	 SCTI Valve 334F, water inlet valve 300 psig, 3 in. SCTI, Incident report No. 61 	MI 410	MI 55	MI 520	4995	Operational monitors	 Flowrate of the dump valve exceeded that of makeup valve in automatic operation and the valve stuck in closed position. Water dump discharge line size reduced to match the makeup valve flowrate. New design considerations were initiated to on-off type makeup/drawn controls.
	68	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Steam system/Shutoff valve PF-20 between power plant and sodium building - PMMR-29 	MI 500	MI BZ	MI 530	2110	Preventive maintenance	 Packing worn out. Part replaced. Use proper packing for service.
	69	 Valve/Seal Ring Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valve 20 281200 	 EBR-II Steam system/Shutoff valve PF-20 between power plant and sodium building - PMMR-80 	MI 500	MI BZ	MI 530	4810	Preventive maintenance	 Seal ring leaking. Part replaced. None.

TABLE ________

* I = INCIDENT MI = MINOR MALFUNCTION

MA = MAJOR MALFUNCTION P = PROBLEM

			FAILURE	DATA F				
ITEN	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component)	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		LURE IN CODE*	IDEX	OPERATING	<u> </u>	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
75	 (System/Subsystem) 1. Valve/Gasket 2. Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 3. 20 281200 	1. EBR-II 2. Main steam/bypass valve (P3-VC-501B) 3. 840°F, 1250 psig 4. PMMR-72	MI 500	MI BZ	MI 530	830	Direct observation	 Valve leaking. Local repair; stem was cleaned, gasket and packing replaced. Replace valve either with a better made or with a higher rated one.
	 Valve/Disk Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Main steam/bypass valve (P3-VC-501B) 840°F, 1250 psig PMMR-94 	MI 500	MI 52	MI 530	1945	Preventive maintenance	 Disk worn out. Part replaced. Investigate new disk material for longer service.
0 7 Vol 1	 Valve/Bushing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Main steam/bypass valve (P3-VC-501B) 840°F, 1250 psig PMMR-94 	MI 500	MI 52	MI 530	1945	Preventive maintenance	 Bushing worn out. Part replaced. None.
78	 Valve V-3129/ Adapter Nipple Turbine-Generator Units and Condenser/ Circulating Water 20 330000 	 SCTI Cooling tower acid system - - Incident report No. 80 	MI 277	MI 91	MI 530	5925	Operational monitors	 Nipple corroded through causing acid leak. Removed and replaced with stainless steel item. Improve design requirements of chemical feed components.
79	 Valve/Flange Gasket Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Steam system/P3-VC-530 160 psig normal set point PMMR-75 	MI 500	MI BZ	MI 530	5990	Preventive maintenance	 Old type gaskets were exchanged to flexitallic gaske to improve flange seal. Part replaced. None.

r

TABLE <u>1-119</u>

- 1

MA = MAJOR MALFUNCTION P = PROBLEM

.

د

FAILURE DATA FOR VALVES (Sheet 16 of 52)

	1	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 		LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
178	ΞМ	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
ξ		 Valve/Bonnet Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II PS-614/Safety relief system 1250 to 1265 psig PMMR-77 	MA 500	MA 52	MA 520	6444	Direct observation	 Bonnet worn out. Local repair. None.
LMEC-Memo-69-7,		 Valve/Seal Ring Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II PS-614/Safety relief system 1250 to 1265 psig PMMR-77 	MA 500	MA 52	MA 520	6444	Direct observation	 Seal ring worn out. Local repair. None.
mo-69-7, Vol I	82	 Valve/Gasket Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Isolation Valve PS-309 150 psig PMMR-75 	MI 500	MI BZ	MI 530	5990	Preventive maintenance	 Gasket leaking. Part replaced, new Flexatallic gaskets were instails. Use of new gaskets is not enough. Apply controlly (calculated) bolt torques for long lasting seals.
	83	 Valve/Seal Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Isolation valve PS-301 1250 to 1265 psig PMMR-81 	MI 500	MI BZ	MI 530	6920	Preventive maintenance	 Seal leaking. Part replaced. None.
	84	 Valve/Seat and Disc Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Steam system P3-VC-676 - Weekly maintenance report (5-21-68) 	MI 500	MI BZ	MI 530	14, 576	Routine instrument reading	 Valve was reconditioned. Local repair. None.

.

June 30,		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*				1. FAILURE DESCRIPTION
1970	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS		 CORRECTIVE ACTION RECOMMENDATIONS
æ	85	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Steam system/PS-611 1250 to 1265°F PMMR-4 	MI 125	MI 52	MI 530	1200	Direct observation	 Packing worn out. Part replaced. Since isolation valves are usually used in case of emergencies, their maintenance should be scheduled for plant down times when other major periodic repairs are planned. Select packing materials which will last for one maintenance period without deterioration.
LMEC-Me 1	86	 Valve/Gasket Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	1. EBR-II 2. PS-311/Low pressure line 3. 150 psig 4. PMMR-72	MI 500	MI BZ	MI 530	6940	Direct observation	 Gasket leaking. Part replaced. Determine the necessary bolt torques for each flange size and gasket type and require their application during any maintenance work.
LMEC-Memo-69-7, Vol I 1-370	87	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	1. EBR-II 2. Steam system (V-PF-18) 3 4. PMMR-51	MI 500	MI 52	MI 530	3850 <u>-</u>	Preventive maintenance	 Packing worn out. Part replaced. Select packing material which will last for one maintenance period without deterioration.
-	88	 Valve/Connector Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II P3-VC-501B/bypass 840°F, 1250 psig PMMR-58 	MI 500	MI 53	MI 530	1010	Preventive maintenance	 Connector worked loose. Local repair. Avoid use of valves having split nut stem-plug connectors. Replace them with a better type.
	89	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II P3-VC-501B/bypass 840°F, 1250 psig PMMR-42 	MI 126	MI 52	MI 530	960	Preventive maintenance	 Packing worn out. Part replaced. Provide better maintenance procedures.

•

TABLE ______

FAILURE DATA FOR <u>valves</u>

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

.

TABLE <u>1-119</u>

FAILURE DATA FOR <u>valves</u>

(Sheet	18	ot	52)	
--------	----	----	-----	--

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
90	 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	1. EBR-II 2. P3-VC-501B/bypass 3. 840°F, 1250 psig 4. PMMR-42	MI 500	MI 68	MI 530	960	Preventive maintenance	 Stem galled. Part replaced. Provide better maintenance procedures.
91	and Feedwater Piping	 EBR-II P3-VC-501B/bypass 840°F, 1250 psig PMMR-49 	MI 500 ÷	MI 52	MI 530	580	Preventive maintenance	 Packing and gaskets were replaced due to excessive steam leakage. Part replaced. To reduce packing failures, use prefabricated packing rings and apply predetermined packing bolt torques.
92	 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II P3-VC-501B/bypass 840°F, 1250 psig PMMR-94 	MI 500	MI 52	MI 530	1945	Preventive maintenance	 Valve stem worn. Part replaced. Recurring failure. Revise preventive maintenance inspection interval to prevent unscheduled failure, or purchase better quality valve.
93	2. Steam, Condensate,	 EBR-II P3-VC-501B/bypass 840°F, 1250 psig PMMR-42 	MI 500	MI 68	MI 530	960	Preventive maintenance	 Retainer worn out. Part replaced. Repair should provide improved operation conditions. Supervision should control repeatedly repaired failures
94		1. EBR-II 2. P3-VC-501B/bypass 3. 840°F, 1250 psig 4. Operation weekly report 3-27-68	MI 500	MI 52	MI 530	2530	Preventive maintenance	 Valve stem worn out. Part replaced, sent to vendor for inspection. Recommended changing cage material from stainless steel to stellite. To provide high pressure drop (1200 psig) in a single valve is critical. The loop design needs better basic study of the high pressure drop.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

2

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
95	 Valve/Cage Assembly Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	1. EBR-II 2. P3-VC-501B/bypass 3. 840°F, 1250 psig 4. Operation weekly report 3-27-68	MI 500	MI 52	MI 530	2530	Preventive maintenance	 Valve cage assembly worn out. Part replaced. To provide high pressure drop (1200 psig) in a single valve is critical. The loop design needs better basic study of the high pressure drop.
96	 Valve/Stem Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	1. EBR-II 2. P3-VC-501B/bypass 3. 840°F, 1250 psig 4. PMMR-80	MI 500	MI 52	MI 530	1430	Preventive maintenance	 Stem was remachined. Local repair. None.
97	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	1. EBR-II 2. P3-VC-501B/bypass 3. 840°F, 1250 psig 4. PMMR-82	MI 500	MI BZ	MI 530	480	Preventive maintenance	 Stem badly worn, no packing would last for a normal period. Part replaced. Better quality valve was ordered as replacement for damaged valve.
98	 Valve/Packing Turbine-Generator Units and Condenser/ Turbine Side 20 310000 	 EBR-II Main turbine/steam regulator No information PMMR-29 	MI 500	MI 52	MI 530	2590	Preventive maintenance	 Valve leak around packing. Part replaced. None.
99	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam 20 281200 	 EBR-II Line to desuperheater control valve P3-VC-616 1250 to 1265 psig PMMR-80 	MI 500	MI BZ	MI 530	6920	Preventive maintenance	 Valve packing worn out. Part replaced. Use proper packing and installation procedures.

I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-119</u>

٠

FAILURE DATA FOR <u>VALVES</u>

June 30, 1970

TABLE _________

FAILURE DATA FOR <u>VALVES</u> (Sheet 20 of 52)

	1 2	. COMPONENT/PART . SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	M 3	CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE Detection	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
10	Z	 Valve/Gasket Steam, Condensate, and Feedwater Piping and Equipment/Main Steam 20 282000 	 EBR-II Auxiliary steam supply valve P3-VC-664 150 psig PMMR-61 	MI 500	MI BZ	MI 530	4708	Operational monitors	 Valve seat worn. Local repair, seat and disc were lapped. Preventive maintenance program shall be established to avoid valve through (internal) leaks.
10 LMEC-Memo-69-7,	Ĩ	 Pressure Reducing Valve/Body Steam, Condensate, and Feedwater Piping and Equipment/Main Steam 20 281200 	 SCTI Steam-generator second stage/valve body To 2500 lb, 110,800 lb/hr Incident report No. 306 	I 450	I 61	I 550	600	Direct observation	 Cracks in valve body allowing steam leakage. Chloride stress corrosion and poor quality casting (347SS). Replace valve. Improve QA on procurement.
10 10-7, Vol I		 Valve/Flange Steam, Condensate, and Feedwater Piping and Equipment/Main Steam 20 281200 	 SCTI Steam and feed outlet nozzle on first stage pressure reducing valve (PRC-200-VB) 600 psig, 520°F Incident report 317A 	MA 121	MA 94	MA 136	88	Direct observation	 Investigation of all 347 SS revealed cracks below center line of outlet nozzle were due to chloride stress corrosion. Replacement with 2-1/4 Cr and 1% Mo. None.
10		 Valve/Ring Gaskets Steam, Condensate, and Feedwater Piping and Equipment/Main Steam 20 281300 	 SCTI Steam and feedwater system, (TRC-201V) Steam - 1400 psig, 800°F, 15% flow Incident report No. 126 	MA 122	MA 53	MA 136	6030	Direct observation	 Steam leaks developed during an operating period when steam pressure was increased from 1400 to 1850 psig. New gaskets and high strength alloy bolts were installed. Maintenance manual should include proper flange bolt torquing instructions for each type of flange and gasket.
10	2	 Valve/Line Outlet Flange Steam, Condensate, and Feedwater Piping and Equipment/Main Steam 20 281200 	 SCTI Steam and feedwater system (PRC-200V) 1100°F, 2500 psig Incident report No. 128 	MA 122	MA 53	MA 136	6030	Direct observation	 Steam leaks developed during an operating period when steam pressure was increased from 1400 to 1850 psig. New gaskets and high strength alloy bolts were installed. Maintenance manual should include proper flange bolt torquing instructions for each type of flange and gasket.

June	
30,	
1970	

	T.	1
	~	
	Ω	
	1	
	5	
_	<u>م</u>	
-3	Ë.	
	н.	
ω	~	
-1	0	
7		
**	5	

TABLE <u>1-119</u>

FAILURE DATA FOR <u>valves</u>

(Sheet 21 of 52)

30		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
010	ΙΤΕΜ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		and Feedwater Piping and Equipment/Main	 SCTI Second stage pressure reducing valve (PRC-201V) - Incident report No. 306 (10-1-66) 	MA 121	MA 94	MA 520	600	Direct observation	 Cracks in valve body (chloride stress corrosion of 347SS and poor quality of valve casting). Valve removed (metallurgical examination) and replaced with 2-1/4 Cr 1/2 Mo body composition type. Improve quality control requirements for valve purchase and design specifications.
LMEC-Memo-(1-374	106	and Feedwater Piping	1. EBR-II 2. Steam system (PS-603A) 3' 4. PMMR-61	MI 500	MI BZ	MI 530	4700	Direct observation	 Packing worn out. Part replaced. Possibly need different type of packing.
5-69-7, Vol I 74		2. Steam, Condensate, and Feedwater Piping	 EBR-II PS-VC-552, isolating valve PF-8 - PMMR-51 	MI 500	MI BZ	MI 530	3850	Preventive maintenance	 Packing worn out. Part replaced. None,
	108	and Feedwater Piping	1. EBR-II 2. Blocking valve PS-609 3. 1250 to 1265 psig 4. PMMR-29	MI 500	MI BZ	MI 530	1820	Direct observation	 Leak developed at the seal ring. Part replaced. Prevention of leakage can be achieved with periodically planned maintenance and not waiting until leak develops.
		and Feedwater Piping and Equipment/Main	 EBR-II Turbine generator line valve PS-605 1250 to 1265 psig PMMR-29 	MI 500	MI 52	MI 530	1860	Preventive maintenance	 Packing worn out. Part replaced. Possibly need different type of packing.
l	* 1			l				L	

D

TABLE ______

FAILURE DATA FOR VALVES (Sheet 22 of 52)

	1. COMPONENT/PART	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ІТЕМ	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
110	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	1. EBR-II 2. P3-VC-544B bypass valve PS-607 3. 1250 to 1265 psig 4. PMMR-51	MI 500	MI BZ	MI 530	3890	Preventive maintenance	 Packing worn out. Part replaced. Possibly different type of packing.
111	 Valve/Packing Steam, Condensate, and Feedwater Piping and Equipment/Main Steam Valves 20 281200 	 EBR-II Lube oil pump block valve PS-607A 1250 to 1265 psig PMMR-61 	MI 500	MI BZ	MI 530	4660	Direct observation	 Difficulty in valve operation made the repacking necessary. Part replaced. Revise preventive maintenance inspections of valve to prevent outage from packing failure.
112	 Valve/Body Steam, Condensate, and Feedwater Piping and Equipment/Con- densate Valves 20 283300 	 EBR-II Main steam/condensate high pressure flash tank valve P3-VC-553 700 psig, 578°F PMMR-95 	MI 500	MI 64	MI 530	9345	During repair of pri- mary component	 Valve body damaged. Erosion from steam. Local repair; erosion marks were weld-filled and valve was reassembled. In such a serious erosion/corrosion case, investi- gation should be initiated to define and correct it.
113	 Valve/Gasket Steam, Condensate, and Feedwater Piping and Equipment/Con- densate Valves 20 283300 	 EBR-II Condensate pump turbine/low pressure line, valve PS-308 150 psig PMMR-75 	MI 126	MI 52	MI 530	5490	Preventive maintenance	 Gasket leaking. Part replaced. New Flexitallic gaskets installed. Use of new gasket is not enough. Apply controlled (calculated) bolt torques for long lasting seals.
114	 Valve/Seat Steam, Condensate, and Feedwater Piping and Equipment/Con- densate Valves 20 283300 	 EBR-II Main steam/turbine driven conden- sate pump steam stop, valve SS-602 - PMMR-94 	MI 122	MI 64	MI 530	9345	Preventive maintenance	 Seat was steam cut. Local repair. Reduce velocity of fluid across seat.

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	IDEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
115	 Valve/Spring Station Service Equipment/Air Starting 20 462400 	 EBR-II Valve P3-X724 on emergency air compressor 90 to 100 psi PMMR-82 	MI 500	MI 52	MI 530	7400	Routine inspection	 Valve internals binding. Part replaced. None.
	 Valve/Disk Turbine Generator Units and Condenser/ Central Lubricating 20 350000 	 EBR-II Main turbine/control valve to auxiliary pump (P063) 135 lb hydraulic pressure PMMR-63 	MI 500	MI 73	MI 530	4660	Preventive maintenance	 Valve leaked across seat. Part replaced. A regular plant maintenance schedule should be set up for all valves in the system. Valves in locations with high failure rates should be redesigned or replaced.
117	 Valve/Plug Turbine Generator Units and Condenser/ Central Lubrication 20 350000 	 EBR-II Main turbine/lubricating system 1250 psig PMMR-45 	MI 500	MI 61	MI 550	3410	Operational monitors	 Valve sticking and leaking steam. Stellite was cracked on valve plug. Temporarily reassembled for continued operation. Perform metallurgical study of cracked metal to determine cause of failure and make recommenda- tions if necessary.
118	 Valve/Fuel Supply Line Instrumentation and Control/Fire Control System 20 267100 	 SCTI Primary sodium system super- visory valve 1 Open Incident report No. 125 	MI 330	MI 51	MI 520	8362	During activation	 Valve closed on fuel supply line pressure gage indicator. Open valve. Improve operations procedure.
119	cation System	 EBR-II Primary purification vacuum system - PMMR-15 	MI 218	MI 51	MI 550	1200	Operational monitors	 Valve throat plugged with sodium condensate. Part replaced. None.

I TO INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-119</u>

TABL	F	1-1	19	

FAILURE DATA FOR <u>valves</u>

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
120	 Isolation Valve/Seat Ring Reactor Containment Structure and Building/ Ventilation 20 196300 	 EBR-II Reactor building/exhaust air system - ANL 7082 	MI 500	MI BZ	MI 530	6920	Routine inspection	 Did not seat properly. Part replaced. None.
	 Valve/Rubber Seal Reactor Containment Structure and Building/ Ventilation 20 196300 	 EBR-II Reactor building/exhaust air system (VR-306) - PMMR-107 	MI 500	MI BZ	MI 530	11,320	Operational monitors	 Rubber seal replaced. Part replaced. None.
122	 Valve, Isolation/ Discharge Port Reactor Containment Structure and Building/ Ventilation 20 196300 	 EBR-II R 13VR-318/air exhaust system - PMMR-47 	MI 122	MI 55	MI 550	8160	Operational monitors	 Valve slammed shut and jammed. Local repair, discharge port on air cylinder was orificed, valve normally open, and thermostatically actuated. Incorporate valve timing into installation and operational procedures.
123	 Valve, Damper/ Bearings Reactor Containment Structure and Building/ Ventilation 20 196300 	1. EBR-II 2. R8-DM-726/air exhaust system 3 4. PMMR-113	MI 500	MI BZ	MI 530	12,390	Preventive maintenance	 Damper sticking on switch over. New bearings and seals installed. None.
124	 Damper Valve/Seals Reactor Containment Structure and Building/ Ventilation 20 196300 	 EBR-II Reactor building/air exhaust system - PMMR-113 	MI 500	MI BZ	MI 530	12,390	Preventive maintenance	 Damper sticking on switch over. New bearings and seals installed. None.

I = INCIDENT MI = MINOR MALMA = MAJOR MALFUNCTION P = PROBLEM

.

June F			F/	AILURE				2)	
30.	TEM	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*		OPERATING	METHOD OF FAILURE	1. FAILURE DESCRIPTION
70		3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	125	 Valve/Body Heat Transfer/Inert Gas Supply and Monitor 20 224600 	 EBR-II Fission gas monitor (loop B) - PMMR-109 	MI 218	MI 51	MI 530	11, 420	Preventive maintenance	 Valve clogged with sodium. Local repair. If needle valve, remove from vapor environment.
	126	 Valve/Body Turbine-Generator Units and Condensers/ Central Lubricating 20 350000 	 EBR-II Turbine/oil cooler No information PMMR-25 	MI 500	MI 59	MI 530	1610	Direct observation	 Valve broken. Part replaced. If valve must have excessive force applied to open or close: check packing gland, replace valve.
LMEC-Memo-69-7, Vol I	127	 Valve/Body Heat Transfer/Inert Gas Supply and Monitor 20 224600 	 EBR-II Fission gas monitor (loop A) - Operation maintenance report 8-21-68 	MI 500	MI 51	MI 530	15, 240 	Direct observation	 Valve clogged with sodium. Local repair. None.
н	128	 Valve/Body Nuclear Fuel Han- dling and Storage Equipment/Containers and Racks 20 232500 	 EBR-II Source coffin - PMMR-72 	MI 500	М І 59	MI 530	5490	Direct observation	 Valve was broken when coffin was set upright after coffin repairs. Part replaced. If valve is an important part of unit, install a protector so as not to repeat incident. Revise appropriate procedures.
		 Valve/Valve Seat Compressed Air and Vacuum Cleaning Equipment/Air Con- trol Valve 20 520000 	 SCTI Control valve for cooling tower dump valve - Incident report No. 300 6-2-66 	MA 125	MA 52	MA 520	Unknown	Direct observation	 Valve seat of air control valve leaked causing dump valve to open. Remove line (air) from valve taking it out of system. Establish maintenance procedure for all critical con- trol components (executed).
*		= INCIDENT	M = MINOR MALFUNCTION						

MA = MAJOR MALFUNCTION P = PROBLEM

- ----

7 - مر

•

TABLE _______

FAILURE DATA FOR <u>VALVES</u> (Sheet 26 of 52)

	2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	2. STSTEM/SUBSYSTEM 2. COMPONENT LOCATION 3. CODE: 3. OPERATING CONDITIONS (Component) (System/Subsystem) 4. SOURCE DOCUMENT	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
130	2. Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling	 EBR-II FUM/argon cooling system (valve G) 210°F PMMR-27 	MI 500	MI 68	MI 530	1610	Operational monitors	l. Valve bushing galled. 2. Local repair. 3. None.
131	2. Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling	 EBR-II FUM/argon cooling system (valve G) Remote operated valves PMMR-27 	MI 500	MI 55	MI 530	4400	During actuation	 Valve stem stuck. Local repair. None.
132	2. Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling	 EBR-II FUM/argon cooling system (valve A) 450°F PMMR-104 	MI 500	MI BZ	MI 530	10,380	During preventive maintenance	 Valve modified. Part replaced. None.
133	2. Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling	 EBR-II FUM/argon cooling system (valve B) 450°F PMMR-104 	MI 500	MI BZ	MI 530	10,380	During preventive maintenance	 Valve modified. Part replaced. None.
134	2. Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling	 EBR-II FUM/argon cooling system (valve F) 450°F PMMR-104 	MI 500	MI BZ	MI 530	10,380	During preventive maintenance	 Valve modified. Part replaced. None.

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
135	 Valve/Bonnet Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve G) 450°F PMMR-104 	MI 500	MI BZ	MI 530	10, 380	During preventive maintenance	l. Valve modified. 2. Part replaced. 3. None.
136	 Valve/Seats Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (ball valves) 450°F ANL-6912 	MI 500	MI 52	MI 530	1000	Operational monitors	 Valve seats worn out. Part replaced. None.
137	 Valve/Seat Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve Z) 450°F PMMR-22 	MI 500	MI BZ	MI 530	1200	Operational monitors	 Valve seat worn out. Part replaced. None.
138	 Valve/Bonnet Gasket Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve Z) 450°F PMMR-22 	MI 500	MI BZ	MI 530	1200	Operational monitors	 Gasket worn out. Part replaced. None.
139	 Valve/Packing Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve F) 450°F PMMR-76, 5/66 	MI 456	MI 55	MI 530	6300	Operational monitors	 Packing worn out. Part replaced. None.

TABLE <u>1-119</u> FAILURE DATA FOR <u>valves</u>

TABLE ______1_19___

FAILURE DATA FOR VALVES
(Sheet 28 of 52)

4

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
140	 Valve/Seats Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve L) 450°F PMMR-77, 6/66 	MI 21Z	MI 51	MI 530	6500	Operational monitors	 Small metal particles were found imbedded in the Teflon seats. Local repair. Ensure system is free of foreign matter initially. Where additional fluids are added to system, a filter should be installed downstream of entry point.
141	 Valve/Bonnet Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve J) Remote operated, 450°F PMMR-104 	MI 500	MI BZ	MI 530	10, 380	During preventive maintenance	 Reinforced supports and bonnets installed. Part replaced. None.
142	 Valve/Bonnet Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve W) Remote operated, 450°F PMMR-104 	MI 500	MI BZ	MI 530	10, 380	During preventive maintenance	 Reinforced supports and bonnets installed. Part replaced. None.
143	 Valve/Seat Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve D) Remote operated, outlet valve Operation weekly report, 2-21-68 	MI 500	MI 55	MI 530	13, 500	Operational monitors	 Valve stuck. Part replaced. Replace seat material if necessary - test cycle the 5 hp DC turbine on regular schedule.
144	 Valve/Spring Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve G) No information PMMR-82, 8-66 	MI 500	MI 55	MI 530	7400	During actuation	 Spring which forces ball onto seat was removed. This has corrected binding difficulties. Local repair. Use weaker or smaller diameter spring, if necessar to valve closing.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

.

		FA	ILURE	DATA FO		LVES eet 29 of 52	:)	
ITEN	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		LURE IN CODE* MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
145	 Valve/Spring Nuclear Fuel Handling and Storage Equip- ment/Fuel Handling Machine 20 235140 	 EBR-II FUM/argon cooling system (valve W) No information PMMR-82, 8/66 	MI 500	MI 55	MI 530	7400	During actuation	 Spring which forces ball onto seat was removed. This has corrected binding difficulties. Local repair. Use weaker or smaller diameter spring, if necessary to valve closing.
	 Valve/Solenoid Heat Transfer/Inert Gas Supply and Monitor 20 224650 	 EBR-II Primary shield/cooling blower No. 1 exhaust damper - Operation weekly report, 2-7-68 	MI 500	MI BZ	MI 530	13,400	Operational monitors	 Valve did not operate properly. Part replaced. None.
1 MFC-Memo-69-7. Vol 1	 Valye/Pneumatic Damper Heat Transfer/Inert Gas Supply and Monitor 20 224650 	 EBR-II Reactor top shield cooling exhaust valve DM-726 - PMMR-109 	MI 500	MI 55	MI 550	11, 420	Operational monitors	 Damper stuck. Local repair. None.
148	 Valve/Transfer Port Locator Pins Nuclear Fuel Handling and Storage Equip- ment/Reactor Vessel Servicing 20 213000 	 EBR-II Reactor exit port shield plug 150°F Operation maintenance report, 3-6-68 	MI 312	MI 52	MI 530	15,240	Direct observation	 Location pins misaligned. Local repair, pin realigned to alleviate binding. None.
149	 Valve/Fuel Transfer Port Drip Catcher Nuclear Fuel Handling and Storage Equip- ment/Shielding 20 235150 	 EBR-II Primary/fuel handling machine Argon heated Operation weekly report, 7-10-68 	MI 218	MI 55	MI 550	1000	Direct observation	 The drip catcher had been completely filled with sodium each time the port was cleaned. Temporary repair. Permit element to drain more thoroughly over core.
*		MI = MINOR MALFUNCTION						

TABLE 1-119

TABLE _______

FAILURE DATA FOR <u>VALVES</u> (Sheet 30 of 52)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*				1. FAILURE DESCRIPTION
	TEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	150	 Valve/Transfer Port Tube Nuclear Fuel Handling and Storage Equip- ment/Shielding 20 232100 	1. EBR-II 2. Primary/Reactor shield cover port 3. ANL 6912, 6-64	MI 500	МІ 59	M 530	1000	Direct observation	 Transfer port tube restricted gripper movement. Part replaced. None.
LMEC-Memo-69-7,	151	 Valve/Transfer Port Bevel Gear Nuclear Fuel Handling and Storage Equip- ment/Shielding 20 235150 	 EBR-II Primary/fuel handling machine Ambient temperature ANL 6912, 6-64 	MI 500	MI 59	M 530	1000	Direct observation	 Transfer port tube restricted gripper movement. Part replaced. None.
mo-69-7, Vol I	152	 Valve/Rotating Port Gasket Nuclear Fuel Handling and Storage Equip- ment/Reactor Vessel Servicing Equipment 20 232100 	 EBR-II Reactor shield cover port Ambient temperature PMMR-43, 9-65 	MI 500	MI 52	MI 530	3070	Preventive maintenance	 Gasket worn out. Part replaced. None.
	153	 Valve/Rotating O-Ring Nuclear Fuel Handling and Storage Equip- ment/Shielding 20 235150 	 EBR-II Fuel unloading machine cover port Ambient temperature PMMR-44, 9-65 	MI 500	M 52	M 530	3070	During repair of primary failure component	 O-ring worn out. Part replaced. None.
	154	 Valve/Transfer Port O-Ring Nuclear Fuel Handling and Storage Equip- ment/Reactor Vessel Servicing 20 232100 	 EBR-II Reactor shield cover port - Operation weekly report, 4-10-68 	MI 500	MI 52	MI 530	14,024	Preventive maintenance	 O-ring worn out. Part replaced. Replacement of O-rings and other seals is desirable whenever parts are disassembled for repair or maintenance.
				<u> </u>		<u> </u>	1		

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

LMEC-Memo-69-7, Vol I 1-383

[1. COMPONENT/PART	1. FACILITY		LURE IN	IDEX	eet 31 of 5	2)	
ITEM	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS	CAUSE	CODE*	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
155	 Valve/Transfer Port O-Ring Nuclear Fuel Handling and Storage Equip- ment/Reactor Vessel Servicing 20 232100 	 EBR-II Reactor shield cover port - - Operation weekly report, 12-27-67 	MI 500	MI 52	MI 530	13, 380	Preventive maintenance	 O-ring worn out. Part replaced. None.
156	 Valve/Transfer Port O-Ring Nuclear Fuel Handling and Storage Equip- ment/Reactor Vessel Servicing 20 232100 	 EBR-II Reactor shield cover port - Operation weekly report, 3-27-68 	MI 500	MI 52	MI 530	13,800	Preventive maintenance	 O-ring worn out. Part replaced. None.
157	 Valve/Transfer Port O-Ring Nuclear Fuel Handling and Storage Equip- ment/Reactor Vessel Servicing 20 232100 	 EBR-II Reactor shield cover port - Operation weekly report, 2-7-68 	MI 500	MI 52	MI 530	13,400	Preventive maintenance	 O-ring worn out. Part replaced. None.
158	 Valve/Stem Heat Transfer/Liquid Metal Purification 20 224233 	 SCTI Secondary/purification cold trap V-510 900°F, approximately 100 psig SCTI, incident report No. 48 	MI 471	MI 55	MI 550	115	Operational monitor	 Improperly placed stem stop prevented valve closin Local repair. Preoperational acceptance procedures should includ test to assure valve closure.
159	 Valve/Bellows Heat Transfer/Pri- mary Coolant 20 221220 	 FERMI Primary/sodium service V-516 210 to 700°F APDA, CFE-21, Page 42 	MI 136	МІ 61	MI 530	15,000	Operational monitors	 Local intergranular attack in weld heat affected zon Part replaced. Investigate alternate material of construction.

TABLE _______

.

FAILURE DATA FOR <u>VALVES</u> (Sheet 32 of 52)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
160	 Valve/Bellows Heat Transfer/ Primary Coolant 20 221220 	 Fermi Primary/sodium service 3 in. motorized value FCV-505 APDA, CFE-11, page 22 	MA 137	MA 61	MA 550	15,000	Operational monitors	 Bellows leaked. Vendor repair. None.
161	 Valve/Bellows Heat Transfer/ Coolant Treatment 20 224235 	 Fermi Plugging indicator/NaK loop TCV-509 210 to 700°F EFAPP, maintenance report No. 129 	MI 136	MI 59	MI 530	3000	Direct observation	l. Defective bellows. 2. Bellows replaced. 3. None.
162	 Valve/Bellows Heat Transfer/ Primary Coolant 20 221220 	 Fermi Primary/sodium service V-502-1 210 to 700°F APDA, CFE-21, page 39 	MI 136	MI 61	MI 530	15,000	Operational monitors	 Defective bellows. Bellows replaced. None. `
163	 Valve/Bellows Heat Transfer/ Primary Coolant 20 221220 	 Fermi Primary/sodium service FCV-506 550 to 800°F APDA, CFE-11, page 22 	MI 124	MI 61	MI 530	1632	Operational monitors	 Bellows leaked. Vendor repair. Source acceptance standards should be reviewed to ensure satisfactory performance of future purchase parts.
164	 Valve/Bellows Heat Transfer/ Coolant Treatment 20 224235 	 Fermi Secondary sodium/plugging indicator (FCV-829) 765°F EF-26, page 5 	MI 136	MI 61	MI 530	13,400	Operational monitors	 Bellows leaked. Bellows replaced. None.
165	 Valve/Disk Heat Transfer/ Intermediate Coolant 20 222220 	 Fermi IHX/drain line Ambient to 300°F, V-521 EFAPP, maintenance report No. 71 	MI 456	MI 61	MI 530	9400	Operational monitors	 Not seating properly. Vendor repair of part. None.
166	 Valve/Seat Heat Transfer/ Intermediate Coolant 20 222220 	 Fermi IHX/drain line Ambient to 300°F, V-521 EFAPP, maintenance report No. 71 	MI 137	MI 56	MI 530	9400	Operational monitors	 Not seating properly. Vendor repair of part. None.

June 30, 1970

.•

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: 3. OPERATING CONDITIONS (Component) 4. SOURCE DOCUMENT	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
167	 Valve/Disk Heat Transfer/Liquid Metals Purification 20 224239 	 FERMI Transfer tank/cold trap Approx. 700°F EF-26, page 3 	MI 417	MI 56	MI 530	13, 400	Operational monitors	 Valve strokes had been found incompatible with the intended design control pressure signals. Vendor design modification, new discs were instate to provide better flow characteristics. Preoperational acceptance procedures should be established to ensure proper operation of the values.
168	 Valve/Disk Heat Transfer/Liquid Metal Purification .20 224239 	 FERMI Transfer tank/cold trap Approx. 700°F EF-26, page 3 	MI 417	MI 55	MI 530	13,400	Operational monitors	 Valve strokes had been found incompatible with t intended design control pressure signals. Vendor design modification, new discs were inst to provide better flow characteristics. Preoperational acceptance procedures should be established to ensure proper operation of the val
169	 Valve/Disk and Seat Heat Transfer/ Intermediate Coolant 20 222220 	1. FERMI 2. IHX/drain line/shut off 3. Approx. 765°F 4. EF-18, page 3	MI 136	MI 52	MI 530	10,100	Operational monitors	 Leak across valve seat. Component corrective modification, rework of the disk and seat (relapped). None.
170	 Valve/Leak Detector Leads Heat Transfer/Inter- mediate Heat Ex- changer 20 222300 	 FERMI IHX/drain line/shut off Approx. 765°F EF-18, page 3 	MI 156	MI 21	MI 530	10,=100	Operational monitors	 Operation of the valve caused damage to three of four leak detector leads. Leads were repaired and relocated to avoid inter ence with valve stem. Leads should be secured so as not to interfere w valve operation.
171	 Valve/Disk Heat Transfer/ Primary Coolant 20 221220 	 FERMI Primary/No. 1 sodium pump 360 to 1000°F EFAPP, maintenance report No. 15 	MA 174	MA 58	MA 417	7588	Protective system	 Check valve caused sodium hammer during pump startup. Component design change; the original check valv was replaced with a new check valve incorporatin an integral dash pot. The design of check valves should consider rate decay and valve closure rate to minimize sodium hammer.
172	 Valve/Disk Heat Transfer/ Primary Coolant 20 221220 	 FERMI Primary/No. 2 sodium pump 360 to 1999°F EFAPP, maintenance report No. 33 	MA 174	MA 58	MA 417	7840	Protective system	 Check valve caused sodium hammer during pump startup. Component design change; the original check val- was replaced with a new check valve incorporati an integral dash pot. The design of check valves should consider rate decay and valve closure rate to minimize sodium hammer.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ________

FAILURE DATA FOR VALVES (Sheet 33 of 52)

TABLE_	1-119
--------	-------

FAILURE DATA FOR <u>VALVES</u> (Sheet 34 of 52)

 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Valve/Disk Heat Transfer/ Primary Coolant 20 221220 	 FERMI Primary/No. 3 sodium pump 360 to 1000°F EFAPP, maintenance report No. 27 	MA 174	MA 58	MA 417	7840	Protective system	 Check valve caused sodium hammer during pump startup. Component design change; the original check valve was replaced with a new check valve incorporating an integral dash pot. The design of check valves should consider rate decay and valve closure rate to minimize sodium hammer.
 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224239 	1. FERMI 2. Secondary/cold trap V-836 3. 515°F 4. EF-21	MI = 136	MI 59	MI 530	11,010	Direct observation	 Bellows ruptured. Bellows replaced. None.
 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224239 	 FERMI Transfer tank/cold trap FCV-401 515°F EF-52 	MI 136	MI 61	MI 530	15,000	Leak detector system	 Bellows leaked. Defective component returned to manufacturer. None.
 Valve/Bellows Heat Transfer/ Primary Coolant 20 221220 	 FERMI Primary sodium - APDA, CFE-11 	MI 136	MI 61	MI 530	15,000	Operational monitors	 Bellows leaked. Vendor repair of component. None.
 Valve/Bellows Heat Transfer/ Primary Coolant 20 221220 	 FERMI Primary sodium service building 550 to 800°F EF-26, page 3 	MI 454	MI 61	МІ 136	13,400	Operational monitors	 Bellows leaked. Component part replaced by vendor. Source acceptance standards should be reviewed to ensure satisfactory performance of future purchase parts.
 Valve/Bellows Heat Transfer/Liquid Metal Purification 20 224230 	 EBR-II Primary (cold trap bypass) 250 to 700°F ANL 6810, December 1963 	MI 172	MI 59	MI 136	100	Direct observation	1. Bellows leaked. 2. Part replaced. 3. None.
	 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem) 1. Valve/Disk 2. Heat Transfer/ Primary Coolant 3. 20 221220 1. Valve/Bellows 2. Heat Transfer/Liquid Metals Purification 3. 20 224239 1. Valve/Bellows 2. Heat Transfer/Liquid Metals Purification 3. 20 224239 1. Valve/Bellows 2. Heat Transfer/Liquid Metals Furification 3. 20 221220 1. Valve/Bellows 2. Heat Transfer/ Primary Coolant 3. 20 221220 1. Valve/Bellows 2. Heat Transfer/ Primary Coolant 3. 20 221220 1. Valve/Bellows 2. Heat Transfer/ Metal Purification 3. 20 	 2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION 3. ODE: (Component) (System/Subsystem) 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 4. SOURCE DOCUMENT 5. Sodium pump 3. 360 to 1000°F 4. EFAPP, maintenance report No. 27 4. EFAPP, maintenance report No. 27 4. EFAPP, maintenance report No. 27 4. EFAPP, maintenance report No. 27 4. EF-21 4. EF-21 4. EF-21 4. EF-21 4. EF-52 4. EF-52 4. EF-52 4. APDA, CFE-11 4. APDA, CFE-11 4. APDA, CFE-11 4. APDA, CFE-11 5. Sot to 800°F 4. EF-26, page 3 5. Sot to 800°F 5. Sot to 800°F 5. Sot to 800°F 4. SPENIE 4. EF-26, page 3 5. Sot to 700°F 4. ANDA (S10, December 1963 	2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)2. COMPONENT LOCATION 3. OPERATING CONDITIONS 4. SOURCE DOCUMENTCAUSE1. Valve/Disk 2. Heat Transfer/ Primary Coolant 3. 20 2212201. FERMI 2. Primary/No. 3 sodium pump 3. 360 to 1000°F 4. EFAPP, maintenance report No. 27MA 1741. Valve/Bellows 2. Heat Transfer/Liquid Metals Purification 3. 20 2242391. FERMI 2. Secondary/cold trap V-836 3. 515°F 4. EF-21MI = 1361. Valve/Bellows 2. Transfer tank/cold trap FCV-401 3. 515°F 4. EF-521. FERMI 2. Transfer tank/cold trap FCV-401 3. 515°F 4. EF-52MI 1361. Valve/Bellows 2. Data 2. Primary Coolant 3 2. 20 2.212201. FERMI 2. Primary sodium 3 4. EF-52MI 4. EF-521. Valve/Bellows 2. 1. FERMI 2. Primary Coolant 3 3. 20 2. 2212201. FERMI 2. Primary sodium service building 3. 550 to 800°F 4. EF-26, page 3MI 454 4542. Valve/Bellows 2. Heat Transfer/ 2. Data 2. Data 2. Data1. EBR-II 2. Primary cold trap bypass) 3. 250 to 700°F 3. 250 to 700°F 3. 20MI 451 4. ANL 6810, December 1963	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* 3. CODE: 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT CAUSE MODE 1. Valve/Disk 4. SOURCE DOCUMENT CAUSE MODE 1. Valve/Disk 1. FERMI MA 174 58 2. Heat Transfer/ Primary Coolant 1. FERMI MA 174 58 1. Valve/Bellows 1. FERMI Secondary/cold trap V-836 MI = 136 2. Heat Transfer/Liquid Metals Purification 1. FERMI Secondary/cold trap V-836 MI MI 2. Heat Transfer/Liquid Metals Purification 1. FERMI Transfer tank/cold trap FCV-401 MI 61 3. 20 224239 1. FERMI Transfer tank/cold trap FCV-401 MI 61 4. EF-52 4. EF-52 4. EF-52 MI 61 61 2. Valve/Bellows 1. FERMI MI MI 61 61 2. Valve/Bellows 1. FERMI Primary sodium service building MI 61 2. Valve/Bellows 1. FERMI Primary coolant 3. 550 to 800°F 61 61 2. Valve/Bellows 1. FER	2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)2. COMPONENT LOCATION 3. OPERATING CONDITIONS 4. SOURCE DOCUMENTCODE*1. Valve/Disk 2. Heat Transfer/ Primary Coolant 3. 20 2212201. FERMI 2. Primary/No. 3 sodium pump 3. 360 to 1000°F 4. EFAPP, maintenance report No. 27MA MA 174MA 88MA 4171. Valve/Bellows 2. Heat Transfer/Liquid Metals Purification 3. 20 2242391. FERMI 2. Secondary/cold trap V-836 3. 515°F 4. EF-21MI 2. Secondary/cold trap V-836 3. 515°F 4. EF-21MI 136MI 61MI 591. Valve/Bellows 2. Primary Coolant 	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING CONDITIONS 3. CODE: 3. OPERATING CONDITIONS CAUSE MODE EFFECT 1. Valve/Disk 1. FERMI 2. Primary/No. 3 sodium pump MA MA 58 417 2. Valve/Disk 1. FERMI 2. Primary/No. 3 sodium pump MA MA 58 417 3. 20 221220 1. FERMI 2. Secondary/cold trap V-836 MI MI MI 11, 010 4. EFAPP, maintenance report No. 27 2. Source Store MI MI MI 11, 010 2. Valve/Bellows 1. FERMI 2. Secondary/cold trap V-836 MI MI MI 11, 010 3. 20 224239 1. FERMI 2. Secondary/cold trap V-836 MI MI MI 11, 010 3. 20 2. FF-21 2. Store Transfer tank/cold trap FCV-401 MI MI MI 15, 000 3. 20 2. FF-52 2. Primary sodium 3. 515°F MI MI MI MI 15, 000 4. APDA, CFE-11 2. Primary sodium service building MI MI MI	2. SYSTEM/SUBSYSTEM 2. COMPONENT LOCATION CODE* OPERATING METHOD OF FAILURE 3. CODE: (Component) 3. OPERATING CONDITIONS MODE EFFECT OPERATING HURS METHOD OF FAILURE 1. Valve/Disk 4. SOURCE DOCUMENT 1. FERMI CAUSE MODE EFFECT OPERATING Protective system 1. Valve/Disk 1. FERMI 2. Primary/No. 3 sodium pump NA MA

June 30, 1970

June 30,		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	179	 Valve/Bellows Heat Transfer/Liquid Metal Purification 20 224233 	 EBR-II Primary system/plugging loop 250 to 700°F PMMR-86 	MI 172	MI 59	MI 530	8800	Direct observation	 Bellows ruptured. Part replaced. None.
LMI		 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224233 	 EBR-II Primary system/plugging loop 250 to 700°F PMMR-86 	MI 172	МІ 59	MI 530	8800	Direct observation	1. Bellows ruptured. 2. Part replaced. 3. None.
LMEC-Memo-69- 1-388	181	 Valve/Gate Heat Transfer/Liquid Metals Purification 20 224233 	 EBR-II Primary/plugging loop plug RIVC-677 300°F at 60 gpm PMMR-101 	MI 172	MI 55	MI 530	10,400	Direct observation	 Gate jammed, forced open. Local repair, valve gate was stuck into the seat. The valve was freed manually. Valve operated satisfactorily following corrective action.
9-7, Vol I	182	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 221220 	1. EBR-II 2. Primary/throttle 3. 300°F 4. PMMR-101	MI 260	MI 52	MI 580	10,400	Preventive maintenance	 Possible copper deposition on bellows. Part replaced. Components containing copper should not be used in sodium systems.
	183	 Valve/Bellows Heat Transfer/ Primary Coolant 20 221220 	1. EBR-II 2. Primary/throttle 3. 300°F 4. PMMR-101	MI 260	MI 52	MI 580	10,400	Preventive maintenance	 Possible copper deposition on bellows. Part replaced. Components containing copper should not be used in sodium systems.
	184	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224239 	 EBR-II Primary 250 to 700°F Operations weekly report, week ending April 10, 1968 	MI 126	MI 61	MI 530	15,000	Direct observation	 Bellows ruptured. Valve replaced. None.
	185	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 222220 	 EBR-II Secondary/plugging meter 250 to 700°F ANL 6965, October 1964 	MI 172	MI 59	MI 136	2608	Operational monitors	1. Bellows ruptured. 2. Part replaced. 3. None.
			MI = MINOR MALFUNCTION				<u> </u>		<u> </u>

FAILURE DATA FOR <u>VALVES</u> (Sheet 35 of 52)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE ________

TABLE ______

FAILURE DATA FOR <u>VALVES</u> (Sheet 36 of 52)

	1. COMPONENT/PART	1. FACILITY 2. COMPONENT LOCATION	FAII	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ΙΤΕΜ	2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	2. COMPONENT EXCATION 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	 Valve/Bellows Heat Transfer/Inter- mediate Cooling 20 222220 	 EBR-II Secondary/surge tank vent, S2-VC-1589 300°F PMMR-25 	MI 172	MI 59	MI 530	2608	Direct observation	 Bellows ruptured. Part replaced. None.
	 Valve/Bellows Heat Transfer/Inter- mediate Cooling 20 224236 	 EBR-II Secondary/surge tank vent, S2-VC-1589 250 to 700°F PMMR-33 	MI 172	MI 59	MI 530	3208	Direct observation	 Bellows ruptured. Part replaced. None.
188	 Valve/Unknown Heat Transfer/Liquid Metal Purification 20 224235 	 EBR-II Secondary/plugging 250 to 700°F PMMR-57 	MI 125	MI 52	MI 530	2415	During actuation	1. Valve not operating properly. 2. Local repair. 3. None.
189	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224235 	 EBR-II Secondary/plugging loop 250 to 700°F PMMR-77 	MI 126	MI 59	MI 530	7290	Direct observation	 Bellows leaked. Part replaced. None.
190	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224235 	 EBR-II Secondary/plugging loop 250 to 700°F PMMR-92 	MI 172	MI 59	MI 530	10, 100	Direct observation	 Bellows leaked. Part replaced. None.
191	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224235 	 EBR-II Secondary/plugging loop 250 to 700°F PMMR-102 	MI 172	MI 59	MI 530	10,800	Direct observation	1. Bellows leaked. 2. Part replaced. 3. None.

TABLE

FAILURE DATA FOR VALVES (Sheet 37 of 52)

Jur				·			eet 37 of 5	2)	
June 30, 1		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
1970	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	192	 Valve/Bellows Heat Transfer/Intermediate Coolant 20 222220 	 EBR-II Secondary/sodium 250 to 700°F Operations weekly report, week ending 2-14-68 	MI 172	MI 59	MI 530	14,500	Direct observation	 Bellows leaked. Part replaced. None.
Ч	193	 Valve/Bellows Heat Transfer/Pri- mary Coolant 20 221213 	1. ANL 2. Sodium quality test loop 3. 1200°F 4. NAA-SR-12585	MA 120	MA 69	MA 136	6100	Direct observation	 Bellows leaked, fatigue failure at the weld joint. Part replaced. None.
LMEC-Memo-69- 1-390	194	 Valve/Plug Heat Transfer/Test Section 20 221213 	 ANL Mechanical pump test loop 1000°F NAA-SR-12585 	MA 455	MA 55	MA 550	6750	Direct observation	 Failed to open or close - handwheel that secures valve position was closed at the same time operator was attempting to operate valve. Local repair; replaced with new parts. Redesign of system to prevent operation in the locked position.
9-7, Vol I	195	 Y-Valve/Stem and Bushing Heat Transfer/Test Section 20 222213 	 ANL Mechanical pump test loop 800°F NAA-SR-12585 	MI 413	MI 55	MI 111	21,500	Direct observation	 Valve stem and bushing not fabricated to specified dimensions, resulting in flow variance through valve. Local repair; stem and bushing machined to correct dimensions. Revise quality assurance procedures to include inspecting stem and bushing.
	196	 Ball Valve/Ball Heat Transfer/Test Section 20 222213 	 ANL Mechanical pump test loop 750°F NAA-SR-12585 	MI 126	MI 83	MI 590	11,400	Direct observation	 Stellite-coated ball worn. Valve operated 11,400 hours before being resurfaced. Normal wearout. Vendor repaired component - resurfaced ball. None.
	197	 Y-Valve/Bushing and Stem Heat Transfer/Test Section 20 222213 	 ANL AC linear induction sodium pump test loop 850°F NA A-SR-12585 	MI 413	MI 55	MI 111	6600	Direct observation	 Valve stem and guide bushing not fabricated to specified dimensions, resulted in unstable flow through valve. Local repair; stem and bushings were machined to specified dimensions. Upgrade quality assurance inspections for acceptance of valves.
								• •	

FAILURE DATA FOR <u>VALVES</u> (Sheet 38 of 52)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
198	 Y-Valve/Stem and Bushing Heat Transfer/Test Section 20 222213 	 ANL Electromagnetic pump test loop 850°F NAA-SR-12585 	MI 413	MI 55	MI 111	5000	Direct observation	 Valve stem and guide bushing not fabricated to specified dimensions, resulting in unstable flow through valve. Local repair; stem and bushings were machined to specified dimensions. Upgrade quality assurance inspections for acceptance of valves.
	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 HNPF Primary/cold trap inlet (V-449) 300 to 700°F HNPF monthly hilites, 10-12-62 	MA 172	MA 59	MA 136	5280	During actuation	 Bellows ruptured. Part replaced. Replace bellows sealed valve with stem freeze seal type.
	 Valves/Bellows Heat Transfer/Pri- mary Coolant 20 224230 	 HNPF Primary/fill and drain line (V-466) 300 to 700°F HNPF, work request No. 2092 	MA 172	MA 59	MA 136	4320	During actuation	 Bellows leaked. Part replaced. Replace bellows sealed valve with stem freeze seal type.
201	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 HNPF Primary/hot trap (V-471) 300 to 700°F HNPF, initial malfunction report- MOR 10081 	MA 332	MA 59	MA 136	15,744	During actuation	 Bellows leaked; valve operated before it was properly preheated. Part replaced. Replaces bellows sealed valve with stem freeze seal type.
202	 Valve/Packing Heat Transfer/Pri- mary Coolant 20 221220 	 HNPF Primary/throttle (V-103) 300 to 900°F HNPF, work request No. 1869 	MI 125	MI 52	MI 530	730	During preventive maintenance	 Packing worn out. Local repair; packing replaced. None.
203	 Valve/Packing Heat Transfer/Primary Coolant 20 221220 	 HNPF Primary/throttle (V-203) Ambient temperature HNPF, work request No. 1869 	MI 125	MI 52	MI 530	730	During preventive maintenance	 Packing worn out. Local repair; packing replaced. None.

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
204	 Valve/Packing Heat Transfer/Pri- mary Coolant 20 221220 	 HNPF Primary/throttle (V-303) Ambient temperature HNPF, work request No. 1869 	MI 125	MI 52	MI 530	730	During preventive maintenance	 Packing worn out. Local repair; packing replaced. None.
205	 Valve/Packing Heat Transfer/Inter- mediate Coolant 20 222220 	 HNPF Secondary/throttle (V-102, V-202, V-302) - Work request No. 1869 	MI 125	MI 52	MI 530	2130	During preventive maintenance	 Packing worn out (three secondary throttle valves) Local repair, packing replaced. None.
206	 Valve/Yoke Mechanism Heat Transfer/Primary Coolant 20 221220 	 HNPF Primary/throttle (V-103) - Work request No. 2749 	MI 124	MI 54	MI 530	7000	Direct observation	 Distortion. Local repair, rebuilt yoke mechanism. None.
207	 Valve/Yoke Mechanism Heat Transfer/Primary Coolant 20 221220 	 HNPF Primary/throttle (V-203) - Work request No. 2749 	MI 124	MI 54	MI 530	7000	Direct observation	 Distortion. Local repair, rebuilt yoke mechanism. None.
208	 Valve/Yoke Mechanism Heat Transfer/Primary Coolant 20 221220 	 HNPF Primary/throttle (V-303) - Work request No. 1440 	MA 122	MA 54	MA 550	1656	Operational monitors	 Distortion, yoke and stem were bent at 75% open position. Vendor repair of component. Redesign yoke mechanism to eliminate bending stress in stem.
209	 Valve/Yoke Mechanism Heat Transfer/Primary Coolant 20 221220 	 1. HNPF 2. Primary/throttle (V-103) 3 4. AI monthly hilites, 8-15-62 	MI 416	MI 52	MI 530	3000	During routine inspection	 Distortion. Local repair, stiffeners added to cross-arm. Redesign yoke mechanism to eliminate bending stress in stem.

FAILURE DATA FOR <u>VALVES</u>

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

•

.

FAILURE DATA FOR VALVES (Sheet 40 of 52)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
210	 Valve/Yoke Mechanism Heat Transfer/Pri- mary Coolant 20 221220 	 HNPF Primary/throttle (V-103) - Work request No. 2867 	MI 126	МІ 59	MI 530	7392	Operational monitors	 Cross-arm cracked. Local repair, repaired cross-arm and straightener stem. Redesign yoke mechanism to eliminate bending stress in stem.
211	 Valve/Yoke Mechanism Heat Transfer/Inter- mediate Coolant 20 222200 	1. HNPF 2. Secondary/throttle (V-202) 3. – 4. Work request No. 2939	MI 331	MI 54	MI 530	7180	Operational monitors	 Yoke distorted because of misuse. Local repair, straightened stem and jack screw. Review operator training manual.
212	 Valve/Yoke Mechanism Heat Transfer/Pri- mary Coolant 20 221220 	 HNPF Primary/throttle (V-303) - Work request No. 2749 	MI 416	MI 54	MI 530	7000	Direct observation	 Yoke distorted. Local repair, rebuilt yoke mechanism. Redesign yoke mechanism to eliminate bending stress in stem.
213	 Valve/Stem Heat Transfer/Primary Coolant 20 221220 	 HNPF Primary/throttle (V-303) - Work request No. 1440 	MA 321	MA 55	MA 122	1656	Operational monitors	 Stem shield plug over valve installed wrong, preve valve operating over full range. Vendor repair of component. Redesign shield plug to prevent interference with valve operation.
214	 Valve/Stem Heat Transfer/Primary Coolant 20 221220 	1. HNPF 2. Primary/drain (V-459) 3 4. A.I. Monthly Hilites, 3-20-63	MI 172	MI 68	MI 530	8928	Direct observation	 Valve stem was bent and scored. Component part replaced. None.
215	 Valve/Stem Guide Bushing Heat Transfer/Liquid Metals Purification 20 224233 	 HNPF Secondary/cold trap fill and drain (V-4109) - Work request No. 3364 	MI 126	MI 68	MI 530	5800	Direct observation	 Scored/galled. Component part replaced. None.
216	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224236 	 1. HNPF 2. Secondary/fill tank outlet (V-491) 3. 100 - 300°F 4. IMR - MOR 10089 	MA 172	MA 61	MA 136	18840	Routine area watch	 Bellows leaked. Part replaced. Replace bellows with freeze stem seal.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

.

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	IDEX		METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
ITEM	M 3. CODE:	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS		
217	 Valve/Bellows Heat Transfer/Pri- mary Coolant 20 221220 	 HNPF Primary/block (V-476) 100 to 300°F IMR - MOR 10113 	MA 172	MA 61	MA 136	21,000	Protective system	 Bellows leaked. Part replaced. Replace bellows with freeze stem seal.
218	 Valve/Bellows Heat Transfer/ Liquid Metals Purification 20 224230 	 HNPF Primary/plugging meter (V-443) 100 to 300°F Work request No. 1432 	MA 172	MA 59	MA 136	1440	During actuation	 Bellows leaked. Part replaced. Replace bellows with freeze stem seal.
219	 Valve/Bellows Heat Transfer/ Primary Coolant 20 224230 	 HNPF Primary/hot trap carbon (V-471) 100 to 300°F Work request No. 1772 	MA 172	MA 59	MA 136	3600	During actuation	 Bellows leaked. Part replaced. Replace bellows with freeze stem seal.
220	 Valve/Yoke Mechanism Heat Transfer/Inter- mediate Coolant 20 222220 	l. HNPF 2. Secondary/throttle (V-102) 3. – 4. Work request No. 2749	MI 416	MI 54	MI 530	7000	Direct observation	 Yoke distorted. Local repair; rebuilt yoke. Redesign yoke mechanism to eliminate bending stress in stem.
221	 Valve/Yoke Mechanism Heat Transfer/Inter- mediate Coolant 20 222220 	1. HNPF 2. Secondary/throttle (V-202) 3. – 4. Work request No. 2749	MI 416	MI 54	MI 530	7000	Direct observation	 Yoke distorted. Local repair; rebuilt yoke. Redesign yoke mechanism to eliminate bending stress in stem.
222	 Valve/Yoke Mechanism Heat Transfer/Inter- mediate Coolant 20 222220 	 HNPF Secondary/throttle (V-302) - - Work request No. 2749 	MI 416	MI 54	MI 530	7000	Direct observation	 Yoke distorted, Local repair; rebuilt yoke. Redesign yoke mechanism to eliminate bending stress in stem.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-119

FAILURE DATA FOR <u>valves</u>

4

TABLE_	<u>1-119</u>
--------	--------------

FAILURE DATA FOR <u>VALVES</u> (Sheet 42 of 52)

	1	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAILURE INDEX CODE*				1. FAILURE DESCRIPTION	
	M	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS		2. CORRECTIVE ACTION 3. RECOMMENDATIONS
22		mediate Coolant	1. HNPF 2. Secondary/throttle (V-202) 3 4. Work request No. 1869	MI 125	MI 52	MI 530	730	During preventive maintenance	 Packing worn out. Local repair; packing replaced. None.
		mediate Coolant	 HNPF Secondary/throttle (V-302) - Work request No. 1869 	MI 125 	MI 52	MI 530	730	During preventive maintenance	 Packing worn out. Local repair; packing replaced. None.
22		 Heat Transfer/Liquid Metals Purification 20 	 SRE Main primary/sodium service (PMV) 250 to 950°F Operation log book, 1-29-63 	MI 126	MI 59	MI 530	5760	Direct observation	 Bellows leaked. Part replaced. Replace bellows valve with freeze stem seal.
22	1	2. Heat Transfer/Liquid Metals Purification 3. 20	 SRE Main secondary/sodium service (V-124) 250 to 950°F Operation log book No. 51, 2-24-63 	MI 125	MI 59	MI 530	16,400	Direct observation	 Bellows leaked. Part replaced. Replace bellows valve with freeze stem seal.
22	1	2. Heat Transfer/Inter- mediate Coolant	 SRE Main secondary/sodium (V-124) 250 to 950°F Operation log book No. 51, 3-6-63 	MI 321	MI 59	MI 530	336	Direct observation	 Bellows leaked due to assembly error. Part replaced. Replace bellows valve with freeze stem seal.
22	2	2. Heat Transfer/Liquid Metals Purification 3. 20	 SRE Main primary/sodium service (V-644) 250 to 950°F Maintenance log book, 7-10-63 	MI 126	MI 59	MI 530	18, 100	Direct observation	, Bellows leaked. 2. Part replaced. 3. Replace bellows valve with freeze stem seal.
<u>_</u>		INCIDENT M	II = MINOR MALFUNCTION						

MA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

LMEC-Memo-69-7, Vol I 1-395

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY M 2. COMPONENT LOCATION	FAII	FAILURE INDEX CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
229	Metals Purification 3. 20	 SRE Main secondary/plugging meter (PMV) 250 to 950°F Operation log book No. 9 	MI 126	MI 59	MI 530	3600	Direct observation	 Bellows leaked. Part replaced. Replace bellows valve with freeze stem seal.
230	Receiving, Makeup, and	 SRE Main secondary/fill and drain (V-166) 250 to 950°F Operation log book No. 11, 11-25-58 	MI 126	MI 59	MI 530	15,100	Direct observation	 Bellows failed. Part replaced. Replace bellows valve with freeze stem seal.
231	Metals Purification 3. 20	 SRE Main primary/sodium service (PMV) 250 to 950°F Operation log book No. 13, 6-23-59 	MI 126	MI 59	MI 530	18,720	Direct observation	 Bellows ruptured. Part replaced. Replace bellows value with freeze stem seal.
232	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium service (V-105) 250 to 950°F Operation log book No. 6, 1-4-58 	MI 120	MI 54	MI 530	7200	Direct observation	 Bellows leaked. Part replaced. Replace bellows value with freeze stem seal.
233	Metals Purification	 SRE Primary/freeze trap (V-624) 250 to 950°F Operation log book No. 7, 6-1-58 	MI 126	МІ 59	MI 530	9360	Direct observation	 Bellows ruptured. Part replaced. Replace bellows valve with freeze stem seal.
234	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main secondary/sodium service (V-126) 250 to 950°F Operation log book No. 7, 6-16-69 	MI 126	MI 59	MI 530	9360	Direct observation	 Bellows leaked. Part replaced. Replace bellows valve with freeze stem seal.

TABLE _________

.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

D

TABLE 1-119

FAILURE DATA FOR <u>VALVES</u> (Sheet 44 of 52)

Ĵ.

	Τ	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAII	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	м	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
23		 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main secondary/sodium service (PMV) 250 to 950°F Operation log book No. 7, 6-24-69 	MI 126	MI 59	MI 530	4080	Direct observation	 Bellows ruptured. Part replaced. Replace bellows valve with freeze stem seal.
		 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main secondary/sodium service (PMV) 250 to 950°F Operation log book, 8-12-60 	MI 126	MI 59	MI 530	4200	Direct observation	 Bellows ruptured. Part replaced. Replace bellows valve with freeze stem seal.
TMEC 23		 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium service (V-634) 250 to 950°F Operation log book, 3-10-60 	MI 126	MI 59	MI 530	9720	Direct observation	 Bellows leaked. Part replaced. Replace bellows valve with freeze stem seal.
60 23: 7 Vol 1		 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium service (V-617) 250 to 950°F Operation log book No. 24, 9-30-60 	MI 126	MI 59	MI 530	9720	Direct observation	 Bellows leaked. Part replaced. Replace bellows valve with freeze stem seal.
23		 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main secondary/sodium service (V-125) 250 to 950°F Operation log book No. 25, 12-28-60 	MI 126	MI 59	MI 530	13,600	Direct observation	 Bellows leaked. Part replaced. Replace bellows with freeze stem seal.
24		 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium service (V-620) 250 to 950°F Operation log book No. 26, 1-13-61 	MI 126	MI 59	MI 530	12, 100	Direct observation	 Bellows ruptured. Part replaced. Replace bellows with freeze stem seal.
			MI - MINOR MALEUNCTION						·

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

June 30, 1970

LMEC-Memo-69-7, Vol I 1-397

2	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*			OPERATING		1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		HOURS		2. CORRECTIVE ACTION 3. RECOMMENDATIONS
241	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium service (V-616) 250 to 950°F Operation log book No. 26, 1-28-61 	MI 126	MI 59	MI 530	12, 100	Direct observation	 Bellows failed. Part replaced. Replace bellows with freeze stem seal.
242	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium service (V-618) 250 to 950°F Operation log book No. 26, 3-30-61 	MI 126	MI 59	MI 530	13,000	Direct observation	 Bellows failed. Part replaced. Replace bellows with freeze stem seal.
243	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/plugging meter (PMV) 250 to 950°F Operation log book No. 35, 11-8-61 	MI 327	МІ 59	MI 530	11,000	Direct observation	 Bellows failed; valve was closed when cold. Part replaced. Replace bellows with freeze stem seal.
244	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium (V-635) 250 to 950°F Operation log book No. 35, 2-6-62 	MI 120	MI 59	MI 530	12,000	Direct observation	 Bellows failed. Part replaced with freeze stem seal. None.
245	 Valve/O-Ring Heat Transfer/Liquid Metals Purification 20 224235 	 SRE Main secondary/plugging meter (PMV) 250 to 950°F Operation log book No. 11, 11-30-58 	MI 321	MI 56	MI 136	14,400	Direct observation	 O-ring not seated on top flange. Stainless steel O-ring replaced. None.
246	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main primary/sodium service (PMV) 250 to 950°F Operation log book No. 8, 6-24-58 	MI 126	MI 59	MI 530	3600	Direct observation	 Bellows failed. Part replaced. Replace bellows with freeze stem seal.
	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main secondary/sodium service (V-124) 250 to 950°F Operation log book No. 8, 7-2-58 	MI 126	MI 59	MI 530	4560	Direct observation	 Bellows failed. Part replaced. Replace bellows with freeze stem seal.

TABLE ______ FAILURE DATA FOR <u>VALVES</u> (Sheet 45 of 52)

June 30, 1970

1-398 ί,

 \mathbb{D}

TABLE1-119 FAILURE DATA FORVALVES (Sheet 46 of 52)												
30, 1970		1. COMPONENT/PART1. FACILITY2. SYSTEM/SUBSYSTEM2. COMPONENT LOCATION			URE IN CODE*				1. FAILURE DESCRIPTION			
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS			
	248	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main secondary/sodium service (V-127) 250 to 950°F Operation log book No. 8, 7-13-68 	MI 126	MI 59	MI 530	10,800	Direct observation	 Bellows failed, Part replaced. Replace bellows with freeze stem seal. 			
LMI	249	 Valve/Bellows Heat Transfer/Liquid Metals Purification 20 224230 	 SRE Main secondary/sodium service (V-124) 250 to 950°F Operation log book No. 8, 8-16-58 	MI 126	MI 59	MI 530	10,800	Direct observation	 Bellows failed. Part replaced. Replace bellows with freeze stem seal. 			
LMEC-Mem0-69- 1-399	250	 Valve/Solenoid Heat Transfer/ Electrical 20 221121 	 LCTL LCTL/core tank drain (V-33) 1200°F Lab notebook A-086301, 9-28-59 	MI 236	MI 13	MI 550	Unknown	Direct observation	 Coil of solenoid failed. Replaced part. Cover coil with a sealant to protect against moisture. 			
9-7, Vol I	251	 Valve/Solenoid Heat Transfer/ Electrical 20 221121 	 LCTL LCTL/core tank inlet (V-303C) 1200°F Lab notebook A-086301, 9-28-59 	MI 236	MI 13	MI 550	Unknown	Direct observation	 Coil of solenoid failed. Replaced part. Cover coil with a sealant to protect against moisture. 			
	252	 Valve/Bellows Heat Transfer/ Reactor Coolant Piping and Valves 20 221220 	 LCTL LCTL/2 by 3 loop vent (V-23A) 1200°F Lab notebook A-086374, 4-20-60 	MI 126	MI 59	MI 550	Unknown	Direct observation	 Bellows ruptured. Replaced bellows. Replace bellows with freeze stem seal. 			
	253	 Valve/Solenoid Heat Transfer/ Electrical 20 221121 	 LCTL LCTL/drain tank drain (V-37) 1200°F Log book 21-2, 1-4-65 	MI 236	MI 13	MI 550	Unknown	Direct observation	 Solenoid inoperative. Replaced part. None. 			

T

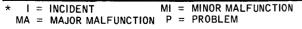
* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

June	
30,	

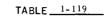
0, 1970		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ł	ITEM	3. CODE:	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	254	 Valve/Flange Heat Transfer/Cold Trap 20 224230 	 LCTL LCTL/inlet to cold trap 1200°F Lab notebook B-041182, 10-11-61 	MI 148	MI 34	MI 530	Unknown	Direct observation	 Flange bolts worked loose which caused a sodium leak. Valves not originally designed for sodium service. Flange was welded. Initial maintenance procedures on correct installa- tion of flanges.
LMEC.	255	 Valve/Flange Heat Transfer/ Reactor Coolant Piping and Valves 20 221220 	 LCTL LCTL/3 in. thermal shock drain line (V-31A) 1200°F Lab notebook B-041183, 10-17-61 	MI 148	MI 53	MI 530	Unknown	Direct observation	 Flange bolts worked loose which caused a sodium leak. Valves not originally designed for sodium service. Flange was welded. Initiate maintenance procedure on correct installa- tion of flanges.
LMEC-Memo-69-7 1-400	256	 Valve/Stem Heat Transfer/Primary Coolant 20 221220 	 LCTL LCTL/6 in. thermal shock loop (V-HIC-62) 1000°F Lab notebook B-104302, 1-15-62 	MI 120	MI 55	MI 550	Unknown	Direct observation	 Valve stem jammed. Disassembled, cleaned, and placed back in system. None.
7, Vol I	257	 Valve/Flange Heat Transfer/Pri- mary Coolant 20 221220 	 LCTL LCTL/3 in. magnetic trap 1200°F Lab notebook A-086329 	MI 148	MI 34	MI 550	Unknown	Direct observation	 Flange bolts worked loose which caused a sodium leak. Tightened flange bolts. Initiate maintenance procedure on correct installa- tion of flanges.
,	258	 Valve/Solenoid Heat Transfer/Primary Coolant 20 <pre>221121</pre> 	 LCTL LCTL/core tank inlet (V-HIC-63) 1000°F Log book No. 2, 2-20-68 	MI 236	MI 13	MI 550	Unknown	Direct observation	 Solenoid inoperative. Replaced part. None.
	259	 Valve/Bellows Heat Transfer/Inter- mediate Coolant Test Section 20 222213 	 LCTL LCTL/6 by 8 test section (V-67) 1000°F Lab notebook A-086360 	MI 120	MI 34	MI 550	Unknown	Direct observation	 Bellows ruptured. Replaced bellows. Replace bellows with freeze stem seal.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______


FAILURE DATA FOR <u>VALVES</u> (Sheet 47 of 52)

June	
30, 1	


LMEC-Memo-69-7, Vol I 1-400a

	261
LM	
(EC-)	
Mem	262

1970 ITEN

FAILURE DATA FOR <u>valves</u> (Sheet 48 of 52)

Т

2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAILURE INDEX CODE*					1. FAILURE DESCRIPTION	
3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS		MODE	l	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
 Valve/Freeze Stem Heat Transfer/Primary Coolant 20 221220 	 LCTL Supply tank/drain (V-HIC-305A) Maximum operating temperature 1200°F Incident, malfunction, and problem report No. 002 	MA 195	MA 55	MA 550	Unknown	Direct observation	 Valve inoperative - oxide deposit in stem region. Jury rig, freeze stem heated with GE heater cable until valve stem free to move. Valve is in the scram circuit of the system and therefore not usually operated. None. 	
	 Fermi No.2 recirculating gas compressor room climate changer (TCV-1904-2) Unknown EF-51, page 4 	MI 479	MI 51	MI 550	Unknown	During actuation	 Valve would not close upon demand. Valve disassembled, revealing a foreign object in valve housing. Quality assurance needs improvement. 	
 Valve Heat Transfer/Inert Gas Supply and Monitoring System 20 224610 	 Fermi No. 1 recirculating gas compressor (Valve FCV-471) Unknown EF-51, page 4 	MI 479	MI 51	MI 550	Unknown	During actuation	 Valve would not close upon demand. Valve disassembled, revealing a foreign object in valve housing. Quality assurance needs improvement. 	
2. Nuclear Fuel Handling		MI 410	MI 55	MI 550	Unknown	During actuation	 Sodium froze valve shut. Assembly cleaned, and thrust bearings and O-ring seal replaced. Additional research and development required. 	
2. Nuclear Fuel Handling		MI 218	MI 51	MI 550	Unknown	Operation monitors	 Ball valve operation difficult due to accumulation of sodium in the valve cavity. Valve cleaned, and all O-ring seals replaced. Additional research and development required. 	
	 Fermi Cold trap room primary sodium service piping (V-516) Unknown EF-53, EF-56, and EF-57 	MI 124	MI 59	MI 530	Unknown	During preventive maintenance	 Bellows leaked. Bellows replaced. Additional research and development required. 	
	 Valve/Freeze Stem Heat Transfer/Primary Coolant 20 221220 Valve Heat Transfer System/Gas Supply and Monitoring System 20	1.Valve/Freeze Stem2.Heat Transfer/Pri- mary Coolant3.20221220I. LCTL2.Supply tank/drain (V-HIC-305A)3.Maximum operating temperature 1200°F4.Incident, malfunction, and problem report No. 0021.Valve2.Heat Transfer System/ Gas Supply and Monitoring System3.202.Valve2.Heat Transfer/Inert Gas Supply and Monitoring System3.201.Valve2.Heat Transfer/Inert Gas Supply and Monitoring System3.202.Nuclear Fuel Handling Equipment /Fuel Handling Equipment3.202.Nuclear Fuel Handling Equipment3.202.Safono1.Valve2.Nuclear Fuel Handling Equipment3.202.Safono1.Valve2.Safono1.Valve2.Safono1.Valve2.Cask car 3.2.Safono1.Fermi2.Cold trap room primary sodium service piping (V-516)3.2021220Safono1.Lermi221220Safono1.Sermi221220Safono221220Safono221220Safono221220Safono221220Safono221220<	1.Valve/Freeze Stem1.LCTLMA2.Heat Transfer/Pri- mary Coolant3.Maximum operating temperature 1200°F1953.20 2212204.Incident, malfunction, and problem report No. 0021951.Valve1.FermiMI2.Heat Transfer System/ Gas Supply and Monitoring System1.FermiMI3.20 2246001.FermiMI2.Heat Transfer/Inert Gas Supply and Monitoring System1.FermiMI3.20 2246101.FermiMI4.EF-51, page 41.FermiMI7.Valve1.FermiMI2.Nuclear Fuel Handling Equipment1.FermiMI3.20 2360001.FermiMI20 2360001.FermiMI20 2360001.FermiMI20 2360001.FermiMI20 2360001.FermiMI20 2360001.FermiMI212201.FermiMI212201.FermiMI212201.FermiMI21220212204.EF-53, EF-56, and EF-57	1.Valve/Freeze Stem Heat Transfer/Pri- mary Coolant1.LCTL 2.MAMA2.203.Maximum operating temperature 1200°F1.195553.204.Incident, malfunction, and problem report No. 002195551.Valve1.Fermi2.No. 2 recirculating gas compressor room climate changer (TCV-1904-2) 3.MIMI2.Heat Transfer/Inert Gas Supply and Monitoring System1.Fermi2.No. 22.No. 21.Fermi2.No. 1 recirculating gas compressor (Valve FCV-471)MI3.202.No. 1 recirculating gas compressor (Valve FCV-471)MIMI4.EF-51, page 41.FermiMIMI2.Nuclear Fuel Handling Equipment 3.20Sofso°F sodium temperature 4.EF-16 and EFAPP-MR-85MIMI2.Nuclear Fuel Handling Equipment 3.20Sofso°F sodium temperature 4.EFAPP-MR-85MIMI2.Nuclear Fuel Handling Equipment 	1. Valve/Freeze Stem1. LCTLMAMA2. Heat Transfer/Pri- mary Coolant3. Maximum operating temperature 1200°F195553. 202212204. Incident, malfunction, and problem report No. 002MIMIMI2. Heat Transfer System/ Gas Supply and Monitoring System1. FermiMIMIMI2. Heat Transfer/Inert Gas Supply and Monitoring System1. FermiMIMIMI2. Valve1. Fermi2. No. 2 recirculating gas compressor room climate changer (TCV-1904-2) 3. UnknownMIMIMI2. Valve1. Fermi2. No. 1 recirculating gas compressor (Valve FCV-471)MIMIMI3. 20 2246101. Fermi2. No. 1 recirculating gas compressor (Valve FCV-471)MIMIMI4. EF-51, page 42. Cask car450 to 550°F sodium temperature 4. EF-51, page 4MIMIMI5. 20 2360001. Fermi2. Cask carMIMIMI3. 20 2360001. Fermi3. UnknownMIMIMI4. EFAPP-MR-59 Equipment3. Unknown2. Cask carMIMIMI7. Valve1. Fermi3. Unknown4. EFAPP-MR-595505503. 20 2360001. Fermi2. Cold trap room primary sodium service piping (V-516)MIMIMI9 20001. Valve/Bellows1. FermiMIMI1245953020 212202. Cold trap room primary sodium service piping (V-516)MI	1.Valve/Freeze Stem 1.1.LCTL Supply tank/drain (V-HIC-305A) 1.MAMAMA1.Heat Transfer/Pri- 221220Supply tank/drain (V-HIC-305A) 3.MAS mum operating temperature 1200°F1955550Unknown2.2212204.Incident, malfunction, and problem report No. 002MIMIMIMIMIUnknown1.Valve 2.1.FermiNo. 2 recirculating gas compressor room climate changer (TCV-1904-2) 3.MIMIMIMIUnknown3.20 2246001.FermiMIMIMIMIUnknown4.EF-51, page 42.No. 1 recirculating gas compressor room climate changer (TCV-1904-2) 3.MIMIMIMIUnknown4.EF-51, page 42.No. 1 recirculating gas compressor (Valve FCV-471)MIMIMIUnknown3.20 2246101.FermiMIMIMIMIUnknown4.EF-51, page 42.Cask car and Storage Equipment 4.EF-51, page 4MIMIMIUnknown2.Valve/Assembly 2.1.FermiMIMIMIMIUnknown2.Cask car and Storage Equipment 3.20 2360001.FermiMIMIMIUnknown3.Unknown1.Fermi2.Cask car 2.MIMIMIUnknown3.Unknown1.Fermi <td< td=""><td>1.Valve/Freeze Stem 2.1.LCTL 2.MA Supply tank/drain (V-HIC-305A) 3.MA MAMA S5MA S5MA S520 2212203.Maximum operating temperature 1200°F 2212201.Naximum operating temperature 1200°F1.No.N</td></td<>	1.Valve/Freeze Stem 2.1.LCTL 2.MA Supply tank/drain (V-HIC-305A) 3.MA MAMA S5MA S5MA S520 2212203.Maximum operating temperature 1200°F 2212201.Naximum operating temperature 1200°F1.No.N	

June	
1	

30,	(Sheet 49 of 52)									
1970		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT		LURE IN CODE*			METHOD OF FAILURE DETECTION	1. FAILURE DESCRIPTION	
	ITEM	3. CODE: (Component) (System/Subsystem)		CAUSE	MODE	1	OPERATING HOURS		2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
	266	 Valve/Bellows Heat Transfer/Coolant Piping and Valve 20 221220 	 Fermi Cold trap room primary sodium service piping (V502-1) Unknown EF-52, EF-56, and EF-57 	MI 124	MI 59	MI 530	Unknown	Routine area watch - direct observation	 Bellows leaked. Bellows replaced. Additional research and development required. 	
LMEC-Memo-69-7, 1-400b	267	 Valve Heat Transfer/Pump 20 221110 	 Fermi No. 1 primary pump liquid rheostat general service water bypass valve 450 to 525°F sodium temperature EF-37, page 4 	MI 110	MI 51	MI 550	Unknown	Operation monitor	 Valve plugged and inoperative. Valve removed and cleaned. None. 	
	268	 Valve/Drain Plug. Heat Transfer/Steam Generators 20 223000 	 Fermi No. 1 steam generator drain plug on isolation valve (FSV-604) 450 to 525°F sodium temperature EF-34, page 8 	MI 125	MI 96	MI 530	Unknown	Direct observation	 Leaking drain plug. While generator vented off, plug repaired. None. 	
Vol I	269	 Valve/Solenoid Instrumentation and Coltrol/Argon Supply 20 269000 	 Fermi Cleaning machine (FSV-202) 475 to 650°F sodium temperature EF-33, page 5 	MI 124	MI 52	MI 530	Unknown 2	Operational monitors	 Erratic argon supply valve operation to the cleaning machine. Solenoid armature for FSV-202 replaced. None. 	
	270	 Valve/Solenoid Instrumentation and Control/Shield 20 261200 	 Fermi Primary shield tank sensing line Unknown EFAPP-MR-125 	MI 16Z	MI 13	MI 550	Unknown	During actuation	 Malfunction of the solenoid valve caused a fuse to blow in the electrical circuit, which prevented switch-over to the alternate sensing line. The overall result was a loss of control with positive pressure swings. The alternate sensing line was switched into service, and FCV-1370-4 was energized by replacing blown fuse. Design modification to part or circuit. 	
	271	 Valve Nuclear Fuel Handling and Storage Equipment /Cooling and Cleaning 20 233100 	 Fermi Steam cleaning machine valve Unknown EF-41 and EFAPP-MR-119 	MI 127	MI 57	MI 550	Unknown	Direct observation (unscheduled)	 Valve froze in a partially open position, resulting in a low load cut-out. Galled valve stem, bushing, and valve carrier were replaced with new parts of harder material. None. 	

TABLE ______

FAILURE DATA FOR VALVES

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

 \mathcal{D}

June	
ω	
0	

2

1070	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	FAILURE INDEX CODE*		CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS		
272	 Valve/Bushing Nuclear Fuel Handling and Storage Equipment /Cooling and Cleaning 20 233100 		MI 127	MI 57	MI 550	Unknown	During actuation	 Recently installed parts galled, resulting in valve siezure. Galled valve stem bushing, and valve carrier replaced with parts hardened to Rockwell C 50/55. None. 		
LMEC-Memo-69-7,	 Valve/Gasket Reactor Equipment/ In-core Capsules and Test Loops 20 218000 	1. CCTL 2. Cold trap loop 3. Unknown 4. CCTL-1	MA	МА 96	MA 580	Unknown	Direct observation (unscheduled)	 Sodium leakage through gasket caused a fire and damage to a 2-in. control valve. Severe corrosion was noted on the outer surfaces of the valve body and piping Fire extinguished and valve replaced. Provide valves with short-circuit type leak detection. 		
^{BO-69-7} , Vol I	 Valve/Packing Heat Transfer System /Test Facility Coolant System and Valves 20 221220 	 SCTI Primary sodium system 850°F IMPR-359 	MI 124	MI 52	MI 580	Unknown	Protective system	 Sodium extruded past gland packing, causing a small fire and loss of ≈3 lb sodium. Replaced valve packing. Periodic maintenance checks. 		
Ξ 275	 Valve/Seat Heat Transfer System //Steam and Feedwater /Piping and Valves 20 281200 	 SCTI Steam and water system 2200 psig, 1050°F, 6 Mwt IMPR-357 	I 137	I 65	I 530	Unknown	Direct observation (routine watch)	 Pressure safety valve was observed to be weeping across valve seat with steam generator operating at 2200 psig. Leakage slight, plant not shut down. Valve seat lapped to repair eroded area. Continued R&D for high pressure steam safety relief valves. 		
276	 Valve/Stem Heat Transfer System /Coolant System and Valves 20 221220 	 LCTL Supply tank Down (scheduled maintenance) LCTL IMPR-008 	P 195	P 55	P 520	Unknown	Direct observation (unscheduled)	 Valve failed to close when cycled closed. Sodium and sodium oxide held valve open. Sodium melted with heater until valve was free. Bellows enclosure should be added to freeze stem area of valve. 		
277	 Valve Reactor Equipment/ In-core Capsules and Test Loops 20 218000 	 ETR Reactor surge tank 700°F INC-69-81 	MI 33Z	MI 43	MI 520	Unknown	Operational monitors	 Surge tank partially drained because of incorrect tank level reading. Three surge tank liquid level fill line valves were found to be open, causing the false indication. Valves closed, normal operation reestablished. Modify procedure for filling and venting. 		

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-119</u>

FAILURE DATA FOR VALVES (Sheet 50 of 52)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
278	 Valve/Stem Heat Transfer System /Reactor Coolant Piping and Valves 20 221200 	 ATR Primary pressure system Shut down INC-69-183 	P 448	P 68	P 530	Unknown	Direct observation (unscheduled)	 During disassembly of primary system pressure trol valve an examination of the shaft was made. (ling was discovered in the upper guide bushing. D age was probably caused by improper materials a inadequate heat treatment. Replaced shaft and bushings. Machined galled are valve body. Review materials available for this application an fabricate new components with most suitable material
279	 Valve/Stem Heat Transfer/Reactor Coolant System 20 221200 	 ATR Primary coolant system Down (scheduled maintenance) INC-69-50 	I 448	I 68	I 520	. Unknown	Direct observation (unscheduled)	 Air operated diaphragm valve opened with pulsati motion, causing vibration of the valve and associ piping. Examination of valve showed erosion of th stem, apparently due to cavitation.
280	 Valve Feedwater Supply and Treatment/Makeup Water Treatment 20 272000 	 ETR Deoxygenation system Steady full power (175 Mw) INC-69-102 	I 33Z	I 3Z	I 580	Unknown	Direct observation (unscheduled)	 Operator error caused low level in makeup water by incorrect valve operation. System returned to normal operation. Improve operations procedure and training.
281	 Valve/Seat Heat Transfer System /Reactor Coolant System 20 221200 	 ATR Primary coolant system Test in progress INC-69-102 	MI 41Z	MI 85	MI 520	Unknown	Routine instrument reading	 Thermal and radiation measurements indicated le from primary system to water supply lines. Valve seat relapped. Additional R&D.
282	 Valve/ Heat Transfer/Reactor Coolant System 20 218000 	1. ATR 2. Primary coolant system 3. Steady full power (250 Mw) 4. INC-69-162	I 344	I BA	I 520	Unknown	Protective system	 Reactor scrammed when valves were operated in wrong sequence. System returned to normal operation. Review operating procedures thoroughly.
283	 Valve/Stem Heat Transfer System /Coolant System and Valves 20 221220 	1. LCTL 2. Supply tank 3. Startup 4. LCTL IMPR-002	P 195	P 55	Р 520	Unknown	Direct observation (unscheduled)	 Valve failed to close when cycled closed. Sodium sodium oxide in freeze stem held valve open. Valve heated until operation was normal. Bellows enclosure should be added to freeze stem

* 1 = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

.

		F	AILURE				2)	
ITE	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component)	1. FACILITY 2. COMPONENT LOCATION 3. OPERATING CONDITIONS		LURE IN CODE*		OPERATING HOURS	METHOD OF FAILURE DETECTION	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
284	(System/Subsystem)	4. SOURCE DOCUMENT	м	м	м	1440	During preventive	1. Valve plug was broken.
	 Steam, Condensate, and Feedwater/ Feedwater 20 284300 	 Feedwater bypass line Down (scheduled maintenance) IMPR 344 	149	59	530		maintenance	 The valve plug and stem were replaced. Valve modi fied by incorporating a hydraulic snubber to reduce the impact during operation. Snubbers should be provided when valve plug is fab- ricated of Type 440C Martensitic stainless steel.
285 LMEC-Memo-69-	 Valve/Stem Heat Transfer/ Coolant Piping and Valves 20 221200 	 ATR Primary coolant system Down (scheduled maintenance) INC-69-105 	I 192	I 64	I 550	Unknown	Direct observation (unscheduled)	 Inspection of previously repaired valve (INC-69-50) revealed stem erosion and galling. Valve stem replaced. Additional research and development.
286 286 7. Vol I	 Valve Reactor Equipment/ In-core Capsules and Test Loops 20 218000 	 ETR Primary coolant system Down (scheduled maintenance) INC-69-135 	MI 33Z	MI 59	MI 530	Unknown	Direct observation (unscheduled)	 Steam leak discovered. Valve closed to eliminate possible source. Rotometer blew out due to loop over-pressure caused by cracked open drain valves in surge tank. Valves closed to stop excessive water makeup rate. Rotometer replaced. Procedure revision required.
287	 1. Valve 2. Reactor Equipment/ In-core Capsules and Test Loops 3. 20 218000 	 ETR Primary reactor pressurization system Down (scheduled maintenance) INC-69-109 	MI 33Z	MI 5Z	MI 550	Unknown	Operational monitors	 Lack of gas-tightness in nitrogen pressurization value caused flow fluctuations and thermal "spikes" in primary coolant system. Incorrect closing of value also cited. Value repaired - procedures changed. Operator training needs review.
288	 Valve Reactor Equipment/ Capsules and Test Equipment 20 218000 	 ATR Primary reactor pressurization system Down (scheduled maintenance) INC-69-104 	I 33Z	I 5Z	I 590	Unknown	Direct observation (unscheduled)	 During experimental sample removal, an operator closed a vent valve on the loop high point vent. Operator closed valve after realizing his error. Improve operating training.
		MI = MINOR MALFUNCTION						

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-120</u>

-

· · · - · · ·

.

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT VALVES

	CIRCIILATING	WATER VALVES
COMPONENT SUBTYPE	onconnina	WALLERC THEFTED

· · · · · · -

	FAILURES	(%) 0	10	20) 3	0 4	0 5	06	0 7	0 8	0 9	0 100
	Nuclear Test Reactor							_				
PE	Component Test Facility		-+		_		{					
PLANT TYPE												
					<u></u>							
	Turbogenerator Units and Condenser				_		} 				-	-
	Reactor Equipment		-									
N	Heat Transfer	P								l	ļ	
SYSTEM											}	
S∖												
						(]		
						1 T		[[1	
	Seat											
	Stem							}				
ART	Shaft											
d ,	BushingOther	[ļ					
COMPONENT PART	Other	[
N N												
MP												
0]]		
	Environmental											
ш	Unknown			4								
CAUSE	Inherent	-	_									
CA						Í	[Í				
						}]		
						<u> </u>				L		
	Mechanical			_	A . 14 9.4				a waan taa			
Ы	Other				2							
MODE												
						ł				}		
						<u> </u>	<u> </u>		<u> </u>	L		
	Labor and material loss only					-						
(<u>[</u>]	System/component inoperative			-						1	'	
EFFECT	Plant availability loss		-+	•							 i	
ш	No effect	ł=		•		ļ						
1		J	ļ			ļ	J	1		1		

TABLE <u>1-121</u>

- -- ---

-

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT VALVES

Nuclear Test Reactors Component Test Facility Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment Image: Steam, Condensate, Feedwater Piping and Equipment Image: Condensate, Feedwater Piping and Equipment	4	COMPONENT SUBTYPECONDENSATE VALVES	- 0 1	02	0 3	so 4	0 5	06	0 7	0 8	0 9	0 10
Steam, Condensate, Feedwater Piping and Equipment 2			Ť.									•
Steam. Condensate, Feedwater Piping and Equipment - <td< td=""><td>PE</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>l</td><td></td><td></td><td></td><td></td></td<>	PE					1		l				
Steam. Condensate, Feedwater Piping and Equipment - <td< td=""><td>μ</td><td></td><td>]</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	μ]			1						
Equipment No. N	· .					<u> </u>	L					
Equipment No. N		Steam, Condensate, Feedwater Piping and				<u> </u>						
Stem Stem												
Stem Stem	Σ]			ļ						
Stem Stem <th< td=""><td>E E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>}</td><td></td><td></td><td></td><td>i</td></th<>	E E							}				i
Seat	S		ł			}						
Seat			4									
Seat Seat <th< td=""><td></td><td></td><td>{</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			{			1						
Seat	Щ					<u> </u>	<u> </u>	<u> </u>				
Bushing Base		Stem				}	}			}		
Gasket Body												
Environmental Image: Second Secon	RT											
Environmental Image: Second Secon	ΡA											
Environmental Image: Second Secon	L I						1					
Environmental Image: Second Secon	ONE	Other		ļ								
Environmental Image: Second Secon	Mb		1	1		1	1	ĺ		ľ	1	
Unknown Mechanical	8		1	ļ			ļ				Į	
Unknown Mechanical	1 1		1		1	1	[[Ì	ĺ	ĺ	
Unknown Mechanical]									
Unknown Mechanical		·	1					L				
Mechanical Mechanical <td></td> <td>Environmental</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Environmental										
Mechanical Mechanical Metallurgical Metallurgical Unknown Metallurgical Plant availability logs Metallurgical	ш	Unknown										
Mechanical Mechanical Metallurgical Metallurgical Unknown Metallurgical Plant availability logs Metallurgical	AUS	Human error					}			ļ	ļ	
Metallurgical Image: Constraint of the second sec	5		4									
Metallurgical Image: Constraint of the second sec	1	· · · · · · · · · · · · · · · · · · ·	4		1		1				1	
Metallurgical Image: Constraint of the second sec	\square		<u></u>	L		+	┝━━	<u> </u>	<u></u>	<u> </u>		
Unknown Image: State Sta						1	1	1	ł			
Plant availability loss	Ы											
Plant availability loss System /component inoperative	۶ ۶	Unknown		<u> </u>			1			1		
Plant availability loss System/component inoperative			-				1					
Plant availability loss System/component inoperative			<u>+</u>			[L	/		
U System/component inoperative U Image: Component inoperative U Image: Component inoperative U Image: Component inoperative U Image: Component inoperative U Image: Component inoperative U Image: Component inoperative U Image: Component inoperative U Image: Component inoperative U Image: Component inoperative	_					1]					
	ы Ш	System/component inoperative									ĺ	
			1			1]			}	}	
			1								ļ	

June 30, 1970

TABLE _1-122

FAILURE DISTRIBUTION FUNCTIONS

	COMPONENT VALVES												
	COMPONENT SUBTYPE FEEDWATER VALVES FAILURES (%)			~		•	4.0	50	()			• •	0 100
	Nuclear Test Reactor	<u>_</u>) 3	1	40 I	50	60	70	<u>8 C</u>	09	
날	Component Test Facility												
PLANT TYPE	Component Test Facinity	[_										
l <u></u>				Ì									
<u> </u>		- <u> </u>					T	+					
		_											
	Feedwater Supply and Treatment												
БN	Steam, Condensate and Feedwater Piping and												
SYSTEM	Equipment												
S		-											
										1			
						ļ	<u> </u>		+				<u> </u>
	Seat		_		•								
	Gasket												
5	Packing	_		•									
PAI	Body	_											
5	Linkage or Stem					İ							
COMPONENT PART	Plug, Disk or Diaphragm		_										
Dd	Bushing		-										
No	Other	_											
с	Float		•										
	"O" Ring		-										
	Nipple												
	······································												
	Environmental												
ш	Human error												ĺ
CAUSE	Inherent	<u> </u>	_										
CA	Unknown	 _						_	_				
		7											
				ĺ									
	Electrical			T			1	Ť	T			-	
	Mechanical					· · · ·							
MODE	Metallurgical, not fracture												
ž													
	Unknown				_								
	Plant availability loss			Ī			1						
СТ	Labor and material loss only												
EFFECT	System/component inoperative											-	
Ш						ļ							
						ŀ							
		1				1	1						

LMEC-Memo-69-7, Vol I 1-404

.

TABLE <u>1-123</u>

FAILURE DISTRIBUTION FUNCTIONS

*** **

.

COMPONENT VALVES

	COMPONENT SUBTYPEMISCELLANEOUS VALVES	_										
	FAILURES (%)	<u> </u>	10	20	3	0 4	0 5	0 6	0 7	0 8	09	0 100
<u> </u>	Nuclear Test Reactor			-	1							
PLANT TYPE	Component Test Facility	╞╸										
ЧĻ	Nuclear Power Reactor	╞╸										
			<u> </u>				<u>}</u>					
	Nuclear Fuel Handling and Storage Equipment		+		ri				-			
	Turbine Generator Units and Condenser	-										
Σ	Heat Transfer		-			1						
TE	Compressed Air and Vacuum Cleaning Equipment	-		1								
SYSTEM	Station Service Equipment											
	Instrumentation and Control	-										
	Reactor Containment Structure and Building	<u>]</u>	+			ļ						
	Gas Supply and Monitoring System	_										
	Bonnet		-	-			1		[Γ	
	Body		•									
-	Seat Ring	╎───	•									
PART	Spring	 										
ТР	Seals	┝───										
N.	"O" Ring	, 	-									
NO	Transfer Port	ļ		1			[ĺ			
COMPONENT	Other		-						[
ទ												
]										
	Environmental									<u> </u>		
	Impurity/contamination		•			1	1	ĺ	ľ	ĺ		
CAUSE	Human error											
S I	Unknown		-									
		1								1		
		1										
<u> </u>	Mashaniaal		T.				1	1		1	<u> </u>	i
	Mechanical					1						
MODE	Metallurgical Unknown	-								ł		
ž	Chkildwh	1										
		1										
	Plant availability loss		1	+			<u> </u>	i –			Í	1
ЪÌ	Labor and material loss only		-			_						
Щ.	System/component inoperative											
EFFECT	Oystem, component moperative	1										
		1					ł					

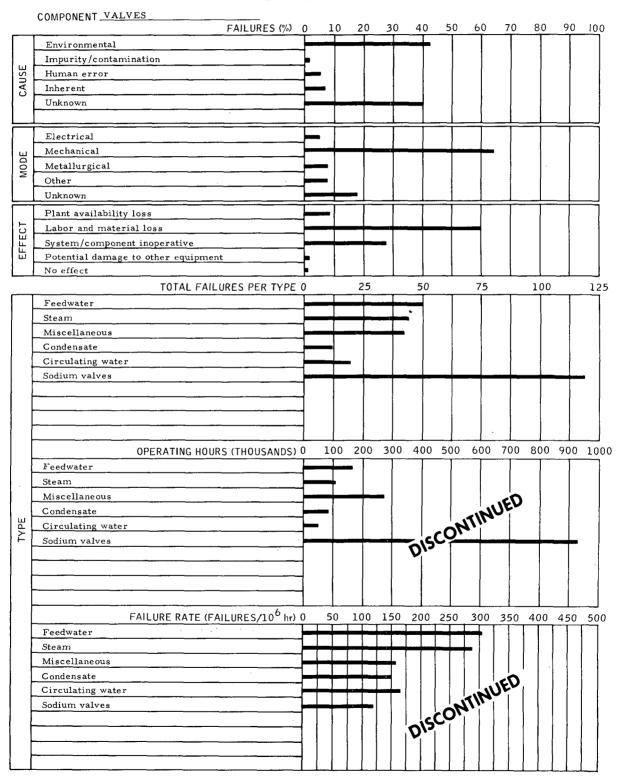
TABLE <u>1-124</u>

FAILURE DISTRIBUTION FUNCTIONS

	COMPONENT VALVE											
	COMPONENT SUBTYPE SODIUM VALVES	ES (%) 0	10	20	30	4() 51) 60) 7() 80) 9(0 100
PLANT TYPE	Nuclear Power Reactor Nuclear Test Reactor Component Test Facility Component Test Loop								<u> </u>		, ,	
SYSTEM	Heat Transfer Nuclear Fuel Handling Reactor Equipment				74							
RT	Stem Packing Yoke											
COMPONENT PART	Bellows Seat Disk Other											
0												
CAUSE	Environment Human error Inherent											
MODE	Mechanical Metallurgical Metal corrosion Other					-						
EFFECT	Labor and material loss only System/component inoperative No effect											

4

TABLE 1-125


a.

FAILURE DISTRIBUTION FUNCTIONS

1	COMPONENT VALVES	_										
	COMPONENT SUBTYPE STEAM VALVES	_										
<u> </u>		0	10	2) 3	0 4	10 5	<u>6 0 6</u>	07	<u>0 8</u>	0.9	0 10
	Nuclear Test Reactors		-	_	U.							
PLANT TYPE	Component Test Facility											
L L L L												
	Steam, Condensate and Feedwater Piping and					1		Ι	<u> </u>			
	Equipment											
Σ	Turbine - Generator Units and Condenser	1										
SYSTEM	Heat Transfer	1										
ΥS	Nuclear Fuel Handling						1					
S	4	1										
		-									1	
		1										
	Packing	L				L	1	1	†	I	l	
	Gaskets	-		_		Т						
		-		-								
RT	Stem "											
PA	Seal Ring or Seal	-										
COMPONENT PART	Flange	-										
I NE	Seat	_						-				
VPC	Bushing		1					i i				
NO N	Other			•								
	Body	_										
		-						i				
		-										
ЬЩ		+	<u> </u>			<u> </u>	+	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	Environmental											
ы	Human error											
CAUSE	Unknown						-		1			
U U												
		-		i								
						<u> </u>	<u> </u>			<u> </u>		
	Mechanical	-	-			1.		-				
μ	Metallurgical											
MODE	Metal corrosion	-	ı –			i i						
2	Unknown		-									
		1										
\square							Τ		Ι			
5	System/componenet inoperative]	-	_	н						╞━	
EFFECT	Plant availability loss			-		l.						
μ		7				[·						
		1				1	1					

TABLE ______

GENERAL SUMMARY

June 30, 1970

- G. INSTRUMENTATION AND CONTROL SYSTEM COMPONENTS
- 1. Air Dryers

Failure data for air dryers are presented in Tables 1-127 through 1-129.

a. Reliability Information

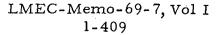
Design Features:

They are used to remove moisture from pneumatic instrumentation systems.

Mode of Failure:

Mechanical.

Failure Description:


Improper material in gaskets.

Control Methods:

Maintenance manual should contain a regular inspection schedule of these parts.

b. Discussion and Recommendations

None.

• TABLE _______

FAILURE DATA FOR <u>AIR DRYERS</u>

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEI	M 3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Air Dryer/Gasket Instrument Air Supply Air Dryer 26 540000 	 SCTI Instrument Air System 150 psig max., 190 scfm, filter area 99 in? Incident report No. 94 	MI 313	MI 52	MI 137	5320	Direct observation	 Gasket failure, improper (hard) material did not seal. Part replaced. Periodic inspection of the "Poro-Stone" filters and gaskets should be included in the maintenance manual.
2 LMEC-Memo-69-7, Vol I 1-410	1. Air Dryer/Gasket	 SCTI Instrument air line desicant filter 190 scfm, 99 in.², 150 psig max. Incident report No. 94 (1-17-66) 	MI 21Z	MI 55	MI 530	4438	Direct observation	 Bottom gaskets on the "Poro-Stone" filters in both desiccant dryers were too hard to permit sealing; filter or dryer unit leaked particles of poro-stone in air line causing faulty operation of several valve operators. New gaskets installed, instrument air headers cleaned, and valve operators removed, cleaned, and replaced. Add regular inspection of air dryers to maintenance schedule.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

.

COMPONENT AIR DRYERS COMPONENT SUBTYPE AIR DRYERS 50 FAILURES (%) 0 30 40 70 80 90 100 10 20 60 Component Test Facility PLANT TYPE Instrument Air Supply SYSTEM Gasket COMPONENT PART Impurity/contamination CAUSE Human error Mechanical MODE Labor and material loss only EFFECT

FAILURE DISTRIBUTION FUNCTIONS

TABLE <u>1-128</u>

......

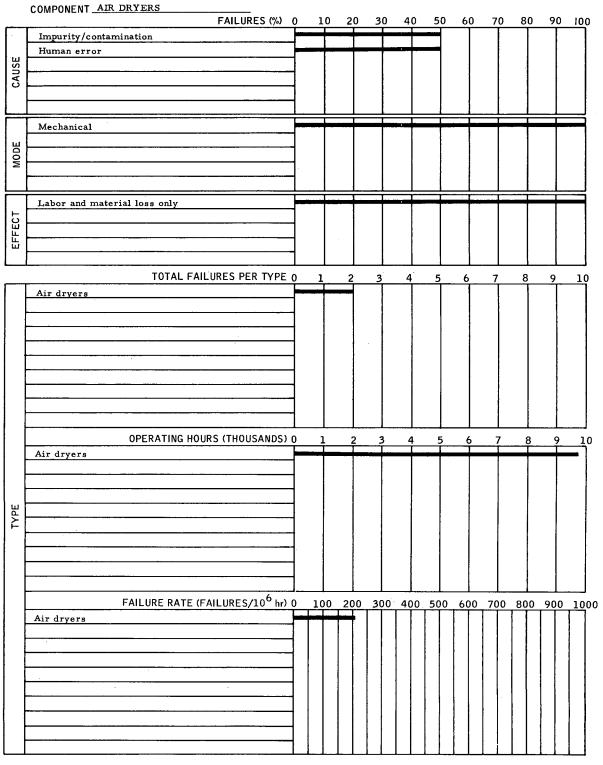

·· ·· --

TABLE _1-129

· · · · · ·

GENERAL SUMMARY

2. Annunciators-Alarms

Failure data for annunciators-alarms are presented in Tables 1-130 through 1-132.

a. Reliability Information

Design Features:

Designed on the inductive principle. Does not require physical contact with the liquid during operation (sodium level).

Critical Characteristics:

Insulation and wire materials.

Mode of Failure:

- 1) Wire material corrosion
- 2) Power supply failure.

Failure Description:

- 1) Overheating during the bake-on of insulation during manufacture results in material decomposition.
- 2) Capacitor failure in power supply attributed to faulty component.

Control Methods:

- 1) Improve manufacturing process control.
- 2) Stringent quality requirements in procurement specifications.

Alternate Concepts:

Resistance level probes or float techniques. Different type of coil insulation that would not require high-temperature installation process.

b. Discussion and Recommendations

It should be noted that the circuit design of these instruments provides for a fail-safe warning. In the event of a power supply failure or a coil opencircuit, the alarm will sound. This feature eliminates any system consequences resulting from the failure of the alarm to operate in a real emergency situation. This fact should be weighed against the added cost of more stringent quality control. The cost of high reliability is probably not warranted in this case.

The feasibility of backup warning devices could also be considered. In this case, for instance, a second-level device existed which could be visually monitored during the critical operation of filling the loop with sodium, which is about the only conceivable time when an overflow condition could occur.

TABLE 1-130

 \square

FAILURE DATA FOR ANNUNCIATORS - ALARMS

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	· ·	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		Coolant Vessel	 HNPF Secondary/No.2 expansion tank level alarm - Monthly operating report No. 12 	MI 156	MI 21	MI 530	~4450	Direct observation	 Coil, open circuit. Component corrective modification. Improve manufacturing process control.
LMEC-Memo-69-7, Vol I 1-415		 Level Alarm/Power Supply Capacitor Control and Instrumen- tation/Intermediate 	 HNPF Secondary/No.3 expansion tank level alarm A. Monthly operating report No.13 	MI 127		MI 530	~4450	1	 Faulty capacitor. Part replaced. Upgrade quality requirements in procurement specifications.
		= INCIDENT	MI = MINOR MALFUNCTION						

M = MNOR MALMA = MAJOR MALFUNCTION P = PROBLEM

	COMPONENT ANNUNCIATORS - ALARMS									
	COMPONENT SUBTYPE ALARM (SODIUM LEVEL)	- ,	0	20	20	40	50			 0 10
PLANT TYPE	Nuclear Power Reactor		0	20	30	40	50 (50 7	20 8	0 10
SYSTEM	Instrumentation and Control									
COMPONENT PART	Coil Power Supply Capacitor									
CAUSE	Environmental									
MODE	Electrical									
EFFECT	Labor and material loss only									

TABLE _1-131

FAILURE DISTRIBUTION FUNCTIONS

Т

- -

TABLE ______

- - - - -

GENERAL SUMMARY

··· -

	COMPONENT <u>ANNUNCIATORS - ALARMS</u> FAILURES (%) 0	10) 2	20	30	40	50	60	70	80	90	100
\square	Environmental		la la	-							-	
ш										1		
CAUSE												
^o												
		<u> </u>		1		<u>_</u>					<u> </u>	_
	Electrical		1	+				-	•		-	
MODE												
M				}								
				<u> </u>								
	Labor and material loss only			+-								
EFFECT					ľ	i						
EFF												ł
L				1								
	TOTAL FAILURES PER TYPE 0	1		2	3	4		6	7		9	10
	Alarm (sodium level)						1					
		1		1								
				1			1					
				1							ł	
	· · · · · · · · · · · · · · · · · · ·											
	OPERATING HOURS (THOUSANDS) 0	1		2			 5	 6	 7	 8	 9] 10
	Alarm (sodium level)	= †	C)	<u> </u>	-i-		- f-	-i	<u> </u>	Ť	_	ΞĨ
									- [- [1	
ТҮРЕ												
≿		ł										
		ļ						1				
	FAILURE RATE (FAILURES/10 ⁶ hr) 0	10	0 2	200	300	400	500	600	700	800	900	1000
	Alarm (sodium level)	┝╍╇		+								
	······································				{ }							
	· · · · · · · · · · · · · · · · · · ·											
1									$\left\{ \right\}$			
				1				ΗL				

3. Compressors

Failure data for compressors are presented in Tables 1-133 through 1-135.

a. Reliability Information

Design Features:

Auxiliary machinery, providing compressed air for the operation of control instrumentation and associated devices used in reactor installations.

Critical Characteristics:

Environmental conditions (grit, dirt, moisture), seals and gaskets, torquing requirements in flanges, and bearing alignment.

Mode of Failure:

- 1) Plugging of lines, jamming of valves, etc.
- 2) Rupture of seals, gaskets, diaphragms
- 3) Degradation of performance below acceptable limit.

Failure Description:

- 1) Air leakage, intermittent operation, sticking valves, etc., caused by grit, dirt, moisture.
- 2) Blowout of head gasket, rod packing wearout, etc., due to inadequate maintenance or extreme operating condition.
- 3) Shaft seals worn, packing worn, etc., reason unknown.

Control Methods:

- 1) Ascertain that component has adequate capacity.
- 2) Review design provisions to cope with environmental conditions.
- 3) Review, and if necessary revise, preventive maintenance provisions.
- 4) Review preventive maintenance schedule.

b. Discussion and Recommendations

The compressor failures fall essentially into one of two categories: (1) failures due to lack of preventive maintenance (hence, insufficient or poorly scheduled

preventive maintenance) and (2) failures due to inadequacy of design or installation provision (e.g, lack of air intake filter, allowing the admission of dirt, grit, dust, etc.) which causes an important part of the compressor to become inoperative.

It is therefore recommended that:

- The design selection of the compressors needs to be based on a capacity which provides a generous margin of safety below its rated capability so that it never has to operate near its marginal characteristics.
- 2) The design selection of the compressors needs to take into consideration the fact that the operation of these compressors will be frequently under outdoor environmental conditions or at least under generally unfavorable environmental conditions such as blowing sand and dust, contaminated air etc., leading to an accumulation of grit, dirt, and moisture in the sensitive parts of the machinery, unless appropriate measures prevent such an accumulation.
- 3) Maintainability procedures need to be developed which take into consideration the unfavorable environmental conditions as well as the normal wear and tear. Replacement schedule for typical wear-out parts such as gaskets, diaphragms, seals, packings, bearings, etc., should be established realistically, and should take the typical outage schedules of the power generating station into account in order to reduce any unscheduled down-time to an absolute minimum.
- 4) Operating cycles and down-time periods need to be carefully recorded and provisions need to be planned by Quality and Reliability Assurance to have satisfactory data documented for each of the air compressors installed as part of a nuclear power generating facility.

TABLE 1-133

FAILURE DATA FOR <u>COMPRESSORS</u> (Sheet 1 of 7)

ſ		 COMPONENT/ SYSTEM/SUB 		1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	TEM	3. CODE: (Component) (System/Sub		3. OPERATING CONDITIONS 4. SOURCE DOCUMENT		MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Compressor/G Instrument Air 25 540000 	Supply	 SCTI Valve plate gaskets on compressor A-la 122 scfm, 135 psig Incident report No. 35 (8-28-65) 	MI 326	MI 53	MI 550	5300	Direct observation	 Improper torque of valve plate studs allowing air leakage. Bolts retorqued. Review training requirements of personnel for torquing flange connections. Review maintenance procedure for torque requirement.
LMEC-M		 Compressor/C Water Flow Instrument Air 25 540000 	-	 SCTI Cooling water to compressor A-la 122 scfm, 135 psig Incident report No. 55 (10-14-65) 		MI 52	MI 580	6258	Operational monitors	 Hose connect to bib that was on cooling water supply line. Water used reduced cooling water flow. Compressor shut down when outlet cooling water temperature rose. Auxiliary air compressor turned on. Effect of maintenance operation should be considered in design. Systems used for maintenance should be isolated from operations systems.
LMEC-Memo-69-7, Vol I		 Compressor/F Regulator Instrument Air 25 540000 	Supply	 SCTI Cooling water to compressor A-la 122 scfm, 135 psig Incident report No. 56 (10-16-65) 	MI 273	MI 55	MI 580	6300	Operational monitors	 Pressure regulator bound, clogged with grit and head bolts allowing air leakage. Pressure regulator disassembled and cleaned. Bolts retorqued evenly. Revise maintenance procedure by adding torque requirement and cleaning of intake air filter.
I		 Compressor/V Instrument Air 25 520000 	Supply	 SCTI Valve plate gasket leak compressor A-la 122 scfm, 135 psig Incident report No. 72 (11-25-65) 		MI 53	MI 550	7240	Direct observation	 Air leakage at upper valve plate gasket. Retorqued head bolts. Maintenance personnel shall be trained in proper torquing procedure of flanged connections. Proper maintenance procedure should be used.
		 Compressor/V Instrument Ain 25 520000 	r Supply	1. SCTI 2. Intake air valve 3. 160 scfm, 130 psig 4. Incident report No.119 (4-26-66)	MI 500	MI 55	MI 550	2400	Direct observation	 Intake valve sticking intermittently. Valves inspected, no cause for sticking found. Grit or wear not in evidence. None.
		 Compressor/U Valve Miscellaneous ment/Instrume Supply 25 540000 	Equip-	 SCTI Instrument air compressor A-1 Ambient, 122 scfm, 135 psig Incident report No. 75 		MI 51	MI 530	7430	Operational monitors	 Dirt and moisture clogged valve. Removed, cleaned, reassembled valve. Add a drip leg to trap moisture and dirt.
Ļ		= INCIDENT		MI = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-420

TABLE ________

FAILURE DATA FOR <u>COMPRESSORS</u> (Sheet 2 of 7)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*		OPERATING		1. FAILURE DESCRIPTION				
ITEN	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
7	 Compressor/Valve Plate Gasket Miscellaneous Equip- ment/Instrument Air Supply 25 540000 	1. SCTI 2. Instrument air compressor A-1 3. 122 cfm, 135 psig 4. Incident report No.25	MI 136	MI 59	MI 530	4947	Direct observation	 The replacement gasket failed. This gasket had been handmade and its workmanship was poor. Part replaced. Provide a quality assurance requirement for replace- ment items and maintenance work. 				
8	 Compressor/Head Gasket Miscellaneous Equip- ment/Instrument Air Supply 25 540000 	l. SCTI 2. Instrument air compressor A-1 3 4. Incident report No.27	MI 320	MI 53	MI 530	4960	Direct observation	 Head gasket blew due to faulty bolt torquing. Part replaced. Upgrade the maintenance procedure to specify a bolt torquing sequence and torque requirements. 				
9	 Compressor/Head Gasket Miscellaneous Equip- ment/Instrument Air Supply 25 540000 	1. SCTI 2. Instrument air compressor A-1 3. 132 cfm, 135 psig 4. Incident report No.47	MI 137	MI 59	MI 530	5714	Direct observation	 Head gasket blew. Part replaced. Upgrade maintenance procedure to specify a bolt torquing sequence and torque requirements. 				
10	 Compressor/Unloading Valve Miscellaneous Equip- ment/Instrument Air Supply 25 540000 	 SCTI Instrument air compressor A-1 122 scfm, 135 psig Incident report No.69 	MI 273	MI 51	MI 530	7170	Direct observation	 Dirt or grit in instrument air system caused valve to stic Remove and clean valve, reassemble. Revise preventive maintenance procedure by adding a requirement to clean intake air filter in order to prevent recurrence. 				
11	ment/Instrument Air	1. SCTI 2. Instrument air system A-1 3. 122 cfm, 135 psig 4. Incident report No.71	MI 273	MI 51	MI 530	7235	Direct observation	 Dirt and/or moisture caused valve to stick. Remove and clean valve, reassemble. Revise preventive maintenance procedure by adding a requirement to clean intake air filter in order to prevent recurrence. 				
12	 Compressor Air/ Head Gasket Misc. Equipment/ Instrument Air Supply 25/540000 	 SCTI Instrument air system A-1 122 cfm, 135 psig Incident report No.71 	MI 322	MI 53	MI 530	7240	Direct observation	 Insufficient and uneven torque on head bolts caused air leak. Gasket replaced. Upgrade maintenance procedure to specify a bolt torquing sequence and torque requirements. 				

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _________

FAILURE DATA FOR <u>COMPRESSORS</u> (Sheet 3 of 7)

ſ	_	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	TEM	 3. CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT		MÒDE	1	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
				I 110	I 59	I 520	8438	Operational monitors	 Broken discharge valve guide. Local repair, repaired cylinder wall by metalizing and honing. Before installation of used equipment, a thorough quality control inspection should be required.
LMEC-Me		Piston Key 2. Miscellaneous Equip-	 SCTI Instrument air system A-1 122 cfm, 135 psig Incident report No. 92 	I 148	I 62	I 126	8438		 Piston key retaining pin hole became elongated, permitting the key to contact the cylinder wall. Vendor repair of component/part. Before installation of used equipment, a thorough quality control inspection is recommended.
LMEC-Memo-69-7, Vol I		ment/Instrument Air	1. SCTI 2. Instrument air system A-1 3. 122 cfm, 135 psig 4. Incident report No.57	MI 200	MI 55	MI 116	6350	Direct observation	 Dirt and/or moisture caused valve to stick. Local repair, valve removed and cleaned. Add intake air filter and/or revise maintenance schedule by adding requirement to clean filter frequently.
Г		 Compressor Air/Valve Miscellaneous Equip- ment/Instrument Air Supply 25 540000 	 SCTI Instrument air system A-1 122 cfm, 135 psig Incident report No. 58 	MI 200	MI 55	MI 112	6375	Direct observation	 Dirt and/or moisture caused valve to stick. Local maintenance, valve was later replaced. Add intake air filter and/or revise maintenance schedule by adding requirement to clean filter frequently.
	17	 Compressor/Head Gaskets Miscellaneous Equip- ment/Instrument Air Supply 25 540000 	 SCTI Instrument air system A-1 122 cfm, 135 psig Incident report No.4 	MI 111	MI 51	MI 580	-	Direct observation	 Inadequate cooling water resulted in overheated compressor causing subsequent air leaks in head gaskets. Part replaced. Modify system to provide cooling water with adequate head pressure (SCTI and LMEC-executed).
	18	 Compressor Air/ Unloader Plungers Misc. Equipment/ Instrument Air Supply 25 540000 	 SCTI Instrument air system A-lb 160 acfm, 138 psig Incident report No. 120 MI = MINOR MALFUNCTION 	MI 110	MI 55	MI 530	2475	Direct observation	 Unloader plungers bound against valve seats. Local repair, modified by adding teflon sleeve around valve stem. Improved quality control could eliminate this malfunction.

TABLE 1-133

FAILURE DATA FOR <u>COMPRESSORS</u> (Sheet 4 of 7)

2. Miscellaneous Equip-	 COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT SOURCE DOCUMENT Instrument air system A-lb Incident report No. 117 	CAUSE MI 310	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
Jacket 2. Miscellaneous Equip- ment/Instrument Air Supply 3. 25	2. Instrument air system A-lb 3			[
			51	MI 580	1805	Routine area watch	 Overheating due to maintenance shutting off raw water supply. None. Install audible temperature alarm on compressor cylinder.
2. Misc. Power Equipment /Instrument Cooling Air	2. No.1 on instrument thimble 3. Ambient temperature	MI 500	MI BZ	MI 530	2190	Audible noise	1. Noisy bearing. 2. Part replaced. 3. None.
Bearing 2. Misc. Power Equipment	2. Primary/instrument thimble 3. No information available	MI 500	MI 52	MI 550	1000	Unknown	1. None. 2. Unknown. 3. None.
Impeller 2. Fuel Handling Machine	2. FUM/permanent argon system 3. 10 hp, 440 v, 150 cfm	MI 100	MI 73	MI 550		Audible noise	 Casting which forms the hub of impeller cracked. Part ordered. Upgrade the quality assurance and acceptance procedure for this purchased item.
2. Misc. Power Equipment /InstrumentAirSystem	2. Preheat air system (ASA) 3. 1750 rpm, 75 hp	MI 125	MI 86	MI 530	3140	Routine area watch	 Noise came from bearing housing, moisture and rust present. New bearings installed utilizing neoprene shield. Upgrade preventive maintenance inspection procedure to detect problem prior to an outage.
Bearings 2. Reactor Equipment/	2. Air preheat compressor A-5a 3. 75 hp, 1175 rpm, 400 to 550°F	MI 126	MI 52	MI 110	2618	Direct observation	 Noisy motor bearings. Old parts were reused. Bearings are still noisy. Maintain an adequate supply of spare parts. Review logistic specifications.
	 Misc. Power Equipment /Instrument Cooling Air 25 540000 Turbocompressor / Bearing Misc. Power Equipment /Instrument Cooling Air 25 540000 Turbocompressor / Impeller Fuel Handling Machine / Cooling System 25 235140 Compressor /Bearing Misc. Power Equipment /Instrument Air System 25 540000 Compressor /Motor Bearings Reactor Equipment / Preheating System Gas 25 214330 	 Misc. Power Equipment 2. No. 1 on instrument thimble /Instrument Cooling Air 3. Ambient temperature 25 S40000 Turbocompressor/ Misc. Power Equipment 3. No information available /Instrument Cooling Air 25 S40000 Turbocompressor/ EBR-II Primary/instrument thimble No information available Instrument Cooling Air ANL-6764, 7/63 EBR-II EBR-II EBR-II EBR-II EBR-II Fuel Handling Machine /3. 10 hp, 440 v, 150 cfm Cooling System 25 235140 Compressor/Bearing SCTI Misc. Power Equipment 2. Preheat air system (ASA) /Instrument Air System 1. SCTI Misc. Power Equipment 2. Preheat air system (ASA) Incident report No. 341 S40000 Compressor/Motor Bearings Reactor Equipment/ SCTI Air preheat compressor A-5a Reactor Equipment/ SCTI Air preheat compressor A-5a Reactor Equipment/ T5 hp, 1175 rpm, 400 to 550°F Preheating System Gas Incident report No. 15 S14330 	Misc. Power Equipment2. No. 1 on instrument thimble500/Instrument Cooling Air3. Ambient temperature500254. PMMR-33S400001. EBR-IIMIBearing2. Primary/instrument thimble500Misc. Power Equipment3. No information availableMI/Instrument Cooling Air4. ANL-6764, 7/63500. Turbocompressor/1. EBR-IIMI255400001. EBR-IIMI. Turbocompressor/1. EBR-IIMI. Turbocompressor/1. EBR-IIMI. Fuel Handling Machine /3. 10 hp, 440 v, 150 cfm100Cooling System4. ANL-6764, 7/63100. Z52351401. SCTIMI. Compressor/Bearing1. SCTIMI. Misc. Power Equipment2. Preheat air system (ASA)125. JinstrumentAir System3. 1750 rpm, 75 hp. 252. Air preheat compressor A-5a. Reactor Equipment/3. 75 hp, 1175 rpm, 400 to 550°F. Preheating System Gas4. Incident report No. 15. 25214330	Misc. Power Equipment 2.No. 1 on instrument thimble (Instrument Cooling Air 3. Ambient temperature 4.500BZ25 5400004.PMMR-33MIMIBearing (Instrument Cooling Air 4. (Instrument Cooling Air 4. ANL-6764, 7/63MIMIMI5005252S40000S2S25400001.EBR-II 2.Primary/instrument thimble (Instrument Cooling Air 4. ANL-6764, 7/63MIMI73Turbocompressor/ 2.51.EBR-II 2.MIMI10073Fuel Handling Machine /3.10 hp, 440 v, 150 cfm 4. ANL-6764, 7/63MIMI25 2351401.SCTI 4.MIMI25 2351401.SCTI 4.MI1256 (Instrument Air System 3.1750 rpm, 75 hp 4. 1.MIMI25 2400001.SCTI 2.MIMI25 2400001.SCTI 2.MIMI25 243303.75 hp, 1175 rpm, 400 to 550°F12625 2143302.SCTI 2.Air preheat compressor A-5a 3.Sc25 2143304.Incident report No. 15Sc	Misc. Power Equipment 2.No. 1 on instrument thimble /Instrument Cooling Air 3.Solution Ambient temperatureSolution Ambient temperature254.PMMR-335400001.EBR-II 2.Primary/instrument thimbleMIBearing2.Primary/instrument thimbleMIMisc. Power Equipment3.No information available50052/Instrument Cooling Air 2.ANL-6764, 7/63MIMI255400001.EBR-II 2.MIMITurbocompressor/ 251.EBR-II 2.MIMI1.EBR-II 2.FUM/permanent argon systemMI1001.Fuel Handling Machine /3.10 hp, 440 v, 150 cfm7355020012.FUM/permanent argon system10073550252351401.SCTIMI12586530.Compressor/Bearing 2.1.SCTIMI12586530.Misc. Power Equipment/ 2.Preheat air system (ASA) 4.MI12586530.Compressor/Motor 1.SCTISCTIMI12652110.Compressor/Motor 2.Air preheat compressor A-5aMI12652110.25214330.1.11052110	Misc. Power Equipment2. No. 1 on instrument thimble /Instrument Cooling Air3. Ambient temperature500BZ530254. PMMR-334. PMMR-331000. Turbocompressor/ Misc. Power Equipment3. No information available /Instrument Cooling Air 4. ANL-6764, 7/63MIMI50052550. Turbocompressor/ (Instrument Cooling Air 2. 5400001. EBR-II 2. FUM/permanent argon systemMIMI5501000. Turbocompressor/ (Logo System) 2. Fuel Handling Machine/ (Jost Fuel Handling Machine/ 2. FUM/permanent argon system) 4. ANL-6764, 7/63MIMIMIDuring shakedowr. Compressor/Bearing 2. S 2351401. SCTI 2. Preheat air system (ASA) /Instrument Air System 3. 1750 rpm, 75 hp 4. Incident report No. 341MIMIMI3140. Compressor/Motor Bearings 2. 25 2143301. SCTI 2. Air preheat compressor A-5a 3. 75 hp, 1175 rpm, 400 to 550°FMIMIMIMI. 25 2143301. Incident report No. 151.26521102618	Mis. Power Equipment2.No. 1 on instrument thimble /Instrument Cooling Air 3. A mbient temperature500BZ530.25 S400004. PMMR-33. Turbocompressor/ Instrument Cooling Air /Instrument Cooling Air 2. Primary/instrument thimble /Instrument Cooling Air 4. ANL-6764, 7/63MIMIMI. Turbocompressor/ Integer (Instrument Cooling Air 2. Primary/instrument argon system Cooling System . Fuel Handling Machine /3. 10 hp, 440 v, 150 cfm Cooling System . 25 235140MIMIMI. Compressor/Bearing . 25 S400001. SCTIMIMIMI. Compressor/Bearing . 25 S400001. SCTIMIMI. Compressor/Meter . 25 S400001. SCTIMIMI. Compressor/Meter . 25 S400001. SCTIMIMI. Compressor/Meter . Strip reheat are system (ASA) . Incident report No. 341MIMI3140. Compressor/Motor . Bearings . 24 . State1. SCTIMIMI. Compressor/Motor . Bearings . 24 . Annue Air System Gas . Air preheat compressor A-5a . Reactor Equipment/ . 75 hp, 1175 rpm, 400 to 550°F . 25 . 214330MIMIMIMIMIMI1002618Direct observation

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE	1-133

FAILURE DATA FOR COMPRESSORS

(Sheet	5 of	7)
--------	------	----

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION				
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS				
	 Compressor/Exhaust Valves Reactor Equipment/ Reactor Shielding Cooling 25 213000 	 HNPF LFS nitrogen system No.1 235 psig nitrogen, 150°F max.temp. Monthly operating report No.3 	MI 328	MI 51	MI 530	1605		 Slag from welding of snubbers into system found in exhaust valve. Valves (4) removed and fingers reversed. Revise welding procedures. 				
	Packing 2. Beactor Equipment/	 HNPF LFS nitrogen system No.2 235 psig nitrogen, 150°F max.temp. Monthly Operating Report No.15 	MI 136	MI 52	MI 530	4560	Direct observation	 Rod packing worn out allowing excessive nitrogen leakage. Part was repacked. Preventive maintenance. 				
		 HNPF LFS nitrogen system No.2 235 psig nitrogen, 150°F max.temp. Monthly operating report No.18 	MI 326	MI 52	MI 530	4560	Direct observation	 Seals worn out, excessive leakage at stuffing box. Local repair. Preventive maintenance. 				
	 Compressor/Packing Reactor Equipment/ Reactor Shielding Cooling 25 213000 	 HNPF LFS nitrogen system No.1 235 psig nitrogen, 150°F max.temp. Monthly operating report No.4 	MI 126	MI 52	MI 530	2500	Direct observation	 Packing worn out. Part replaced. Preventive maintenance. 				
		 HNPF LFS nitrogen system No. l 235 psig nitrogen, 150°F max.temp. Monthly operating report No. l2 	MI 136	MI 52	MI 550	4450	Direct observation	 Shaft seals worn out, leaking. Part replaced. Preventive maintenance. 				
	Reactor Shielding	1. HNPF 2. LFS nitrogen system No. l 3. 235 psig nitrogen, 150°F max.temp 4. Monthly operating report No. 15	MI 126	МІ 59	MI 530	4560	Direct observation	 Diaphragm broken. Part replaced. Preventive maintenance. 				

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-133</u>

FAILURE DATA FOR <u>COMPRESSORS</u> (Sheet 6 of 7)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	3. OPERATING CONDITIONS		FAILURE INDEX CODE*			ATING METHOD OF FAILURE	1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)			MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	Reactor Shielding	1. HNPF 2. LFS nitrogen system No.1 3. 235 psig nitrogen, 150°F max.temp. 4. Monthly operating report No.21	MI 126	MI 52	MI 530	8320	Direct observation	 Shaft seals worn, excessive nitrogen leaking. Part replaced. Preventive maintenance.
	Reactor Shielding	 HNPF LFS nitrogen system No.2 235 psig nitrogen, 150°F max.temp. Monthly operating report No.20 	MI 126	MI 52	MI 530	7250	Direct observation	 Seals worn out. Part replaced. Preventive maintenance.
	Reactor Shielding	 HNPF LFS nitrogen system No.2 235 psig nitrogen, 150°F max.temp. Monthly operating report No.25 	MI 126	MI 52	MI 530	9420	Direct observation	 Seals worn out. Part replaced. Preventive maintenance.
34	Reactor Shielding Cooling	 HNPF Loading face shield/nitrogen cooling system No. 1 compressor 235 psig Monthly operating report No. 24 	MI 500	MI 52	MI 530	8700	Direct observation	 Shaft seals worn out, leaking. Part replaced. Preventive maintenance.
35	2. Reactor Equipment/ Reactor Shielding Cooling	 HNPF Loading face shield/nitrogen cooling system No. 1 compressor 235 psig Monthly operating report No. 15 	MI 500	MI 67	MI 530		During routine inspection	 Recompressor casting porous and leaking. Part replaced. Preventive maintenance.
36	Reactor Shielding Cooling	 HNPF Loading face shield/nitrogen cooling system No. 1 compressor 235 psig Monthly operating report No. 18 	MI 500	MI 52	MI 530	7100	Direct observation	 Valve plug worn out. Part replaced. Preventive maintenance.

M = MI = MIOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE _______

FAILURE DATA FOR <u>COMPRESSORS</u> (Sheet 7 of 7)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	3. OPERATING CONDITIONS		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION			
тем	3. CODE: (Component) (System/Subsystem)			MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS			
	Diaphragms 2. Reactor Equipment/ Reactor Shielding	 HNPF Loading face shield/nitrogen cooling system No.1 compressor 235 psig Monthly operating report No.21 	MI 124	MI 59	MI 530	8320	maintenance	 Diaphragms ruptured. Part replaced. Preventive maintenance. 			
	2. Reactor Equipment/ Reactor Shielding	 HNPF Loading face shield/nitrogen cooling system No.1 compressor 235 psig Monthly operating report No.25 	MI 500	MI 52	MI 530	1100	Direct observation	 Diaphragms worn out. Part replaced. Preventive maintenance. 			
	Reactor Shielding Cooling	 HNPF Loading face shield/nitrogen cooling system No.2 compressor 235 psig Monthly operating report No.15 	MI 120	MI 59	MI 530	4560	Direct observation	 Flange stud broken. Part replaced. Insufficient data to evaluate this failure. Review torque requirement. 			
	Diaphragm 2. Reactor Equipment/ Reactor Shielding	 HNPF Loading face shield/nitrogen cooling system No.2 compressor 235 psig Monthly operating report No. 16 	MI 500	MI 59	MI 530	5180	Direct observation	 Diaphragm ruptured. Part replaced. Preventive maintenance. 			
	Diaphragms 2. Reactor Equipment/ Reactor Shielding	 HNPE Loading face shield/nitrogen cooling system No.2 compressor 235 psig Monthly operating report No.21 	MI 124	MI 61	MI 530	3140	During preventive maintenance	 Each diaphragm had a small crack. Parts replaced. Preventive maintenance. 			

.

TABLE <u>1-134</u>

FAILURE DISTRIBUTION FUNCTIONS

	COMPONENT COMPRESSORS		-									
	COMPONENT SUBTYPECOMPRESSORS							•				
		FAILURES (%)	- 0 10	2	0 3	0 4	0 5	0 6	07	0 8	09	0 10
	Nuclear Power Reactor						ļ i	<u> </u>				[
PLANT TYPE	Nuclear Test Reactor		┟]]		1
Ι <u>ζ</u> Ε	Component Test Facility	······										
۵.			1									
	Reactor Containment										[
	Inert Gas Supply		┝━━┿							1		
Σ	Instrument Air Supply		┝━━┿									
E	Reactor Equipment]									
SYSTEM	Fuel Handling Machine		j									
S	Auxiliary Heating	ana										
	Miscellaneous Equipment											
	······································		1			ŀ						
	Head Gasket				<u> </u>							
	Unloading Valve											
-	Valve Plate	· · · ·				{				ł		
AR	Diaphragm]									
COMPONENT PART	Valve											
EN	Cooling Jacket						1	ļ				
NO.	Bearing											
MP	Motor Bearing											
00	Impeller							1				
	Seals		┝╾╾┽				[[[[
	Packing											
	Other											
	Environmental											
ш	Impurity/contamination											
CAUSE	Human error											
CA	Unknown		┢═╼╾┿			1	1					
	Mechanical						· · ·					ſ
ш	Metallurgical											
MODE	Unknown											
2							ļ	ļ	ļ		}	
	Plant availability loss		K									
EFFECT	Labor and material loss only		┢╼╼╍┿									
	Acceptable incipient damage											
μ	System/component inoperative											
	No effect											1

TABLE 1-135

٦

.

GENERAL SUMMARY

	COMPONENT <u>COMPRESSORS</u> FAILURES (%) (n	10	20	30	4	n	50	60	70	8	0	90	100
	Environmental		Ť		Ť			Ť.	Ť	Ť		ř.	Ť	Ť
	Impurity/contamination													
ы	Human error		-											
CAUSE	Unknown	 		_										
^o	-	1												
	Mechanical						_		-					_
	Metallurgical	<u> </u>												
MODE	Unknown	_												
ž		1												
	Plant availability loss				T								Τ	
5	Labor and material loss only	<u> </u>			_		_	-	_					
EFFECT	Acceptable incipient damage	—												
Ш	System/component inoperative	<u> </u>	-											
	No effect	—	1											
	TOTAL FAILURES PER TYPE	Ò	10	20	30) [.] 4	0	50	60	70	8	0	90	100
	Compressors													
							ļ							
		4												
														1
		4												
		4												
		-												
		-												
		1										<u> </u>		
	OPERATING HOURS (THOUSANDS)	0 T	100	200) 30	0 40	00 T	500	600	700) 8	00 T	900	1000
	Compressors													
		-												
ш		{												
ТҮРЕ		-												
		1												
		1							-					
		1												
	·····	1												
	FAILURE RATE (FAILURES/10 ⁶ hr)	۰ ۱	100			0 40		- L	(00	70/	<u> </u>	1 2.0		1000
			100			1		1	100	11			900	
	Compressors	Π												
	······································													
		1												
		1								1				
		1												
		1												
		$1 \mid$												

4. Control and Safety Elements

Failure data for control and safety elements are presented in Tables 1-136 through 1-138.

a. Reliability Information

Design Features:

Control and safety mechanisms for controlling reactor devices are designed to be fail-safe.

Critical Characteristics:

Most control rods are long and narrow and their travel is linear over a long distance through close, if not tight, clearances. The majority of control rod mechanisms or assemblies provide the sealing functions with regard to the reactor shield and reactor cover gas.

Mode of Failure:

- 1) Seal failed
- 2) Deformation
- 3) Part failed.

Failure Description:

- 1) Bellows seal failed allowing sodium and cover gas leakage.
- 2) A guide tube deformed during steam cleaning from a sodium and water reaction.
- 3) The purge tube and valve became worn at the sealing point with another component.

Control Methods:

- 1) The sodium should be removed from parts by mechanical or safe chemical methods before the parts are steam cleaned.
- 2) Procedures for installation and maintenance are necessary.

b. Discussion and Recommendations

Three events were reviewed on safety and control rods. Each of the events was independent and of a different nature.

One event involved the bellows that is used to seal the linear stroke of the control rod. The bellows was a thin dish-welded nesting type. Failures of this type of bellows are generally due to over-stressing, fatigue, or erosion of the thin material. Bellows over-stressing is due either to a design error which makes the bellows travel too far and exceeds the elastic limits of the material or to stray material which clogs the convolutions making the bellows work in an uneven manner over its effective length.

The second event studied was damage to a control rod guide tube during steam cleaning operations in which water reacted with the sodium. This type of event can be avoided by removing all possible sodium from the items to be cleaned. This should be accomplished by some mechanical means rather than permitting the residue sodium to react with water during steam cleaning.

The third event documented was the wearing of a purge tube and a back flow valve. The early wear-out was probably due to a misfit of parts, a poor adjustment, or lack of lubrication.

Incipient failures in bellows are nearly impossible to detect. The event leading to the sodium-steam reaction which damaged the guide tube was a human error. Generally, the wear or rubbing of parts can be detected in changes in drive power feed, and in the type of event studied might show up as a change in gas purge rate.

TABLE ______ FAILURE DATA FOR <u>CONTROL</u> AND SAFETY ELEMENTS

	1. COMPONENT, 2. SYSTEM/SUE		1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEN	3. CODE: (Component) (System/Sul		3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1	 Control and S Element/Bell Reactor Equip Control and S Element 08 212100 	ows pment/	 Fermi Safety rod No. 4 Reactor environment, 800°F discharge PRDC EF-1, EF-2, EFAPP No. 45 	MI 500	MI 90	MI 550	2190	Direct observation	 Lower bellows had failed. Part replaced. None.
2	 Control and S Element/Low Tube Reactor Equin Control and S Element 08 212100 	er Guide pment/	 Fermi Safety rod No.5 Reactor environment EFAPP No.39 	MI 315	MI 54	MI 550	5643	Direct observation	 During steam cleaning of the guide tube, a sodium reaction occurred inside the tube. The inner tube was found to be distorted in the center at the point of the reaction. Part replaced. Remove the major portion of sodium from the inner area of the tube by oil bath or by chemically reacting sodium prior to steam cleaning.
3	 Control Rod/ Purge Tube a Reactor Equi Control and S Element 08 212100 	nd Valve pment/	 HNPF Reactor core/control rod No.10 350 to 945°F Monthly operating report No.24 	MI 142	MI 56	MI 550	8700	Direct observation	 Helium purge tube and valve worn out. Part replaced. None.
	I = INCIDENT		VI = MINOR MALFUNCTION						

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-137</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT CONTROL AND SAFETY ELEMENTS

COMPONENT SUBTYPE SAFETY ROD

	FAILURES (%)	01	0 2	03	04	0 5	06	07	08	09	0 100
PLANT TYPE	Nuclear Power Reactor										
SYSTEM	Reactivity Control and Safety Shutdown										
COMPONENT PART	Bellows Lower Guide Tube Purge Tube and Valve										
CAUSE	Environmental Human error Unknown										
MODE	Chemical Mechanical										
EFFECT	System/component inoperative										

TABLE _____

GENERAL SUMMARY

	COMPONENT <u>CONTROL AND SAFETY ELEM</u> ENTS FAILURES (%) 0]	L0	20	30	40	50	60	70	80	90	100
	Environmental		i p			•	T			Ī		
	Human error				_							
SE	Unknown		-		_	•						
CAUSE												
	Chemical							T			T	-
	Mechanical											
MODE	Mechanical											
Σ												
	······································											
H					<u> </u>		<u> </u>				<u> </u>	
<u>ب</u>	System/component inoperative		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
EFFECT												
倠									i i			
ш			1						1			
						I						
,	TOTAL FAILURES PER TYPE 0		1	2	3	4	5	6	7	8	- 9	10
	Safety rod)	+	-							ļ	[
								ļ				
			ļ									
								Ì				
$\left\{ \right\}$									ļ			{
									1			
	OPERATING HOURS (THOUSANDS) 0		5	10	15	20	25	30	35	40	45	50
	Safety rod						-			T		
					{							
i i												
ТҮРЕ												
≿								1				
	· · · · · · · · · · · · · · · · · · ·											
			1				Ì					
	· · · · · · · · · · · · · · · · · · ·											
	FAILURE RATE (FAILURES/10 ⁶ hr) 0		25	50	75	100	125	150	175	200	225	
				1	É		11		175			τĩ
ŀ	Safety rod		Π		Π		TT			11		
}		1										
		ł										
}												

LMEC-Memo-69-7, Vol I 1-433

.

5. Controllers

Failure data for controllers are presented in Tables 1-39 through 1-143.

- a. Electrical and Electronic Controllers
- (1) Reliability Information

Design Feature:

Performs measurement, comparison, and/or correction to hold the output of a given process to some desired value.

Critical Characteristics:

- 1) Minimal and predictable delay time
- 2) Predictable behavior throughout a wide range of environmental conditions
- 3) Capability to compensate for the effects of unwanted disturbances.

Mode of Failure:

- 1) Amplifier failure
- 2) Power supply failure
- 3) Mechanical damage to wiper arm of hand-operated potentiometer
- 4) Loose connection
- 5) Relay failure
- 6) Pressure switch malfunction
- 7) Flowmeter malfunction caused by bubbles in sodium.

Failure Description:

- 1) Anomalous failure of amplifier detected when demand temperature increased without adjustment.
- 2) Reactor scram occurred when wiper on hand-operated flux control potentiometer was broken.
- 3) Poor electrical connection apparently caused by vibration.

- 4) Pressure switch caused to malfunction by vibration.
- 5) Bubbles entrained in liquid sodium flowmeter resulted in low flow indication and reactor trip.

Control Methods:

- Investigate environmental and operational conditions to which amplifier is exposed, in order to determine whether amplifier design specifications are respected and the extent of the vendor's responsibility.
- 2) Implement protective device, such as mechanical limit stops, to assure that potentiometers shall not be damaged by manual abuse.
- 3) Include discussions in operator training curriculum to consider possible effects of abusing potentiometers.
- 4) Implement preventive maintenance and inspection procedures to minimize potential failures caused by vibration.
- 5) Establish design requirements to include the installation of vibration isolating devices in order to protect vibration-sensitive components in environments having the possibility of a vibration hazard.
- 6) Provide for constraints in the selection of components, in the form of an environmental checklist, so that bubbler type level sensors shall not be installed where there is a possibility of bubble entrainment in flowing sodium.

(2) Discussion and Recommendations

None.

- b. Mechanical Controllers
- (1) Reliability Information

Design Features:

Performs measurements, comparison, and/or correction to hold the output of a given process to some desired value.

Critical Characteristics:

- 1) Minimal and predictable delay time
- Predictable behavior throughout a wide range of environmental conditions
- 3) Capability to compensate for the effects of unwanted disturbances.

Mode of Failure:

- 1) Sticking of feedwater level controller
- 2) Anomalous lifting of safety release valve
- 3) Turbine governor spring broken.

Failure Description:

- 1) Safety relief value lifted at pressure well below proper set point due to vibration during changes in plant conditions.
- 2) Improper assembly and/or fatigue caused turbine governor spring to break.

Control Methods:

- 1) Implement preventive maintenance procedures to include examination of feedwater level controller for evidence of corrosion, mechanical damage, and fatigue.
- 2) Implement preventive maintenance procedures to include examination of steam system safety release valve for evidence of corrosion, erosion, and mechanical damage.
- 3) Implement acceptance test procedure to include verification of steam system safety release valve operation under full spectrum of possible environmental conditions.

(2) Discussion and Recommendations

None.

TABLE 1-139

FAILURE DATA FOR <u>CONTROLLERS</u> (Sheet 1 of 5)

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		Control/Reactor Plant Control	 HNPF Reactor control system/outlet temperature set (HCS-10) - 4. Monthly operating report No. 20 	MI 15Z	MI 27	MI 550	7754	Operational monitors	 Faulty amplifier replaced when demand temperature started to increase without adjustment. Part replaced. None.
LMEC-M		Control/Neutron Monitor System	 HNPF Reactor control system/neutron flux monitor - Monthly operating report No. 12 	MI 15Z	MI 47	MI 550	4450	Direct observation	l. Faulty amplifier. 2. Part replaced. 3. None.
LMEC-Memo-69-7, Vol 1-437		Control/Neutron Monitor System		MI 15Z	MI 47	MI 550	4450	Direct observation	 Faulty transistor in amplifier booster. Part replaced. None.
I		2. Instrumentation and Control/Neutron Monitor System	 HNPF Reactor control system/neutron flux monitor - Monthly operating report No. 12 		MI 47	MI 550	4450		 Faulty transistor. Part replaced. None.
		2. Instrumentation and	 HNPF Reactor safety/flow ratio computer - Monthly operating report No. 16 			MA 520	5180	Direct observation	 Faulty power supply in flow-to-flow computer rack C. Part replaced. None.
		Potentiometer 2. Instrumentation and Control/Reactor Plant				MA 520	4560		 Wiper broken on hand-operated flux control potentiom- eter causing scram. Part replaced. None.
l	* 1	= INCIDENT	AL = MINOR MALFUNCTION						

ſ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
	тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		Variacs 2. Instrumentation and		MI 500	MI 5Z	MI 530	11,320		l. Variacs replaced, no information as to why. 2. Part replaced. 3. None.
LMEC-Memo-69-7, Vol 1-438		Controller 2. Instrumentation and Control/Intermediate	 SCTI Secondary sodium system/dynamatic coupling Model-ACMV-990, 1135 rpm, 220 vdc Incident report No. 89 and No. 91 	MI 157		MI 530	1283		 Apparent problem was a poor electrical connection. Local repair, a different source of incoming power to the speed control chassis was connected. Permanent repairs were made on 1-18-66. Improve electrical maintenance procedure.
0-69-7, Vol I 38		2. Instrumentation and	1. SCTI 2. Primary sodium system S-704 3. 1600 gpm, 103 psig air pressure 4. Incident report No.51	MI 141	MI 24	MI 119	745		 Pressure switch malfunction, due to vibration. Part replaced. Provide vibration protection to control instruments when selected location provides vibration exposure.
		Switch PS-703 2. Instrumentation and	1. SCTI 2. Pilot burners 3. 4. Incident report No. 16 and No. 17	MI 157	MI 24	MI 530	Unknown	<u> </u>	 Pilots tripped on two occasions in the same day. Component part replaced. Upgrade plant preventive maintenance inspections of pressure switches.
	11	 Controller/Switch Instrumentation and Control/Heat Transfer 65 262210 	1. SCTI 2. Secondary system (cold trap) 3. 4. Incident report No. 53	MI 327	MI 13	MI 550	115	During routine inspection	 Operator accidentally grounded electrical wiring on valve actuator switch during inspection. No repair; restarting of burners and primary pump. Improve training of operator personnel.
	12	 Controller/Relay Driver Boards Instrumentation and Control/Preheating System 65 261360 	1. EBR-II 2. Sodium trace heating, secondary 3. 4. Maintenance report, 4-18-68	MI 500	MI BZ	MI 530	14,150	Preventive maintenanœ	 Faulty transistors. Part replaced. None.
	<u> </u>		MI = MINOR MALEUNCTION	l	L	L	L		

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE 1-139

FAILURE DATA FOR CONTROLLERS (Sheet 2 of 5)

		1. COMPONENT/PART	1. FACILITY	FAI	LURE IN	DEX	,		
	ITEM	 SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	 COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	CODE*	· ۱	OPERATING HOURS	METHOD OF FAILURE DETECTION	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
	13	 Controller/Relay Instrumentation and Control/Intermediate Coolant Loop 65 262210 	 EBR-II Secondary EM pump circuit Maintenance report, 3-14-68 	MI 500	MI 52	MI 530	13,850	Operational monitors	 Relay not operational. Part replaced. None.
LMEC-Memo-69- 1-439	14	 Controller/Relay Instrumentation and Control/Neutron Monitor System 65 261110 	 HNPF Reactor control system/neutron flux monitor Monthly operating report No. 12 	MI 15Z	MI 47	MI 550	5,900	Operational monitors	l. Faulty relay. 2. Local repair. 3. None
lemo-69-7, Vol 1-439		 Controller/Cylinder No. 1 Control Solenoid Instrumentation and Control/Feedwater 65 268400 	1. EBR-II 2. Feedwater/startup boilder feed pump 3. 364°F, 1300 psig 4. PMMR-22	MI 500		MI 550	Unknown	Audio noise	 Solenoid shorted. Loss of No.1 cylinder caused pump to vibrate excessively. Part replaced. None.
11		2. Instrumentation and Control/Main Coolant Loop	 SCTI Primary sodium pump (P-5)/ sodium level indicator controller LIC-100 Incident report No. 109 	MI 144		MI 520	Unknown	Operational monitor	 Entrainment of gas bubbles in the sodium, detected by the magnetic flowmeter as low flow. Local repair, system redesign. Avoid bubbler type level controller in EM flowmeter loops.
		 Controller/High Level Override Alarm and Relay Instrumentation and Control/Main Coolant Loop 65 262110 	 Primary sodium pump (P-5)/ sodium level indicator controller LIC-100 	MA 158	MA 48	MA 520	Unknown	Operational monitors	 Sodium level lowered causing gas entrainment and plant trip. Local repair, relay readjusted, and primary sodium flow restored. Final correction by installation of a displacement type instead of bubbler. More stable level controller needed to maintain free- surface sodium level.
l		i							

TABLE <u>1-139</u>

FAILURE DATA FOR CONTROLLERS (Sheet 3 of 5)

TABLE	1-13	9

FAILURE DATA FOR CONTROLLERS (Sheet 4 of 5)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	 STATEM/SUBSTATEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT		MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
18	 Controller/Converter Tube Instrumentation and Control/Reactor Coolant 65 262110 	 EBR-II Primary pump/control system - Maintenance report ANL-7445, 4-18-66 	MA 500	MA 15	MA 520	14,100	Protective system	 Tube shorted. Part replaced. None.
19	 Controller/Wiring Instrumentation and Control/Reactor Coolant 65 262100 	 SCTI Temperature monitoring - - Incident report No. 28, 8-16-65 	MI 324	MI 16	MI 550	1475	Low-temperature indications; opera- tional monitors	 Faulty wiring caused fuses to blow in controller following previous maintenance. Wiring corrected; new fuses installed. Improve maintenance procedures on personnel training
20	 Controller/Relay Instrumentation and Control/Steam Generators 65 262311 	 SCTI Sodium heat transfer 120-volt, ac-coil actuated SCTI Incident report No. 78 	MA 344	MA 87	MA 520	4050	During actuation	 Relay caused steam generator inlet and outlet sodium valves to close. Relay was bypassed during cover gas pressurization test to avoid valve closure. The cover gas pressurization procedure was modified to include bypassing a relay.
21	 Controller/pH Instrumentation and Control/Cooling Water 65 269630 	 SCTI Cooling water acid and control Automatic Incident Report No. 95, 1-21-66 	MI 333	MI 31	MI 530	6729	Operational monitor	 Operator left acid feed pump switch in manual position instead of auto, causing low pH readings on pHr-300 meter. Proper amount of NaOH flakes added to cooling tower basin water. Closer operator vigilance and adequate training required
22	 Controller, Level/ Torque Tube Instrumentation and Control/Feedwater 65 268400 	 EBR-II Feedwater heater No. 4 Shell side - 480°F, 1250 psig Tube side - 565°F, 1500 psig PMMR-76 	MI 500	MI 55	MI 530	6300	Operational monitor	 Level controller stuck. Local repair. Upgrade preventive maintenance on level control.
*	= INCIDENT	MI = MINOR MALFUNCTION						

 \square

TABLE <u>1-139</u>

FAILURE DATA FOR <u>CONTROLLERS</u> (Sheet 5 of 5)

[COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	23	 Controller/(Pressure Setting) Instrumentation and Control/Steam, Con- densate and Feedwater Piping and Equipment 65 268100 	 SCTI Steam system, safety valve PSV-202V 1800 psig, 900°F, 2.6 x 10⁴ lb/hr Incident report No. 116 	I 144	I 51	I 520	Unknown	Direct observation	 Safety relief valve lifted at pressure well below proper setpoint during a change in plant conditions. Vendor repair of component. None.
LMEC-Memo-69-7, 1-441	24	 Controller/(Pressure Setting) Instrumentation and Control/Steam, Con- densate and Feedwater Piping and Equipment 65 268100 	 SCTI Steam system, safety valve PSV-208V 1800 psig, 900°F, 2.6 x 10⁴ lb/hr Incident report No.116 	I 144	I 62	I 520	Unknown	Direct observation	 Safety relief valve lifted at pressure well below proper setpoint during a change in plant conditions. Vendor repair of component. None.
9-7, Vol I	25	 Controller/Turbine Governor Instrumentation and Control/Condensate 65 268300 	 EBR-II Turbine-driven feed pump - PMMR-105 	MI 500	MI 59	MI 530	10,580	Operational monitors	 Spring broken. Part replaced. None.
	26	 Controller/Air Line Instrument Air Supply/ Piping 65 540000 	 SCTI Steam and feedwater system - Incident report No. 123 	MI 141	MI 59	MI 550	Unknown	During actuation	 A plastic air control line to the level controller split, allowing the level control valve to close. Local repair, plastic tubing replaced. Select proper material considering environmental conditions.
1			MI = MINOR MALEUNCTION	l	I		l		and the second second second second second second second second second second second second second second second

TABLE _1-140

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT CONTROLLERS

-

	COMPONENT SUBTYPEELECTRICAL/I		- 0 1	0 2	20	30 4	0 5	50 E	0 7	0 8	so 9	0 10	
	Nuclear Power Reactor		Ĭ	ř.	Ĭ	-	Ť	Ť	Ť	Ĭ	Ĩ	ŤŤ	
F ^M	Nuclear Test Reactor												
PLANT TYPE	Component Test Facility					-							
			1										
	Instrumentation and Control												
]										
Σ			1	ļ]		ļ				
SYSTEM			ł								[1	
<u>≻</u>			4										
		· · · · · · · · · · · · · · · · · · ·	4		•								
			ł										
╞━━┥			1	L			<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	
	Amplifier												
	Relay	· · · · · · · · · · · · · · · · · · ·			+	•				1			
RT	Switch												
COMPONENT PART	Transistor												
NT	Others												
N N													
MP							}						
8			1										
			1										
	· · · · · · · · · · · · · · · · · · ·		1										
]	ł	1		1		1		1		
	Environmental				İ.,					Î		$\overline{\Box}$	
ш			1										
CAUSE	Human error		 										
ປັ [Ι		[Í	ĺ	ĺ			
	Unknown												
	Electrical					1							
щ	Chemical												
MODE	Mechanical							1					
	Other		_				1						
	Unknown						1]					
EFFECT	Plant availability loss				1	+					l		
Ë	Labor and materials loss only		┝╾╾┿]∔									
	System/component inoperative					+							

TABLE <u>1-141</u>

- .

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT CONTROLLERS

r	FAILURES (%)) 1	02	0 3	<u>30 4</u>	<u>10 5</u>	<u>60 6</u>	0 7	8 0	0 9	0 10
	Nuclear Test Reactor				-	-	4				1
AN AN	Component Test Facility				+	+	4				
PLANT TYPE											
										ļ	
	Instrument and Controls/ Steam, Condensate						4				
	Feedwater Piping and Equipment				+		4				
Σ											
SYSTEM											
S]
								ļ			
										L	
	Pressure Setting										
	Governor	-									
E	Torque Tube										
COMPONENT PART											
11											
VEN											
POI											
MO									ļ		}
Ŭ				1							
					<u> </u>						
	Environmental						4				
ш											
CAUSE											
C											
	Unknown				1 .	<u>.</u>				<u> </u>	
					Τ						
щ											
MODE	Mechanical		:)				-				
2	Metallurgical	_									
					Τ	1					
5											
EFFECT						1		ł		ŀ	
ΕĿ	Plant availability loss										
	Labor and material loss only								1		

	COMPONENT_CONTROLLERS	-									
	COMPONENT SUBTYPE PNEUMATIC	_									
	FAILURES (%)	0 1	0 2	0 3	0 4	05	06	07	8 0	09	0 100
PLANT TYPE	Component Test Facility										
	Instrument and Control - Reactor Plant	-									
SYSTEM											
	Air Line (Piping)									}	
PART											
COMPONENT PART											
CON											
					•						
	Environmental				<u> </u>						
CAUSE											
MODE	Mechanical										
W	Mechanica										
EFFECT				1							
ΕFF	System/component inoperative										

TABLE <u>1-142</u>

FAILURE DISTRIBUTION FUNCTIONS

- - - -

٦

TABLE <u>1-143</u>

.....

GENERAL SUMMARY

	COMPONENT <u>CONTROLLERS</u> FAILURES (%) 0		10)	20		30	4	0	50	6	0	70	8	0	90	10	0
	Environmental			, 	20		1	-4		Ĵ		<u> </u>	Ť		<u> </u>	Ť		ĩ
	Environmental		Т															
SE	Human error																	
CAUSE			Τ															
S																		
	Unknown		_		-													J
	Electrical				-	:	-			_		-				T]
	Chemical	م																ł
MODE	Mechanical	-	-+	. 1	-+-	•												
MO	Other	_																
	Unknown	-																
	Metallurgical	-											I.					J
	Plant availability loss		-													Т		1
E	Labor and materials loss only		_											ļ				
Ц Ц Ц	System/component inoperative		_		_		_											
EFFECT																		
					·													
L	TOTAL FAILURES PER TYPE 0		10)	20	1	30	4	0	50	6	0	70	8	0	90	1	00
	Controllers - electrical - electronic					,	Ť	-	Ē	Ť	-	Ľ.	T		- -	Ť		Ĩ
	Controllers - mechanical	-																
	Controllers - pneumatic																	
									1			ļ						
1																		
	· · · · · · · · · · · · · · · · · · ·																	
	OPERATING HOURS (THOUSANDS) 0		25	5	50)	75	10	00	125	1	50	175	2	00	225	5 2	50
	Controllers - electrical - electronic		-		-				-							Т		7
	Controllers - mechanical		-						1									
ТҮРЕ																		
L L																		
					1													1
	·																	
	·			-0										-				
	FAILURE RATE (FAILURES/10 ⁶ hr) 0		10	0	20	0	300	4	00	<u>500</u>	6	00	700	80	00	90() 1	200
	Controllers - electrical - electronic	+	-	-		۰T						ΙT			ΙΤ	T		
	Controllers - mechanical																	
																		1
																		1
								1										
	· · · · · · · · · · · · · · · · · · ·																	1

6. Indicators and Recorders

Failure data for indicators and recorders are presented in Tables 1-144 through 1-150.

- a. Mechanical
- (1) Reliability Information

Design Features:

Direct indicating through mechanical linkage.

Critical Characteristics:

- 1) Cables
- 2) Diaphragms and bellows
- 3) Linkage and bearing surfaces.

Mode of Failure:

- 1) Glass breakage
- 2) Cable chafing.

Failure Description:

- 1) Pressure gage dial face broken accidentally.
- 2) Cable chafed against seal housing.

Control Methods:

- 1) Use plexiglass or other plastic facing on gages.
- 2) Upgrade installation, operating, and preventive maintenance procedures.

Alternate Concepts:

Remote sensing pressure instruments utilizing direct writing records.

(2) Discussion and Recommendations

If parameters being monitored on recorders or indicators are of sufficient importance that a failure would necessitate a system shutdown, then it is recommended that a redundant means of recording or indicating be added to the system. Providing this capability is often cheaper than the cost of excessively high reliability.

Adequate records should be maintained on all component failures so that a failure history record can be accumulated to help establish service intervals. Industry and vendor information of this nature is also usually available.

The units that failed had anywhere from 2000 to 15,000 operating hours. If the operating hours in any particular event did not exceed the design life, then a malfunction analysis should be performed on that unit to determine the exact cause of failure. Information from this analysis would dictate a design change, increased quality control surveillance, or a change in the replacement cycle time.

If the unit did exceed its operating life, then a design change is in order to expand its life or the replacement cycle time must be reduced to minimize the potential of a failure occurring at an inopportune time.

b. Electronic

(1) Reliability Information

Design Feature:

Graphic direct writing analog recorders and direct indicating instruments.

Critical Characteristics:

Recorder drive mechanisms and inking systems and electronic tubes.

Mode of Failure:

- 1) Drive mechanism binding
- 2) Cold solder joints
- 3) Electron tube failures
- 4) Motor bearing failure
- 5) Enclosures improperly secured
- 6) Potentiometer failure
- 7) Tachometer wearout
- 8) Plugged sensing tube
- 9) Voltage surges.

Failure Description:

- 1) Improper installation of chart paper
- 2) Failure to clean and lubricate mechanisms
- Cold solder joints resulting from inadequately trained personnel, inadequate tools, or poor working conditions
- 4) Exceeding life of components; inadequate cooling
- 5) Inadequate checkout and operating procedures
- 6) Detailed checkout and troubleshooting procedures
- 7) Voltage regulating equipment for power supplies.

Alternate Concepts:

- 1) Use of solid-state devices in lieu of electron tubes
- 2) Use of digital data acquisition systems in lieu of direct-writing analog records
- 3) Immersion type pH meters instead of sampling system
- 4) Float type or electrical resistance point contact type level gages.

(2) Discussion and Recommendations

Refer to Paragraph 6.a.(2).

- c. Pneumatic
- (1) Reliability Information

Design Features:

Direct indicating instruments utilizing pneumatics.

Critical Characteristics:

- 1) Seal leakage
- 2) Mechanical linkage.

Mode of Failure:

- 1) N₂ flowmeter failure
- 2) Sodium freezing.

Failure Description:

- 1) Probably caused by a leak or sticky ball inductor
- 2) Sodium frozen in an unheated section of a bubbler tube.

Control Methods:

- 1) Periodic instrument servicing
- 2) Application of heat to all sections of bubbler tube.

(2) Discussion and Recommendations

Refer to Paragraph 6.a.(2).

- d. Sight Glass
- (1) Reliability Information

Design Features:

Float principle with graduated glass tube to allow visual monitoring of the media.

Critical Characteristics:

1) Glass tube sensitive to thermal cycling.

- 2) Glass tube limits use to low-pressure applications.
- 3) Sealing depends on careful assembly of components.

Mode of Failure:

- 1) Glass tube breaks
- 2) Gasket failure
- 3) Glass etching
- 4) Stud threads stripped
- 5) Bolts not correctly torqued.

Failure Description:

- 1) Improper installation techniques: gaskets installed improperly, bolts torqued unevenly or over-torqued, etc.
- 2) Pressure surges

- 3) Inadequate preventive maintenance
- 4) Corrosive effects of water and steam on components
- 5) Stresses on components resulting from thermal cycling.

Control Methods:

- 1) Use of detailed installation procedures that reflect manufacturer's recommendations
- 2) Personnel training in the implementation of the procedure
- 3) Preventive maintenance program
- 4) Pressure surge control
- 5) H₂ treatment.

Alternate Concepts:

Other types of level and flow indicators that are not dependent on glass tubes.

(2) Discussion and Recommendations

It is common in sight-glass installations to provide valving on both sides of the indicator so that it may be quickly isolated by the system operator in case of failure and may be replaced or repaired without shutting down the system that it is monitoring. This capability should be considered with respect to the increased cost of a more reliable component.

An engineering study of this device seems to be in order. Its applicability to the service to which it is being subjected is questionable. The availability of new materials and/or design changes to enhance the criticality of assembly should be investigated. The feasibility of system changes to reduce or eliminate thermal cycling and pressure surges should also be investigated.

The etching of the glass tubes in some cases suggests that perhaps additional water treatment is needed to minimize the corrosive effects. Treatable water and steam conditions may be affecting the gasket material.

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	ΞM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
1		 Recorder/Drive Mechanism Instrumentation and Control/Neutron Monitor System 64 261110 	 HNPF Reactor control system/neutron flux monitor channel 1 and 2 - Monthly operating report No. 10 	MI 12Z	MI 47	MI 550	3710	Operational monitors	 Drive mechanism binding. Part cleaned and returned to service. Improve preventive maintenance.
2		 Recorder/Carrier Oscillator Instrumentation and Control/Intermediate Coolant Loop 64 262210 	 Fermi Secondary sodium service - PRDC-EF-13 	MI 15Z	MI 43	MI 530	7200	Direct observation	 Inspection revealed a broken solder joint (cold joint). Local repair. Improve inspection procedures.
		 Recorder/Preampli- fier Tubes Instrumentation and Control/Fuel Element Failure Detector 64 261140 	 EBR-II Fission gas monitor - Maintenance report, 3/14/68 	MI 500	MI BZ	MI 530	13,850	Preventive mainte- nance	 Bad tubes. Part replaced. None.
4		 Indicator/Transmitter Instrumentation and Control/Reactor Coolant 64 262100 	 SCTI Primary sodium fill and drain tank/ level indicator LI-500T 250 to 600°F Incident report No. 66 	MI 477	MI 13	MI 530	4846	Operational monitors	 Transmitter shorted to ground during rain. Local repair, plastic cover installed on transmitter and connector. More careful installation of instruments exposed to weather.
-		 Indicators/Rectifier Shroud Instrumentation and Control/Fuel Element Failure Detection 64 261140 	 EBR-II Primary/fuel element rupture detector - PMMR-34 	MI 500	MI 59	MI 530	2590	Direct observation	 Broken shroud. Part replaced. None.
L *	_	= INCIDENT	MI = MINOR MALFUNCTION						

TABLE <u>1-144</u> FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 1 of 13)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-144</u>

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 2 of 13)

ſ		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	6	 Level Indicator/ Potentiometer Instrumentation and Control/Purification 64 262420 	 Fermi FARB/cold trap system - PRDC-EF-52 	MI 15Z	MI 13	MI 530	14,941	Direct observation	 Potentiometer shorted out. Part replaced. None.
LMEC-	7	 Recorder/Motor Instrumentation and Control/Intermediate Coolant Loop 64 262210 	 EBR-II Secondary sodium system/cold trap - EBR-II maintenance report, 3/14/68 	MI 500	MI 52	MI 530	13,850	Preventive mainte- nance	 Bearings failed. Part replaced. Upgrade recorder preventive maintenance to detect problem prior to total failure.
LMEC-Memo-69-7, Vol	8	 Indicator/Tachometer Instrumentation and Control/M.G. set 64 269000 	 EBR-II Primary pump/M.G. set No. 1 - Operation weekly report, 12/20/67 	MI 500	MI BZ	MI 530	13,380	Operational monitors	 Tachometer worn out. Part replaced. Increase inspections to detect problem before failure.
Vol I	9	 Indicator/Sampling Tube Instrumentation and Control/Cooling Water 64 269630 	 SCTI Cooling tower water system/pH meter 2-12 pH Incident report, No.22 	MI 312	MI 31	MI 1 3 9	1795	Direct observation	 Sample tubes plugged with silt. Local repair, tubes cleaned and timer installed on H₂SO₄ pump. Operating procedure should include requirement for regular backwash - to be executed.
	10	 Indicators and Re- corders/Flowmeter Power Supply Instrumentation and Control/Shield Cooling System 64 261220 	 EBR-II Primary/shield cooling - Maintenance report, 4/18/68 	MI 152	MI 12	MI 530	14,150	Operational monitors	 Voltage surge. Local repair. None.
	11	 Indicator/Light Bulb Instrumentation and Control/Steam, Con- densate and Feed- water Piping and Equipment 64 268300 	 SCTI Boiler feed pump "ON" indicator - Incident report No. 49, 9/27/65 	MI 152	MI 12	MI 47	6800	Operational monitors	 Burned out light falsely indicated that the boiler feed pump was shut down. Lamp replaced. Use indicator "jush to test" circuits where necessary or long life indicators before executing next procedure Check bulbs for burn out.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

|--|

TABLE <u>1-144</u>

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 3 of 13)

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	1	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	12	 Indicator/Shorted Leads Instrumentation and Control/Intermediate Coolant System 64 262200 	 SCTI Secondary fill tank level - Incident report No. 43, 9/10/65 	MI 339	MI 13	MI 550	4846	Direct observation	 Operator accidentally grounded level indicator leads actuating pilot gas valve cutout. Ground removed, pilot reignited. Improve training for electrical maintenance personnel on requirements for guards over connections and improve operators training to assure alertness to possible exposed leads.
LMEC-Me	13	 Indicator/Potentio- meter Instrumentation and Control/Intermediate Coolant Loop 64 262210 	 HNPF Sodium level No. 2 secondary expansion tank - AI monthly, 2/14/63 	MI 500	MI 43	MI 550	Unknown	Operational monitor	 Spurious drops in indication caused by bad potentio- meter. Part replaced. None.
LMEC-Merno-69-7, Vol 1-453	14	 Indicator/Pressure Gage Instrumentation and Control/M.G. set 64 269000 	 EBR-II M.G. set No. 2/cooling water - Operation weekly report, 12/20/67 	MI 500	MI BZ	MI 530	13,380	Operational monitors	 Gage broken. Part replaced. Provide protection for gauge glass.
Г	15	2. Instrumentation and	 Fermi Cask Car Minimum 350°F, argon EF-No. 22 	MI 126	MI 59	MI 530	11,740	Operational monitors	 Cable dragged on seal housing. Part replaced. None.
	16	 Indicator/N2 Flow- meter Instrumentation and Control/Shield 64 261220 	 EBR-II Reactor shield/small plug 20-40 psig PMMR-76 	MI 500	MI 43	MI 530	6300	Operational monitors	1. Operation faulty. 2. Local repair. 3. None.
	17	 Indicator/Bubbler Tube Instrumentation and Control/Heat Transfer 64 262110 	 SCTI Primary sodium system, sodium pump, level control Control section below 300°F Incident report No.33 	MI 118	MI 55	MI 550	611	Protective system	 Sodium entered an unheated section of the level control bubbler tube and solidified. Component corrective modification. Modified level gage eliminated the need of heater.

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
TEM	 STATEM/SUBSTATEM CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
18	 Indicator/Sightglass Gaskets Instrumentation and Control/Steam Drum 64 262312 	 EBR-II Steam drum east end 580°F, 1300 psig PMMR-113, Item No. 12 	MI 500	MI 52	MI 530	3045	Direct observation	 Gaskets worn out. Parts replaced. None.
19	 Indicator/Sightglass Studs Instrumentation and Control/Steam Drum 64 262312 	 EBR-II Steam drum east end 580°F, 1300 psig PMMR-113, Item No.12 	MI 500	MI 52	MI 530	3045	Direct observation	1. Studs worn. 2. Parts replaced. 3. None.
20	 Indicator/Sightglass Mica Instrumentation and Control/Steam Drum 64 262312 	 EBR-II Steam drum east end 580°F, 1300 psig PMMR-113, Item No. 12 	MI 500	MI 52	MI 530	3045	Direct observation	 Mica worn out. Part replaced. None.
21	 Indicator/Sightglass Glass Instrumentation and Control/Steam Drum 64 262312 	 EBR-II Steam drum west gage 580°F, 1300 psig Operations weekly report, 12/27/67 	MI 500	MI 52	MI 530	7110	Direct observation	 Sightglass glass worn out. Part replaced. None.
22	 Indicator/Sightglass Mica Instrumentation and Control/Steam Drum 64 262312 	 EBR-II Steam drum west gage 580°F, 1300 psig Operations weekly report, 12/27/67 	MI 500	MI 52	MI 530	7110	Direct observation	 Mica worn out. Part replaced. None.
23	 Indicator/Sightglass Cushions Instrumentation and Control/Steam Drum 64 262312 	 EBR-II Steam drum west gage 580°F, 1300 psig Operations weekly report, 12/27/67 	MI 500	MI 52	MI 530	7110	Direct observation	 Cushions worn out. Part replaced. None.

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

,

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 4 of 13)

TABLE <u>1-144</u>

FAILURE DATA FOR _INDICATORS AND RECORDERS

(Sheet 5 of 13)

	1	SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAI	URE IN CODE*	DEX		······································	1. FAILURE DESCRIPTION
ITE	^M 3	CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
2.	2	 Indicator/Sightglass Gasket Instrumentation and Control/Steam Drum 64 262312 	1. EBR-II 2. Water side 3. 580°F, 1300 psig 4. PMMR-32	MI 500	MI 52	MI 530	2190	Direct observation	 Gasket leaking. Part replaced. Installation procedures for sightglasses should be reviewed and/or revised to limit failures of these units through improper installation techniques.
1	11	 Indicator/Sightglass Mica Instrumentation and Control/Steam Drum 64 262312 	1. EBR-II 2. Water side 3. 580°F, 1300 psig 4. PMMR-32	MI 500	MI 52	MI 530	2190	Direct observation	 Mica worn out. Part replaced. None.
2 LMEC-Memo-69-7, Vol 1-455	1:	 Indicator/Sightglass Glass Instrumentation and Control/Condensate 64 268300 	 EBR-II Steam system/low pressure flash tank 298°F, 50 psig PMMR-80 	MI 500	MI 52	MI 530	5700	Preventive mainte- nance	 Sightglass glass worn out. Part replaced. Better glass material would provide longer service life.
	11	 Indicator/Sightglass Gasket Instrumentation and Control/Condensate 64 268300 	 EBR-II Steam system/low pressure flash tank 298°F, 50 psig PMMR-80 	MI 500	MI 52	MI 530	5700	Preventive mainte- nance	 Casket worn out. Part replaced. None.
2	2	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-29 	MI 500	MI 59	MI 530	30	Direct observation	 Sightglass glass broken. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
2'	2	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-31 	MI 500	MI 59	MI 530	340	Direct observation	 Sightglass leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
*		INCIDENT	AL = MINOR MALFUNCTION						······

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*				1. FAILURE DESCRIPTION
	ΈM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	30	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-31 	MI 500	MI 59	MI 530	340	Direct Observation	 Gasket ruptured. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
LMEC	31	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-31 	MI 500	MI 59	MI 530	340	Direct observation	 Glass broken. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
LMEC-Memo-69-7, Vol	32	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-31 	MI 500	MI 59	MI 530	340	Direct observation	 Gasket ruptured on repressurizing. Part-replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
Vol I	33	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-31 	MI 500	МІ 59	MI 530	340	Direct observation	 Glass broken. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
	34	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-33 	MI 500	MI 59	MI 530	340	Direct observation	 Glass shattered on repressurizing. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
	35	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.2 374°F at 200 psig Operation monthly report, 11/67 	MI 500	MI 52	MI 530	7110	Direct observation	 Sightglass broken. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.

TABLE _______ FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 6 of 13)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE _________

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 7 of 13)

.

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAII	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
тем	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
36	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-34 	MI 500	MI 52	MI 530	170	Direct observation	 Gasket leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
37	 Indicator/Sightglass Gasket Instrumentation and Control/Steam Drum 64 262312 	 EBR-II Steam drum east end 580°F, 1300 psig PMMR-98 	MI 500	MI 52	MI 530	9345	Direct observation	 Gasket leaking. Part replaced, small leak still exists. Additional work is needed. None.
38	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.2 374°F at 200 psig PMMR-24, 4/8/65 	MI 500	МІ 59	MI 530	1490	Direct observation	 Sightglass broken. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
39	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.2 374°F at 200 psig PMMR-24, 4/8/65 	MI 500	MI 59	MI 530	1490	Direct observation	 Gasket ruptured. Part replaced. Recommend engineering study of problem.
40	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.2 374°F at 200 psig PMMR-30, 5/18/65 	MI 500	MI 59	MI 530	550	Direct observation	 Sightglass broken. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
41	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.2 374°F at 200 psig PMMR-38, 7/21/65 	MI 500	MI 59	MI 530	630	Direct observation	 Sightglass broken. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.

TABLE <u>1-144</u>

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 8 of 13)

		. COMPONENT/PART . SYSTEM/SUBSYSTEM	1. FACILITY 2. COMPONENT LOCATION	FAIL	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	M 3	. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
42	2	 Indicator/Sightglass Glass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 2 374°F at 200 psig PMMR-57, 12/15/65 	MI 500	MI 59	MI 530	1730	Direct observation	 Sightglass broken. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
43	2	 Indicator/Sightglass Mica Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-75 	MI 500	MI 52	MI 530	3630	Preventive mainte- nance	 Sightglass leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
T MEC-Memo-69-7 Vol 1	2	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-75 	MI 500	MI 52	MI 530	3630	Preventive mainte- nance	 Sightglass leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
− 45	2	. Indicator/Sightglass Cushion . Instrumentation and Control/Feedwater . 64 268400	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-75 	MI 500	MI 52	MI 530	3630	Preventive mainte- nance	 Sightglass leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
46	2	. Indicator/Sightglass Glass . Instrumentation and Control/Feedwater 6 64 268400	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature - 565°F PMMR-107 	MI 500	MI 52	MI 530	5330	Direct observation	 Sightglass leaking and broken. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
47	2	 Indicator/Sightglass Mica Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-107 	MI 500	MI 52	MI 530	5330	Direct observation	 Sightglass leaking and broken. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
*		INCIDENT	M = MINOR MALFUNCTION						

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-144</u>

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 9 of 13)

		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	48	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-75, 5/11/66 	MI 500	MI 52	MI 530	6344	Preventive mainte- nance	 Glass broken. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
LMI	49	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-75, 5/11/66 	MI 500	MI 52	MI 530	6344	Preventive mainte- nance	 Gasket damaged. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
LMEC-Memo-69- 1-459	50	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-75, 5/11/66 	MI 500	MI 52	MI 530	6344	Preventive mainte- nance	 Mica damaged. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
9-7, Vol I	51	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-75, 5/11/66 	MI 500	MI 52	MI 530	6344	Preventive mainte- nance	 Cushion worn out. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
	52	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-75, 5/11/66 	MI 500	MI 92	MI 530	6344	Preventive mainte- nance	 Flange pitted. Local repair, flange resurfaced. None.
:	53	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-80, 6/29/66 	MI 500	MI 52	MI 530	140	Preventive mainte- nance	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
	54	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-80, 6/29/66 	MI 500	MI 52	MI 530	140	Preventive mainte- nance	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
:	* 1	= INCIDENT	MI = MINOR MALFUNCTION						

.TABLE ______

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 10 of 13)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	M 3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
55	2. Instrumentation and	 EBR-II Feedwater/heater No. 3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-80, 6/29/66 	MI 500	MI 52	MI 530	140	Preventive mainte- nance	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
56	 Instrumentation and Control/Feedwater 64 	 EBR-II Feedwater/heater No. 3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-105, 6/21/67 	MI 500	MI BZ	MI 530	3660	Direct observation	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
51	2. Instrumentation and	 EBR-II Feedwater/heater No. 3 Shellside = 800°F at 700 psig Tubeside = 500°F at 2000 psig PMMR-105, 6/21/67 	MI 500	MI BZ	MI 530	3660	Direct observation	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
58	 8 1. Indicator/Sightglass 2. Instrumentation and Control/Feedwater 3. 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-3 	MI 500	MI 52	MI 530	1200	Direct observation	 Sightglass broken. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.
59	 9 1. Indicator/Sightglass Mica 2. Instrumentation and Control/Feedwater 3. 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-3 	MI 500	MI 52	MI 530	1200	Direct observation	 Sightglass broken. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
60	 1. Indicator/Sightglass Gasket 2. Instrumentation and Control/Feedwater 3. 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-3 	MI 500	MI 52	MI 530	1200	Direct observation	 Gasket leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
6	 I. Indicator/Sightglass Mica Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-23 	MI 500	MI 52	MI 530	120	Direct observation	 Sightglass leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions.

TABLE ______1-144____

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 11 of 13)

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	TEM 2. COMPONENT LOCATION CODE* 3. OPERATING CONDITIONS 4. SOURCE DOCUMENT CAUSE MODE EFFECT						1. FAILURE DESCRIPTION	
ITEM	3. CODE: (Component) (System/Subsystem)			OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS			
62	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-23 	MI 500	MI 52	MI 530	120	Direct observation	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions. 	
63	 Indicator/Sightglass Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-28 	MI 500	MI 52	MI 530	500	Direct observation	 Sightglass leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions. 	
64	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-29 	MI 500	MI 59	MI 530	30	Direct observation	 Sightglass leaking. Part replaced. Manufacturer's recommendations should be followed for installation and operating conditions. 	
65	 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-107 	MI 500	MI 52	MI 530	5330	Direct observation	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions. 	
66	 Indicator/Sightglass Cushions Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 4 Inlet temperature = 480°F Outlet temperature = 565°F PMMR-107 	MI 500	MI 52	MI 530	5330	Direct observation	 Sightglass leaking. Part replaced. Follow manufacturer's recommendations for installation and operating conditions. 	
67	 Indicator/Sightglass Mica Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No.2 374°F at 200 psig Operating monthly report, 11/67 	MI 500	MI 52	MI 530	7110	Direct observation	 Mica damaged. Part replaced. Follow manufacturer's recommendations for installation and operating conditions. 	
*	I = INCIDENT	MI = MINOR MALFUNCTION	-						

TABLE	1-144
-------	-------

FAILURE DATA FOR __INDICATORS AND RECORDERS

				r .				· · · · · · · · · · · · · · · · · · ·	
		 COMPONENT/PART SYSTEM/SUBSYSTEM 	3. OPERATING CONDITIONS		LURE IN CODE*	DEX			1. FAILURE DESCRIPTION
ITE	М	3. CODE: (Component) (System/Subsystem)			MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
68		 Indicator/Sightglass Gasket Instrumentation and Control/Feedwater 64 268400 	 EBR-II Feedwater/heater No. 2 374°F at 200 psig Operation monthly report, 11/67 	MI 500	MI 52	MI 530	7110	Direct observation	 Gasket damaged. Part replaced. Follow manufacturer's recommendations for installation and operating conditions.
69		 Indicator/Sightglass Instrumentation and Control/Condensate 64 268300 	 EBR-II Steam system/high pressure flash tank 578°F, 700 psig PMMR-28 	MI 500	MI 52	MI 530	1820	Direct observation	 Sightglass severely etched. Part replaced. High pressure sightglasses should operate approximately four months without problems. Thermal cyclin of sightglasses tends to shorten their operating lives.
7(Indicator/Sightglass Instrumentation and Control/Condensate 64 268300 	 EBR-II Steam system/high pressure flash tank 578°F, 700 psig PMMR-30 	MI 500	MI 59	MI 530	180	Direct observation	 Sightglass broken. Part replaced. Installation procedures should be reviewed and/or revised to limit failures of these units through improper installation techniques.
7		 Indicator/Sightglass Glass Instrumentation and Control/Condensate 64 268300 	 EBR-II Steam system/high pressure flash tank 578°F, 700 psig PMMR-33 	MI 500	MI 52	MI 530	190	Direct observation	 Glass appeared to be eroding. Part replaced. Use of better sightglass material is suggested.
7:	- 1	 Indicator/Water Level Sightglass Instrumentation and Control/Condensate 64 268300 	 EBR-II Steam system/low pressure flash tank No. 2 298°F, 50 psig PMMR-4 	MI 500	MI BZ	MI 530	1200	Operational monitors	 Sightglass broken. Part replaced. Installation procedures should be reviewed and/or revised to limit failures of these units through improper installation techniques.
7:	3	 Indicator/Sightglass Glass Instrumentation and Control/Main Steam 64 268100 	 EBR-II Steam system/high pressure flash tank 578°F, 700 psig PMMR-42, 43 	MI 500	MI 59	MI 530	880	Direct observation	 Sightglass broken. Part replaced. Installation procedures should be reviewed and/or revised to limit failures of these units through improper installation techniques.
L *		= INCIDENT	MI = MINOR MALFUNCTION						

(Sheet 12 of 13)

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

TABLE ________

FAILURE DATA FOR INDICATORS AND RECORDERS (Sheet 13 of 13)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION OPERATING CONDITIONS SOURCE DOCUMENT 		FAILURE INDEX CODE*				1. FAILURE DESCRIPTION		
IT	EM	3. CODE: (Component) (System/Subsystem)			MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS		
	74	 Flow Indicator/Glass Instrumentation and Control/Raw Water Supply 64 268400 	 SCTI Cooling water supply 125 psig Incident report No. 331 	MI 174	MI 59	MI 550	3460	Direct observation	 Abnormal high pressure surge in raw cooling water supply caused breakage of sightglass. Part replaced. Install pressure regulator. 		
- 1	75	 Indicator/Flowmeter Flange Instrumentation and Control/Feedwater 64 268400 	 SCTI Main steam/feedwater flowmeter FRC-201 475 to 600°F Incident report No. 104 	MI 326	MI 53	MI 136	5225	Direct observation	 Feedwater leakage at flange, bolts not properly torques. Local repair, bolts retorqued. Maintenance personnel should be trained for torquing flange connections. 		
LMEC-Memo-69-7, Vol I	76	 Indicator/Level Control Gasket Instrumentation and Control/Condensate 64 268300 . 	 EBR-II Steam system/high pressure flash tank 578°F, 700 psig PMMR-107 	MI 413	MI 52	MI 530	11 ,3 20	Direct observation	 Gasket worn out, leaking. Part replaced. Revise sightglass overhaul procedure, if required. Thermal cycling sightglasses drastically shortens their operating life. 		
*		= INCIDENT M	MI = MINOR MALFUNCTION								

LMEC-Memo-69-7, Vol I 1-463

MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-145</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT INDICATORS AND RECORDERS

		FAILURES (%)	<u> </u>	<u>10</u>	20	30	40) 5	0 6	0 7	<u> </u>	<u> </u>)]
<u>н</u>	Nuclear Test Reactor		_	+		_							
₽ď	Nuclear Power Reactor			1									
PLAN1 TYPE	Component Test Facility								1				
	Instrumentation and Control		-		1								
Ì	Heat Transfer System	<u></u>	7						1				
Σ	Accessory Electrical Equipment]	-									
STEM	Turbine Generator]	4									
ζ			-										
			-				İ						
	Drive Mechanism		j =	4		+							
	Carrier Oscillator		_										
ьl	Preamplifier Tubes		_	-									
PART	Transmitter			-				i					
<u> </u>	Rectifier Shroud			-			[
EN L	Potentiometer		_	-	Ì								
§ [Motor			┥									
COMPONENT	Tachometer			-			ł						
Ŭ	Sampling Tube			-									
Γ	Flowmeter Power Supply			┥			1						
F	Other												
	Environmental				+			-		;			
шľ	Human error												
CAUSE							1						
₹ŀ	Inherent												
CAU	Inherent												
CAU	Inherent Unknown							-					
CAU													
	Unknown												
MODE CAU	<u>Unknown</u> Electrical												
	Unknown Electrical Chemical												
	Unknown Electrical Chemical Mechanical												
MODE	Unknown Electrical Chemical Mechanical Unknown												
	Unknown Electrical Chemical Mechanical Unknown Acceptable incipient damage												

TABLE <u>1-146</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT <u>INDICATORS AND RECORDERS</u>

COMPONENT SUBTYPE ____MECHANICAL

- - - -

		FAILURES (%)	0 1	0 2	0_3	0 4	05	06	0 7	08	0 9	0 10
	Nuclear Power Reactor				-							
РЧ Т	Nuclear Test Reactor			• • •	و بر الم							
PLANT TYPE			1 '									
		· · · · · · · · · · · · · · · · · · ·	1		-							
	Accessory Electrical Equipment											
	Instrumentation and Control				-							
~											•	
SYSTEM	······································		1					ļ				
YS			1					1	ļ			
S			1						1			
1			1					ļ				
	· · · · · · · · · · · · · · · · · · ·		1					1				
	Pressure Cage]		
	Cable										[
RT			4									
ΡA			-									
NT			-									
COMPONENT PART			-									
JP(······	-				1	ľ				
0			$\left\{ \right.$									
			{									
			1									
		Same f	1									
					L	([[[<u>í – </u>	<u> </u>	[]	
	Environmental		-									
CAUSE			4							•	i	
AU			-									
		····	1							ļ		
	Unknown		-		_							
						L		1 r	<u></u>	l	<u> </u>	
	Mechanical	· · · · ·							ļ			
Ы			•									
MODE			4								Į	
			1									
<u> </u>	Unknown					ř		<u> </u>	<u> </u>		<u> </u>	
	Labor and material loss only	·					<u> </u>					
CT]	
EFFECT											,	
ш										1		,
									l	1		

LMEC-Memo-69-7, Vol I 1-465 `

TABLE <u>1-147</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT INDICATORS AND RECORDERS

٦

	COMPONENT SUBTYPEPNEUMATIC		_									
	_	FAILURES (%)	01	0 2	03	0 4	0 5	0 6	0 7	0 8	09	0 10
	Nuclear Test Reactor											
PLANT TYPE	Component Test Facility							1				
			-									
	l		<u> </u>			ļ	<u> </u>		ļ		L	
	Instrumentation and Control											
_	· · · ·		4							1		
Ш		· • •	-									
SYSTEM	· · · · · · · · · · · · · · · · · · ·		4									
ŝ			ł									
			1									
		·····	1									
	Sodium Flowmeter		-		ļ		İ		<u> </u>	İ		
		,	ļ			<u> </u>	 					
F]			-						
AR]			Ì						
L L												
NE ^N			1									
PO												
COMPONENT PART												
	····		-									
			4									
						1						
							l I	L		I	[
	Environmental		-									
SE			1									
CAUSE		·····	1									
	Unknown	· · · · ·										
	Mechanical				_							
ш												
MODE			1									
2												
	Labor and material loss only	41 8 /41 = 1										
EFFECT	System/component inoperative											
Ë												
Ш	· · · · · · · · · · · · · · · · · · ·											

TABLE <u>1-148</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT _INDICATORS AND RECORDERS

COMPONENT SUBTYPE SIGHTGLASS

	· · · · · · · · · · · · · · · · · · ·	FAILURES (%) 0	10	20	30	40	50	60	0 8	0 9	0 10
PLANT TYPE	Nuclear Test Reactor Component Test Facility										
SYSTEM	Instrumentation Feedwater Supply and Treatment								((
COMPONENT PART	Sightglass Gasket Sightglass Glass Sightglass Mica Sightglass Cushion Sightglass Studs Water Level Sightglass				-						
CAUSE	Environmental										
MODE	Mechanical Metal corrosion Unknown										
EFFECT	Labor and material loss only System/component inoperative		3) 7 4	••••••••••••••••••••••••••••••••••••••	-						

	COMPONENT INDICATORS AND RECORDERS	-									
	COMPONENT SUBTYPE STEAM SYSTEM FAILURES (%)	0 1	0 2	0 3	04	05	0 6	0 7	08	09	0_10
PLANT TYPE	Nuclear Test Reactor Component Test Facility										
SYSTEM	Steam Instrumentation										
COMPONENT PART	Flowmeter Flange Level Control Gasket										
CAUSE	Human error Inherent										
MODE	Mechanical										
EFECT	Labor and material loss only										

TABLE <u>1-149</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT INDICATORS AND RECORDERS

LMEC-Memo-69-7, Vol I 1-468

.

TABLE ______

GENERAL SUMMARY

COMPONENT INDICATORS AND RECORDERS

	FAILURES (%)	0	1	0	20)	30		40	5()	60	7	0	80	9	0	100
	Environmental				Τ				T	Τ		Τ						
	Human error]																
CAUSE	Inherent																	
CA	Unknown			••••			+		-	-		-			+			
	Electrical	-													-			
ш	Chemical																	
MODE	Mechanical						-			-	-	_	_					
2	Unknown																	
	Metal corrosion							-										
	Acceptable incipient damage	-	-	Γ								T						
CT	Labor and material loss only]			_				_							-		
EFFECT	System/component inoperative																	
Ш																		
_	TOTAL FAILURES PER TYPE	0	1	0	2(5	30	_	40	50)	60	7	0	80	9	0	100
	Indicators and recorders (electronic)	-		.	-		Т								T			
	Indicators and recorders (mechanical)									ł								
	Indicators and recorders (pneumatic)		1															
1	Indicators and recorders (sight glass)						-	_			_							
	Indicators and recorders (steam)		1															
		1																
	· · · · · · · · · · · · · · · · · · ·	1																
	- Alternation											i				· •		
	OPERATING HOURS (THOUSANDS)	0	2	5	50)	75		100	12	5	150	17	5 2	200	27	25	250
	Indicators and recorders (electronic)						+											
	Indicators and recorders (mechanical)	-	-										ĺ					
	Indicators and recorders (pneumatic)	-	•															
ΡE	Indicators and recorders (sight glass)					:												
ТΥР	Indicators and recorders (steam)		3															
		4																
ŀ		-																
ŀ		-																
•		-																
}	5411 UD5	1						_						•				
	FAILURE RATE (FAILURES/10 ⁶ hr)	T	3	0	60		90	. 1	120	15) 	180	21	.0 2	40	2	/U 1	300
ł	Indicators and recorders (electronic)			•														
	Indicators and recorders (mechanical)			•														
	Indicators and recorders (pneumatic)																-	
-	Indicators and recorders (sight glass)										T							
}	Indicators and recorders (steam)	ſ																
		1																
ŀ		1																
ŀ		1																
		-													1	1		

LMEC-Memo-69-7, Vol I 1-469

•

7. Instrumentation (terminal boards, patch panels, relays, suppressors)

Failure data for instrumentation (terminal boards, patch panels, relays, suppressors) are presented in Tables 1-151 through 1-153.

a. Reliability Information

Design Features:

Coil-operated contact switches and cam-operated microswitches.

Critical Characteristics:

- 1) Coil material deterioration due to heat
- 2) Contact corrosion
- 3) Physical adjustment of microswitch with respect to operating cam or lever.

Mode of Failure:

- 1) Relay coil open circuit
- 2) Contact arm mechanical failure.

Failure Description:

- 1) Relay coil burned out.
- 2) Microswitch contact arm folded over the operating cam.

Control Methods:

- 1) Improve preventive maintenance procedures.
- 2) Upgrade procurement specifications.

Alternate Concepts:

Utilize voltage monitoring system in conjunction with a computerized digital data acquisition system in lieu of a mechanically operated microswitch for protective systems that could result in a plant scram.

Transistor circuits in place of electro-mechanical relays.

b. Discussion and Recommendations

In a protective circuit that can initiate a plant scram, it is questionable whether a mechanical device, such as the cam-operated microswitch that malfunctioned, could ever be reliable enough. An engineering study is in order to determine if better methods can be applied. An automatic monitoring and control system in conjunction with the new data acquisition system proposed for the SCTI is recommended.

The cost of higher reliability must be pitted against the effects or consequences of an event. In many applications, relays may be used to failure without any significant system effects.

ſ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		LURE IN CODE*				1. FAILURE DESCRIPTION
	ІТЕМ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
		 Relay/Microswitch Actuator Instrumentation and Control/Protective System 69 267300 	 SCTI Sodium heater (H-1)/temperature recorder TR-101 - Incident report No.110 	MI 146	MI 53	MI 110	340	Operational monitors	 Malfunction of microswitch actuator lever. Part replaced. Cam operators should be carefully examined for this type of failure potential.
LMEC-Memo-69-7, Vol I 1-472	2	 Relay/ Drive Up Relay K-82 Instrumentation and Control/Reactor Automatic Control 69 261160 	 HNPF Reactor core/auto control rod Reactor environment Monthly operating report No. 18 	MI 16Z	MI BZ	MI 530	7100	Operational monitors	 Relay coil open. Part replaced. None.

TABLE <u>1-151</u>

FAILURE DATA FOR _INSTRUMENTATION (TERMINAL BOARDS, PATCH PANELS, RELAYS, SUPPRESSORS)

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-6 1-472 4 5

TABLE <u>1-152</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT INSTRUMENTATION - TERMINAL BOARDS, PATCH PANELS, RELAYS, SUPPRESSORS

COMPONENT SUBTYPE _____ INSTRUMENTATION RELAYS 60 50 70 80 90 100 FAILURES (%) 0 30 40 20 10 Nuclear Power Reactor PLANT TYPE Component Test Facility Instrument and Control SYSTEM Micro Switch Actuator Drive Up Relay K-82 COMPONENT PART Environmental CAUSE Mechanical MODE Unknown Labor and material loss only EFFECT System/component inoperative

TABLE <u>1-153</u>

GENERAL SUMMARY COMPONENT INSTRUMENTATION - TERMINAL BOARDS, PATCH PANELS, RELAYS, SUPPRESSORS FAILURES (%) 0 10 20 30 40 50 60 80 90 100 70 Environmental CAUSE Mechanical MODE Unknown Labor and material loss only EFFECT System/component inoperative TOTAL FAILURES PER TYPE 0 4 1 2 3 5 6 7 8 9 10 Instrumentation relays OPERATING HOURS (THOUSANDS) 0 2 1 3 4 5 6 7 8 9 10 Instrumentation relays ТҮРЕ FAILURE RATE (FAILURES/10⁶ hr) 0 100 200 300 400 500 600 700 800 900 1000 Instrumentation relays

> LMEC-Memo-69-7, Vol I 1-474

8. <u>Neutron Source</u>

Failure data for neutron source are presented in Talbes 1-154 through 1-156.

a. Reliability Information

None.

b. Discussion and Recommendations

None.

	TABL	E	1-154
--	------	---	-------

.

FAILURE DATA FOR <u>NEUTRON SOURCE</u>

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 	FAI	LURE IN CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE	1	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	Threaded Stud 2. Reactor Equipment/	1. Fermi 2. Neutron source 3. 4. PRDC-EF-13 and PRDC-EF-14	MI 172	MI 54	MI 530	7930	Direct observation	 Due to excessive torque while assembling neutron source No. 5, the end studs were damaged. Vendor repair of component. Assembly procedure should specify torque to be applied to studs.
	= INCIDENT	MI = MINOR MALFUNCTION						

I = INCIDENT MI = MINOR MALFUNMA = MAJOR MALFUNCTION P = PROBLEM

COMPONENT NEUTRON SOURCE COMPONENT SUBTYPE NEUTRON SOURCE FAILURES (%) 0 10 20 30 40 50 60 70 80_ 90 100 Nuclear Power Reactor PLANT TYPE Reactor Equipment SYSTEM Threaded Stud COMPONENT PART Environmental CAUSE , Mechanical MODE Labor and materials loss only EFFECT

TABLE <u>1-155</u>

.

.....

FAILURE DISTRIBUTION FUNCTIONS

TABLE ______

GENERAL SUMMARY

	COMPONENT NEUTRON SOURCE FAILURES (%)	0	10	20	30) 4	0	50	60	70	80	90	100
	Environmental			_							-		
ш		4			ĺ	•			1				
CAUSE		4									İ		
ပ]											
							<u> </u>						
	Mechanical	_	-				-						
MODE		-{											
M													
]											
<u> </u>	Labor and materials loss only		-						-			-	
EFFECT		-											
		-											
						-							
	TOTAL FAILURES PER TYPE	0	1	2	3		4	5	6	7	<u> </u>	9	10
	Neutron source	-		1	1		1						
	<u> </u>	-											
		1											
	·	4											
							<u> </u>			<u> </u>			
	OPERATING HOURS (THOUSANDS)	0	1	2	3		4	5	6	7	8		<u>1</u> (
	Neutron source	-						Τ					
		1											
		4											
ТҮРЕ		-		.						Î			
		1									Í		
		1											
		4											
	FAILURE RATE (FAILURES/10 ⁶ hr)												
	FAILURE RATE (FAILURES/IO ⁺ hr) Neutron source		20	40	60) { 	30 1 - T	100	120	140	160	180	1
		11				Ì							
]											
		4											
	······································	-											
		1											
		$\left \right $											
				1.1						i			

9. Sensors (Other than Radiation)

Failure data for sensors (other than radiation) are presented in Tables 1-157 through 1-161.

- a. Temperature Sensors and Thermocouples
- (1) Reliability Information

Design Features:

Two configurations are considered, viz.,

- 1) Welded thermocouple junctions
- 2) Platinum wire resistance thermometers.

Critical Characteristics:

- 1) Purity of thermocouple junction
- 2) Attachment of thermocouple junction to surface to be measured
- 3) Durability of resistance thermometer insulation.

Mode of Failure:

- 1) Separation of thermocouple from surface to be measured
- 2) Short-circuiting of unprotected thermocouple wiring
- 3) Decay of insulation resistance.

Failure Description:

- 1) Improper installation of thermocouple junction caused separation of thermocouple from surface to be measured.
- 2) Sodium leak near thermocouple resulted in short circuting of leads.
- 3) Resistance thermometer insulation deteriorated so that a condition of low resistance-to-ground was produced.

Control Methods:

- 1) Develop and follow process specification for installation of thermocouple wires to steel.
- 2) Provide protective covering for the thermocouple junctions and wiring in component design.

- 3) Implement procurement specifications which assure proper mating of insulation material with its operating environment.
- 4) Implement acceptance test procedures to determine durability of insulation material at high temperature.
- 5) Implement preventive maintenance procedures to inspect component for degradation before the occurrence of failures.
- 6) Consider the use of thermocouples, where appropriate, during tradeoff studies and design reviews prior to acquisition and fabrication.

(2) Discussion and Recommendations

The proper application of thermocouples to steel surfaces is a precarious task that is best controlled by a detailed process specification if high reliability and accuracy is required. Specification No. 7693-12100-2, "Process Specification for Welding Thermocouple Wires to Steel Using the Electronic Discharge Welding Method, " an LMEC document, is suggested.

Protective covers over thermocouple junction and wiring will minimize the probability of failure as a result of a sodium leak.

Most problems associated with insulation resistance decay in resistance thermometers used for high-temperature liquid metal application derive from contamination of the magnesium oxide insulation. Rigid procurement specifications and source inspection can alleviate this problem. Periodic replacement of these instruments will be necessary in any event. Failure history data should be used to establish the proper material.

In pressure switches where vibration from the compressor caused the sensing capillary tube to become fatigued and to eventually split, the failure occurred after approximately 11,000 hours of operation. Subsequent installations should provide for flexibility so that the vibration experienced by the capillary tube will be damped. A flexible section of tube or expansion loops between securing points should be effective.

The location of the switch is also important. It should not be subject to excessive vibration. Ideally, it should not be located on the compressor.

Fabrication and installation procedures should provide detailed information concerning the proper flaring of fittings, installation of seals, and torque values. Personnel must also be thoroughly trained in implementing these procedures.

A preventive maintenance program that called for periodic torque checking or replacement of gaskets could alleviate untimely failures of this nature.

Heating of the entire sensing line length will eliminate the freezing of sodium in the sensing line.

Compliance with RDT F6-1 standard for welding will minimize the probability of sodium leaks occurring at welds.

The added cost of high reliability for many of these components must be compared with the cost and feasibility of other courses of action such as redundant measurement systems. Many of the failures affect only the measurement system or some minor control function. Periodic surveillance will detect potential failures and recently occurring failures. Most of these failures do not cause a plant or system shutdown and can also be repaired without a plant shutdown or even a significant system shutdown.

The establishment and implementation of good operating procedures can also alleviate many of the failures attributed to component malfunctions. In many cases the failure may be due simply to exceeding the component design life.

The incorporation of "press to test" circuits can provide a means for easily checking the integrity of the sodium leak detection circuit. This, coupled with a periodic visual check, should reduce the occurrence of false alarms and failures to detect actual leaks.

Sodium leak detectors have had a poor performance record in the past due to improper design. Short circuits were common because of the manner in which the wiring and sensors were installed; this problem should be considered during system design.

b. Pressure Switches

(1) Reliability Information

Design Features:

Sensors utilizing mechanical tubing with liquid or gaseous media.

Critical Characteristics:

- 1) Sensor diaphragms
- 2) Seals
- 3) Welds
- 4) Fittings.

Mode of Failure:

- 1) Fatigue and cracking of capillary tube
- 2) Leakage of feedwater through sensing line fittings
- 3) Leakage of feedwater through union gasket
- 4) Leakage of liquid sodium through ruptured transmitter diaphragm
- 5) Leakage of liquid sodium through faulty weld on sodium level detector
- 6) Plugging of sodium flow by solid sodium on level controller.

Failure Description:

- 1) Capillary tube on high-temperature discharge safety switch cracked, allowing part of sensing bulb fluid to escape and causing compressor shutdown.
- 2) Sensing line tubing of flowmeter leaked at mechanical fitting.
- 3) Union gasket on flow sensor for low pressure feedwater leaked.
- 4) Feedwater leaked through unions and O-rings on both legs of flow transmitter.
- 5) Transmitter diaphragm in sodium purification system ruptured.
- 6) Sodium backed up into faulty weld of sodium level indicator, leaked out, and caused fire.

- 7) Sensing line for sodium level controllers blocked by solidified sodium.
- 8) Low sodium flow through gas heater resulted from pump bubbler tube being plugged with solid sodium, causing gas bubble in primary sodium system.

Control Methods

- 1) Provide flexible installation for capillary tube.
- 2) Relocate high-temperature discharge safety switch.
- 3) Upgrade fabrication and installation procedures for tubing and fittings.
- 4) Implement preventive maintenance program to include inspections of regions susceptible to vibration damage, so that deterioration may be identified and corrected prior to the occurrence of failures.
- 5) Include the study of tubing fabrication and installation techniques in personnel training.
- 6) Implement more stringent quality control procedures for welds, such as RDT standard RDT-F6-1.
- 7) Include the consideration of flexible sensing lines in trade-off studies and design reviews.

(2) Discussion and Recommendations

Refer to Paragraph 9.a.(2).

c. <u>Sodium Leak Detectors</u>

(1) Reliability Information

Design Features:

Electrodes are placed in the expected path of leaking sodium such that, when a sufficient quantity accumulates to contact both electrodes, an electric current flows to an indicator.

Critical Characteristics:

- 1) Tip corrosion
- 2) Probe location.

Mode of Failure:

Open circuit.

Failure Description:

- 1) Corrosion of tip causes electrical discontinuity.
- 2) Accidental mechanical damage breaks electrical contact.

Control Methods:

- 1) Use corrosion-resistant material for probe tips.
- 2) Provide protective enclosure for probes, to minimize the probability of inadvertant mechanical damage.
- 3) Implement preventive maintenance and/or inspection procedures for early detection of failures.

(2) Discussion and Recommendations

Refer to Paragraph 9.a.(2).

TABLE 1-157

FAILURE DATA FOR <u>SENSORS (OTHER THAN RADIATION</u>) (Sheet 1 of 3)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	ΙΤΕΜ	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	1	 Sensor/Thermocouple Instrumentation and Control/Intermediate Heat Exchanger 66 262220 	 HNPF IHX-3 - Freeze No. 13 3-10 psi helium when draining sodium, 200 to 350°F, 3 in. Work request No. 2621 	MI 148	MI 43	MI 530	3250	Operational monitors	 Thermocouple worked loose. Local repair, reconnected thermocouple. Upgrade Quality Assurance inspections during system construction.
LMEC-Mer 1-	2	 Sensor/Resistance Thermometer Instrumentation and Control/Reactor Coolant 66 262110 	1. EBR-II 2. Primary/pump M-1 3. 208-700°F 4. ANL report No.2115	MI 154	MI 15	MI 510	3410	Operational monitors	 Circuit shorted to other circuit. None. None.
LMEC-Memo-69-7, Vol I 1-485	3	 Sensors/Thermocouple Instrumentation and Control/Shield Temperature Monitoring 66 261210 	1. EBR-II 2. Reactor vessel cover 3. – 4. ANL report No. 7017	MI 125	MI 52	MI 530	13,400	Preventive main- tenance	 Clutch inoperative. Part replaced. None.
	4	 Sensor/Pressure Switch Instrumentation and Control/Fire Control 66 267100 	 SCTI Air preheat - Incident report No. 5 	MI 333	MI 24	MI 112	940	Operational monitors	 PS-703 correctly sensed forced draft fan failure due to inappropriate adjustment. Local repair pilots relighted. Review heater temperature increase procedure.
	5	 Sensor/Pressure Switch Instrumentation and Control/Fire Control 66 267100 	 SCTI Air preheat - Incident report No. 6 	MI 333	MI 24	MI 112	960	Operational monitors	 PS-703 correctly sensed forced draft fan failure due to inappropriate adjustment. Local repair, pilots relighted. Review heater temperature increase procedure.
	6	 Sensor/Sensing Ele- ment Instrumentation and Control/Preheating 66 261360 	 SCTI Preheat air system switch TS-2 to compressor 400-550°F, set at 460°F Incident report No. 339 	MI 127	MI 61	MI 530	11,000	Operational monitors	 Capillary tube on high temperature discharge safety switch cracked, allowing part of sensing bulb fluid to escape, causing compressor shutdown. Temporary repair. Vibration should be considered when any controlling device is installed.
ļ	*	= INCIDENT	MI = MINOR MALFUNCTION				L		l

I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

FAILURE DATA FOR <u>SENSORS (OTHER THAN RADIATION</u>) (Sheet 2 of 3)

Γ		 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAIL	URE IN CODE*	DEX			1. FAILURE DESCRIPTION
Т	ΕM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	7	 Sensor/Sensing Element Instrumentation and Control/Preheating 66 261360 	 SCTI Preheat air compressor A-5A 400 to 550°F Incident report No. 8 	MI 57	MI 41	MI 112	2030	Operational monitors	 Sensing element of Mercoid switch failed, possibly due to excess vibration. Local repair. Do not install control instruments where exposed to vibration. Check new equipment for this feature (LMEC executed).
	8	 Sensor, Flowmeter/ Sensing Linetube Instrumentation and Control/Feedwater 66 268400 	 EBR-II Feedwater heater No. 4 Shellside = 480°F - 1250 psig Tubeside = 565°F - 1500 psig Maintenance report, 4/18/68 	MI 326	MI 52	MI 530	14,150	Direct observation	 Tubing leaked at a mechanical fitting. Part replaced. None.
TMEC-Mano-69-7 Vol I	9	 Flow Sensor/Pipe Union Instrumentation and Control/Feedwater 66 268400 	 SCTI Steam and feedwater system - Incident report No. 301 	MI 136	MI 53	MI 570	6025	Direct observation	 Union gasket on low pressure side leaked. Isolated flow transmitter to stop leak. New pressure gasket and union installed. None.
	0	 Sensor (Flow)/Flange Instrumentation and Control/Feedwater 66 268400 	 SCTI Feedwater system - Incident report No. 115 	MI 326	MI 53	MI 530	5630	Direct observation	 Unions and flange bolts improperly torqued; feedwater leak at both legs of flow transmitter. Local repair, unions replaced and new O-rings installed. Design and field inspection for gasket material and torque flange connections should be specified.
	1	 Sensor/Transmitter Diaphragm Instrumentaion and Control/Purification 66 262420 	 EBR-II Sodium purification system 300 to 500°F Maintenance report, 4/18/68 	MI 500	MI BZ	MI 530	14,150	Operational monitors	l. Diaphragm ruptured. 2. Local repair. 3. None.
]	2	 Sensor/Sensing Line Heat Transfer/Main Coolant Loop 66 262110 	 SCTI Primary sodium pump (P-5)/sodium level indicator controller LIC-100 300°F Incident report No. 87 	I 348	I 61	I 45	827	Direct observation	 Sodium backed up into unsuspected faulty weld and leaked out, causing fire. Weld joint repaired. Improve Quality Assurance procedures on welding tubing.
Ļ			MI = MINOR MALFUNCTION			I			

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-157</u>

FAILURE DATA FOR <u>SENSORS (OTHER THAN RADIATION</u>) (Sheet 3 of 3)

	 COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION	FAI	LURE INDEX CODE*				1. FAILURE DESCRIPTION
ITEM	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	 Sensor/Sensing Line Heat Transfer System/ Main Coolant Loop 66 262110 	 SCTI Primary sodium pump (P-5)/ sodium level indicator controller LIC-100 - Incident report No. 81 	MI 174	MI 51	MI 550	613	Operational monitors	 Sensing line for level controllers blocked by solidif sodium. Pump casing disassembled and line removed and cleaned. Install heaters on line.
	 Sensor/Level Control Tube Instrumentation and Control/Reactor Coolant 66 262110 	 SCTI Primary sodium pump (P-5) - Incident report No. 135 	I 500	I 51	I 520	4722	Operational monitors	 Low sodium flow through gas heater caused by pum bubbler tube being plugged with solid sodium causin gas bubble in primary sodium system. Modified level controller (pump bubbler tube). None.
	 Sensor/Level Probe Instrumentation and Control/Intermediate Coolant Vessel 66 262210 	 HNPF Secondary/No.2 expansion tank level alarm - Monthly operating report No. 13 	MI 127	MI 86	MI 530	4450	Direct observation	 Probe oxidized, faulty. Component corrective modification. Determine cause of oxidiation and determine if replacing part with like part is sufficient.
	 Sensor/Leak Detector Probe Tip Instrumentation and Control/Reactor Coolant 66 262110 	 Fermi Containment building LE-250-5 in. throttle valve No.3 loop - EF report No. 33 	MI 130	MI 94	MI 530	14,708	Direct observation	 Probe tip corrosion damage. Design change. Use corrosion resistant material for probe.
	 Sensor/Sodium Leak Detector Instrumentation and Control/Purification 66 262420 	 Fermi FARB/cold trap system FSV-101 - PRDC-EF report No. 54 	MI 161	MI 12	MI 530	14,941	Operational monitors	 Detector burned out. Local repair. None.

TABLE _1-158

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT SENSORS (OTHER THAN RADIATION)

COMPONENT SUBTYPE PRESSURE SENSORS 70 FAILURES (%) 0 40 50 60 80 <u>90 100</u> 10 20 30 **Component Test Facility** PLANT TYPE Nuclear Test Reactor Instrumentation and Control Heat Transfer System SYSTEM Sensing Line Pressure Switch Sensing Element COMPONENT PART Sensing Line Tube Pipe Union Flange Transmitter Diaphragm Level Control Tube Environmental Human error CAUSE Unknown Electrical MODE Mechanical Metallurgical Other Unknown Acceptable incipient damage EFFECT Plant availability loss Labor and material loss only System/component inoperative No effect

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT SENSORS (OTHER THAN RADIATION)

	COMPONENT SUBTYPE RELUCTANCE				-		. -	· -		
PLANT TYPE	Nuclear Power Reactor	FAILURES (%)	0 2	30 4	0 5	50 (0 7	0 8	0 9	0 10
SYSTEM	Instrumentation and Control									
COMPONENT PART	Level Probe Sodium Leak Detector									
CAUSE	Environmental									
MODE	Metallurgical Metal corrosion Electrical		1							
EFFECT	Labor and material loss only									

TABLE <u>1-160</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT SENSORS (OTHER THAN RADIATION)

COMPONENT SUBTYPE TEMPERATURE SENSORS

		FAILURES (%)	0 1	0 2	0 3	0 4	0 5	0 6	0 7	0 8	09	0 100										
	Nuclear Test Reactor								_													
NA NA	Nuclear Power Reactor					-					1											
PLANT TYPE		·	[1	Í															
			L	l			L															
	Instrumentation and Control								_													
N			ļ]	ļ]	ļ															
SYSTEM]		ļ	1		[
∑		<u></u>	4	[1		Í			l												
			ļ				1	1														
1 1			ļ		}			}]												
				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ļ	<u> </u>										
	Thermocouple																					
	Resistance Thermometer	<u></u>						[({											
L L			4	l	1	({	ł												
PA			ł	}	1		ł	l		1												
1			ł	1		1				ļ												
COMPONENT PART			4	}		1	ļ	Ì														
MP(ł	ļ								1										
00		<u>.</u>	ł	ĺ	Ì		[ſ												
			1		ĺ										ļ	1	((I		(
															{					Ì		
							ł															
	Environmental																					
1	Environmental																					
CAUSE						ĺ				Ì												
CA																						
						ļ																
									_													
	Electrical																					
ш	Mechanical					_				ļ	5											
MODE	Other				_																	
≥																						
					l																	
	Acceptable incipient damage																					
5	Labor and material loss only										1											
EFFECT											1											
5																						
										[

TABLE <u>1-161</u>

GENERAL SUMMARY

COMPONENT SENSORS (OTHER THAN RADIATION)

	COMPONENT <u>SENSORS (OTHER THAN RADIA</u> TION) FAILURES (%) 0	. 1	10	20	30)	40	50	6	0	70	80	90	100
	Environmental	-			Í		Ť			Ť	Ť	Ť	<u> </u>	Ť
1	Human error					_								
Ш.	Unknown	, ,												
CAUSE			Ţ							1		}		
0													Ì	
										{				
	Electrical		-	-	•		T	<u> </u>		Τ				
Ι	Mechanical	2:0	-	-	_	_	+	Ì		1		}		
MODE	Metallurgical	isia ugudi	┿							[
2	Other		-	-							1			
	Unknown													
	Acceptable incipient damage		-		•		Τ			Γ	T		Τ	
5	Plant availability loss		+					ĺ		ļ				
EFFECT	Labor and material loss only	÷	-	_		_	+	_						
Ш	System/component inoperative									}				
	No effect													
·	TOTAL FAILURES PER TYPE 0		2	4	6		8	10	1	.2	14	16	18	_20
	Sensors, temperature		-				T			Γ				
1	Sensors, pressure						-			İ.				
	Sensors, reluctance and conductivity		-				1							
										1				1
								Í						1
			1	1				1						
	OPERATING HOURS (THOUSANDS) 0 Sensors, temperature	لـ س	.0 L	20	<u>30</u>		40 1	<u>50</u>		50 	70	80	90	100
	Sensors, pressure					_		_	_	Ļ				
	Sensors, reluctance and conductivity			_			1	`						
түре														
≿			1										Į	
							Ì	.]			1 I			
					Ì						1 I			
	FAILURE RATE (FAILURES/10 ⁶ hr) 0	2	20	40	60		80	100	1	20	140	160	180	200
	Sensors, temperature		t i	-		-	Ţ.		T.	<u>İ</u>		Ĩ	Ĩ	٦Ť
, '					1			┢╼┿╸		\vdash	_	_		
	Sensors, pressure				1 - 1									
	Sensors, pressure Sensors, reluctance and conductivity		┝╍┥			-	+		-					
						+	+							

10. Sensors (Radiation)

Failure data for sensors (radiation) are presented in Tables 1-162 through 1-165.

- a. Neutron Monitor
- (1) Reliability Information

Design Features:

Designed to provide a direct current proportional to neutron flux level and independent of gamma flux level.

Mode of Failure:

- 1) Excessive leakage current due to deterioration of insulation.
- 2) Loss of sensitivity due to burn-up of neutron sensitive material.
- 3) Loss of hermetic seal.

Failure Description:

Radiation to electrical insulator.

Control Methods:

- 1) Conduct development program to identify improved materials and fabrication processes.
- 2) Prepare specifications to require improved materials, processes, quality control, and testing procedures.
- 3) Until results of the development program are available, all insulators should be of inorganic type.
- 4) Use only alumina, beryllia, magnesia, or mica insulators until the results of a development program are known.

(2) Discussion and Recommendations

None.

b. Fission Gas Monitor

(1) Reliability Information

Design Features:

Designed to collect fission fragments found in the cover gas. The radioactivity thus concentrated is monitored to detect the release of fission fragments into the cover gas.

Mode of Failure:

- 1) Failure of the high-voltage power supply
- 2) Failure of the particle counter
- 3) Failure of the mechanical drive mechanism gears
- 4) Failure of the wire by tangling in take-up assembly.

Failure Description:

- 1) Wire knotting problem
- 2) Gears jammed on take-up reel.

\frown

Implement procedure for scheduled inspection and preventive maintenance.

(2) Discussion and Recommendations

None.

Control Methods:

TABLE 1-162

FAILURE DATA FOR <u>sensors</u> (radiation)

[COMPONENT/PART SYSTEM/SUBSYSTEM 	1. FACILITY 2. COMPONENT LOCATION		LURE INDEX CODE*				1. FAILURE DESCRIPTION
	ITEM	 CODE: (Component) (System/Subsystem) 	3. OPERATING CONDITIONS	CAUSE	MODE	EFFECT	OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	- 1	 Sensor/Compensated Ion Chamber Instrumentation and Control/Neutron Monitor System 67 261110 	1. EBR-II 2. Channel No. 4 3 4. ANL-7193	MI 500	MI BZ	MI 530	4955	Preventive maintenance	 Radiation damage to the electrical insulators. Part replaced, with others having mica-alumina insulators which offer protection against radiation damage. Development program should be initiated to obtain a suitable insulator.
LMEC-Mer l-	2	 Sensor/Compensated Ion Chamber Instrumentation and Control/Neutron Monitor System 67 261110 	1. EBR-II 2. Channel No.5 3 4. ANL-7193	MI 500	MI BZ	MI 530	4955	Preventive maintenance	 Radiation damage to the electrical insulators. Part replaced, with others having mica-alumina insulators which offer protection against radiation damage. Development program should be initiated to obtain a suitable insulator.
LMEC-Memo-69-7, Vol I 1-494	3	 Sensor/Compensated Ion Chamber Instrumentation and Control/Neutron Monitor System 67 261110 	1. EBR-II 2. Channel No.6 3. 4. ANL-7193	MI 500	MI BZ	MI 530	4955	Preventive maintenance	 Radiation damage to the electrical insulators. Part replaced, with others having mica-alumina insulators which offer protection against radiation damage. Development program should be initiated to obtain a suitable insulator.
	4	 Sensor/Compensated Ion Chamber Instrumentation and Control/Neutron Monitor System 67 261110 	1. EBR-II 2. Channel Noc.7 3. 4. ANL-7193	MI 500	MI BZ	MI 530	4955	Preventive maintenance	 Radiation damage to the electrical insulators. Part replaced, with others having mica-alumina insulators which offer protection against radiation damage. Development program should be initiated to obtain a suitable insulator.
	5	 Sensor / Takeup Gears Instrumentation and Control / Fuel Element Failure Detection 67 261140 	2. Primary system/fission gas monitor	MI 500	MI 59	MI 530	14,650	Direct observation	 Gears jammed on takeup reel. Part replaced. Upgrade preventive maintenance effort.
	6	 Sensor Ext./Wire Reel Instrumentation and Control/Fuel Element Failure Detection 67 261140 INCIDENT 	2. Primary system/fission gas monitor	MI 500	MI 56	MI 550	14,674	Protective system	 Wire knotting problem. Corrective modification, adjusted travel switches. Upgrade preventive maintenance effort.

MI = MINOR MAL MA = MAJOR MALFUNCTION P = PROBLEM

.

1

TABLE <u>1-163</u>

.

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT SENSORS (RADIATION)

	COMPONENT SUBTYPE FISSION GAS MONITOR		-		 	~ F	• • •	o 7			
PLANT	Nuclear Test Beactor	RES (%)		0 2	30 4		0 6	0 7	08	30 9	
SYSTEM	Instrumentation and Control										
COMPONENT PART	Take Up Gear Wire Reel										
CAUSE	Unknown										
MODE	Mechanical										
EFFECT	Labor and material loss only System/component inoperative										

TABLE <u>1-164</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT SUBTREE NEUTRON MONITOR SYSTEM

	COMPONENT SUBTYPE	0 1	0 2	0 3	<u>50 4</u>	0 5	0 6	0 7	80	0 9	0 10
PLANT TYPE	Nuclear Test Reactor										
SYSTEM	Instrumentation and Control										
COMPONENT PART	Compensated Ion Chamber										
CAUSE	Unknown										
MODE	Unknown										
EFFECT	Labor and material loss only										

TABLE 1-165

GENERAL SUMMARY

	COMPONENT SENSORS (RADIATION)											
	FAILURES (%	<u>) (</u>	10	20	30	40	50	60	70	80	<u>90</u>	100
ш												
CAUSE					1							
Ċ												
	Unknown											
	Mechanical											
MODE										1		
о W												
	Unknown											
										\pm	=	
۲	Labor and material loss only	C										
EFFECT	System/component inoperative			-								
L L												
۳	· · · · · · · · · · · · · · · · · · ·											
		<u>_</u>	1	2		4	5	6	7	8		 1
	TOTAL FAILURES PER TYP			<u> </u>	<u> </u>	4. 			$-\dot{1}$	<u> </u>		
	Neutron monitor system Fission gas monitor											
	Fission gas monitor	[
	and the second											
t												
	· · · · · · · · · · · · · · · · · · ·											1
			.									
	OPERATING HOURS (THOUSAND	S) 0	5	10	15	20	25	30	35	40	45	5
ł	Neutron monitor system								T		Ť	
ľ	Fission gas monitor	i_				_						
ĺ												
TΥPE	·											
F	······································											
	·											
ļ												
ļ												
	FAILURE RATE (FAILURES/10 ⁶	hr) 0	50	100		200	250	300	350	400	450	50
	Neutron monitor system		┿╍┿╍			++						
	Fission gas monitor											
	· · · · · · · · · · · · · · · · · · ·					11						
ŀ												
ŀ												
	الله ويورب الله											
-	· · · · · · · · · · · · · · · · · · ·											
I			E	1 1		1	1 1	1 1	1 1	1 1	1 1	

11. Wiring and Connectors

Failure data for wiring and connectors are presented in Tables 1-166 through 1-170.

a. Reliability Information

Design Features:

All electrical wiring, both power and control, is dependent on proper installation, adequate current-carrying capacity, mechanical protection, proper insulation, and proper termination. Most of these requirements are met by compliance with the appropriate electrical code.

Mode of Failure:

- 1) Short between conductors or to ground
- 2) Insulation failure
- 3) Improper installation
- 4) Inadequate wire size.

Failure Experience

- 1) Six malfunctions due to short circuits
- 2) Two cases of insulation failure
- 3) Three malfunctions due to poor workmanship
- 4) One failure due to inadequate wire size.

Control Methods:

- All electrical work should be performed by qualified electricians. It should be carefully inspected to assure compliance with code. Many, if not most, electrical wiring malfunctions are due to improper or careless installation.
- 2) Care should be taken to use the proper type of insulation if environmental conditions are extreme, such as high temperature or high radiation.
- 3) Wiring changes should be made only with the concurrence of qualified engineering personnel.

b. Discussion and Recommendations

Most of the reported wiring malfunctions cannot be properly evaluated due to lack of detailed information. The nature of most of the malfunctions tends to place them in certain well known failure categories, which emphasizes the need for taking equally well known precautions.

The best way to avoid the bulk of wiring failures is to install all electrical work in accordance with the applicable electrical code. The National Electrical Code should be used in any area which does not have a state or local code which replaces the NEC.

In locations which expose wiring to high temperatures, care must be taken to use the proper insulation. Few insulating materials are approved for more than 200°C. When temperatures greater than this are encountered, MI cable or special cooling must be provided.

Splices and terminations must be properly insulated and protected. Approved connectors and terminals must be used to ensure good, low-resistance contact. Shielded conductors must be used when appropriate in both signal circuits and high-voltage power circuits. The failure to properly terminate a shielded power cable in a pothead or with a stress cone can result in a dangerous flash-over.

Loose wiring connections can cause many malfunctions. In power circuits, loose wiring may be a source of heat which can damage insulation or cause flase tripping. In signal circuits a loose connection can cause a system malfunction. For these reasons, good workmanship and inspection are necessary.

TABLE _______

FAILURE DATA FOR WIRING AND CONNECTORS (Sheet 1 of 3)

ſ		1		1. FACILITY 2. COMPONENT LOCATION		URE IN CODE*	DEX			1. FAILURE DESCRIPTION
	TEM	3	. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	1	2.	Wiring and Connectors/ Control Wire Accessory Electrical Equipment/Power Wiring 68 450000	 EBR-II Primary/pump No. 2 A. Operations monthly report 4/6/68 	MA 500	MA 15	MA 520	14,024	Protective system	 Wire shorted. Local repair. None.
	2		Wiring and Connectors/ Rectifier Lead Accessory Electrical Equipment/Power Wiring 68 450000	 EBR-II Primary pump/control 4. Maintenance report 4/18/68 	MI 500	MI 15	MI 520	14,150	Protective system	 Shorted load. Local repair. None.
	3	2.	Wiring/Power Cord Accessory Electrical Equipment/Power Wiring 68 450000	 EBR-II Reactor/subassembly hold-down 4. Operations maintenance report, 9/18/68 	MI 500	MI 59	MI 530	15,240	Direct observation	 The power feed cord was found damaged. Part replaced. None.
	4	2.	Wiring/Cables Accessory Electrical Equipment/Power Wiring 68 450000	 Fermi Cask car Ambient to 350°F argon atmosphere EF-29 	MI 15Z	MI 13	MI 530	13,368	During actuation	 Cables shorted. Parts replaced. None.
	5	2.	Wiring and Connectors/ Leads Accessory Electrical Equipment/Power Wiring 68 450000	 HNPF Reactor atmosphere monitor pump/ motor Monthly operating report No. 33 	MI 324	MI 12	MI 530	10,130	Direct observation	 Motor leads burned out. Local repair. None.
	6 * 1	2. 3.	Wiring/Insulation Accessory Electrical Equipment/Power Wiring 68 450000	 SCTI Drain line 607 Incident report No. 70 All = MINOR MALFUNCTION	MI 156	MI 13	MI 530	4,100	Loss of drain flow	 Electrical insulation (plastic) melted because of wire location. Replaced and relocated wires. High-temperature insulation should be installed.

* I = INCIDENT MI = MINOR MALFUNCTIONMA = MAJOR MALFUNCTION P = PROBLEM

_				·					
		 COMPONENT/PART SYSTEM/SUBSYSTEM 	 FACILITY COMPONENT LOCATION 		URE IN CODE*				1. FAILURE DESCRIPTION
	TEM	3. CODE: (Component) (System/Subsystem)	 OPERATING CONDITIONS SOURCE DOCUMENT 	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	7	 Wiring/Connections Accessory Electrical Equipment/Power Wiring 68 450000 	 SCTI Primary sodium system, sodium pump P-5 480 volts Incident report No. 307 	MI 148	MI 14	MI 530	Unknown	Protective system	 Line connections to circuit breaker loose. Connections tightened. Improve training for electrical maintenance personnel.
LMEC.	8	 Wiring/Conductor and Disconnects Miscellaneous Equip- ment/Other Power Plant Equipment 68 530000 	 SCTI Substation No. 756 power Incident report No. 310 	I 161	I 17	I 520	4,518	Direct observation	 Starting current caused cable to overheat when boiler feed pump was turned on. Amps required beyond cable capacity. 4160-volt cables to manual disconnect replaced. Larger cables installed. None.
LMEC-Memo-69-7. Vol I	9	 Wiring/Connector Accessory Electrical Equipment/Power Wiring 68 450000 	 SCTI Primary sodium system/heater (H-1) fan motor Incident report No. 319 	MI 324	MI 25	MI 550	13,415	During activation	 Fan motor would not start. Circuit found connected improperly. Circuit wiring corrected. Improved maintenance procedures.
/ol I	10	 Wiring and Connectors, Ion Chamber Signal Cable Instrumentation and Control/Neutron Monitoring 68 261110 	 EBR-II Nuclear channel No. 9 Weekly maintenance report 5/21/68 	MI 600	MI 13	MI 520	14,650	Protective systems	 Channel grounded. System design change, RG/149U cable was replaced with an amphenol No. 421-010. None
	11	 Wiring and Connectors, Ion Chamber Signal Cable Instrumentation and Control/Neutron Monitoring 68 261110 	 EBR-II Thimble No. J2 4. Weekly maintenance report 5/21/68 	MA 600	MA 13	MA 520	14,650	Protective systems	 Channel grounded. System design change, RG/149U cable was replaced with an amphenol No. 421-010. None
L					L				

* I = INCIDENT MI = MINOR MALFUNCTION MA = MAJOR MALFUNCTION P = PROBLEM

LMEC-Memo-69-7, Vol I 1-501

FAILURE DATA FOR WIRING AND CONNECTORS (Sheet 2 of 3)

TABLE <u>1-166</u>

TABLE <u>1-166</u>

FAILURE DATA FOR WIRING AND CONNECTORS (Sheet 3 of 3)

		1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM	1. FACILITY M 2. COMPONENT LOCATION	FAIL	URE IN CODE*		OPERATING		1. FAILURE DESCRIPTION	
ITE	М	3. CODE: (Component) (System/Subsystem)	3. OPERATING CONDITIONS 4. SOURCE DOCUMENT	CAUSE	MODE		OPERATING HOURS	METHOD OF FAILURE DETECTION	2. CORRECTIVE ACTION 3. RECOMMENDATIONS	
]		 Wiring/Flowmeter Leads Instrumentation and Control/Intermediate Coolant Loop 68 262210 	 SRE Main secondary sodium system Incident report 9/10/58 	MI 128	MI 44	MI 520	Unknown	Operational monitors	 Flowmeter signal erratic due to intermittent ground of leads. Local repair of flowmeter lead insulation. None. 	
		 Wiring/Junction Box Instrumentation and Control/Heat Transfer 68 262110 	 SCTI Primary sodium system, pump electrical circuitry Incident report No. 64 	MI 344	MI 13	MI 157	Unknown	Operational monitors	 One electrical lead to the primary sodium pump shorted to ground in the motor junction box when start-up of pump was attempted. Local repair, cable isolated from ground. Improve electrical maintenance procedure. 	
mo-69-7, Vol I		 Wiring and Connectors Insulation Accessory Electrical Equipment/Power Wiring and Conduit 68 450000 	 MI = MINOR MALFUNCTION 	MI 247	MI 18	MI 530	9,925	Periodic circuit check	 Conduit junction box seal deteriorated permitting moisture to enter box causing insulation to get wet. Local repair. Check weather tight fittings periodically. 	

* I = INCIDENT MI = MINOR MAL MA = MAJOR MALFUNCTION P = PROBLEM

TABLE <u>1-167</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT ______ WIRING AND CONNECTORS

COMPONENT SUBTYPE	CONNECTORS	
Source and Source		

		FAILURES (%)	0 1	0 2	0 3	0 4	<u>0 5</u>	0 6	0 7	08	0 9	0 10			
PLANT TYPE	Component Test Facility														
SYSTEM	Instrumentation and Control Accessory Electrical Equipment														
\square	Junction Box			0			<u> </u>	<u> </u>	<u> </u>						
ART	Insulation			21) 1											
COMPONENT PART		· · · · · · · · · · · · · · · · · · ·													
COMF															
						1									
	Environmental							1	[
CAUSE	Human error														
	Electrical					1									
MODE							}								
EFFECT	Labor and material loss only														
	······································		1												

TABLE <u>1-168</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT WIRING AND CONNECTORS

	COMPONENT SUBTYPE POWER WIRING		. 10	20	20	40	50	60 7	0 80	90	100
PLANT TYPE	Nuclear Test Reactor Nuclear Power Reactor Component Test Facility	FAILURES (%) (20	30	40				90	
SYSTEM	Accessory Electrical Equipment Miscellaneous Equipment										
COMPONENT PART	Control Wire Rectifier Wire Power Cord Cables Leads Insulation Connections Conductors and Disconnects Other										
CAUSE	Environmental Human error Unknown										
MODE	Electrical Mechanical										
EFFECT	Plant availability loss Labor and material loss only System/component inoperative										

TABLE <u>1-169</u>

FAILURE DISTRIBUTION FUNCTIONS

COMPONENT WIRING AND CONNECTORS

		FAILURES (%)	0 1	0 2	0 3	0 4	0 5	0 6	0 7	08	09	0 10
PLANT TYPE	Nuclear Test Reactor											
SYSTEM	Instrumentation and Control											
COMPONENT PART	Ion Chamber Signal Cable Flow Meter Leads											
CAUSE	Environmental			<u>, , , , , , , , , , , , , , , , , , , </u>								
MODE	Electrical			1 8. 1 9								
EFFECT	Plant availability loss											

TABLE <u>1-170</u>

,

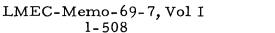
GENERAL SUMMARY

ш Hu		0	10	20		30	40	5	0	60	70	8	0	90	100
Hu	vironmental	F				—									
CAUSE	iman error	7		╺╼┿											1
CAU	known	7				+									
		7													
		7													
		1													
FL	ectrical	Tran		_		1		_						-	
	echanical	╧┝╼╼													
Me WOD		1													
ž –		-	1											[
	· · · · · · · · · · · · · · · · · · ·	1													
	ant availability loss	+=				<u> </u>	T			+	- +			╈	=
	and availability loss only				_										
	stem/component inoperative														
	stem/component moperative	-	_			1					1			1	
"		-													
L1	TOTAL FAILURES PER TYPE	0	1	2		3				6	 7		⊾	9	10
P.	wer wiring	Ť.		. Ī	_	Ī	-			Ť			_		
	gnal wiring	1													
(onnectors			_							ł				
		1		1											
		7	ļ												
		1												ſ	[
				l l						1					
		7													
		7													
		٦				1									
	OPERATING HOURS (THOUSANDS)	0	10	20)	30	40	5	0	60	70	8	0	90	100
	ower wiring	Ť.	-						-		_		_		
	gnal wiring	┶		-	_	-l					1			ļ	
	onnectors	-↓	_												
		7													
w		1									- 1				
TYPE		7													
		1													
		7		[1				1			1	ľ
		-													
		1									ļ			}	
	FAILURE RATE (FAILURES/10 ⁶ hr)		100	20	0 3	200	400	50	0	600	700	<u> </u>		900	1000
	FAILORE RATE (FAILORES/10 III)	Ť			Ť	Ť		<u> </u>	ŕτ		TŤ	Ϋ́	ΪT	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>
															1 1
	ower wiring	-													
Sij	ower wiring gnal wiring	E													
Sij	ower wiring	F						ł							
Sij	ower wiring gnal wiring														
Sij	ower wiring gnal wiring														
Sij	ower wiring gnal wiring														
Sij	ower wiring gnal wiring														
Sij	ower wiring gnal wiring														

II. SYSTEM-ORIENTED COMPONENT FAILURES

A. GENERAL

The data presented in this section are also included in Section I. These events have been selected for special attention since the cause of failure is more properly described as a source external to the component. Without this external problem source, no corrective action would be required for the component. The type of corrective action taken singles out this class of failure. These corrective actions are, in general: design modifications to other components or to the system to eliminate the problem source, protective system addition to affected component, monitoring device addition (i. e., vibration detector), and operational procedures modification to avoid the potential of human error.


All existing system-caused failures listed in Section I have been retabulated in this section with respect to the system or subsystem classified in Volume II to which the cause of failure can be traced. All other externally-caused failures attributable to system inadequacy or non-existing protective systems are separately tabulated. The system/subsystem was selected as the primary reference since nearly all of this class of failures can be traced to system design problems. However, equipment failure is sometimes only remotely related to system design and performance, and is attributable to human error. It is assumed that the depth of information in this category is very limited but should improve as an effective event reporting system becomes operative. With respect to system failure rates, few of these early data may be classified as random, and many years of data collection will be required before reliable system failure rate data on liquid metal systems will be available for use with a reasonable level of confidence.

B. FAILURES DUE TO EXISTING SYSTEM ACTION

Typical causes of existing system-oriented failures include human operating errors, incorrect installation of components or failure of other components. The corrective action required for these types of failures would necessitate design changes or modification to systems or components in Tables 1-171 through 1-187.

C. FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

Typical causes of nonexistent system-oriented failures include: (1) improper design of a component that results in the failure of a related component, (2) use of inadequate operating or maintenance procedures, and (3) lack of the necessary protective device or system to assure proper component or system operation. These types of failures are tabulated by components in Tables 1-188 through 1-202.

COMPONENT AIR DRYERS

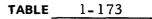

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1–127</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
I Ic	 Air Dryer/Gasket Instrument Air Supply/ Air Dryer 26 540000 	1, 2	9758	2		 Bottom gaskets on the "Poro-Stone" filters in both desiccant dryers were too hard to permit sealing; filter or dryer unit leaked particles of Poro-Stone in air line causing faulty operation of several valve operators. New gaskets installed, instrument air headers cleaned, and valve operators removed, cleaned, and replaced. Add regular inspection of air dryers to maintenance schedule.

TABLE <u>1-172</u>

COMPONENT COMPRESSORS

LMEC-Memo- 1-510	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1 - 133</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
69	 Compressor Air/Head Gasket Miscellaneous Equipment/ Instrument Air Supply 25 540000 	8, 9, 12, 17	17914	4		 Insufficient and uneven torque on head bolts caused air leak. Gasket replaced. Upgrade maintenance procedure to specify a bolt torquing sequence and torque require- ments.
	 Compressor Air/Valve Miscellaneous Equipment/ Instrument Air Supply 25 540000 	10, 11, 15,16	27130	4		 Dirt and/or moisture caused value to stick. Values removed, cleaned, replaced. Revise preventive maintenance procedure by adding a requirement to clean intake air filter in order to prevent recurrence.

COMPONENT CONTROLLERS

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-139</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol 1-511	 Controller/Switch Instrumentation and Control/Heat Transfer 65 262210 	11	115	1		 Operator accidentally grounded electrical wiring on valve actuator switch during the inspection. No repair; restarting of burners and primary pump. Improve training of operator personnel.
I	 Controller/pH Instrumentation and Control/Cooling Water 65 269630 	21	6729	1		 Operator left acid feed pump switch in manual position instead of auto, causing low pH readings on pHr-300 meter. Proper amount of NaOH flakes added to cooling tower basin water. Closer operator vigilance and adequate training required.

COMPONENT DEMINERALIZERS

FAILURE DUE TO EXISTING SYSTEM ACTION

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-1</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
Memo-69-7. V	 Demineralizer/Plastic Pipe Feedwater Supply and Treatment/Condensate Demineralizer 53 273200 	3	4175	1		 Piping manifold inadequately supported. Plastic influent header manifold replaced by stainless steel flange and manifold. Improve quality assurance on original installation.
Vol I	 Demineralizer/Acid Inlet Header Feedwater Supply and Treatment/Demineralizer 53 272200 	5	6300	1		 Weld holding acid inlet header support bracket to tank broke allowing header to tear loose from tank. Substituted header (stainless steel flanges) and rewelded bracket of improved design. Improve bracket design - replace plastic flange by stainless steel.

COMPONENT ELECTRICAL GENERATORS (EMERGENCY AND AUXILIARY)

FAILURE DUE TO EXISTING SYSTEM ACTION

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-23</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
mn = 69 = 7 Vol	 Electrical Generators/ Wiring Accessory Electrical Equipment/Emergency 57 462100 	15	58	1		 Maintenance personnel hit wires while lowering air filter causing short circuit in wiring. Replaced damaged wiring. None.
Ż	 Generator/Emergency Diesel Accessory Electrical Equipment/Emergency Diesel Generators 57 462100 	17, 18	1200	1		 Human error. Diesel started, loaded normally, stopped, and could not be restarted. The diesel control switch had to be switched to the off position, then to standby. This was not known by the operating personnel. Operational procedure change. Upgrade operator training on diesel engine operation.

COMPONENT FILTERS AND STRAINERS

LMEC-	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-82</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
no-69-7, -514	 Sodium Filter/Vessel Flange Heat Transfer/ Purification 27 224233 	1		1		 Sodium leak, flange bolts not torqued properly. Retorqued bolts. Specify values for torquing flange bolts.

TABLE <u>1-177</u>

COMPONENT FUEL AND BREEDER ELEMENTS

FAILURE DUE TO EXISTING SYSTEM ACTION

	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-59</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
	 Fuel Element/Cladding Reactor Equipment/Core Components and Supports 46 216300 	10, 12, 14, 15, 16, 17	63685	6		 Fission gas release was from newly inserted "fresh" fuel assembly. Component replaced. Upgrade Quality Assurance procedure for fuel element inspection.
e i	 Fuel Elements/Fuel Meat and Cladding Reactor Equipment/Core Components and Supports 46 216300 	19	16200	1		 Fuel channel clogging caused by tetralin decomposition products results in fuel and cladding melting. Sodium pump tetralin freeze seals replaced with NaK freeze seals thereby eliminating the potential source of contaminant. None.
	 Fuel Assembly/ Thermocouple Reactor Equipment/Core Components and Supports 46 216300 	6	10130	1		 Thermocouple shorted to ground, causing scram. Corrective modification. None.

TABLE <u>1-178</u>

COMPONENT INDICATORS AND RECORDERS

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-144</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-516	 Indicator/Shorted Leads Instrumentation and Control/Intermediate Coolant System 64 262200 	12	4846	1		 Operator accidentally grounded level indicator leads actuating pilot gas valve cutout. Ground removed, pilot reignited. Improve training for electrical maintenance personnel on requirements for guards over connections and improve operators training to assure alertness to possible exposed leads.

COMPONENT MOTORS, ENGINES AND TURBINES

(Hydraulic, Pneumatic, Steam)

FAILURE DUE TO EXISTING SYSTEM ACTION

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-47</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Turbine/Turbine Blades Steam, Condensate and Feedwater/Boiler Feed Pump 10 284100 	2	Unk	1		 (a) Overheating and smoking because of too much oil in unit. (b) Failure due to turbine blade damage (minor). Oil drained to proper level and turbine cleaned of metal particles - local repair. Maintain clean steam system - improve maintenance procedures (excess oil human error) - install debris catcher at turbine inlet.
 Turbine/Turbine Bearing Steam, Condensate and Feedwater/Condensate Pump 10 283100 	4	9,345	I		 Bearing discrepancy - unusual rubbing on top and bottom of bearing. Bearing clearance found too small - bearing rebored and reinstalled with proper clear- ance. Quality control problem - improve QA procedures.

COMPONENT NEUTRON SOURCE

FAILURE DUE TO EXISTING SYSTEM ACTION

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-154</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Neutron Source/Threaded Stud Reactor Equipment/ Neutron Source 14 212400 	1	7930	1		 Due to excessive torque while assembling neutron source No. 5, the end studs were damaged. Vendor repair of component. Assembly procedure should specify torque to be applied to studs.

COMPONENT _____PIPING SUPPORTS

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-97</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-519	 Piping Support/ Manifold Support Feedwater Supply and Treatment System/ Chemical Treatment Facilities 19 273300 	5	19,38			 Excessive stress on manifold caused support to break. New interface manifold fabricated with the tee socket welded at all three openings. None.

COMPONENT <u>POWER SWITCH GEAR, CIRCUIT BREAKERS</u>, RELAYS, TRANSFORMERS

FAILURE DUE TO EXISTING SYSTEM ACTION

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-35</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Circuit Breaker/Wires Accessory Electrical Equipment/Circuit Breakers 58 412000 	22	2205	1		 Construction men shorted wires while working on control panel (contractor personnel). Vendor repair. None.
 Breaker/Bus Bars Accessory Electrical Equipment/Circuit Breakers 58 412000 	23	0	1		 Contractor personnel shorted bus bars with electrical fish tape resulting in fire among bus bar cables. Bus bar sections and circuit breaker connections rewired. Improve supervision of construction work.

COMPONENT PUMPS AND SUPPORTS

(Sheet 1 of 2)

FAILURE DUE TO EXISTING SYSTEM ACTION

	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-100</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
2.	Pump/Bearings Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100	22	Unk	1		 Bearings damaged due to overloading caused by a closed valve. Part replaced. Upgrade operator training on pump.
2	Pump Heat Transfer/Reactor Coolant 17 221110	60	5,000	1		 Pump case flooded with sodium as a result of tube failure, preventing pump startup. Pump removed and cleaned. None.
2	AC Linear Induction Pump/ Cooling Water Jacket Heat Transfer/Intermediate Cooling 17 222110	164	1,200	1		 Obstruction of coolant passage by impurities in plant cooling water. Coolant passages were backflushed. Protective System: Install filters for sedi- ment collection.

COMPONENT _____ PUMPS AND SUPPORTS

(Sheet 2 of 2)

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-100</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-522	 Vacuum Pump/Casing Nuclear Fuel Handling and Equipment/Fuel Handling Machine 17 235000 	193	Unk	1		 Pump placed in service without opening discharge valve - pump ruptured. Component replaced. Install rupture disc or relief valve on pump discharge line.

COMPONENT <u>STEAM GENERATOR</u>

FAILURE DUE TO EXISTING SYSTEM ACTION

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-111</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Steam Generator/Tubes Heat Transfer/Steam Generator 40 223100 	2, 6, 8	21,760	3		 Stress corrosion cracking attributed to residual cleaning solution containing sodium hydroxide resulted in water leakage into sodium or formation of pits due to reaction of foreign material. Pits and flaws ground out and rewelded or units retubed. Adequate procedures should be instituted to insure cleanliness of the components in the system.

LMEC-Memo-69-7, Vol I 1-523 TABLE <u>1-185</u>

COMPONENT VALVES

(Sheet 1 of 3)

FAILURE DUE TO EXISTING SYSTEM ACTION

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-119</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Valve/Float Feedwater Supply and Treatment/Chemical Treatment Facility 20 273300 	1, 2	7583	2		 Circuit breakers to pumps P-7 and P-9 tripped due to overload on pumps, caused by float valve sticking open. Float sticks open when it hits travel limit, open. Cause is excessive flow rate of water from sys- tem the float valve operates. Throttle valve to reduce flow and restart pumps. Keep flow demand at system design limits so pump motors are not overloaded, thus not overheated. Thorough operator training on system operation can prevent recurrence

COMPONENT VALVES

(Sheet 2 of 3)

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-119</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-525	 Valve/Support Valves Steam, Condensate, and Feedwater Piping and Equipment/Condensate Valves 20 283300 	59	6215	1		 Zero flow on indicators FI-201 and FI-202 indicated valves were clogged or closed. Valves affecting HIC-209 and HIC-210 were found closed. Standard operating procedures were not followed. Opened valves per operating instructions. Standard operating procedures should be followed and a system instituted to provide verification of concurrence.

TABLE <u>1-185</u>

COMPONENT VALVES

(Sheet 3 of 3)

FAILURE DUE TO EXISTING SYSTEM ACTION

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-119</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Valve/Valve Seat Compressed Air and Vacuum Cleaning Equip- ment/Air Control Valve 20 520000 	129	Unk	1		 Valve seat of air control valve leaked causing dump valve for cooling tower to open. Removed air line from valve making it inoperative in the system except manually. Establish maintenance procedure for all critical components. (This was executed.)

COMPONENT VESSEL INTERNALS

LMEC-Memo- 1-52	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-16</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
69. 7	 Vessel Internals/Thimble Reactor Equipment/Core Components and Supports 07 216400 	7	3710	1		 Attempt made to place thimble in an occupied maintenance cell engaging the thimble to a plug pickup cup. Operational procedure and/or training change. None.

COMPONENT _____WIRING AND CONNECTORS

FAILURE DUE TO EXISTING SYSTEM ACTION

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-166</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
 Wiring/Connector Accessory Electrical Equipment/Power Wiring 68 450000 	9	13415	1		 Fan motor would not start. Circuit found connected improperly. Circuit wiring corrected. Improve maintenance and inspection procedures.

COMPONENT COLD TRAPS/HOT TRAPS

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-69</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-529	 Hot Trap (Carbon)/ Sampler Heat Transfer/ Purification 36 224239 	9	2400	1		 One man sprayed with sodium while removing a sample but was not burned due to protective clothing. Operational procedure change. None.

COMPONENT CONTROLLERS

(Sheet 1 of 2)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-139</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Controller/High Level Override Alarm and Relay Instrumentation and Control/Main Coolant Loop 65 262110 	16, 17	-	2		 Sodium level lowered causing gas entrainment and plant trip. Local repair, relay readjusted, and primary sodium flow restored. Final correction by installation of a displacement type instead of bubbler. More stable level controller needed to maintain free-surface sodium level.
 Controller/Relay Instrumentation and Control/Steam Generators 65 262311 	20	4050	1		 Relay caused steam generator inlet and outlet sodium valves to close. Relay was bypassed during cover gas pressurization test to avoid valve closure. The cover gas pressurization procedure was modified to include bypassing a relay.

TABLE <u>1-189</u>

COMPONENT CONTROLLERS

(Sheet 2 of 2)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

LMEC-	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-139</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
- Memo-69-7. Vol I	 Controller/(Pressure Setting) Instrumentation and Control/Steam, Con- densate and Feedwater Piping and Equipment 65 268100 	23, 24		2		 Safety relief valve lifted at pressure well below proper setpoint during a change in plant conditions. Vendor repair of component. Piping loops containing safety or relief valves should be designed for the additional stress and vibration caused by the safety and relief valve actuation.

COMPONENT COOLERS (Other than Liquid-Metal-to-Air)

NUMBER OF FAILURES ITEM OPERATING HOURS 1. COMPONENT/PART 1. FAILURE DESCRIPTION Refer to 2. SYSTEM/SUBSYSTEM Table _____1-173 2. CORRECTIVE ACTION TOTAL HOURS SYSTEM DOWN 3. CODE: 3. RECOMMENDATIONS (Component) (System/Subsystem) LMEC-Memo-69-7, Vol I 1-532 1. Head of one unit deteriorated badly. Head 1 7800 1 1. Coolers/Turbine Lube of other unit slightly deteriorated. Oil Coolers 2. Flow baffles built in and flange surfaces 2. Turbine-Generator remachined. Units and Condenser/ 3. None. Central Lubricating 3. 35 350000

COMPONENT DESUPERHEATERS

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-76</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-533	 Desuperheater No. 1/ Flanged Joint Steam, Condensate and Feedwater Piping and Equipment/Main Steam 43 281100 	2, 3, 4, 5	20475	4		 Steam leaks developed during an operating period when steam pressure was increased from 1400 to 1850 psig. Component corrective modification. Maintenance manual should include proper flange bolt torquing instructions for each type of flange and gasket. Improved QA procedures at initial contractor level.

TABLE <u>1-192</u>

COMPONENT FEEDWATER HEATERS

LMEC-	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-79</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I 1-534	 Feedwater Heater/Flange Gasket Steam, Condensate and Feedwater Piping and Equipment/Feedwater Heater 54 284200 	1	14,710	1		 Flange leaking, bad gasket. Component corrective modification, Flexitallic gasket replaced original asbestos gasket. None.

TABLE <u>1-193</u>

COMPONENT FILTERS AND STRAINERS

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

2. SYS 3. COD (C	PONENT/PART FEM/SUBSYSTEM E: component) ystem/Subsystem)	ITEM Refer to Table <u>1-82</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
 Strainer Other Re Equipme Cooling 27 290000 	actor Plant nt/Plant	5	11320	1		 Strainer plugging caused low water pressure in the primary pumps eddy current coupling cooling water system which resulted in reactor scrams. New type strainer installed. Audible pressure differential alarm on strainer to serve as warning of insipient clogging.

LMEC-Memo-69-7, Vol I 1-535

.

TABLE <u>1-194</u>

.

COMPONENT FUEL AND BREEDER ELEMENTS

	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-59</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	 FAILURE DESCRIPTION CORRECTIVE ACTION RECOMMENDATIONS
1. 2. 3.	Control Reactor Equipment/ Core Components and Supports	5, 7, 8, 9	20260	10		 Seven orifice drive cables stuck. Component corrective modification. None.

COMPONENT INDICATORS AND RECORDERS

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-144</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Indicator/Transmitter Instrumentation and Control/Reactor Coolant 64 262100 Flow Indicator/Glass Instrumentation and Control/Raw Water Supply 64 268400 	4 74	4846 3460	1		 Transmitter shorted to ground during rain. Local repair, plastic cover installed on transmitter and connector. More careful installation of instruments exposed to weather. Abnormal high-pressure surge in raw cooling water supply broke sight glass. Replace. Install pressure regulator.

COMPONENT INTERMEDIATE HEAT EXCHANGER

NUMBER OF FAILURES ITEM **OPERATING HOURS** 1. COMPONENT/PART 1. FAILURE DESCRIPTION Refer to 2. SYSTEM/SUBSYSTEM 1-87 2. CORRECTIVE ACTION Table _ TOTAL HOURS SYSTEM DOWN 3. CODE: 3. RECOMMENDATIONS (Component) (System/Subsystem) 611 1. Original piping did not include a cover gas 1. Intermediate Heat 1 1 Exchanger/Tubesheet vent from the top of the IHX shell side. Gas was trapped between the sodium inlet 2. Heat Transfer/Internozzle and the upper tubesheet. mediate Heat Exchanger 2. A vent line and a manually operated valve 3. 39 were installed from the shell side of the 222300 IHX to the primary expansion tank. 3. None. 2 5640 1 1. Tubes cracked and leaked as a result of 1. Intermediate Heat flow induced vibration. Exchanger/Tubes 2. Heat Transfer/Inter-2. Tube vibration suppressors installed. 3. Provide adequate design analysis and mediate Heat Exchanger 3. 39 acceptance testing. 222300

TABLE <u>1-197</u>

COMPONENT _____ PUMPS AND SUPPORTS

(Sheet 1 of 3)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-100</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Pumps and Supports Steam, Condensate, and Feedwater Piping and Equipment/Main Con- densate Pump 17 283100 	10	4,427	1		 Loss of feedwater flow required manual scram which froze off sodium on the primary expansion tank vapor trap. Thermal insulation was placed on the primary expansion tank vapor trap to eliminate sodium solidification in similar future cases. As no trouble could be found pumps restarted. None.
 Pump/Packing and Plungers Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	33	Ukn	1		 Coolant deficiency caused damage to plungers and packing. Modifications were made to improve the gland-cooling system, using condensate rather than raw water. None.

TABLE <u>1-197</u>

COMPONENT PUMPS AND SUPPORTS

(Sheet 2 of 3)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-100</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Pump/Shaft Seal Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	47, 51	5,225	2		 Feedwater leaking at pump shaft seal due to lack of adequate cooling to inboard me- chanical seal. Installed new source of water to provide greater pressure head. Improve maintenance schedule.
 Pump/Shaft Steam, Condensate, and Feedwater Piping and Equipment/Boiler Feed Pump 17 284100 	48, 50	6,075	2		 Pump cavitation following scram. Pump drive shaft seized. Seal replaced, and a modified boiler feed reservoir tank and a condensate booster pump system (with a 40-second time delay for shutoff in case of scram) were installed. Design should specify precautions to pre- vent pump from running dry.

TABLE <u>1-197</u>

COMPONENT PUMPS AND SUPPORTS

(Sheet 3 of 3)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Pump/Cooling Coils Heat Transfer/Inter- mediate Cooling 17 222000 	133, 134, 135 136, 137, 138	15,230) 6		 Cooling lines plugged with debris. System plugged. Local repair. Unit was backflushed. Install parallel filters with differential pres- sure indicator to indicate filter plugging.
 AC Conduction Pump/ Pump Duct Heat Transfer/Inter- mediate Cooling 17 222110 	139, 140, 142, 155, 156	51,839	5		 No liquid metal in pumping duct caused rupture in pump duct at bus bar area - leak external. Component part replaced. Protective System: Change operating pro- cedures and/or install a fail safe fluid sen- sor into pump duct to prevent premature supply of electrical power to EM pumps.
 AC Linear Polyphase Induction Pump/Coils Heat Transfer/ Intermediate Cooling 17 221110 	165	80	1		 Full line voltage applied at start-up caused excessive heat to develop in magnetic field coils thereby deteriorating the insulation and allowing the coils to short circuit the system. System design change - installed powerstat. Control System: Component and system de- sign should consider the start-up in-rush currents whenever electrical ac components are installed.

TABLE <u>1-198</u>

COMPONENT RUPTURE DISCS

 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-108</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Rupture Disc/Disc Heat Transfer/Steam Generators 23 223000 	1,2	6452	2		 A crack developed from the rupture disc into the support flange. A double rupture disc assembly of all welded construction was designed, fabri- cated and installed. None.

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

TABLE <u>1-199</u>

COMPONENT SENSORS (RADIATION)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

LMEC-	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-162</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
u LMEC-Memo-69-7, Vol I 1-543	 Sensor/Compensated Ion Chamber Instrumentation and Control/Neutron Monitor System 67 261110 	1, 2, 3, 4	18820	4		 Radiation damage to the electrical insulators. Part replaced with others having mica- alumina insulators which offer protection against radiation damage. Development program should be initiated to obtain a suitable insulator.

COMPONENT VALVES

(Sheet 1 of 2)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-119</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Valve Turbine-Generator Units and Condenser/Circulating Water System 20 330000 	66, 67	4995	2		 Conductivity alarm from cooling water system opened dump valve. Raw water "add" valve opened. Dumping cooling water and adding raw water lowers con- ductivity to acceptable limits. Dump rate exceeded makeup rate so the available water level drops. Control air to CR 300V shutoff, closing dump valve, allowing water level to build- up. Outlet of dump valve fitted with reducers to reduce flow. Design of valve system should take into account possibilities of potential problem like above.

COMPONENT VALVES

(Sheet 2 of 2)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-119</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Valve/Body Steam Condensate and Feedwater Piping and Equipment/Main Steam 20 281200 	101, 102, 105	1288	3		 Cracks in valve body and nozzle due to chloride stress corrosion of material. 347 SS was used and the casting quality was poor. Valve removed and replaced with 2-1/2% Cr - 1/2% Mo body composition type; metallurgical examination was performed. Improve design requirements for valve material and upgrade quality control requirements on purchased components.

COMPONENT _____ VESSELS AND TANKS

(Sheet 1 of 2)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to <u>1-19</u> Table <u>1-19</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Vessel/50-gal Drum Other Reactor Plant Equipment/ Maintenance 06 292000 	7	2400	1		 Sodium fire occurred in 50-gal, open-top drum while draining sodium. Operational procedure change; use only drums with covered ends with two bung holes, one for sodium drain and one for purge line. Also insulate between barrel and rack. None.

COMPONENT <u>VESSELS AND TANKS</u> (Sheet 2 of 2)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

1.MFC	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-19</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
I MEC_Memo_69_7 Vol I	 Expansion Tank/ Sodium Heat Transfer/ Intermediate Cooling 06 222000 	8	3744	1		 Velocity of sodium high enough to cause cover gas entrainment. Installed bypass line so 90% of sodium flows around tank. None.

TABLE _____1-202

COMPONENT WIRING AND CONNECTORS

(Sheet 1 of 3)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-166</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
 Wiring/Insulation Accessory Electrical Equipment/Power Wiring 68 450000 	6	4100	1		 Electrical insulation (plastic) melted because of wire location. Replaced and relocated wires. High-temperature insulation should be installed.

COMPONENT WIRING AND CONNECTORS

(Sheet 2 of 3)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

LMEC	 COMPONENT/PART SYSTEM/SUBSYSTEM CODE: (Component) (System/Subsystem) 	ITEM Refer to Table <u>1-166</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I	 Wiring/Conductor and Disconnects Miscellaneous Equipment/ Other Power Plant Equipment 68 530000 	8	4518	1		 Starting current caused cable to overheat when boiler feed pump was turned on. Amps required beyond cable capability. 4160-volt cables to manual disconnect replaced. Larger cables installed. None.

LMEC-Memo-69-1-549 i, Vol

COMPONENT WIRING AND CONNECTORS

(Sheet 3 of 3)

FAILURES DUE TO NONEXISTENT SYSTEM OR INADEQUACY OF A SYSTEM

LMEC	1. COMPONENT/PART 2. SYSTEM/SUBSYSTEM 3. CODE: (Component) (System/Subsystem)	ITEM Refer to Table <u>1-166</u>	OPERATING HOURS	NUMBER OF FAILURES	TOTAL HOURS SYSTEM DOWN	1. FAILURE DESCRIPTION 2. CORRECTIVE ACTION 3. RECOMMENDATIONS
LMEC-Memo-69-7, Vol I	 Wiring and Connectors / Ion Chamber Signal Cable Instrumentation and Control/Neutron Monitoring 68 261110 	10, 11	29300	2		 Channel grounded. System design change, RG/149U cable was replaced with an Amphenol No. 421-010. None.

Memo-69-7, Vo 1-550

III. SODIUM LEAK EXPERIENCE

.

This section on sodium leak experience was prepared by the LMEC Technical Staff members listed below:

J. Blanco	,	G. Clark
W. Carlson		B. Fischer

Any comments or questions concerning the material presented should be directed to J. Blanco or W. Carlson.

A. INTRODUCTION

Data pertinent to sodium leak failures are required for a variety of needs, such as general information, sodium fire analyses, design base accident (DBA) studies, hazards analyses, etc. Generally, such data have been very difficult if not impossible to obtain with any degree of confidence. To meet the need for this type of information, design, operating, and failure data relevant to sodium leaks have been compiled in this section.

These data are based on the sodium experience associated with the following plants: SCTI, LCTL, SRE, Hallam, EBR-II, and Fermi. Data sources include all types of reports, plant design handbooks, training manuals, schematics, piping and installation drawings, and verbal communications. Sincere thanks are extended to Bob Sera of EBR-II and Ted Ross of Fermi for providing much needed design data on their respective plants.

B. DESIGN AND OPERATING DATA

Tables 1-203 through 1-208 contain design and operating data on the six sodium plants considered. Each table contains a list of plant components and their associated systems; i.e., primary coolant, secondary coolant, primary purification, etc. Adjacent to each component listed, design data are given on size and material of construction, environmental conditions and protection, the number of identical components in the system, and the design temperature, pressure, and velocity. The operating data listed consist of operating temperature, pressure, and velocity information, and the hours of exposure to the internal sodium environment. In many cases, pressure and velocity data were not listed because they were unavailable. The last entry in the table indicates

the number of leak failures which occurred and where they may be found in the Sodium Leak Incident Summaries (Tables 1-210 through 1-215).

Although considerable effort was made to obtain a complete and accurate compilation of design, operating, and failure data, some items were probably overlooked. However, it is believed that the number of items which may have been overlooked is not significant when compared to the total population of like items.

Table 1-209 is a plant component summary which provides an overall comparison between the sodium plants considered.

C. SODIUM LEAK INCIDENT SUMMARIES

Tables 1-210 through 1-215 present sodium leak incident tabulations for each plant. Each entry identifies a failed component, the line size associated with the component, the leakage incident, the amount of sodium lost during the leak, the hours of component operation prior to failure, the means by which the leak was detected, and the sources from which the information was gathered.

In general, the failures could be classified as nuisance, minor, or major leaks. Nuisance leaks were very small with no attendant fire or damage to adjacent equipment. Minor leaks were moderate in magnitude and accompanied by a small but controllable fire and light-to-moderate damage to adjacent equipment. Major leaks were large spills which resulted in large intense fires and heavy equipment damage. Of the 80 leaks reported, 69 were nuisance types, 9 were minor, and only 2 were major. Of the 2 major leaks, one caused extensive damage and the other only light-to-moderate damage. The major leak which caused light damage did so only because the leak occurred in a region contained by fire brick insulation and isolated from adjacent equipment.

The smallest leaks observed were approximately one pound in magnitude and accounted for 79% of the entire leak population. The major portion (82%) of these leaks resulted from valve failures. The largest leak was approximately 600 lb. It occurred in a pipe section and was caused by human error. The second largest leak was about 400 lb and was the result of tube failure in a gasfired sodium heater. Table 1-216 shows the type and number of leaks each plant experienced. Table 1-217 shows the type and number of leaks each component type experienced.

> LMEC-Memo-69-7, Vol I 1-552

June 30, 1970

Although leak magnitudes were not available for the majority of failures, a careful study of all the failure descriptions allowed reasonable estimates to be made for those magnitudes not available.

D. COMPONENT FAILURE RATES

Table 1-218 is a tabulation of component failure rates obtained from actual plant design, operating, and failure data. These failure rates were calculated by dividing the number of failures by the total component exposure hours.

The number of component failures were acquired from Tables 1-210 through 1-215, and the sum of total component exposure hours was acquired from Tables 1-203 through 1-208.

Analysis of the failure data did not disclose any significant temperature, pressure, or velocity effects; therefore, component failure rates were calculated without any special consideration given to these parameters.

Of the components listed, some require clarification. Sodium heaters refer • to gas-fired heaters, not electrical heaters, which are used to increase sodium temperature.

Purification system components include hot traps, cold traps, carbon traps, plugging meters, and oxygen meters. The failure rate for piping is the number of pipe failures per foot - exposure hour. The failure rates for rupture discs and freeze traps are based upon SCTI data only. Data on these items for the other five plants were not available. Human errors are those leak failures which were the result of human action and not a hardware deficiency.

E. APPLICATION OF SODIUM LEAK DATA

The sodium leak data contained herein were used in the safety analysis of the proposed Sodium Pump Test Facility (SPTF) at LMEC.^{*} An analysis of the sodium leak data and acceptable risk levels to the general public resulted in a design base accident and associated design, operations, and maintenance constraints for the SPTF. The design base accident and associated constraints, determined in this manner, are more realistic than those determined by arbitrary assumptions on the type and magnitude of leak failures.

*"SPTF Preliminary Safety Report," LMEC-Memo-70-11 (to be published)

TAELE 1-203

SCTI DESIGN AND OPERATING DATA (Sheet 1 of 13)

June 30, 1970

.

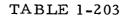
System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Primary	Sodium preheater	3.4-in. fin OD. Finned tubes are ss-clad copper-core	Stack gas temperature: 1500 to 1283°F. Tubes are inside an air- tight refractory-lined steel casing.	1	Inlet temperature: 900°F Outlet temperature: 940°F Pressure: 100 psi	Cold ieg: <400 400-500 500-600 600-700 700-800 800-900 900-1000	Cold leg: 16, 154 22, 150 1, 224 948 740 202 6	None	None
Primary	Sodium main heater		Tubes are inside an airtight refractory- lined steel casing.	1	Inlet temperature: 940°F Outlet temperature: 1300°F	Hot leg: <pre><400 400-500 500-600 600-700 700-800 800-900 900-1000 1000-1100 1100-1200</pre>	Hot leg: 18, 184 19, 824 1, 018 385 809 472 334 246 142	1	Item 7
Primary	Sodium cooler	Finned-tube unit with forced-draft air cooling. 3,4-in. fin OD. Tube material: 304 SS Fin material: 4-6 Chrome-Moly steel.	Gas-fired heater used with fan and louvres.	1	Inlet temperature: 1320°F Outlet temperature: 1050°F Pressure: 100 psia	Hot leg:*	Hot leg:†	None	None
Primary	Main pump	1-1/2-ft OD. 8-ft length. Case and impeller material: 304 SS	Ambient air. Type I insulation, 3-in. outer layer. Type II insulation, 3-in. inner layer. Hot air preheat.	1	Inlet temperature: 840°F Inlet pressure: 20 psi Outlet pressure: 117 psi	Cold leg:*	Cold leg:	l	Item 3

*Hot leg and Cold leg temperatures same as above for all primary system components. [†]Hot leg and Cold leg exposure time same as above for all primary system components.

н

SCTI DESIGN AND OPERATING DATA (Sheet 2 of 13)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Primary	ЕМ ритр	3-ft height. 3-ft width. 5-ft length. 3-in. OD line size.	Ambient air. Type I insulation, 1-1/2-in. outer layer. Type II insulation, 1-1/2-in. inner layer.	1	Inlet temperature: 1200°F Inlet pressure: 22 psi Outlet pressure: 91 psi Flowrate: 130 gpm	Cold leg:*	Cold leg:†	None	None
Primary	Expansion tank	5-ft diameter. 10-ft length. 1000-gal capacity. Material: 304 SS	Ambient air. Type I insulation, 3-in. outer layer. Type II insulation, 3-in. inner layer. Hot air preheat.	1	Temperature: 1000°F. Pressure: 100 psi	Cold leg:*	Cold leg:†	None	None
Primary	Fill and drain tank	10-ft diameter. 16-ft length. 7500-gal capacity. Material: 304 SS.	Ambient air. Type I insulation, 3-in. outer layer. Type II insulation, 3-in. inner layer. Hot air preheat.	1	Temperature: 850°F Pressure: (cover gas) 60 psi	Cold leg:*	Cold Leg:†	None	None
Primary	IHX (shell side)	3-ft OD. 28-ft-3 in, length. Material: 304 SS	Ambient air. Type I insulation, 3-in. outer layer. Type II insulation, 3-in. inner layer. Hot air preheat.	1	Inlet temperature: 1200°F Outlet temperature: 900°F Pressure: 120 psi at 1200°F Flowrate: 1, 140,000 lb/hr	Hot leg:*	Hot leg: [†]	None	None
Primary	Cold trap	2-ft diameter. 9-ft length. 140-gal capacity. Material: 304 SS.	Ambient air. Type I insulation, 3-in. layer.	1	Temperature: 650°F Pressure: 100 psi	Cold leg:*`	Cold leg:†	None	None


*Hot leg and Cold leg temperatures same as above for all primary system components. †Hot leg and Cold leg exposure time same as above for all primary system components.

SCTI DESIGN AND OPERATING DATA (Sheet 3 of 13)

External Number of Exposure to Item Number of Component Size Design Temperature Operating Environmental Like Internal Reference Component Pressure and Temperature Sodium and Material System Components Environment In . Type Conditions and Velocity (°F) Leaks of Construction Table 1-210 Protections In System (hr) Hot leg:* Hot leg:[†] 1 1-in, OD finned Ambient air. 4 Item 8 Primary Freeze traps: tubing No insulation. Ft-1 Ft-2 2-1/2-ft length. Material: 304 SS. Ft-3 Ft-5 LMEC-Memo-69-Cold leg;* l-in. OD finned Ambient air. 3 Cold leg: None None Primary Freeze traps tubing. No insulation. Ft-4 Ft-6 2-1/2-ft length. Ft-7 Material: 304 SS. Primary 2-ft height. Ambient air. 1 Cold leg:* Cold leg:† None None Plugging meter 2-ft width. 6-ft length. Material: 304 SS. 1 Temperature: 1200°F Hot leg:* Hot leg;† None None Primary 2-in. line size, sched Ambient air. Offset globe valve with 40 butt weld, 16 in. Type I insulation, Pressure: 100 psi bellows seal: end-to-end. 3-in. layer. HIC-510-V Material: 304 SS. 7, 7 Temperature: 1200°F Cold leg:* Cold leg: None None Offset globe 2-in. line size, Ambient air. Primary Vol. Type I insulation, Pressure: 100 psi valves with sched 40 butt weld. bellows seal: 16 in. end-to-end. 3-in, layer. HIC-500-V Material: 304 SS. HIC-501-V H HIC - 502 - V HIC-503-V HIC-508-V HIC-512-V HIC-516-V Temperature: 1200°F Cold leg:* Cold leg:[†] 1 None None 1-in. line size, sched Ambient air. Primary Offset globe Type I insulation, Pressure: 100 psi valve with 40 butt weld. 16 in. bellows seal: 3-in, layer. end-to-end. V-517-V Material: 304 SS.

*Hot leg and Cold leg temperatures same as above for all primary system components. † Hot leg and Cold leg exposure time same as above for all primary system components.

June 30, 1970

SCTI DESIGN AND OPERATING DATA (Sheet 4 of 13)

System	Component Typ e	Component Size `and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Primary	Gate-valve with gas- cooled freeze seal: HIC-110-V	10-in. line size, sched 40 butt weld. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in outer layer. Type II insulation, 2-1/2-in. inner layer.	1	Temperature: 1300°F Pressure: 600 psi	Cold leg:*	Cold leg: [†]	1	Item 9
Primary	Expansion joints: XJ-1 XJ-2 XJ-3	10 in. line size. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer. Hot air preheat.	3	Temperature: 1300°F Pressure: 125 psi	Cold leg:*	Cold leg:†	None	None
Primary	Expansion joints: XJ-4 XJ-5	10-in. line size. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer. Hot air preheat.	2	Temperature: 1300°F Pressure: 125 psi	Cold leg:*	Cold leg:†]	Item 1
Pr:mary	Pipe leg: 501	10-in. line size, sched 40. 89-ft length. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer. Hot air preheat.	1	Maximum tempera- ture: 1300°F Maximum pressure: 125 psig	Hot leg:*	Hot leg: [†]	None	None
Primary	Pipe leg: 502	10-in. line size, sched 40. 65-ft length. Material: 304 SS.		1	Maximum tempera- ture: 1300°F Maximum pressure: 125 psig	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 503	10-in. line size, sched 40. 48-ft length. Material: 304 SS		1	Maximum tempera- ture: 1300°F Maximum pressure: 125 psig	Cold leg:*	Cold leg:†	ł	Item 2
Primary	Pipe leg: 504	10-in. line size, sched 40. 45-ft length. Material: 304 SS.		1	Maximum tempera- ture: 1300°F Maximum pressure: 125 psig	Cold leg:*	Cold leg:†	None	None

"Hot leg and Cold leg temperatures same as above for all primary system components. † Hot leg and Cold leg exposure time same as above for all primary system components.

June 30, 1970

SCTI DESIGN AND OPERATING DATA (Sheet 5 of 13)

June
30,
1970

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Primary	Pipe leg: 505	10-in. line size, sched 40. 66-ft length. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer. Hot air preheat.	1	Maximum temperature: 1300°F Maximum pressure: 125 psig	Hot leg:*	Hot leg:†	None	None
Primary	Pipe leg: 506	6-in. line size, sched 40. 93-ft length. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer.	1	Maximum temperature: 1300°F Maximum pressure: 125 psig	Hot leg:*	Hot leg:†	None	None
Primary	Pipe leg: 507	6-in. line size, sched 40. 40-ft length. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer.	1	Maximum temperature: 1300°F Maximum pressure: 125 psig	Hot leg:*	Hot leg:†	None	None
Primary	Pipe leg: 508	6-in. line size, sched 40. 73-ft length. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer.	1	Maximum temperature: 1300°F Maximum pressure: 125 psig	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 509	3-in. line size, sched 40. 31-ft length. Material: 304 SS.	Ambient air. Type I insulation, 1-1/2-in. outer layer. Type II insulation, 1-1/2-in. inner layer.	1	Maximum temperature: 1300°F Maximum pressure: 125 psig	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 510	3-in. line size, sched 40. 16-ft length. Material: 304 SS.	Ambient air, Type I insulation, l-1/2-in. outer layer. Type II insulation, l-1/2-in. inner layer.	1	Maximum temperature: 1300°F Maximum pressure: 125 psig	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 511	10-in line size. sched 40. 55-ft length. Material: 304 SS.	Ambient air. Type I insulation. 2-1/2-in. outer layer. Type II insulation. 2-1/2-in. inner layer.	1	Maximum temperature: 1300°F Maximum pressure: 125 psig	Cold leg:*	Cold leg:†	None	None

)

*Hot leg and Cold leg temperatures same as above for all primary system components. †Hot leg and Cold leg exposure time same as above for all primary system components.

LMEC-Memo-69-7, 1-558

SCTI DESIGN AND OPERATING DATA (Sheet 6 of 13)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Primary	Pipe leg: 601	2-in. line size, sched 40. 85-ft length. Material: 304 SS.	Ambient air, Type I insulation, 3-in. layer.	1	Maximum temperature: 850°F Maximum pressure: 100 psia	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 602	2-in. line size, sched 40. 35-ft length. Material: 304 SS .		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 603	l-in. line size, sched 40. 5-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 604	2-in. line size, sched 40. 29-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:	None	None
Primary	Pipe leg: 605	2-in. line size, sched 40. 4-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 606	2-in. line size, sched 40. 41-ft length. Material: 304 SS.		1	Maximum temperature: 850°F Maximum pressure: 100 psia	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 607	2-in. line size, sched 40. 53-ft length. Material: 304 SS.		1	Maximum temperature: 850°F Maximum pressure: 100 psig	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 608	2-in. line size, sched 40. 21-ft length. Material: 304 SS.	,	1	Maximum temperature: 850°F Maximum pressure: 100 psig	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 609	l-in, line size, sched 40. 10-ft length. Material: 304 SS.	Ambient air. Type I insulation, 3-in. layer.	1	Maximum temperature: 850°F Maximum pressure: 100 psig	Cold leg:*	Cold leg: [†]	None	None

*Hot leg and Cold leg temperatures same as above for all primary system components. ¹Hot leg and Cold leg exposure time same as above for all primary system components.

June 30, 1970

LMEC-Memo-69-7, Vol. 1-559

Н

SCTI DESIGN AND OPERATING DATA (Sheet 7 of 13)

June 30, 1970

LMEC-Memo-69-7, Vol. 1-560

ы

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Primary	Pipe leg: 610	l-in. line size, sched 40. 12-ft length. Material: 304 SS.	Ambient air. Type I insulation, 3-in. layer.	1	Maximum temperature: 850°F Maximum pressure: 100 psig	Cold leg:*	Cold leg: [†]	None	None
Primary	Pipe leg: 618	2-in. line size, sched 40. 65-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 619	2-in. line size, sched 40. 20-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 622	2-in. line size, sched 40. 4-ft length. Material: 304 SS.		1		*Fold leg:	Cold leg: [†]	None	None
Primary	Pipe leg: 623	2-in. line size, sched 40, 20-ft length. Material: 304 SS		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 624	2-in. line size, sched 40. 15-ft length. Material: 304 SS.		I		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 625	2-in line size, sched 40. 17-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 629	l-1/2 in. line size, sched 40. 21-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 630	l-l/2 in. line size, sched 40. 2/3-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None

*Hot leg and Cold leg temperatures same as above for all primary system components. [†]Hot leg and Cold leg exposure time same as above for all primary system components.

SCTI DESIGN AND OPERATING DATA (Sheet 8 of 13)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-210
Primary	Pipe leg: 632	l-in. line size, sched 40. 1/3-ft length. Material: 304 SS.	Ambient air. Type I insulation, 3-in. layer.	1	Maximum temperature: 850°F Maximum pressure: 100 psig	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 633	l-in. line size, sched 40. 1/3-ft length. Material: 304 SS.		1	l	Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 634	l-1/2 in. line size, sched 40, 1/3-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 635	l-in. line size, sched 40. 2-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 636	l-in. line size, sched 40. 2-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 638	l-in. line size, sched 40. 1/3-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 640	2-in. line size, sched 40. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
Primary	Pipe leg: 651	2-in. line size, sched 40. 13-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None

*Hot leg and Cold leg temperatures same as above for all primary system components. [†]Hot leg and Cold leg exposure time same as above for all primary system components

- í,

o

SCTI DESIGN AND OPERATING DATA (Sheet 9 of 13)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-210
Secondary	IHX (tube side)	462 tubes. 1/2-in. OD. 0.035-in. wall thickness. 25-ft length. Material: 316 SS.	Ambient air. Type I insulation, 3-in. outer layer. Type II insulation, 3-in. inner layer.	1	Inlet temperature: 775°F Outlet temperature: 1175°F Press: 150 psig at 1200°F Flowrate: 855,000 1b/hr	Hot leg: <400 400-500 500-600 600-700 700-800 800-900 900-1000 1000-1100 1100-1200	Hot leg: 36,020 2,490 864 774 746 234 108 120 72	None	None
Secondary	Steam Generator (shell side)	32-in. shell diameter. 45-ft length, 360 bimetallic tubes. 1/2-in. OD. 0. 104-in, wall thickness. Material: 316 SS on sodium side, inconel on water side		1	Inlet temperature: 1175°F Outlet temperature: 775°F Press (gas blanket): 100 psig Rated flow at 100% load: 855,000 lb/hr	Hot leg:*	Hot leg:†	2	Items 4 and 10
Secondary	Pump	1-1/2-ft OD. 8-ft length. Case and impeller material: 304 SS.	Ambient air. Type I insulation, 3-in. outer layer. Type II insulation, 3-in. inner layer.	1	Inlet temperature: 775°F Inlet pressure: 11 psig Outlet pressure: 123 psig Flowrate: 3600 gpm	Cold leg: <400 400-500 500-600 600-700 700-800 800-900 900-1000 1000-1100 1100-1200	Cold leg: 36, 106 2, 562 1, 158 1, 266 290 10 - 32	None	None
Secondary	Expansion tank	5-ft diameter. 10-ft length. 1000-gal capacity. Material: 304 SS.		1	Temperature: 1000°F Pressure: 100 psig	Cold leg:*	Cold leg:†	None	None
Secondary	Fill & drain tank	8-ft diameter. 16-ft length. 5000-gal capacity. material: curbon steel, spec SA-212, Grade B.		1	Temperature: 850°F Cover gas pressure: 60 psig	Cold leg:*	Cold leg: f	None	None

*Hot and Cold leg temperatures same as above for all secondary components. † Hot and Cold leg exposure time same as above for all secondary components.

Vol.

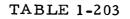
н

SCTI DESIGN AND OPERATING DATA (Sheet 10 of 13)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-210
Secondary	Freeze trap: FT-8	l-in. OD finned tubing. 2-1/2 ft length. Material: 304 SS.	Ambient air. No insulation.	1		Hot leg:*	Hot leg: [†]	None	None
Secondary	Plugging meter	2-ft height. 2-ft width. 6-ft length. Material: 304 SS.	Ambient Air	I		Cold leg:*	Cold leg: [†]	None	None
Secondary	Offset globe-valves modified with freeze seal: V-510 V-522B V-539 V-627	2-in. line size, sched 40. 16 in. end-to-end. Material: 304 SS.	Ambient air. Type I insulation, 3-in. layer.	4	Temperature: 1200°F Pressure: 100 psig	Cold leg:*	Cold leg:†	None	None
Secondary	Offset globe-valves HIC-504-V HIC-505-V HIC-506-V HIC-509-V HIC-518-V	2-in. line size, sched 40 butt weld. 16-in. end-to-end. Material: 304 SS.	Ambient air. Type I insulation, 3-in. layer.	5	Temperature: 1200°F Pressure: 100 psig	Cold leg:*	Cold leg:*	None	None
Secondary	Valve with bellows seal: HIC-519-V	l-in. line size, sched 40 butt weld. 16-in. end-to-end. Material: 304 SS.	Ļ	1	Na temperature: 1200°F Pressure: 100 psig	Cold leg: *	Cold leg:†	None	Ngne
Secondary	Butterfly valve with freeze seal: FRC-106-V	8-in. line size, sched 40 butt weld. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer.	1		Cold leg:*	Cold leg:†	None	None
Secondary	Gate valve with freeze seal: HIC-116-V	10-in. line size, sched 40 butt weld. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in, outer layer. Type II insulation, 2-1/2-inner layer.	1		Hot leg:*	Hot leg:†	None	None
Secondary	HIC-105-V	ł	+	1		Cold leg:*	Hot leg: [†]	None	None

*Hot and Cold leg temperatures same as above for all secondary components. Hot and Cold leg exposure time same as above for all secondary components.

June 30, 1970


SCTI DESIGN AND OPERATING DATA (Sheet 11 of 13)

1-564

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-210
Secondary	Expansion joints: XJ-7 XJ-8 XJ-9	10-in. line size. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer.	3	Na temperature: 1300 F Pressure: 125 psig	Hot leg:*	Hot leg:†	1	Item 6
Secondary	Pipe leg: 551	10-in. line size, sched 40. 91-ft length. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer.	1	Max temperature: 1300°F Max pressure: 125 psig	Hot leg:*	Hot leg:†	None	None
Secondary	Pipe leg: 552	10-in. line size, sched 40. 105-ft length. Material: 304 SS.		1	Max temperature: 1300°F Max pressure: 125 psig	Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 553	10-in. line size, sched 40. 36-ft length. Material: 304 SS.	Ambient air. Type I insulation, 2-1/2-in. outer layer. Type II insulation, 2-1/2-in. inner layer.	1	Max temperature: 1300°F Max pressure: 125 psig	Cold leg:*	Cold leg: [†]	None	None
Secondary	Pipe leg: 554	10-in. line size, sched 40. 84-ft length. Material: 304 SS.	N	1	Max temperature: 1300°F Max pressure: 125 psig	Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 555	6-in. line size, sched 40. 32-ft length. Material: 304 SS.		1	Max temperature: 1300°F Max pressure: 125 psig	Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 556	2-in. line size, sched 40. 28-ft length. Material: 304 SS.	Ambient air, Type I insulation, 3-in. layer.	1	Max temperature: 1300°F Max pressure: 125 psig	Cold leg: *	Cold leg:†	None	None
Secondary	Steam generator relief line: 557	l2-in. line size, sched 40. Material: 304 SS.		1				None	None

 \mathcal{D}

*Hot and Cold leg temperatures same as above for all secondary components. [†]Hot and Cold leg exposure time same as above for all secondary components.

SCTI DESIGN AND OPERATING DATA (Sheet 12 of 13)

System	Component Type	Component Size and Material of Construction	Enviro Condit	ernal onmental ions and ections	Number of Like Components In System	Pres	emperature sure and locity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Secondary	Steam generator relief line: 558	12-in. line size, sched 40. Material: 304 SS.	Ambient ai Type I insu 3-in, layer	ulation,	1					None	None
Secondary	Pipe leg: 611	2-in. line size, sched 40. 101-ft length. Material: 304 SS.]	Maximum 850°F Maximum 100 psig	temperature: pressure:	Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 612	2-in. line size, sched 40. 21-ft length. Material: 304 SS.			1			Cold leg: *	Cold leg:†	None	None
Secondary	Pipe leg: 613	l-in. line size, sched 40. 9-ft length. Material: 304 SS.			1			Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 614	2-in. line size, sched 40. 5-ft length. Material: 304 SS.			1			Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 615				1			Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 616	l-in. line size, sched 40. 15-ft length. Material: 304 SS.			1			Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 617	l-l/2-in. line size, sched 40. 7-ft length. Material: 304 SS.						Cold leg:*	Cold leg:†	None	None
Secondary	Pipe leg: 620	2-in. line size, sched 40. 15-ft length. Material: 304 SS.			l			Cold leg:*	Cold leg:†	None	None

 $^{\rm *Hot}$ and Cold leg temperatures same as above for all secondary components. $^{\rm T}$ Hot and Cold leg exposure time same as above for all secondary components.

SCTI DESIGN AND OPERATING DATA (Sheet 13 of 13)

	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-210
	Secondary	Pipe leg: 621	2-in. line size, sched 40. 11-ft length. Material: 304 SS.	Ambient air. Type I insulation, 3-in. layer.	1	Maximum temperature: 850°F Maximum pressure: 100 psig	Cold leg: *	Cold leg:	None	None
LMEC	Secondary	Pipe leg: 626	2-in. line size, sched 40. 21-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg: [†]	None	None
C-Memo	Secondary	Pipe leg: 627	2-in. line size, sched 40. 17-ft length. Material: 304 SS.		1		Cold leg: *	Cold leg:†	None	None
mo-69	Secondary	Pipe leg: 628	l-1/2-in. line size, sched 40. 1-ft length. Material: 304 SS.		1		Cold leg:*	Cold leg:†	None	None
)-7,	Secondary	Pipe leg: 631			1		Cold leg: *	Cold leg: [†]	None	None
Vol.	Secondary	Pipe leg: 637	3/4-in. line size, sched 40. 2/3-ft length. Material: 304 SS,		1		Cold leg: *	Cold leg:†	None	None
Ι	Secondary	Pipe leg:	2-in. line size, sched 40. 20-ft length. Material: 304 SS.		1	ł	Cold leg:*	Cold leg:†	None	None

)

*Hot and Cold leg temperatures same as above for all secondary components. [†]Hot and Cold leg exposure time same as above for all secondary components.

TABLE	1-204
-------	-------

ſ

LCTL DESIGN AND OPERATING DATA (Sheet 1 of 5)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperature (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-211
Six-in. loop	Piping	6-in. 80 ft. 2.25 Cr-l Mo alloy steel, ASTM - A335, grade P22	Electrically trace heated, Metal heat reflector and 4-in, super X insulation,	1	To 1963: 1200 gpm 1000°F From 1963: 2000 gpm 1000°F	350-1000	Total: 60,000 From 1969 startup: 2220	None	None
Three-in, loop	Piping	3-in. 120 ft. To 1963: 2.25 Cr-1 Mo. alloy steel From 1963: 304 SS	Electrically trace heated. Metal heat reflector and 4-in, super X insulation.	1	To 1963: 120 gpm 1000°F From 1963: 130 gpm 1200°F	From initial startup: 350-1000 From 1963; 350-1300	Total: 60,000 From 1969 startup: 2220	1	Item 1
supply line	Piping	8-in. 210 ft. 2.25 Cr-1 Mo.alloy steel.	Electrically trace heated, Metal heat reflector and 4-in, super X insulation.	1	2000 gpm 1000°F	350-1000	Total: 60,000 From 1969 startup: 2220	None	None
Core tank	Tank	96-in. ID 26-3/4-ft height. 9550 gal. 5/8-in. thick. Material: 304 SS	Electrically trace heated. Insulated.	1	1200°F	350-1200	Total: 60, 000 From 1969 startup: 2220	None	None
Supply tank	Tank	102-in. ID. 19-ft long. 9800 gal. 5/8-in. thick. Material: 304 SS	Electrically trace heated. Insulated.	1	1200°F	350-1200	Total: 60,000 From 1969 startup: 2220	None	None
Drain tank	Tank	102-in. ID. 24-1/2-ft long. 11,000 gal. 5/8-in. thick. Material: 304 SS	Electrically trace heated.	. 1	1200°F	350-1200	Totał: 60,000 From 1969 startup: 2220	None	None
Six-in. loop	Sodium pump	6 x 8 pump. Material: 304 SS	Freeze seal	1	2000 gpm 1000°F 65-ft head	350-1000	Total: 60,000 From 1969 startup: 2220	None	None
Three-in. loop	Sodium pump	2 x 3 pump. Material: 304 SS	Freeze seal	1	130 gpm 1200°F 24-ft head	From initial startup: 350-1000 From 1963: 350-1300	Total: 60,000 From 1969 startup; 2220	None	None

June 30, 1970

1-567

LCTL DESIGN AND OPERATING DATA (Sheet 2 of 5)

June 30, 1970

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-211
Six-in, loop	Air-cooled heat exchanger,	5-ft, 3-in. dia x 5-ft finned tubes. 0.3 hp blower		1	2000 gpm 1000°F	350-1000	Total: 60,000 From 1969 startup:	None	None
	Immersion	72 kw.		1	2000 gpm	350-1000	2220	None	None
	heater. Diffusion cold trap.	Material: 304 SS 6-in. dia x 2-ft Material: 304 SS		1	1000°F 2000 gpm 1000°F	350-1000		None	None
Sodium service	Sodium pump	2 x 3 pump	Freeze seal	1	130 gpm 1200°F 24-ft head	350-1200	Total: 60,000 From 1969 startup: 2220	None	None
Three-in. loop	Heater	275 kw. 36 sheathed tubular heaters in 8-in, pipe. Material: 304 SS		1	130 gpm 1200°F	From initial startup: 350-1000 From 1963: 350-1300	Total: 60,000 From 1969 startup: 2220	None	None
Six-in. loop	Gate valve	8-in. Material: 304 SS	Freeze seal, insulated.	1	From core tank: 2000 gpm 1000°F	350-1000	Total: 60,000 From 1969 startup:	None	None
	Piston- operated gate valve,	6-in. Material: 304 SS	Freeze seal, insulated.	1	To core tank: 2000 gpm 1000°F		2220	None	None
	Gate valve.	6-in. Material: 304 SS	Freeze seal, insulated.	2	In loop (2): 2000 gpm 1000°F			None	None
	Piston- operated gate valve.	6-in. Material: 304 SS	Freeze seal, insulated.	1	In loop: 2000 gpm 1000°F			None	None
Three-in. loop	Gate valve.	3-in. Material: 304 SS	Freeze seal, insulated.	4	From supply tank (1) in loop (3): 130 gpm 1200°F	From initial startup: 350-1000 From 1963 piping material	Total: 60,000 From 1969 startup:	None	None
	Piston- operated gate valve.	3-in. Material: 304 SS	Freeze seal, insulated.	3	From supply tank (1) to core tank (1): 130 gpm 1200°F	change: 350-1300	2220	None	None

LCTL DESIGN AND OPERATING DATA (Sheet 3 of 5)

	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-211
LME	Eight-in. supply and drain	Gate valve, Piston- operated gate valve,	8-in. Material: 304 SS 8-in. Material: 304 SS	Freeze seal, insulated. Freeze seal, insulated.	1	From core to drain tanks (1): 2000 gpm 1000°F From supply tank (1): 2000 gpm 1000°F	350-1000	Total: 60,000 From 1969 startup: 2220	None None	None None
C-Memo-69-	Purification and sodium service	Piping	3-in. OD (390-ft long). 2-in. OD (160-ft long). 1-in. OD (50-ft long).	Insulated		300 gpm 1200°F 1000°F	From initial startup: 350-1000 From 1963: (3-in. loop) 350-1300 (6-in. loop) 350-1000 From 1969 startup: 350-750	Total: (3-in. and 2-in.) 60,000 (1-in.) 8,000 From 1969 startup: 2220	1	ltem 7
7, Vol. I	Purification loop s	Cold trap. Plugging meter.	17-in. dia x 5-ft, 9-in. 3 hp blower. Material: 304 SS Material: 304 SS		1	750°F 100 psig 750°F	350-700 350-700	Total: 60,000 From 1969 startup: 2220	None None	None None
	Purification loops	Gate valve,	3-in. Material: 304.SS	Freeze seal, insulated.	7	Cold trap bypass (1). Plugging meter bypass (1): 50 gpm 700°F	350-700	Total: 60,000 From 1969 startup: 2220	3	Items 2, 3, and 4
			1-1/2-in. 1-in.	Freeze seal, insulated. Freeze seal, insulated.		To cold trap (1): from cold trap (1): 50 gpm 700°F To plugging meter (2); from plugging meter (1): 50 gpm 700°F			None	None
		"Y" pattern gate valve.	l-in.	Freeze seal, insulated.	1	In plugging meter: 50 gpm 700°F				

-

June 30, 1970

LCTL DESIGN AND OPERATING DATA (Sheet 4 of 5)

Item Exposure to Number of Number of External Operating Design Temperature Internal Reference Component Size Like Environmental Sodium Pressure and Temperature In Component Environment and Material Components Leaks System **Conditions** and (*F) Туре Velocity Table 1-211 (hr) of Construction In System Protections Total: 60,000 1 Item 5 From initial Fill and vent system: 9 Bellows seal Globe valve. 2-in. From 1969 Sodium setup: 350°F Material: 304 SS service 350-1000 startup: From 1963: 2220 (3-in. loop) 350-1300 LMEC-Memo-(6-in. loop) 350-1000 From 1969 startup: 350-750 Total: 60,000 None None 6-in. loop heat exchanger From initial 6 Bellows seal Gate valve. 3-in. Sodium From 1969 startup: drain (3); Material: 304 SS service 350-1000 startup: 1000°F From 1969 2220 Immersion heater, startup: Internal (3): 350-750 1000°F 69 Total: 60,000 None 350 None Fill connection: 1 1 Z-in. Check valve. From 1969 Sodium 7, 350°F Material: 304 SS startup: service 2220 Vol. Total: 60,000 None None From initial 3-in, loop to drain (2): 10 Freeze seal, insulation. Gate valve. 2-in. Sodium startup: 300 gpm Material: 304 SS 350-1000 service 1200°F н From 1963: (3-in, loop) 350-1300 (6-in, loop) 6-in. loop to drain (1): Freeze seal, insulation. 3-in. 350-1000 300 gpm Material: 304 SS From 1969 From 1969 1200°F startup: startup: 350-750 2220 Transfer pump inlet to Freeze seal, insulation. 3-in. supply tank (1): Material: 304 SS 50 gpm 700°F Level indicator supply Freeze seal 2-in, tank (2): Material: 304 SS 1200°F Core tank (2): Freeze seal 3-in. 1200°F Material: 304 SS Drain tank (1): 2-in Freeze seal 1200°F Material: 304 SS Transfer pump to vent Freeze seal 3-in. (1): Material: 304 SS 130 gpm 1200°F

LCTL DESIGN AND OPERATING DATA (Sheet 5 of 5)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Esposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-21
Sodium service	Piston- operated valve.	3-in. 3-in.	Freeze seal Freeze seal	8	3-in. loop to drain (1): 300 gpm 1200°F Core tank to drain (1): 300 gpm	From initial startup: 350-1000 From 1963: (3-in. loop)	Total: 60,000	None	None
		3-in.	Freeze seal	4 9 2 2	1200°F To drain tank (1): 300 gpm 1200°F	(5-11. 100p) 350-1300 (6-in. 100p) 350-1000			
		6-in. Material: 304 SS	Freeze seal		6-in. immersion heater loop (1): 2000 gpm 1000°F	From 1969 startup: 350-750	From 1969 startup: 2220	I	Item 6
		3-in. Material: 304 SS	Freeze seal		Immersion heater to drain tank (1): 300 gpm 1000°F			None	None
		3-in. Material: 304 SS	Freeze seal		To transfer pump (1): 130 gpm 1200°F				
		3-in. Material: 304 SS	Freeze seal		Transfer pump to drain tank (1): 130 gpm 1200*F				
		3-in. Material: 304 SS	Freeze seal		Transfer pump to supply tank (1): 130 gpm 1200°F				

June 30, 1970

TABLE 1-205A

SRE DESIGN AND OPERATING DATA (Sheet 1 of 5)

June 30, 1970

>	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
	Primary	Vessel (reactor)	304 SS 1-1/2 in. thick. 135-in. dia. 228-in. length.	Helium atmosphere temperature. Same as interior.	1	Inlet: 650°F Outlet: 1200°F	Outlet: 300-700 700-800 800-960 960-1030	65, 488 2, 776 3, 580 356	None	None
LM							Inlet: 300-600	72,200		
LMEC-Memo-	Primary (main)	Piping	Schedule 40. 6-in. OD. 140-ft length. Material: 304 SS. 2-1/2-in. OD. 55-ft length. Material: 304 SS.	Dehumidified nitrogen. Temperature: 100°F.		1200°F max.	Hot leg: 300-700 700-800 800-960 960-1030 Cold leg:	65,488 2,776 3,580 356	None	None
-69							300-600	72,200		
9-7,	Primary heat transfer auxiliary	Piping	2-in. OD. 150-ft length. Material: 304 SS.	Dehumidified nitrogen.		24,250 lb/hr 1200°F	300-700 700-1030	65, 488 6, 712	None	None
Vol. I	Primary (main)	Centrifugal pump	Freeze seal. Material: 304 SS.	Dehumidified nitrogen. Temperature: 100°F	1	485,000 lb/hr 1200°F	300-700 700-800 800-960 960-1030	65, 488 2, 776 3, 580 356	None	None
	Primary (auxiliary)	Centrifugal pump	Freeze seal. Material: 304 SS.	Dehumidified nitrogen.	1	24,250 lb/hr 1200°F	300-700 700-800 800-960 960-1030	65, 488 2, 776 3, 580 356	None	None
	Primary- secondary (main)	Intermediate heat exchanger	Material: 304 SS.	Dehumidified nitrogen.	1	Primary side: Inlet: 1200°F Outlet: 600°F	Hot leg (inlet): 300-700 700-800 800-960 960-1030	65, 488 2, 776 3, 580 356	None	None
							Cold leg (outlet): 300-600	72,200		
	Primary- secondary (auxiliary)	Intermediate heat exchanger	Material: 304 SS.	Dehumidified nitrogen.	1	1200°F	Inlet: 300-700 700-800 800-960 960-1030	65, 488 2, 776 3, 580 356	None	None
							Outlet: 300-600	72, 200		

 \mathbb{D}

TABLE 1-205A

SRE DESIGN AND OPERATING DATA (Sheet 2 of 5)

=	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
-	Secondary heat transfer	Piping	6-in. OD. 146-ft length. Material: 304 SS.	Ambient air.		485,000 lb/hr 1140°F	300-700 700-1030	65, 488 6, 712	None	None
LME	Secondary (auxiliary)	Piping	2-in. OD. 150-ft length. Material: 304 SS.	Ambient air.		24,250 lb/hr 1140°F	300-700 700-1000	65, 488 6, 712	None	None
C-Mem	Primary purification loops	Globe valve	l-1/2 in.	Bellows seal.	6	To and from main primary pump (l each): 1000 lb/hr 960°F To hot traps (2): 10,000 lb/hr 1190°F	300-700 700-800 800-960 960-1030	65,488 2,776 3,580 356	None	None
0-69-7						From hot traps (2): 10,000 lb/hr 1210°F				
, Vol. I	Primary sodium service	Globe valve	2-1/2 in.	Toluene jacket around stem creates a sodium freeze seal. Dehumidified nitrogen.	1	Second return line to reactor tank picked off from downstream of cold leg plug valve: 34,000 lb/hr 500°F (732°F max.)	300-600	72,200	None	None
			l in.		2	Hot and cold leg flush lines (l each): l200°F	300-600	72,200	None	None
-	Auxiliary primary heat transfer	Wedge-type plug valve	2 in.	Toluene jacket around stem creates a sodium freeze seal.	2	Main loop: Hot leg: 24,250 lb/hr 1200°F max.	Hot leg: 300-700 700-800 800-960 960-1030	65, 488 2, 776 3, 580 356	None	None
						Cold leg: 24,250 lb/hr 732°F	Cold leg: 300-600	72,200		
-	Auxiliary primary heat transfer	Check valve	2 in.		1	Main loop cold leg: 24,250 lb/hr 732°F	300-600	72,200	None	None


June 30, 1970

TABLE 1-205A

SRE DESIGN AND OPERATING DATA (Sheet 3 of 5)

June 30, 1970

-	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
_	Auxiliary primary purification	Globe valve	l in.	Bellows seal.	8	Cold trap loop: 3620 lb/hr 732°F	300-600	72,200	None	None
LMEC	Auxiliary primary sodium service	Globe valve	l in.	Bellows seal.	4	Flush lines: 1200°F	300-600	72,200	None	None
- EC - Memo	Secondary heat transfer	Wedge~type plug valve	6 in. Material: 304 SS.	Toluene jacket around stem creates a freeze seal, Ambient air.	2	Downstream of air- blast heat exchanger and Edison steam generator (parallel systems) (1 each): 485,000 lb/hr 440°F (674°F max.)	300-600	72,200	None	None
-69-7	Secondary (main)	Pump (freeze-seal centrifugal)	Material: 304 SS.	Dehumidified nitrogen.	1	485,000 lb/hr 674°F	300-600	72,200	None	None
7. Vo	Secondary (auxiliary)	Pump (freeze-seal centrifugal)	Material: 304 SS.	Dehumidified nitrogen.	1	24, 250 lb/hr 674°F	300-600	72,200	None	None
ol - I	Secondáry heat transfer	Expansion tank	88 ft ³ (650 gal.). Material: 304 SS.	Ambient air.	1	485,000 lb/hr 1140°F	300-600	72,200	None	None
-	Auxiliary secondary heat transfer	Expansion tank	4 ft ³ (30 gal.). Material: 304 SS.	Ambient air.	1	24,250 lb/hr 674°F	300-600	72,200	None	None
-	Secondary (main)	Steam generator		Ambient air.	1	1200°F 750 p s ig	300-700 700-1030	65, 488 6, 712	None	None
		Air-blast heat exchanger		Ambient air.	1	1200°F	300-1030	50,000	None	None
-	Second ary (auxiliary)	Air-blast heat exchanger		Ambient air.	1		300-700 700-1000	65, 488 6, 712	None	None

TABLE 1-205A

SRE DESIGN AND OPERATING DATA (Sheet 4 of 5)

TABLE 1-205A

SRE DESIGN AND OPERATING DATA (Sheet 5 of 5)

June 30, 1970

	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
	Auxiliary secondary purification	Globe valve	l in. Material: 304 SS.	Bellows seal. Ambient air.	3	Plugging meter loop: 2280 lb/hr 674°F	300-600	72,200	None	None
LME	Auxiliary secondary sodium service	Globe valve	2 in.	Bellows seal. Ambient air.	l	Drain fill line: 550°F	300-600	72,200	None	None
€C-Memo	General sodium service system	Globe valve	2 in. 1 in.	Bellows seal, Dehumidified nitrogen,	1	General fill and drain system: 550°F	300-600	72,200	None None	None None
- ğ			1-1/2 in.		14				None	None
0-69-7	General sodium service system	Check valve	l-1/2 in.	Dehumidified nitrogen.	l	From melt station to primary fill tank (1): 4500 lb/hr 350°F	300-600	72,200	None	None
7, Vol.			2 in.		l	From melt station to transfer tank (l): 4500 lb/hr 350°F	300-600	72,200	None	None
н	General sodium service	Gate valve	2 in.	Dehumidified nitrogen.	4	Melt and fill systems: 550°F	300-600	72,200	None	None
	system		1-1/2 in.		4				None	None

 $\left(\right)$

TABLE 1-205B

 \cap

SRE-PEP DESIGN AND OPERATING DATA (Sheet 1 of 4)

=	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
-	Primary	Vessel (reactor)	1-1/2-in. thick. 135-in. dia. 228-in. length Material: 304 SS.	Helium atmosphere.	1	Inlet: 1200°F Outlet: 600°F 0.5 psi at free sodium surface	700 350	4,386 17,014	None	None
ا LMEC-Memo	Primary (main)	Piping	Schedule 20: 8-in. OD. 125-ft length. 6-in. OD. 15-ft length. 3-in. OD. 55-ft length. Material: 304 SS.	Dehumidified nitrogen.		1200°F 2700 gpm	Hot leg: 700 350 Cold leg: 300-600	4, 386 17, 014 21, 400	None	None
- mo	Primary (auxiliary)	Piping	2-in. OD. 150-ft length. Material: 304 SS.	Ambient air.		1200°F 102 gpm	700 350	3,800 17,600	None	None
69-7	Primary (main)	Pump, free- surface, centrifugal	Material: 304 SS.	Dehumidified nitrogen.	1	1200°F 62 psi 2700 gpm	700 350	4, 386 17, 014	None	None
, Vol.	Primary (auxiliary)	Pump, free- surface, centrifugal	Material: 304 SS.	Dehumidified nitrogen.	1	1200°F 12 psi 102 gpm	700 350	3,800 17,600	None	None
• н	Primary secondary	Intermediate heat exchanger	555 tubes of 5/8-in. OD.042-in. thick. Material: 304 SS.	Dehumidified.	1	1200°F 110 psig	On primary side: 700 350	4,386 17,014	None	None
-	Primary secondary (auxiliary)	Intermediate heat exchanger	Material: 304 SS.	Ambient air.	1	1200°F 100 psig 93 gpm	700 350	3,800 17,600	None	None
-	Secondary (main)	Piping	Schedule 20: 8-in. OD. 143-ft length. Schedule 40: 6-in. OD. 3-ft length. Material: 304 SS.	Dehumidified nitrogen.		Inlet: 616°F Outlet: 1166°F 2500 gpm	300-600	21,400	None	None
-	Secondary (auxiliary)	Piping	2-in. OD. 150-ft length. Material: 304 SS.	Dehumidified nitrogen.		1200°F 93 gpm	300-600	21,400	None	None

June 30, 1970

TABLE 1-205B

SRE-PEP DESIGN AND OPERATING DATA (Sheet 2 of 4)

June 30,1970

	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
F	Secondary (main)	Pump, free- surface, centrifugal (integral expansion tank)	Material: 304 SS. (1120 gal.).	Inside expansion tank: Sodium at 620°F. Helium. Dehumidified nitrogen.	1	800°F 94 psig 2500 gpm	300-600	21,400	None	None
LMEC-	Secondary (auxiliary)	Pump (integral expansion tank)	Material: 304 SS. (30 gal.).	Inside expansion tank: Helium. Dehumidified nitrogen.	1	800°F 100 psig 93 gpm	300-600	21,400	None	None
•Memo-69- 1-578	Secondary (main)	Steam generator	Material: 304 SS.	Ambient air.	1	1200°F 1410 gpm 750 psig	300-600	21,400	None	None
	Secondary (auxiliary)	Air-blast heat exchanger	Material: 304 SS.	Ambient air.	1	1200°F 50 psig	300-600	21,400	None .	None
7,	Primary heat transfer	Globe valve	8-in. Material: 304 SS.	Dehumidified nitrogen.	1	619,000 lb/hr 650°F 18.7 psig	Cold leg: 300-600	21,400	None	None
Vol. I	Primary purification loops	Globe valve	1-1/2 in. Material: 304 SS.	Gas-cooled freeze seal. Dehumidified nitrogen.	4	To hot traps: 3890 lb/hr 1200°F 21 psig	700 350	4, 386 17, 014	None	None
						From hot traps (2): 5750 lb/hr 1250°F 11.3 psig	700 350	4,386 17,014		
						To cold trap: 5750 lb/hr 650°F 18.7 psig	300-600	21,400		
		''Y'' pattern globe valve	1-1/2 in. Material: 304 SS.	Bellows seal.	1	From cold trap: 5750 lb/hr 600°F	300-600	21,400	None	None
		Globe angle valve	1-1/2 in. Material: 304 SS.	Gas-cooled freeze seal.	2	From cold trap (D/S of above): 5750 lb/hr 600°F	300-600	21,400	None	None
						From purification loop: 5750 lb/hr 1250°F	350-700	21, 4 00		

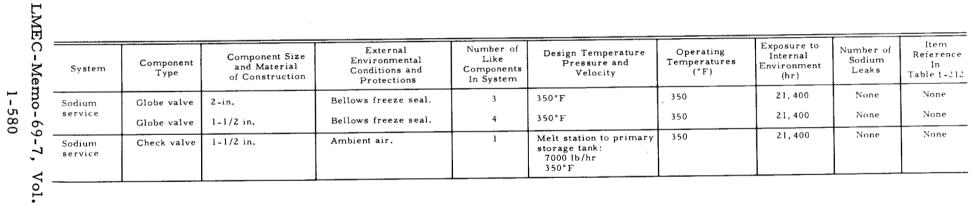

 \mathbf{D}

TABLE 1-205B

SRE-PEP DESIGN AND OPERATING DATA (Sheet 3 of 4)

=	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
-	Primary purification loops	Globe valve	l-1/2 in. Material: 304 SS.	Gas-cooled freeze seal. Dehumidified nitrogen.	2	Plugging meter: 435 lb/hr 650°F 18.7 psig	300-600	21,400	None	None
LME	Primary heat transier	Globe valve	3-in. Material: 304 SS.	Gas-cooled freeze seal. Dehumidified nitrogen.	1	Moderator plenum: 87,300 lb/hr 650°F	300-600	21,400	None	None
C-Memo-69	Secondary heat transier	Globe angle valve	6-in, Material: 304 SS.	Bellows seal. Ambient air.	2	Hot leg: 619,000 lb/hr 1166°F 47.1 psig Cold leg: 619,000 lb/hr 616°F 35.6 psig	350	21,400	None	None
-7,	Secondary heat transfer	Globe angle valve	l-in. Material: 304 SS.	Bellows seal.	2	Heat exchanger bypass; 1200°F	350	21,400	None	None
Vol.	Secondary purification	''Y'' pattern globe valve.	l-in. Material: 304 SS.	Bellows seal. Ambient air.	1	To plugging meter: 437 lb/hr	350	21,400	None	None
Ι	loops	Globe valve.	l-in. Material: 304 SS.	Gas-cooled freeze seal. Ambient air.	4	To cold trap loop: 6387 lb/hr max, 616°F 76 psig	350	21,400	None	None
	Auxiliary secondary heat transfer	Globe angle valve	2-in. Material: 304 SS.	Bellows seal.	1	40,800 lb/hr 1166°F 10.5 psig	300-600	21,400	None	None
	Auxiliary secondary purification	Globe valve	1-in.	Gas-cooled freeze seal.	3	To cold trap loop: 5950 lb/hr 616°F 76.0 psig	300-600	21,400	None	None
	Primary sodium service	Globe valve. Globe angle valve.	4-in. 2-in.	Freeze seal. Bellows seal.	1 5	Fill, drain, and vent lines: 4500 lb/hr	700 350	4,386 17,014	None None	None None
		Globe valve.	2-in.	Freeze seal.	2	350-1200°F			None	None
		Globe angle valve.	1-1/2 in.	Freeze seal.	3				None	None
		Globe valve.	1-1/2 in.	Bellows seal.	2				None	None

June 30, 1970

SRE-PEP DESIGN AND OPERATING DATA (Sheet 4 of 4)

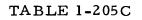
TABLE 1-205B

н

TABLE 1-205C

SRE AND SRE-PEP DESIGN AND OPERATING DATA (Sheet 1 of 3)

0										
-	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
-	Primary and auxiliary. Primary purification	Piping	l-in. OD, 18 ft. l-1/2-in. OD, 411 ft. 2-in. OD, 164 ft. Material: 304 SS.	Dehumidified nitrogen.		Hot leg: 10,000 lb/hr 1210°F	SRE: 300-700 700-1030 SRE-PEP: 300-600	SRE: 65,488 6,712 SRE-PEP: 21,400		
LMEC	and sodium service					Cold leg: 3620 lb/hr 500°F	300-600	SRE: 72,200 SRE-PEP: 21,400	1	Item 26
- Memo- 1 - 5	Primary and auxiliary. Primary purification	Cold trap	Material: 304 SS.	Dehumidified nitrogen.	2, one in each system	1340 lb/hr 500°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
o-69-7, .581	Primary auxiliary. Primary purification	Plugging meter	Material: 304 SS.	Dehumidified nitrogen	2, one in each system	2280 lb/hr 500°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
Vol.	Primary purification	Mass transfer assembly	Material: 304 SS.	Dehumidified nitrogen.	1	1200 lb/hr 960°F	SRE: 300-700 700-1030	SRE: 23,288 6,712	None	None
Ι	Primary purification	Hot traps	Material: 304 SS.	Dehumidified nitrogen.	2	10,000 lb/hr 1210°F	SRE: 300-700 700-1030 SRE-PEP: 300-600	SRE: 65,488 6,712 SRE-PEP: 27,400	None	None
	Primary and auxiliary. Primary sodium service	Fill tank	8850 gal. Material: 304 SS.	Dehumidified nitrogen.	1	350°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
	Secondary and auxiliary. Secondary purification and sodium service	Piping	l-in. OD, 14 ft. l-1/2-in. OD, 185 ft. 2-in. OD, 118 ft. Material: 304 SS.	Ambient air.		3620 lb/hr 440°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None


TABLE 1-205C

SRE AND SRE-PEP DESIGN AND OPERATING DATA (Sheet 2 of 3)

June 30,1970

-	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
-	Secondary purification	Cold trap	Material: 304 SS.	Ambient air.	1	1340 lb/hr 440°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
LMEC	Auxiliary secondary purification	Plugging meter	Material: 304 SS.	Ambient air.	2, one each system	2280 lb/hr 440°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
- Memo-	Secondary and auxiliary secondary sodium service	Fill tank	2625 gal. Material: 304 SS.	Ambient air.	1	350°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
69-7, Vol.	Secondary and auxiliary secondary sodium service	Diffusion cold trap	Material: 304 SS.	Ambient air.	1	350°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
1. I	General sodium service	Flush and drain tank	160 gal. Material: 304 SS.	Ambient air.	- 1	350°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
	General sodium service	Cold trap	Material: 304 SS.	Ambient air.	1	350°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
	General sodium service	Transfer tank	80 gal. Material: carbon steel.	Ambient air.	1	350°F	300-600	SRE: 72,200 SRE-PEP: 21,400	None	None
_	General sodium service	Sodium filter	2-in. line Material: 304 SS.	Ambient air.	2	350°F	300-600	SRE: 72,200 SRE-PEP: 21,400	1	Item 25
	Primary sodium service	EM pump	2-in. line. Material: 304 SS.	Dehumidified nitrogen.	2	1200°F	SRE: 300-700 700-1030 SRE-PEP: 300-600	SRE: 65,488 6,712 SRE-PEP: 21,400	None	None

)

SRE AND SRE-PEP DESIGN AND OPERATING DATA (Sheet 3 of 3)

LME										
-Merr 1	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-212
no-69-7, -583	Secondary sodium service	EM pump	2-in. line. Material: 304 SS.	Ambient air.	1	1200°F	SRE: 300-700 700-1030 SRE-PEP: 300-600	SRE: 65,488 6,712 SRE-PEP: 21,400	None	None

Vol. I

HALLAM DESIGN AND OPERATING DATA (Sheet 1 of 5)

June 30, 1970

0	_										
	_	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-213
	-	Primary heat transfer	Reactor vessel	33-ft length. 19-ft dia. Material: 304 SS.	Helium gas. Containment tank. Thermal shields. Thermal insulation. Cavity liner.	1	1000°F 8,400,000 lb/hr	350-600 600-950	14,000 8,000	None	None
LMEC-Memo-69 1-584	C - Memo -	Primary heat transfer	Piping	Reactor to pumps: 16-in. dia. 0.25-in. wall. 250-ft length (each). Material: 304 SS. Pump, through IHX to reactor: 14-in. dia. 0.25-in. wall. 250-ft length (each). Material: 304 SS.	Dehumidified nitrogen. To primary block valves: outer containment pipe Block valves to pumps: shielded pipe tunnels Pump, thru IHX, to throttle valves: shielded pipe tunnels Throttle valves to reactor: outer containment pipe	3 loops 3 loops	1000°F 2,800,000 lb/hr each Pumps to IHX: 1000°F 2,800,000 lb/hr each IHX to reactor: 650°F 2,800,000 lb/hr each	350-600 600-950 350-600 600-950 350-600	14,000 8,000 14,000 8,000 22,000	None	None None
	-7, Vol.	Primary heat transfer	Punip	16-in. suction. 14-in. discharge. 6-in. overflow. Material: 304 SS.	Dehumidified nitrogen. Mounted in shielded cell.	3 - 1 in each loop	1000°F 2,800,000 lb/hr each	350-600 600-950	14,000 8,000	None	None
	1. I	Primary heat transfer	Gate valve (block valve)	14 in. Material: 304 SS.	Dehumidified nitrogen. Frozen sodium stem seal plus backup mechanical packing seals.	3 - 1 in each loop	1000°F 2,800,000 lb/hr each	350-600 600-950	14,000 8,000	None	None
	-	Primary heat transfer	Globe valve (throttle valve)	l4 in. Material: 304 SS.	Dehumidified nitrogen, Frozen sodium stem seal plus backup mechanical packing seals.	3 - 1 in each loop	650°F 2,800,000 lb/hr each	350-600	22,000	None	None
-	Primary and secondary	Heat exchanger (shell and tube counter- flow design)	18-ft length. 3-ft dia. Material: 304 SS.	Dehumidified nitrogen. Mounted in shielded cell.	6 - 2 mounted parallel in each loop	Primary loop tubes: 1000°F in 650°F out 2,800,000 lb/hr each pair Secondary loop shell: 600°F in 950°F out 2,800,000 lb/hr each pair	350-600 600-950	14,000 8,000	None	None	

1-584

HALLAM DESIGN AND OPERATING DATA (Sheet 2 of 5)

:	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-213
۲N	Secondary heat transfer	Piping	14-in, dia. 0,25-in, wall. 400-ft length (each).	Dehumidified nitrogen.	3	Hot leg: 950°F 2,800,000 lb/hr Cold leg: 600°F 2,800,000 lb/hr	350-600 600-950 350-600	11,000 8,000 19,000	None	None
LMEC-M			8-in, dia overflow (pump to expansion tank). 50-ft length (each). Material: 304 SS,		3	950°F	350-600 600-950	11,000 8,000		
·Memo-	Secondary heat transfer	Expansion tank	300 ft ³ . Material: 304 SS.	Dehumidified nitrogen,	3 - 1 in each loop	950°F	350-600 600-950	11,000 8,000	1	Item 1
69-7,	Secondary heat transfer	Բսութ	14-in. suction. 14-in. discharge. Material: 304 SS.	Dehumidified nitrogen. Unshielded.	3 - 1 in each loop	950°F 2,800,000 lb/hr each	350-600 600-950	11,000 8,000	1	Item 2
Vol. I	Secondarv heat transfer	Globe valve (throttle valve)	l4-in. Material: 304 SS.	Dehumidified nitrogen. Frozen sodium stem seal plus backup mechanical packing seals.	3 - 1 in each loop	600°F 2,800,000 lb/hr each	350-600	19,000	None	None
-	Secondary heat transfer	Steam generator (super- heater plus evaporator)	5 CR - 1/2 Mo	Dehumidified nitrogen. Duplex tubes with helium monitor.	3 - 1 in each loop	Sodium side: 950°F in 600°F out 2,800,000 lb/hr each 100 psig Water side: 825°F out 800 psig 251,000 lb/hr each	350-600 600-950	11,000 8,000	None	None
	Primary heat transfer	Check valve	l4 in. Material: 304 SS.	Dehumidified nitrogen. Shielded cell.	3 - 1 in each loop	650°F 2,800,000 lb/hr each	350-600	22,000	None	None

June 30, 1970

HALLAM DESIGN AND OPERATING DATA (Sheet 3 of 5)

=	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Iten Reference In Table 1-213
-	Primary purification loop	Gate valve.	3 in. Material: 304 SS.	Freeze seal, auxiliary stem packing.	6	650°F 100 gpm	350-600	22,000	None	None
L-1	1000	Globe valve.	3 in. Material: 304 SS.	Bellows seal, auxiliary stem packing.	5	650°F 100 gpm			3	Items 5, 6 and 8
LME		Globe valve.	2 in. Material: 304 SS.	Bellows seal, auxiliary stem packing.	8	650°F 20 gpm			2	Items 3 and 7
Ω ¦	Primary sodium service	Gate valve.	2 in. Material: 304 SS.	Freeze seal, auxiliary stem packing.	7	650°F	350-600	22,000	None	None
Memo-	service	Globe valve.	3 in. Material: 304 SS.	Bellows seal, auxiliary stem packing.	20	650°F			1	Item 4
10-6		Globe valve.	2 in. Material: 304 SS.	Bellows seal, auxiliary stem packing.	13	650°F			None	None
59-7,		Gate valve.	3 in. Material: 304 SS.		8	650°F			None	None
		Gate valve.	2 in. Material: 304 SS.		6	650°F			None	None
Vol.		Gate valve.	l in. Material: 304 SS.		2	650°F			None	None
<u>}</u> −4		Check valve.	3 in. Material: 304 SS.		2	650°F			None	None
	Primary sodium	Fill tanks.	2150 ft ³ . Material: 304 SS.	Dehumidified nitrogen.	5	650°F	350-600	22,000	None	None
	service	Transfer tanks.	20 ft ³ . Material: carbon steel.	Dehumidified nitrogen.	1	650°F			None	None
		Containment drain tank.	20 ft ³ . Material: 304 SS.	Dehumidified nitrogen.	1	1000°F			None	None
		Service drain tank.	20 ft ³ . Material: 304 SS.	Dehumidified nitrogen.	1	1000°F			None	None

June 30, 1970

1-586

10-07-1

HALLAM DESIGN AND OPERATING DATA (Sheet 4 of 5)

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-213
Primary purification	Cold trap.	Carbon steel.	Freeze traps.	2	650°F 20 gpm	350-600 600-950	14,000 8,000	2	Items 10 and 11
loop	Carbon trap.	Material: 304 SS.	Freeze traps.	1	1200°F 40 gpm			1	Item 13
	Plugging meter.	Material: 304 SS.	Dehumidified nitrogen.	2				None	None
Primary sodium service	EM pump	3-in. pipe size		2	650°F	350-600	22,000	None	None
Secondary purification loop	Cold trap.	Material: carbon steel.	Freeze trap.	1	950°F 10 gpm	350-600	19,000	None	None
тоор	Plugging meter.	Material: 304 SS.	Dehumidified nitrogen.	1				None	None
Secondary purification loop	Gate valve.	3 in. Material: 304 SS.	Freeze seal, auxiliary stem packing.	6	950°F 30 gpm	350-600 600-950	11,000 8,000	None	None
100þ	Globe valve.	3 in. Material: 304 SS.	Bellows seal, auxiliary stem packing.	1	950°F 100 gpm			1	Item 9
	Globe valve.	2 in. Material: 304 SS.	Bellows seal, auxiliary stem packing.	4	950°F 10 gpm			None	None
Secondary sodium service	Fill tanks	1375 ft ³ . Material: 304 SS.	Dehumidified nitrogen.	3	950°F	350-600	19,000	None	None
service	Drain tanks	10 ft ³ . Material: 304 SS.	Dehumidified nitrogen.	1	950°F			None	None
Secondary sodium	Gate valve	2 in. Material: 304 SS.	Freeze seal, auxiliary stem packing.	3	950°F	350-600	19,000	None	None
service	Globe valve	3 in. Material: 304 SS.	Bellows seal, auxiliary stem packing.	11	950°F.			None	None
Secondary sodium service	EM pump	3-in, pipe size		1	650°F	350	19,000	None	None

June 30, 1970

HALLAM DESIGN AND OPERATING DATA (Sheet 5 of 5)

June 30, 1970

	Å
	EC
	-Me
<u> </u>	em

_	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-213
	Primary purification and sodium service	Piping	2-in. dia. 3-in. dia. 5500-ft long. Material: 304 SS.	Dehumidified nitrogen.		1200°F	350-600 600-950	14,000 8,000	1	Item 12
	Secondary purification and sodium service	Piping	2-in. dia. 3-in. dia. 3500-ft long. Material: 304 SS.	Dehumidified nitrogen.		950°F	350-600	19,000	None	None
•	Sodium service	Filters	3-in. pipe size.		2	650°F	350	22,000	None	None
-	Sodium service	EM pump	3-in. pipe size.		1	650°F	350	22,000	None	None

 \mathbf{D}

EBR-II DESIGN AND OPERATING DATA (Sheet 1 of 2)

	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (⁰ F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-214
	Primary	Reactor vessel	26 ft x 26 ft x 1/2 in. Material: 304 Cres.	Nitrogen gas at pressure: ± 6 in. of H ₂ O	1	750°F 23.8 ft/min	700 3 00-69 9	56,000 8,000	None	None
LMEC-Memo	Primary	Piping	Hot leg: 14 in. OD (43 ft long). jacketed by 18 in. Cold leg: 12-in. OD (54 ft long). 12-in. pipe to outer blanket: 6-in. OD (8 ft long). 4-in. OD (92 ft long). Material: 304 Cres.	Sodium vapor + liquid at 700°F	-	3,574,000 lb/hr 900°F 100 psi	Hot leg: 300-699°F 700-850°F Cold leg: 300-700°F	46,000 18,000 64,000	None	None
o-69-	Primary	Pump, free- surface centrifugal	Material: 304 Cres.	Sodium vapor + liquid at 700°F	2	85 psi 4500 gpm	300-700 (in cold leg)	64,000	None	None
-7, Vol.	Primary	Throttling valves	6-in, angle-type bellows seal. Material: 304 Cres.	Sodium at 700°F	2	150 psig 800°F	60 psig 15.2 ft/sec . 300-700 (located in cold leg)	64,000	None	None
• H	Primary purification	Piping	20-in. OD. 130-ft long. Material: 304 Cres.		-	700°F 20-60 gpm 5-15 psig	300-700 20-40 gpm 5-18 psig	64,000	None	None
		EM pump	304 SS		1	700°F	300-700	64,000	1	Item l
		Surge tank	64-in. high t = 0.134 in. 304 SS.		1	700°F	300-700	64,000	None	None
		Regenerative heat exchanger	304 SS		1	700°F	300-700	64,000	None	None
		Cold trap.	5-ft length. 6-ft OD. 1/4-in, thick.		1	350°F	200-400	64,000	None	None
		Plugging meter.	Material: 304 SS Material: 304 SS		2	350 F	200-400	64,000	None	None
		Valves	Pneumatically operated, Hand operated,		9	350-700°F	300-700	64,000	5	Items 3, 4, 5 6, and 7

June 30, 1970

EBR-II DESIGN AND OPERATING DATA (Sheet 2 of 2)

June 30, 1970

System	Component - Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-214
Primary and secondary	Intermediate heat exchanger IHX	Material: 304 Cres.	Sodium vapor + liquid at 700°F,	1	Shell side: 900°F in 700°F out 3.4 psig Tube side: 588°F in 866°F out 10 psig	300-700 700-850	46,000 18,000	None	None
Secondary	Piping	Hot leg: 12-in, OD (279-ft long). 10-in, OD (105-ft long). 8-in, OD (374-ft long). Cold leg: 16-in, OD (14-ft long). 12-in, OD (294-ft long). 8-in, OD (176-ft long). Material: 304 Cres.		-	2.2 x 10 ⁶ lb/hr 900°F	Hot leg: 300-700 700-850 Cold leg: 300-700	46,000 18,000 64,000	None	None
Secondary	EM pump			-	900°F	300-700	64,000	1	Item 2
Secondary	Surge tank	Material: 304 Cres.		1	600°F nominal	300-700	64,000	None	None
Secondary (Purifica- tion)	Piping	4-in OD (107-ft long), 2-in, OD (156-ft long), Material: 304 SS.		-	700°F	300-700	64,000	None	None
	EM pump	Material: 304 SS		2	700°F	300-700	64,000	None	None
	Storage tank	Material: 304 SS		1	600°F	300-700	64,000	None	None
	Economizer	Material: 304 SS		1	600°F	300-700	64,000	None	None
	Cold trap Plugging meter,	Material: 304 SS		1 1	350°F	200-400	64,000 64,000	None None	None None
	Valves	Material: 304 SS		18	700°F	300-700	64,000	9	Items 8 through 1
Secondary	Superheater	Material: 304 SS	Ambient air	2	880°F in 800°F out	300-700 700-850	46, 000. 18, 000	None None	None None
Secondary	Evaporator	Material: 304 SS	Ambient air	8	800°F in 600°F out	300-700 700-850	46,000 18,000	None None	None None

D

1-590

()

FERMI DESIGN AND OPERATING DATA (Sheet 1 of 3)

=	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-215
-	Primary heat transfer	Reactor vessel	36.3-ft height. 14.5-ft maximum dia. 2-in, maximum wall. Material: 304 SS	Argon gas	1	1000°F 110 psi	<600 >600	45,700 3,500	None	None
LMEC-Memo-69-7, 1-591	Primary heat transfer	Piping	Per loop - Hot leg: 30-in, OD (75-ft long), Cold leg: 30-in, OD (5-ft long), 18-in, OD (3-ft long), 16-in OD (67-ft long), 14-in, OD (73-ft long), Flow to blanket: 6-in OD (80-it long).	Argon gas. Secondary containment using heavy gage carbon steel pipe plus insulation.	3 separate loops	Reactor to pump: 1000°F 4.9 ft/sec 125 psig Pump discharge: 1000°F 17.5 ft/sec 125 psig Flow to core: 1000°F 21.0 ft/sec 125 psig Flow to blanket: 1000°F 11.0 ft/sec 125 psig	Reactor to heat exchanger (hot leg): <600 >600 Heat exchanger, through pump to reactor (cold leg): 300-600	45, 700 3, 500 49, 200	None	None
Vol. I	Primary heat transfer	Pump	30-in, inlet. 16-in, outlet. Material: 304 SS	Argon gas	3-1 in each loop	11,800 gpm 1000°F Total dynamic heat: 310 ft	300-600	49,200	None	None
-	Primary heat transfer	Check valve	l6-in. Material: 304 SS.	Argon gas	3-1 in each loop	4.4 x 106 lb/hr 1000°F	300-600	49,200	None	None
-	Primary heat transfer	Angle-type gate valve	6-in. Material: 304 SS.	Argon gas. Double-bellows seal.	3-1 in each loop	0.88 x 10 ⁶ lb/hr 1000°F	300-600	49,200	l	Item I
	Primary and Secondary	ІНХ	Tube size: 7/8-in. OD x 0.049-in. wall. 1860 tubes. Material: 304 SS.	Argon gas	3-1 in each loop	Shellside flow: 5.3 x 10 ⁶ lb/hr 900°F in 600°F out 125 psig Flow in tubes: 5.3 x 10 ⁶ lb/hr 520°F in 820°F out 300 psig	<600 >600	45,700 3,500	None	None

June 30, 1970

FERMI DESIGN AND OPERATING-DATA-(Sheet 2 of 3)

June 30, 1970

System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-215
Secondar heat transfer Secondar	/ Piping	Per loop: 18-in. OD (183-ft long). 12-in. OD (147-ft long). Material: 2.25 Cr - I Mo.	Argon gas	3 separate loops	4.4 x 10 ⁶ lb/hr 1000°F 300 psig	Hot leg: <600 >600 Cold leg: 300-600	45,700 3,500 49,200	None	None
heat transfer	y Pump	18-in. inlet. 12-in. outlet. Material: 2.25 Cr- 1 Mo.	Argon gas	3-l in each loop	12,000 gpm 675°F Total dynamic head: 350 psi	300-600	49, 200	None	None
Secondar heat transier	y Steam generator	Total heat transfer area 10,800 ft ² . 1200 tubes. 5/8-in. OD x 0.042-in. wall. Material: 2.25 Cr - 1 Mo.		3-l in each loop	Shellside, flow (sodium): 4.4 x 10 ⁶ lb/hr 750°F in 500°F out 300 psig Tube flow (water-steam): 320,000 lb/hr 340°F in 742°F out 600 psig	<600 >600	45,700 3,500	Nопе	None
Primary purificat and sodiu service		3 in 1273 ft. 2 in 329 ft. 1 in. 67 ft. Material: 304 SS.	Dehumidified nitrogen Shielded cells.		444 lb/hr 1000°F	300-600	49,200	None	None
Primary purificat	Cold trap. on Hot trap. Plugging meter. EM pump.	Material: 304 SS. Material: 304 SS. Material: 304 SS. Material: 304 SS.	Dehumidified nitrogen. Dehumidified nitrogen. Dehumidified nitrogen. Dehumidified nitrogen.	1 1 1	900°F 1000°F 900°F 900°F	300-600 300-600 300-600 300- 600	49, 200 49, 200 49, 200 49, 200	l None None None	Item 8 None None None
Primary	Overflow	Material: 304 SS.	Dehumidified nitrogen.	2	100 gpm 75-ft discharge	300-600	49,200	None	None
purificat and sodiu		Material: 304 SS.	Dehumidified nitrogen.	1	head 1000°F 1000°F	300-600	49, 200	None	None
service	tank. Expansion	Material: 304 SS.	Dehumidified nitrogen.	3	900°F	300-600	49, 200	None	None
	tank. Storage tank.	15000 gal. Material: 2,25 Cr - 1 Mo.	Resistance heaters.	3	700° F	300-600	49, 200	None	None

FERMI DESIGN AND OPERATING DATA (Sheet 3 of 3)

	System	Component Type	Component Size and Material of Construction	External Environmental Conditions and Protections	Number of Like Components In System	Design Temperature Pressure and Velocity	Operating Temperatures (°F)	Exposure to Internal Environment (hr)	Number of Sodium Leaks	Item Reference In Table 1-215
·	Primary purification and sodium service	Gate valve	3 in. 2 in. 1 in. Material: 304 SS.	Dehumidified nitrogen	22 2 9	300-900°F	300-600	49, 200	4	Items 2, 3, 4, and 7
LME	Primary sodium service	Filter	Material: 304 SS		1	700°F	300-600	49, 200	None	None
EC-Memo	Secondary purification and sodium service	Piping	3 in. 463 ft. 1 in. 175 ft. Material: 304 SS			350-900°F	300-600	49,200	None .	None
no-69-	Secondary purification	Cold trap. Plugging meter. EM pump.	Material: 304 SS Material: 304 SS Material: 304 SS		1 4 1	900°F 900°F 900°F	300-600 300-600 300-600	49,200 49,200 49,200	None None None	None None None
.7, Vol	Secondary purification and sodium service	Dump tank	i2,000 gal. 304 SS.		3	900°F	300-600	49, 200	None	None
1. I	Secondary purification and sodium service	Gate valve	3 in. 1 in. Material: 304 SS.		30 6	350-900°F 350-900°F	300-600 300-600	49, 200 49, 200	2	Items 5 and 6

Component SCTI LCTL SRE Hallam EBR-II Fermi Sodium heaters Sodium coolers IHX Steam generators Pumps (mechanical) Pumps (EM) Vessels Filters Purification system components Valves 40 · Piping (ft) Reactors

PLANT COMPONENT INVENTORY

SCTI SODIUM LEAK INCIDENT SUMMARY (Sheet 1 of 3)

		(Blicet I OI 5)				
Item No.	Component	Incident Description	Leak Magni- tude (lb)	Oper- ating Hours	Detection	Failure Sources
1.	Expansion joint XJ-5 (10-in diam line)	Sodium leaked from pin holes and cracks in the expansion joint bellows and penetrated cracks in the thermal insulation. There was no fire. The bellows failed from metal sensitization during its manufacture.	1	612	Visual	 a) Incident Re- port (IR) No. 34, 8-25-65 b) FDH,* LMEC- Memo-69-7
2.	Pipe leg 503 (10-in diam line)	A small sodium leak occurred through a 1/8-in. hole in the pipe during primary system fill. The leak resulted in a small fire. The hole was inadvertently made when a plumb bob was tack welded to the pipe. Human error was cause of failure.	10	1208	Visual	a) IR-60, 11-4-65 b) LMEC FDH
3.	Primary pumplevel sensingline (2-in diamline)	Sodium oozed out from a substandard weld joint (porous connection) in the pri- mary pump level sensing line. A small fire resulted from leak.	2	613	Opera- tional monitor	a) IR-87, 12-23-65 b) LMEC FDH
4.	Steam gen- erator rup- ture disc - RD-2	A pinhole-size sodium leak developed in a seal weld where the rupture disc and its support ring were welded to the face of the support flange on the steam gener- ator side of the joint. No sodium spillage or open flame resulted from the leak Sodium oxide formation was observed on the RD-2 flange insulation during inspec- tion of a nearby valve.	1	5302	Visual	a) IR-93, 1-14-66 b) LMEC FDH
5.	Expansion jointXJ-10 (10-in diam line)	The leak detector on XJ-10 alarmed and indicated sodium leakage at the first stages of sodium oxide formation. No open fire resulted from the leak.	1	612	Leak detector	a) IR-108, 3-1-66 b) LMEC FDH

*Failure Data Handbook

June 30, 1970

June 30, 1970

LMEC-Memo-69-7,
Vol

SCTI SODIUM LEAK INCIDENT SUMMARY (Sheet 2 of 3)

Item No.	Component	Incident Description	Leak Magni- tude (lb)	Oper- ating Hours	Detection	Failure Sources
6.	Expansion joint XJ-8 (10-in diam line)	The leak detector on XJ-8 alarmed and in- dicated sodium leakage at the first stages of sodium oxide formation. No open fire resulted from the leak.	1	887	Leak detector	a) IR-114, 3-17-66 b) LMEC FDH
7.	Sodium he heater H-1 (10-in diam line)	Sodium leaked through cracks in the heater tubes. The tube cracks were stress cracks. Sodium leaked at a rate of 1.4 gal/min. There was a moderate fire; however, damage was light.	400	9580	Opera- tional monitor (smoke detectors)	a) IR-302, 6-5-66 b) LMEC FDH
8.	Freezetrap FT-1	A small sodium leak was discovered in the vicinity of the base of FT-1 at the outlet of the main gas-fired heater. After the removal of thermal insulation, the leak was found in a weld joint and the sodium/ sodium oxide buildup around the leak was 3 in. in diameter. The leak did not result in a fire. Metallurgical examination of FT-1 established that the failure occurred in an extraordinarily large weld bead used to attach a thermocouple to the relatively thin-walled finned tube. The quantity of sodium leaked was less than 1 lb.	1	Un- known	Alarm	a) IMPR-352, 3-10-69 b) LMEC FDH
9.	IHX pri- mary so- dium outlet gate valve (10-in diam line)	Frequent improper operation of the valve resulted in sodium extruding from the freeze stem packing gland. The extruded sodium caused a small fire.	2	Un- known	Protec- tive system	a) IMPR-359, 3-26-69 b) LMEC FDH

)

		SCTI SODIUM LEAK INCIDENT SU (Sheet 3 of 3)	UMMARY	• 		
Item No.	Component	Incident Description	Leak Magni- tude (1b)	Oper- ating Hours	Detection	Failure Sources
10.	Steam generator	Sodium leak through steam generator level control displacer cage gasket. Sodium leaked from the system with nominal dam- age to the leveltrol and no damage to other equipment. The leak occurred during the performance of a special sodium flushing procedure.	10	Un- known	Visual	a) IMPR-37 12-27-69 b) LMEC FI

D

June 30, 1970

TAT (F emo-69-7, Vol I 1-597 0

•

		LCTL SODIUM LEAK INCIDENT	SUMMAR	Y		
Item No.	Component	Incident Description	Leak Magni- tude (1b)	Oper- ating Hours	Detection	Failure Sources
1.	Pipe (3-in diam line)	Sodium leak resulted from intergranular corrosion caused by impurities and mois- ture in pipe insulation. Leak was small and left an insulation area 1 in. in diam- eter covered with sodium oxide. No fire. Pipe section was replaced.	1	Un- known	Visual	a) IMPR-12, 7-1-69
2.	Valve - cold trap inlet (1-1/2-in diam line)	Flange bolts worked loose and caused a sodium leak. No fire. Flange was welded. Valve not originally design for sodium service.	1	Un- known	Visual	a) Lab Notebook No.B-041182, 10-11-61 b) LMEC FDH
3.	Valve - 3-in. thermal shock loop	Flange bolts worked loose and caused a sodium leak. No fire. Flange was welded. Valve not originally designed for sodium service.	1	Un- known	Visual	 a) Lab Notebook No. B-041183, 10-17-61 b) LMEC FDH
4.	Valve - 3-in. magnetic trap	Flange bolts worked loose and a sodium leak occurred. Fire. Tightened flange bolts.	5	Un- known	Visual	 a) Lab Notebook No.A-086329, 9-22-59 b) LMEC FDH
5.	Valve(V-23A) - 2 x 3 loop vent (2-in diam line)	Bellows ruptured. Fire. Replaced bellows.	5	Un- known	Visual	 a) Lab Notebook No.A-086374, 4-20-60 b) LMEC FDH
6.	Valve - 6 x 8 test section (6-in diam line)	Bellows ruptured. Small fire. Replaced bellows.	5	Un- known	Visual	 a) Lab Notebook No.086361, 11-16-59 b) LMEC FDH
7.	l-in. pipe elbow - plugging loop	Small sodium leak – immediately covered with calcium carbonate. Small fire occurred.	5	Un- known	Visual	a) IMPR-021, 11-15-69

()

D

TABLE 1-211

LCTL SODIUM LEAK INCIDENT SUMMARY

June 30, 1970

LMEC-Memo-69-7, Vol I 1-598

)

		TABLE SSRE SODIUM LEAK IN (Sheet 1	CIDENT	SUMMARY		
Item No.	Component	Incident Description	Leak Magni- tude (lb)	Operating Hours	Detection	Failure Sources
1.	Valve (PMV) - main primary sodium ser- vice (l-indiam line)	Bellows leaked. No fire. Part replaced.	1	5,760	Visual	a) Operation Log book, 1-29-63 b) LMEC FDH
2.	Valve (V-124) - main secondary sodium service (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	16,400	Visual	 a) Operation Log book No. 51, 2-24-63 b) LMEC FDH
3.	Valve (V-124) - main secondary sodium service (1-indiam line)	Bellows leaked due to assembly error. No fire. Part replaced.	1	336	Visual	a) Operation Log book No. 51, 3-6-63 b) LMEC FDH
4.	Valve (V-644) - main primary sodium ser- vice (l-indiam line)	Bellows leaked. No fire. Part replaced.	1	18,100	Visual	a) Maintenance L book, 7-10-63 b) LMEC FDH
5.	Valve (PMV) - main secondary sodium service (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	3,600	Visual	a) Operation Log book No. 9 b) LMEC FDH
6.	Valve (V-166) - main secondary fill and drain (2-in diam line)	Bellows failed. No fire. Part replaced.	1	15,100	Visual	a) Operation Log book No.11, 11-25-58 b) LMEC FDH
7.	Valve (PMV) - main primary sodium ser- vice (1-indiam line)	Bellows ruptured. No fire. Part replaced.	1	18,720	Visual	a) Operation Log book No.13, 6-23-59 b) LMEC FDH
8.	Valve (V-105) - main primary sodium ser- vice (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	7,200	Visual	a) Operation Log book No. 6, 1-4 b) LMEC FDH

June 30, 1970

LMEC-Memo-69-7, Vol I 1-599

June
30,
1970

LMEC-Memo-69-7, Vol I 1-600

TABLE 1-212

SRE SODIUM LEAK INCIDENT SUMMARY (Sheet 2 of 4)

Item No.	Component	Incident Description	Leak Magni- tude (lb)	Operating Hours	Detection	Failure Sources
9.	Valve (V-624) - pri- mary freeze trap (1-indiam line)	Bellows ruptured. No fire. Part replaced.	1	9,360	Visual	a) Operation Log book No.7, 6-1-58 b) LMEC FDH
10.	Valve (V-126) - main secondary sodium service (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	9,360	Visual	a) Operation Log book No. 7, 6-16-58 b) LMEC FDH
11.	Valve (PMV) - main secondary sodium service (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	4,080	Visual	a) Operation Log book No. 7, 6-24-58 b) LMEC FDH
12.	Valve (PMV) - main secondary sodium service (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	4,200	Visual	a) Operation Log book, 8-12-60 b) LMEC FDH
13.	Valve (V-634) - main primary sodium ser- vice (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	9,720	Visual	a) Operation Log book, 3-10-60 b) LMEC FDH
14.	Valve (V-617) - main primary sodium ser- vice (1-indiam line)	Bellows leaked. No fire. Part replaced.	1	9,720	Visual	 a) Operation Log book No. 24, 9-30-60 b) LMEC FDH
15.	Valve (V-125) - main secondary sodium service (1-indiam line)	Bellows leaked. No fire. Part replaced.		13,600	Visual	 a) Operation Log book No. 25, 12-28-60 b) LMEC FDH
16.	Valve (V-620) - main primary sodium ser- vice (l-indiam line)	Bellows ruptured. No fire. Part replaced.	1	12,100	Visual	 a) Operation Log book No. 26, 1-13-61 b) LMEC FDH
)	1		I	t	,	· O

		TABLE SRE SODIUM LEAK IN (Sheet	ICIDENT	SUMMARY		
Item No.	Component	Incident Description	Leak Magni- tude (lb)	Operating Hours	Detection	Failure Sources
17.	Valve (V-620) - main primary sodium ser- vice (1-indiam line)	Bellows failed. No fire. Part replaced.	1.	12,100	Visual	a) Operation Lo book No. 26, 1-28-61 b) LMEC FDH
18.	Valve (V-618) - main primary sodium ser- vice (1-indiam line)	Bellows failed. No fire. Part replaced.	1	13,000	Visual	a) Operation Lo book No. 26, 3-30-61 b) LMEC FDH
19.	Valve (PMV) - main primary plugging meter (1-indiam line)	Bellows failed. No fire. Part replaced.	1	11,000	Visual	 a) Operation Lo book No. 35, 11-8-61 b) LMEC FDH
20.	Valve (V-635) - main primary sodium ser- vice (1-indiam line)	Bellows failed. No fire. Part replaced.	1	12,000	Visual	 a) Operation Lo book No. 35, 2-6-62 b) LMEC FDH
21.	Valve (PMV) - main primary sodium ser- vice (1-indiam line)	Bellows failed. No fire. Part replaced.	1	3,600	Visual	 a) Operation Lo book No.8, 6-24-58 b) LMEC FDH
22.	Valve (V-124) - main secondary sodium service (1-indiam line)	Bellows failed. No fire. Part replaced.	1	4,560	Visual	 a) Operation Lo book No. 8, 7-2-58 b) LMEC FDH
23.	Valve (V-127) - main secondary sodium service (1-indiam line)	Bellows failed. No fire. Part replaced.	1	10,800	Visual	 a) Operation Lobook No. 8, 7-13-58 b) LMEC FDH

June 30, 1970

·		SRE SODIUM LEAK IN (Sheet 4		SUMMARY		
Item No.	Component	Incident Description	Leak Magni- tude (lb)	Operating Hours	Detection	Failure Sources
24.	Valve (V-124) - main secondary sodium service (1-indiam line)	Bellows failed. No fire. Part replaced.	1	10,800	Visual	a) Operation Lo book No.8, 8-16-58
25.	Filter - main pri- mary sodium service	Sodium leak, flange bolts not properly torqued. No fire.		Un- known	Visual	a) SRE Log boo b) LMEC FDH
26.	Pipe (2-indiam line) primary sodium service	Sodium leak. Hole in line caused by an elec- tric arc from a shorted line heater. Fire resul- ted. Gallery not under inert atmosphere due to maintenance. Damage to heater and lead wires by fire.		6,000	Visual	a) 69LMEC-236 12-8-69

June 30, 1970

3C-Memo-69-7, Vc 1-602

C)						C
June			TABLE 1-213				
			HALLAM SODIUM LEAK INCIDENT (Sheet 1 of 2)	SUMMA	RY		
30, 1970	Item No.	Component	Incident Description	Leak Magni- tude (lb)	Oper- ating Hours	Detection	Failure Sources
	1.	Expansion tank - secondary system	Tank leak caused stress corrosion cracking and leak at junction of 8-in. overflow line and tank. No fire re- sulted from the leak.	10	15,000	Visual	a) Conference 650620
LME	2.	Pump - secon- dary system	Loose bolts resulted in a sodium leak during preoperational testing. No fire resulted from the leak	2	0	Visual	a) Work Request No. 909, 4-6-62 b) LMEC FDH
LMEC-Memo-69-7, Vol 1-603	3.	Valve - primary cold trap inlet (2-indiam line)	Bellows ruptured. Detected during actuation. No fire. Part replaced.	1	5,280	Un- known	a) Monthly High- lights, 10-12-62 b) LMEC FDH
no-69-7 - 603	4.	Valve - primary fill and drain line (3-indiam line)	Bellows leaked. Detected during actuation. No fire. Part replaced.	1	4,320	Un- known	a) Work Request No.2092 b) LMEC FDH
7, Vol I	5.	Valve - primary hot trap (3-in diam line)	Bellows leaked. Valve operated be- fore properly preheated. Detected during actuation. No fire.	1	15,744	Un- known	a) Monthly Oper- ating Report No.10081 b) LMEC FDH
	6.	Valve (V-476) - primary block (3-indiamline)	Bellows leaked. No fire. Part replaced.	1	21,000	Protec- tive system	a) Monthly Oper- ating Report No. 10113 b) LMEC FDH
	7.	Valve (V-443) - primary meter (2-indiam line)	Bellows leaked. Detected during actuation. No fire. Part replaced.	1	1,440	Un- known	a) Work Request No.1432 b) LMEC FDH
	8.	Valve (471) - primary hot trap (3-indiam line)	Bellows leaked. Detected during actuation. No fire. Part replaced.	1	3,600	Un- known	a) Work Request No.1772 b) LMEC FDH
		l	1		I	l	l

June 30, 1970

LMEC-Memo-69-7, Vol I 1-604

TABLE 1-213 HALLAM SODIUM LEAK INCIDENT SUMMARY (Sheet 2 of 2)

Item No.	Component	Incident Description	Leak Magni- tude (lb)	Oper- ating Hours	Detection	Failure Sources
9.	Valve (491) - secondary fill tank outlet (3- indiam line)	Bellows leaked. No fire. Part replaced.	1	18,840	Visual	a) Monthly Oper- ating Report No.10089 b) LMEC FDH
10.	Cold trap - pri- mary cell No.2	Visual observation after operation monitor alarm revealed sodium on floor and nitrogen ducting. No fire. Part replaced.	2	Un- known	Leak detector	a) Monthly Oper- ating Report No.6 b) LMEC FDH
11.	Cold trap - pri- mary cell No.2	Misalignment of inlet flange caused sodium leak. No fire. Local repair.	1	Un- known	Opera- tional monitors	 a) Monthly Oper- ating Report No. 7 b) LMEC FDH
12.	Piping and fitting gasket No.2 drum melt station	Sodium leak around gasket between piping and drain bung. No fire. New gasket installed.	1	Un- known	Visual	a) AI Monthly Report, 1-11-63 b) LMEC FDH
13.	Hot trap (carbon) sampler	One man sprayed with sodium while removing a sample, but was not burned due to protective clothing.	1	2,400	Visual	a) Monthly Oper- ating Report No.5 b) LMEC FDH

 \mathbf{D}

•

		TABLE EBR-II SODIUM LEAK (Sheet 1	INCIDEN'	T SUMMAR	Y	
Item No.	Component	Incident Description	Leak Magni- tude (lb)	Operating Hours	Detection	Failure Sources
1.	EM DC conduction pump - sodium purification sys- tem (temporary)	Pump duct leaked sodium. No fire. Pump duct removed.	2	Unknown	Visual	a) ANL-6739 b) LMEC FDH
2.	EM AC linear induction pumps - main secondary system	Small leak through cracks resulting from a combin- ation of very low inlet pressure to the duct at a high flowrate. No fire. Re- paired in field by curring circular discs containing the cracks from the duct and welding in new discs.	10	55	Opera- ational monitors	a) ANL-6885 b) ANL-6904 c) EBR-IISTPVolC- d) ANS-100 e) LMEC FDH
3.	Valve - primary cold trap bypass	Bellows leaked. No fire. Part replaced.	1	100	Visual	a) ANL-6810, 12-63 b) LMEC FDH
4.	Valve - primary system plugging loop	Bellows ruptured. No fire. Part replaced.	1	8,800	Visual	a) PMMR-86 b) LMEC FDH
5.	Valve - primary system plugging loop	Bellows ruptured. No fire. Part replaced.	1	8,800	Visual	a) PMMR-86 b) LMEC FDH
6.	Valve - primary purification system	Bellows ruptured. No fire. Valve replaced.	1	15,000	Visual	a) Operations Weekly Report, 4-10-68 b) LMEC FDH
7.	Valve - primary sodium samp- ling waste line	Bellows leaked. Smallfire. Valve replaced.	2	9,400	Visual	a) Report of EBR-II operations, 4-1-67 through 6-30-67

June 30,1970

TABLE 1-2	14
-----------	----

EBR-II SODIUM LEAK INCIDENT SUMMARY (Sheet 2 of 2)

Item No.	Component	Incident Description	Leak Magni- tude (lb)	Operating Hours	Detection	Failure Sources
8.	Valve - secon- dary plugging meter	Bellows ruptured. No fire. Part replaced.	1	2,608	Opera- tional monitors	a) ANL-6965, 10-64 b) LMEC FDH
9.	Valve - secondary surge tank vent	Bellows ruptured. No fire. Part replaced.	1	2,608	Visual	a) PMMR-25 b) LMEC FDH
10.	Valve - secondary surge tank vent	Bellows ruptured. No fire. Part replaced.	1	3,208	Visual	a) PMMR-33 b) LMEC FDH
11.	Valve - secondary plugging loop	Bellows leaked. No fire. Part replaced.	1	7,290	Visual	a) PMMR-77 b) LMEC FDH
12.	Valve - secondary plugging loop	Bellows leaked. No fire. Part replaced.	1	10,100	Visual	a) PMMR-92 b) LMEC FDH
13.	Valve - secondary plugging loop	Bellows leaked. No fire. Part replaced.	1	10,800	Visual	a) PMMR-102 b) LMEC FDH
14.	Valve - secondary sodium service	Bellows leaked. No fire. Part replaced.	1	14,500	Visual	a) Operations Weekly Report, 2-14-68 b) LMEC FDH
15.	Valve - secondary plugging loop	Bellows leaked. Leak was small. No fire. Part replaced.	1	18,600	Visual	a) Report of EBR-II operations,5-21-29 through 6-26-69 b) LMEC FDH
16.	Pipe	Sodium leak during valve repair. Valve cut out of pipe, pipe heaters turned on, sodium melted out and caused major fire. Human error was cause of failure		Unknown	Visual	a) EBR-II Operation Report

 $\left(\right)$

June 30, 1970

 \square

FERMI SODIUM LEAK INCIDENT SUMMARY

Item No.	Component	Incident Description	Leak Magni- tude (lb)	Operating Hours	Detection	Failure Sources
1.	Valve - primary sodium system (6-indiam line)	Bellows leaked. No fire. Vendor repair.	1	15,000	Operational monitors	a) ADPA CFE-11 b) LMEC FDH
2.	Valve - primary sodium service (3-indiam line)	Bellows leaked. No fire. Vendor repair.	1	15,000	Operational monitors	a) ADPA CFE-11, page 22 b) LMEC FDH
3.	Valve - primary sodium service (3-indiam line)	Bellows leaked. No fire. Vendor repair.	1	1,632	Operational monitors	a) ADPA CFE-11, page 22 b) LMEC FDH
4.	Valve - primary sodium service (3-indiam line)	Bellows leaked. No fire. Vendor repair.	1	13,400	Operational monitors	a) EF-26, page 3 b) LMEC FDH
5.	Valve - secondary sodium plugging	Bellows leaked. No fire. Bellows replaced.	1	13,400	Operational monitors	a) EF-26, page 5 b) LMEC FDH
6.	Valve - secondary cold trap (3-in diam line)	Bellows ruptured. Nofire. Bellows replaced.	1	11,010	Visual	a) EF-21 b) LMEC FDH
7.	Valve - transfer tank to cold trap (3-indiam line)	Bellows leaked. No fire. Defective component re- turned to manufacturer.	1	15,000	Leak detector	a) EF-52 b) LMEC FDH
8.	Cold trap - cold trap room	Sodium leaked through union seal ring joint. No fire. Local repair.	1	5,643	Leak detector	a) EFAFF-MR-44 b) LMEC FDH

June 30, 1970

Plant	Numb	er of l	nciden	ts/Leal	c Magniti	ade (1b)	Plant
r tallt	1	2	5	10	400	600	Totals
SCTI	5	2		2	1		10
LCTL	3		4				7
SRE	25			1			26
Hallam	10	2		1			13
EBR-II	12	2		1		1	16
Fermi	8						8
Totals:	63	6	4	5	1	1	
Grand Total:							80

PLANT SODIUM LEAK INCIDENT DISTRIBUTION

TABLE 1-217

	Num	ber of	Incide	nts/Lea	k Magni	tude (1b)	Component
Components	1	2	5	10	400	600	Totals
Sodium heaters					1		1
Steam generators				1			1
Pumps (mechanical)		1					1
Pumps (EM)		1		1			2
Tanks				1			1
Filters	1						1
Purification system components	2	1					3
Valves	52	2	3				57
Piping	5	1	1	1			8
Rupture discs	1						1
Freeze traps	1						1
Human error	1			1		1	3
Totals:	63	6	4	5	1	1	
Grand Total:							80

COMPONENT SODIUM LEAK INCIDENT DISTRIBUTION

LMEC-Memo-69-7, Vol I 1-608

June 30, 1970

Component	Failure Rate $\left(\frac{\text{Failures}}{10^6 \text{ exposure hours}}\right)$
Sodium heaters	4.93
Steam generators	2.14
Pumps (mechanical)	0.78
Pumps (EM)	2.62
Tanks	0.51
Filters	3.57
Purification system components	1.41
Valves	2.75
Piping	0.0089
Rupture discs	12.08
Freeze traps	3.02
Human errors	9.09

TABLE 1-218 COMPONENT FAILURE RATES

.....

.

June 30, 1970

PART 2. ADVERSE EVENTS OCCURRING PRIOR TO STARTUP

- -

CONTENTS

			Page
Ι.	Inti	oduction	2-3
	А.	General	2-3
	в.	Applications	2-3
II.	Sun	nmary of LMEC Events Requiring Nonconformance Reports	2-5
	Α.	Fabrication and Assembly	2-5
	в.	Shipping and Procurement	2-5
	с.	Construction	2 - 5
	D.	Miscellaneous	2-5

I. INTRODUCTION

A. GENERAL

There exists increased concern with respect to events which have contributed to personnel injury and/or significant programmatic delay or cost increase for AEC facilities under construction or major modification. These unplanned events occur during material procurement, fabrication, shipping, and construction, and fall within the classification of the RDT definition of an incident. For the purpose of broadening sample coverage, less significant events which fall under the LMEC definition of Minor Malfunctions, Problems, or Non-Conformance Events, are also included. These are events which are not of a magnitude which the project is willing to define as significant but which, nevertheless, have importance in evaluating the effectiveness of the local quality assurance program and/or of applied specifications and standards.

B. APPLICATIONS

These data are used primarily by Program Management, Design Procurement, and Quality Assurance to:

- Establish better control over fabrication through improved procurement specifications as standards, and more exacting acceptance specifications and procedures
- 2) Improve packaging and shipping procedures including logistics
- Indicate deficiencies with respect to installation standards, rigging methods, and construction procedures including incompatibility of welding or other materials
- 4) Indicate the need for study or R&D in critical areas
- 5) Establish a basis for vendor, architectural engineer, and contractor evaluation with respect to performance capability of a specific system or component request for bid
- 6) Establish the need for additional incentive to encourage new industry to enter specific areas of very limited competition.

Failure rates have little meaning for these events since, if the cause is known, preventive measures will surely be initiated. Rather, as information is accumulated, appropriate frequency distribution curves will be shown for categories of importance to guide the user to those areas where initial effort might most profitably be directed.

Emphasis is placed on the mode of failure and its cause. Where available, incremental cost and programmatic delay time are to be used as weighting factors in contingency planning and logistic scheduling.

While it is a definite part of the overall program objective of the Maintenance and Malfunction Analysis Program to collect and evaluate historical data on preoperational events for publishing in this section of the handbook, LMEC has not been directed to proceed with the general collection of such data during the next fiscal year. The more important events (classed as Incidents), however, will be received and will contribute to a buildup of information in this category. Reported events will be divided into three important subcategories: fabrication and assembly, shipping or procurement, and construction.

For this issue, however, certain aspects of typical events which are encountered during the pre-startup design or fabrication period for either a new construction, a modification, or a test article installation are evidenced through review of LMEC's Quality Assurance Nonconformance Reports. These were initiated in July 1968 as an LMEC Quality Assurance control document. Some 61 Nonconformance Reports have been prepared during the past year. While some are related to minor quality control problems, many are more serious.

II. SUMMARY OF LMEC EVENTS REQUIRING NONCONFORMANCE REPORTS

A. FABRICATION AND ASSEMBLY

Approximately 50% of all nonconformance was associated with fabrication, although nearly half of these could be used in the as-received state.

Weld defects were by far the greatest problem. Other typical defects were:

- 1) Burrs
- 2) Lack of drawing checks, manufacturer's identification, testing
- 3) Demineralizer, pipe, seals, bearing housing studs, and instruments not meeting specification
- 4) Dirt contamination during fabrication or storage
- 5) Improper torquing during assembly, leading to leaks.

B. SHIPPING AND PROCUREMENT

Approximately 10% of reported events were associated with shipping and another 10% with procurement.

Shipping damage occurred to test articles, major system components, and minor parts. Two of these had the potential for creation of serious delays to the programs.

Procurement problems were associated with pipe material, pipe fittings, bearing types, and the wrong instrumentation. Defective pipe material did cause a serious programmatic delay.

C. CONSTRUCTION

Twenty-five percent of the problems were associated with field run welds during plant modifications. Other construction problems were negligible.

D. MISCELLANEOUS

Some non-conformance reports resulted from procedural violations.

Insufficient information is available here for specific recommendations, but the need for improved vendor quality assurance is evident. Welding problems in stainless steel systems are to receive more thorough investigation than any other problems.

PART 3 RELIABILITY/AVAILABILITY ANALYSIS

CONTENTS

~

		Page	
Ι.	Introduction	3-5	
	A. Scope	3-5	
	B. Purpose	3-6	
	C. Applications	3-7	
II.	Fundamentals of Reliability	3-9	
III.	Applications of Reliability Through Use of Design Margin	3-23	
IV.	Fundamentals of Project Planning	3-29	
	A. Operational Effectiveness	3-29	
	B. Operational Reliability	3-29	
	C. Operational Availability	3-30	
	D. System Availability as Function of MTBF and		
	Maintainability		
	E. Operational Requirements and Allocation		
	F. Reliability, Feasibility, etc., and Allocation	3-32	
	G. Establishment of Maintainability and Availability in the Design Phase	3_35	
v.	Current State-of-the-Art		
	A. Summary	-	
	B. Discussion	-	
	l. Reliability Techniques and Their Role in Program		
	Optimization (Session 1)	3-41	
	2. Assurance By Testing, Aging, and Surveillance	2 42	
	(Session 2)	3-42	
	Human Factors Engineering (Session 3)	3-46	
	4. Bayesian Application to Reliability and	2 40	
	Maintainability (Session 4)		
VI.	5. Research (Structural and Mechanical), (Session 5)		
V 1.	Fault Tree Analysis. . A. Introduction. .		
		3-55	
B. Steps in Fault Tree Development for Availability Analysis and Upgrading of Power Plants			
	 Step 1 - Obtaining Required Information on Plant or Facility 	3_57	
	2. Step 2 - Constructing the Paths.		
	crop = - Constructing the ratio	10-21	

CONTENTS

· · · ---

٦

				Page
		3.	Step 3 - Approximation	3-58
		4.	Step 4 - Analysis	3-58
	с.	Sta	tistical and Probabilistic Analysis Methods	3-59
		1.	Introduction	3-59
		2.	Type I - No Repair (During Plant Life)	3-61
		3.	Type II - Constant Interval	3-62
		4.	Type III - Constant Repair	3-62
		5.	Summary	3-65
	D.	$\mathbf{E}\mathbf{x}$	amples of Fault Tree Application	3-66
		1.	Example No. 1	3-66
		2.	Example No. 2	3 - 77
VII.	Bi	blio	graphy	3 - 90
	Α.	Int	roduction	3-90
	в.	Re Efi	ferences on Reliability-Maintainability-System Sectiveness and Related Subjects Applicable to FFTF	3 - 93
		1.	Category A - Mathematical and Statistical Tables and Formulas	3-93
		2.	Category B - Theory of Statistics, Probability, and Logic of Design	3-96
		3.	Category C - Design of the Statistical Experiment	3-105
		4.	Category D - Reliability Engineering and Management	3-108
		5.	Category E - Maintainability, Availability, and Logistics	3-115
		6.	Category F - Environmental Testing and Effects of Environment	
		7.	Category G - Nondestructive Testing Methods	3-130
		8.	Category H - Data Handling Methods for Statistical Applications	3-132
		9.	Category I - Failure Rates and Failure Modes	3-133
		10.	Category J - Miscellaneous Other Texts	3-135
	c.	Cu: Spe Ma	rrent Military, NASA, or Equivalent Industrial ecifications and Standards on Reliability, intainability, and System Effectiveness cluding Testing)	
			Category K - Reliability Documentation	

CONTENTS

	Page
2. Category L - Quality Assurance	3-142
3. Category M - Maintainability	3-144
4. Category N - Safety Documents	3-147
5. Category O - Human Factors	3-148
6. Category P - Value Engineering	3-150
D. Category Q - Technical Journals and Periodicals and Their Data Sources, Pertaining to Reliability	
and Maintainability	3-151

TABLES

3 - 1	" $\lambda \tau$ " Combination .			• • • • • •	
3-2	Input Data for Fault	Tree Initiating	Events	•••••	

FIGURES

3 - 1	Exponential Reliability Function and Normal Function
3-2	"Bathtub" Failure Rate Curve
3-3	Progression of Quality with Timeliness for Collective Disciplines
3-4	Family of Weibull (Failure Rate) Density Functions for Various Cases of Beta
3 - 5	Family of Weibull Reliability Functions for Various Cases of Beta
3-6	Design-Quality Relationship I
3-7	Design-Quality Relationship II
3-8	Design-Quality Relationship III
3-9	Influence of Mission Time on Variance
3 - 10	Statistical Analysis
3-11	AEG Failure Rates for Reliability Estimation When the Number of Active Elements is Known
3-12	The Industrial Process
3-13	Standardized Symbols and Symbol Definition for Fault Tree Construction
3-14	Excessive Radiological Release to Environs

FIGURES

		Page
3-15	Large Power Transient	3-68
3 - 16	Inadequate At-Power Heat Removal	3-69
3 - 17	Failure of Containment Structure	3-70
3 - 18	Inadequate Shutdown Heat Removal	3-71
3-19	HWOCR Demonstration Plant Schematic Diagram	3-72
3-20	Reactor Containment Fault Tree, Scheme A	3-78
3-21	Reactor-Loop Containment Fault Tree, Scheme B	3-79
3-22	Reactor Containment Gross Fuel Damage Accident, Scheme A	3-80
3-23	Reactor-Loop Containment Gross Fuel Damage Accident, Scheme B	3-81
3-24	HWOCR Demonstration Plant Containment Flow Schematic, Scheme A	3-82
3-25	HWOCR Demonstration Plant Reactor and Loop Containment Flow Schematic, Scheme B	3-83

~

I. INTRODUCTION

A. SCOPE

Part 3 expands the concept of reliability assurance for nuclear facilities beyond the fundamental failure mechanisms analysis emphasized in Parts 1 and 2. Improved understanding of failure mechanisms and their relative importance is most effective in the evolvement of greater reliability assurance during the test and prototype development stages and during initial design and construction of a new nuclear facility. As experience is gained from prototype and large-component test facilities, it is possible to gradually apply specific macroscopic information amassed over the years from research and development projects that have been undertaken in small test loops and laboratories. Accumulated statistical failure and fabrication tolerance data can then be applied to predict system, component, or facility reliability and availability.

Part 3 of this handbook does not develop the fundamental mechanics of reliability analysis. However, a fairly complete bibliography (Section VII) has been compiled on reliability, maintainability, system effectiveness, probability, and statistics to aid the reader in expanding his cognizance of reliability for specific applications. Also compiled is a list of current standards, specifications, and periodicals associated with these subjects.

Part 3 describes just enough of reliability fundamentals to permit the engineer or project manager to be aware of the pitfalls associated with application of various types of failure data and to more readily understand subsequent summary discussions on the current state-of-the-art.

As of this publication, few, if any, of these concepts have been developed to a state where they can be indiscriminately used by the layman. However, it is very important that responsible persons in the nuclear industry are aware of current technological development of tools available both presently and in the near future. A brief review and analysis of some of these concepts is given followed by a fairly extensive development of "fault tree" analysis with examples of applicability to availability and safety evaluation and conceptual design tradeoff studies. Future expansion of Part 3 will maintain pace with the state-of-the-art and will develop and describe these concepts for use by both the layman and the expert as theory and experience progress permit.

B. PURPOSE

Emphasis in this handbook is upon large mechanical systems for which no other domestic program has been conducted to collect statistical failure data (random or other) in the volume necessary for confident reliability analysis and prediction. The aerospace industry has placed great store in the development of reliability prediction models for large propulsion systems using the design margin concept with normal or other stress-environment distribution functions. Considerable additional effort by theorists has gone into empirical molding of these model theories with small data sample failure experiences through Bayesian statistical methods. Validation of model theory through experiences has met with some success.

A concerted effort to develop this model concept through collection and application of: (1) stress/strain data, (2) fabrication tolerance and acceptance data, and (3) operational variances of specific component models coupled to verification by discrete tests holds the greatest potential for early attainment of a reliability prediction method for large mechanical components.

Conversely, it is impossible to perform system/component availability prediction without good component reliability data and specific knowledge of planned inspection periods and repair times. In the case of long lead-time items, warehousing logistics also become important. However, for preliminary system design evaluation of percent improvement in plant availability to be expected for specific modification or added redundancy, very crude component block reliability estimates are often sufficiently accurate to permit execution of sound programmatic decisions. The "Reliability Engineering" handbook, NAVWEPS 00-650502, discusses one estimation method. There are many others. Many methods of "failure tree" analysis have been developed. One of the most successful was that used in development of the Minute Man missile, the "fault tree" method. Fault tree, described later, was used in conjunction with failure modes and effects analysis to develop this most reliable missile.

C. APPLICATIONS

The following are typical applications:

- 1) Preliminary program planning and design optimization and trade-off studies
- 2) Plant modification trade-off studies
- 3) Establishment of effective design stress safety margins for components in a given variable evnironment
- 4) Statistical analysis of collective stress time effects from multiple environmental sources
- 5) Evaluation of the combined effect of cyclic transients and normal time effects
- 6) Prediction of expected component/system reliability
- 7) Application of methods for statistical design of additional R&D experimentation.

II. FUNDAMENTALS OF RELIABILITY

Failure mode and maintenance data from USAEC test facilities over the next few years should afford good data on failure modes, design limits, distributions, and very conservative lower limits on expected Mean Time Between Failure (MTBF). Good reliability data for sodium system design margins should be available from LMFBR prototype construction. Data on many of the other reliability parameters, such as maintainability, repair, inspection, etc., will be well established. Good reliability data on MTBF probably will not be available until 2 to 3 years after the first prototype is in operation.

From this it must be concluded that good availability analyses could not be conducted for 5 to 8 years on the sodium system. This is, however, the time it will be most needed. Ample data should be available on all other systems; and all of the other end item functions could be performed prior to prototype design, even if some conclusions are overconservative.

A quick review of the relationship between specific distribution functions, system types, and environmental conditions will help in clarification. In reliability analysis, extensive tests have indicated that failure patterns can generally be expressed by either the normal (Gaussian) or exponential distributions. Typical curves of both types are shown in Figure 3-1. A density function is defined as the probability that a certain value of a discrete variable will occur, expressed as a function of that variable. In reliability work, this variable is usually time, but may be any environmental design parameter. Data from test and experimental facilities will often afford much more reliable density functions for variables such as temperature, pressure, stress, and corrosion, etc., than for time dependent failure rates.

The normal distribution is generally used where the age of the item is significant to the failure rate. In this distribution, age significance is usually in the burn-in (preoperational period) or in the wearout portion of the life-cycle of the item. The exponential distribution is used for a reliability analysis where the probability of the cause of failure is random or unpredictable and where deterioration is not a cause of failure. The "random or unpredictable" test is

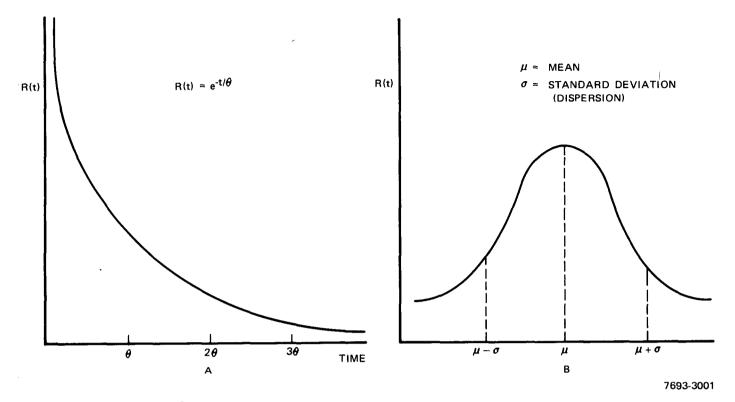


Figure 3-1. Exponential Reliability Function and Normal Function

well satisfied in most electronic systems and in very large or complex collections of mechanical systems past the burn-in period and after several repairs have tended to establish a constant failure rate. In most instances for mechanical systems, however, a single unit of equipment is being considered and either a normal or Weibull distribution should be used.

Figure 3-2 is an illustration of a typical failure rate-versus-time curve for electrical equipment and components. This is known as the "bathtub" failure rate curve. In the time period $0-T_1$, the failure rate is constant and is categorized as random-catastrophic (comparable to burn-in). After T_1 , wearout effects become apparent with increasing frequency, so that probability of failure increases. The significance of the burn-in period is more pronounced in systems in the developmental stage than in operational field performance. The LMFBR program will be in the developmental stage for several years to come with respect to many sodium components. Examination of the basic frequency

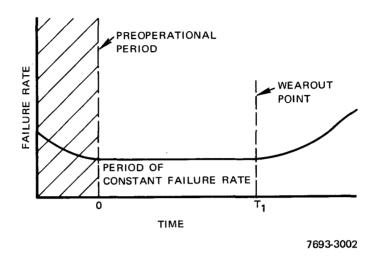


Figure 3-2. "Bathtub" Failure Rate Curve

function equation will afford a better interpretation of Figures 3-1 and 3-2. The reliability of the exponential function is given in Figure 3-1A as

$$R(t) = e^{-t/\theta}$$
, where $\theta = MTBF$

Conversely, the unreliability or expectation of failure is $1 - e^{-t/\theta}$. If $t/\theta \le 10^{-3}$, then

$$1 - e^{-t/\theta} \cong t/\theta$$

Thus, $1/\theta$ is the constant failure rate between time 0 and T₁ in Figure 3-2. This is a highly desirable mathematical situation for system reliability and availability analysis.

On the other hand, the unreliability for the normal function of Figure 3-1B is 1-R(t) or an inversion of the indicated reliability curve. The failure rate

then would resemble Figure 3-2 with the constant failure rate section removed. In LMFBR test facilities, data could be expected with very small standard deviation for specific components under test and considerably larger mean and standard deviation for support equipment. Large operating power plants should gradually approach a flatter distribution about the mean for some systems in which the concept of constant failure rate will become more applicable through random repair and replacement.

The Weibull distribution function has been found to fit experimental data better than the normal where burn-in failure rate is small (as in reasonably reliable mechanical components) and the time element of interest is small compared to mission objective. It is also much more preferable for computer analysis.

Acquisition and evaluation of nonconservative statistical parameters of reliability having a high confidence level (say 90%) is further complicated in the nuclear power reactor field by the fact that past experience indicates most severe faults occur during startup or while shutting the plant down. Many others have occurred during shutdown while performing maintenance or handling fuel. This necessitates division of the expected small volume of data into at least four operational environment categories as well as the numerous test level conditions.

It is concluded that adequate sampling is going to take a long time, but methods and theories are available to get started. The program must be well planned and work toward specific objectives. Some of these potential objectives are shown in Figure 3-3.

A discussion of fundamentals of reliability is hardly complete without examining the concept of confidence level or confidence limits. A theory relating confidence levels for normally distributed test data to the exponential case is developed by application of the Weibull distribution function. Symbols used in the following discussion are defined as:

t = available test time

 θ_{r} = mean life, hence, MTFF (5 yr, 30 yr, etc.)

Figure 3-3. Progression of Quality with Timeliness for Collective Disciplines

- γ = confidence coefficient or level, hence, the lower limit of the confidence interval, with the upper limit being 1 (100%)
- F = number of failures of any of the test specimens
- N = (number of test specimens), hence, number of independent trials whereby an independent trial is a complete test sequence of an individual test specimen, suggested by performing simulations to satisfy the appropriate environmental operating conditions
- R = the true reliability
- p = a probability of failure.

Under the assumption that N independent trials are being made, if F is the number of failures observed in these N trials, a statement may be made that:

$$p = 1 - R$$
,

the true unreliability (probability of failure) is not more than C(F), hence

p < C(F),

or, the reliability R,

$$R = 1 - p > 1 - C(F);$$

which implies that the experimentally established mean time to first failure will be equal to or better than the test results implied by the F failures during N trials, where the outcome of the test can only be called success or failure.

It must be noted that although the inequality,

$$0 < \gamma < 1$$
,

is always true, a typical target value for the confidence coefficient is Y = 0.75. Furthermore, for the probability of failure, p, $0 \leq p \leq 1$.

$$I - Y = \sum_{j=0}^{F} {N \choose j} \left[C(F) \right]^{j} \left[1 - C(F) \right]^{N-j},$$

where j is an integer between 0 and F. Thus, a function, g(x), may be established so that

$$g(x) = \sum_{j=0}^{F} {N \choose j} x^{j} (1 - x)^{N-j},$$

which implies that a discrete number N can be determined for any particular given combination of Y and C(F), or that the value of the confidence level (coefficient) is clearly determined by the mathematical rule of the binomial theorem in the case of an exponential failure distribution.

Having an exponential distribution

$$R = e^{-\lambda t} = e^{-\frac{t}{\theta_L}}$$
,

for any ratio, t/θ_L , then any ratio of the testing time of the N independent trials to the <u>desired mean time to first failure</u>, G_L , of the test item, determines the <u>minimum</u> reliability <u>provided that the failure follows the simple law of the</u> <u>exponential function</u>. For these cases, numerical values have been developed, and graphs or tables have been devised where the ratio t/θ_L is plotted versus the number of failures for given values of the confidence level, Y, which determine the minimum number of independent trials necessary to prove that the

desired mean time to failure, G_L, is either met or may be exceeded as a result of the test performance. For example, such tables are given by Lloyd and Lipow.*

To demonstrate the use of these tables, the following example is considered: Assume a hypothetical requirement for mean time to first failure to be 5 yr, so that

$$\theta_{\rm L} = 60 \text{ months.}$$

Select a total available test time of 3 months, to obtain

$$t = 90 \text{ days.}$$

Then if a 75% confidence,

Y = 0.75,

is required, the following values are obtained:

$$\frac{t}{\theta_{L}} = \frac{3}{60} = 0.05,$$

F = 0,
N = 28.

This implies (as per Table A.2, page 488^*) that in the case of 0 failures (F = 0), a minimum of 28 sample test specimens need to be selected for these independent trials to prove that a mean time to first failure of 60 months or better can be predicted. If there should be <u>one</u> failure during the test period, the number of samples needs to be increased to 55, or the test period needs to be increased to 6 months to prove the same reliability, etc.

^{*}D.K. Lloyd and M. Lipow, <u>Reliability: Management, Methods, and Mathe-</u> <u>matics</u> (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962) pp 488-492

While this very simple relationship provides an easy determination of numbers, it is not, however, perfectly met in practical installations and in particular it is not seen by typically mechanical items which do not fail at random (as do electronic devices) but rather through wearout, with failure characteristics approaching a normal instead of an experimental distribution.

Because of the overpowering influence of wearout failures, it is felt that it is necessary to consider a failure density function other than the simple exponential law, but not necessarily a pure normal distribution.

As is known from the practical recording of scattergrams, failure density functions while approaching the form of a normal distribution curve may be skewed, either in the direction toward the origin of the plot or in the opposite direction. To assess the influence of such a normal distribution law or its skewed varieties, this phenomenon is best understood by using the Weibull distribution function,

$$1 - R(y) = 1 - e^{-y^{\beta}}$$
,

where

$$y = \frac{x - \gamma}{\eta} = t/\eta.$$

The shift of the distribution curve away from origin is expressed by the variable x -Y, and the compensation for the variation for scale is η ; in this manner, it is possible to bring a family or Weibull curves together into the same plot. Figure 3-4 shows a family of Weibull reliability functions; the more familiar of the two is the family of Weibull (failure-rate) density functions for various cases of the exponent β .

It should be noted that two of the classic cases of Weibull density function plots for reliability are expressed by $\beta = 1$ and $\beta = 3.33$ (approximately); the former case is the pure exponential law and the latter case is the pure normal distribution law. The density curve plot shows that deviations from $\beta = 3, 33$ produce skewed curves and in a manner that if β is larger than 3-1/3 (for

LMEC-Memo-69-7, Vol I 3-18

¥

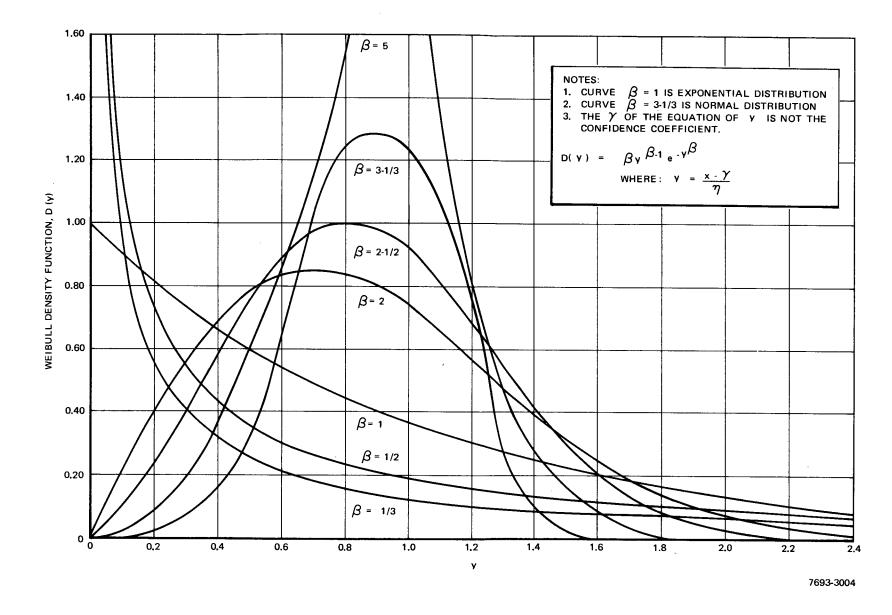
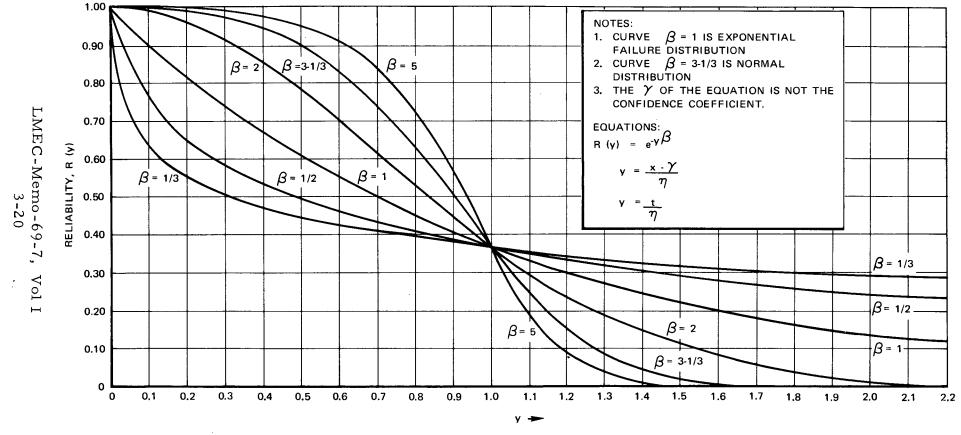


Figure 3-4. Family of Weibull (Failure Rate) Density Functions for Various Cases of Beta

example, 5), then the plot is skewed toward the origin; on the other hand, if β is smaller than 3-1/3 (for example, 2), then the plot is skewed away from the origin. The respective skewed curves indicate cases where the majority of the scattergram points would be nearer to the origin or further away. This implies that if a requirement for a stipulated MTFF value needs to be met, or exceeded, then quite obviously the normal distribution would need to be accepted as the worst case, or that a majority of points of any skewed approximation of the normal distribution needs to show better (hence, higher MTFF) values, and not the opposite, should test results be used for confirming the prediction. Hence, for all practical purposes, $\beta = 3-1/3$ must be accepted as an upper limit; and having obviously accepted $\beta = 1$ as a lower limit, a range of Weibull functions is now established within which the true failure density distribution may be found.


Having thus gained an understanding of the significance of the magnitude of the double exponential value and its practical limits, the analyst may proceed to investigate the influence of the variables introduced by the application of the Weibull function. This, however, is a complicated process and cannot be presented in a simple manner.

Lloyd and Lipow show that because

$$P\left[R \ge \exp\left(-\frac{\lambda T^{\alpha} \chi^{2}_{2\eta}, 1-Y}{2\eta}\right)\right] = \gamma,$$

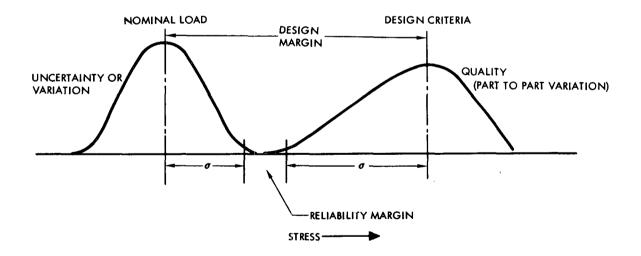
where $\chi^2_{2\eta, 1-\gamma}$ is established by table review, a reliability prediction can be met at a given confidence level, Y, provided that α and λ are known, and at least N samples (hence, N independent trials) are available; and proves that the established reliability through the Weibull function is slightly better than the one through the exponential function for a particular example (a monitor generator failure histogram).

If, however, only a crude first approximation is desired, Figure 3-5 implies that for proposing a test plan with a limited number of test samples, the MTFF values based on the exponential distribution should be considered to offer a conservative estimate and is, therefore, acceptable. Should, however, cost limitations prove such that a test program be prohibitive, the contractor should be

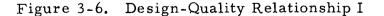
•

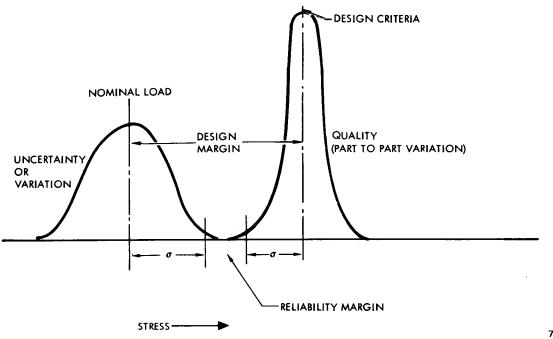
.

7693-3005


Figure 3-5. Family of Weibull Reliability Functions for Various Cases of Beta

required by his own analysis and field experience data to prove that a smaller number of test samples or shorter test periods, or both, will still provide a satisfactory MTFF prediction because of a more faborable failure density distribution.


III. APPLICATIONS OF RELIABILITY THROUGH USE OF DESIGN MARGIN


The Space Division of North American Rockwell Corporation made extensive use of relating the overlap of a specific threshold failure design margin and a variance magnitude-dependent reliability margin as an estimate of failure probability. In particular, this method was applied to the reliability evaluation of the APOLLO thrust engines for which, obviously, a large failure rate sampling could not be obtained. This reliability assessment could then be converted to MTBF. The principle is briefly explained in this section.

One comparison between design margins and the level of quality achieved is illustrated in Figures 3-6 and 3-7. As shown, a reliability margin can be obtained either by a large design margin and low level of quality or by a smaller design margin and high level of quality. The choice depends on feasibility and cost considerations. The reliability problem is: (1) to provide a design margin that will tolerate the level of quality actually achieved or (2) to provide a level of quality compatible with the design margin that can be provided.

7693-3006

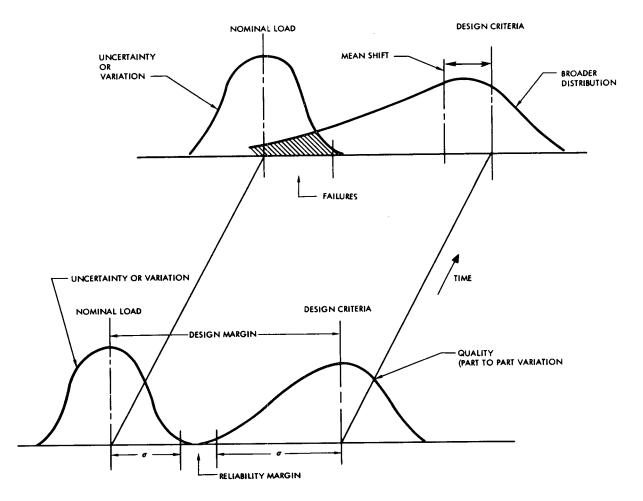
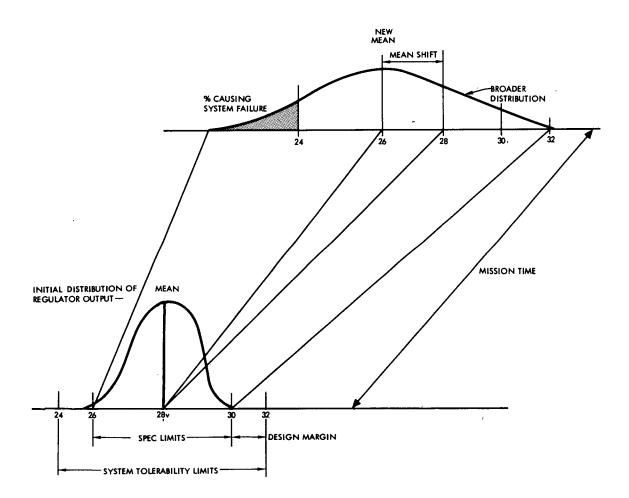

7693-3007

Figure 3-7. Design-Quality Relationship II

The influence of time and mission environments on the equipment characteristics is illustrated in Figures 3-8 and 3-9. This influence must also be considered in a reliability control program, because it results generally in a broadening of the distribution of equipment characteristics which, in turn, reduces or eliminates the reliability margin that may have existed when the equipment was new.


Past programs have been characterized by their extensive flight test efforts and by an uncertain reliability that has gradually improved through extensive failure-reporting systems and field modification. In space programs involving only a few vehicles, there is little or no opportunity for reliability growth through a feedback and improvement process.

The statistical treatment of the resulting data will produce the frequency distributions of Figure 3-10, including assessments of the probability that thrust will fall below the acceptable minimum or that a weak case and high case pressure will exist simultaneously and result in case rupture. The

7693-3008

Figure 3-8. Design-Quality Relationship III

7693-3009

Figure 3-9. Influence of Mission Time on Variance

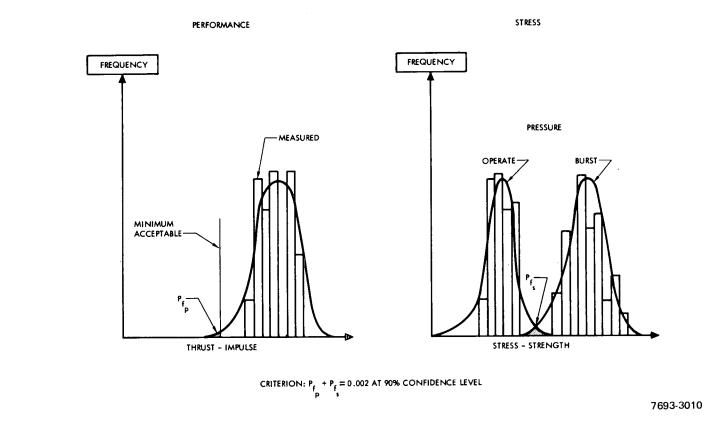
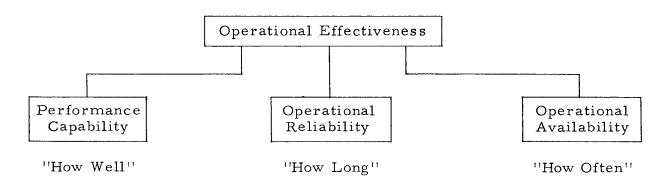



Figure 3-10. Statistical Analysis

reliability of the motor then can be synthesized from these and other similar probability statements derived from motor-firing data. If the tests have been planned to yield adequate data, a high-level confidence statement also can be attached to the assessment.

A. OPERATIONAL EFFECTIVENESS

Effectiveness (E) = Performance (P) x Reliability (R) x Availability (A).

Example:

Plant, when in operation, averages 90% of desired load factor. P = 0.9

Probability of plant failure between scheduled outages is 20%.

R = 0.8

Probability of additional outages is 10%.

A = 0.9

 $E = 0.9 \times 0.8 \times 0.9 = 0.65$

B. OPERATIONAL RELIABILITY

Operational reliability equals manufactured reliability times installed and used reliability. If λ_i = basic failure rate (inherent) and K_r is the degradation factor, then λ_c (the system failure rate) = $K_r \lambda_i$.

$$R = (1 - K_r \lambda_i \tau_i) = (1 - \lambda_s \tau_i).$$

*Excerpted from Handbook-Reliability Engineering, NAVWEPS 00-65-502

 $\lambda_i \rightarrow \tau_s$ under true field test conditions.

Exponent of $R_i(\tau_0) = e^{-\lambda_i \tau_0}$ (check against actual approximate).

C. OPERATIONAL AVAILABILITY

Operational availability equals intrinsic availability times degradation effect. The equations are the same as for Operation Reliability, except that the τ 's are modified to account for the repair time.

D. SYSTEM AVAILABILITY AS FUNCTION OF MTBF AND MAINTAINABILITY

$$A = \frac{MTBF}{MTBF + \overline{T}_{r}} = \frac{1}{\overline{T}_{r}}$$

$$1 + \frac{\overline{T}_{r}}{MTBF}$$

where

 λ = failure rate

 \overline{T}_{n} = mean downtime due to failure.

MTBF here refers to a composit system MTBF.

Observed MTBF averaged about 1/7 of MTBF specified to vendor for complex fleet operations elements. Ask for 200 hr MTBF if you really require 100 hr.

The effect of nonindependence of failure might be expected to contribute to this difference between theoretical and observed failure rates.

A project engineer must:

- 1) Know and define the level of reliability he wants
- 2) Recognize the disparity between what he wants and what he probably will get unless he exercises the required degree of "control" over the reliability growth process

3) Understand the application of certain of the "tools" available to him by which this controlled reliability growth can be assured - not merely promised.

E. OPERATIONAL REQUIREMENTS AND ALLOCATION

The procedural steps (project engineer steps in technical development planning) are as follows:

- Step 1. Total system functional diagram (interdependence). Subsystem block diagram with interfaces (operational). Define typical applications.
- Step 2. Define anticipated use and environmental conditions.
- Step 3. Establish duty cycle. Tabulate interaction and subsystem involvement operating times, etc.
- Step 4. Effectiveness requirements. Joint probability is defined as being ready to perform on demand, and of surviving required performance period without failure and "at the specified level of performance." (The latter is sometimes assumed as equal to 1.)
- Step 5. Define system performance requirements and system "failure" by operating mode. May be described as distribution functions with lower allowable limits and specific goal. Noninterdependence of failures must be recognized. (Usually the lower 90% confidence level is applied.)
- Step 6. Define reliability requirements. Construct preliminary reliability block diagram from the functional diagram of Step 1. This should show series-parallel relationship, etc., for reliability objective. A failure mode and effect block diagram would be applicable or a fault tree (Section VI) could be used here as an unreliability diagram, but evaluation of the validity of the approximation,

 $(1 - e^{-\lambda \tau}) \cong \lambda \tau \text{ if } \lambda \tau < 10^{-3},$

should be checked for error in applying the $\lambda\tau\,$ fault tree method of analysis.

Again, "nominal" and "minimum" reliabilities are calculated. Nominal makes use of performance goal capabilities while minimum uses the lower 90% confidence level.

On-line maintenance is sometimes shown as a partial redundancy. Also planned potentials for redundancy should be shown.

In failure modes-and-effects type analysis, alternate paths must be evaluated and the composite reliability determined.

F. RELIABILITY, FEASIBILITY, ETC., AND ALLOCATION

Failure rates for acceptable system reliability must be apportioned between the subsystem and components for compliance by development contractors.

Determine requirements for:

1) R&D

2) Precontract award reliability studies

3) Trade-off studies

4) Contractual monitoring program

5) More accurate scheduling prediction.

Active Element Groups (AEG) are defined as the smallest practical building block which can be economically considered, where active element is defined as a device which controls or converts energy.

Procedural steps are as follows:

Step 1. Develop Reliability block diagram.

Step 2. Devise mathematical models.

Step 3. Establish complexity and MTBF of AEG systems.

Step 7. Define availability and maintainability requirements. Establish required design criteria for MTBF, repair time, or both (establishes interdependency).

Step 4. Establish AEG subsystem failure rates.

Step 5. Establish feasible MTBF and reliability.

Step 6. Allocate λ and reliability.

Step 7. Consider redundant configuration.

Step 8. Evaluate feasibility of allocated requirements.

Steps 1 and 2 are typical and are handled classically as F, M, and E diagrams or fault tree with appropriate logic.

Step 3 uses the bandwidth of equivalent system experience factor to relate the stipulated AEG complexity to a range of expected MTBF. This step applies to the first level of block diagram of the major system (see Figure 3-11).

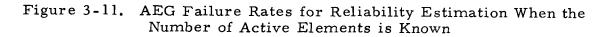
Step 4 repeats Step 3 for subsystem if sufficient design detail is available.

Extend the analysis to catastrophic and interacting failures with the following rules:

- 1) Subsystem complexities are not interdependent.
- Power system AEG's have expected failure rates twice that of analog type systems of similar complexity (see Figure 3-11).
- Digital systems differ from their analog counter-parts by 10 to 1 (i.e., the complexity may be divided by 10).

Step 5 makes use of the distribution bandwidth to predict expected minimum, maximum, and average reliabilities for the desired mission time.

Step 6 takes estimated subsystem failure rate ratios for anticipated reliability and uses these ratios to allocate required failure rates for required reliability (assume same series construction).


Step 7 formalizes simple math technology for insertion of redundancy to obtain desired subsystem improved failure rate. The example uses no approximation except for addition in a series circuit.

^{*}With time, this type of information should be developed for systems other than electronic.

NAVWEPS 00-65-502

7-S18-222-26

Step 8, feasibility of requirements is evaluated in accordance with the following guide lines:

- Level A "Practically" Feasible. Required reduction in failure rate by factor of 2 under conventional design. (R&D and test program required)
- Level B "Conditionally" Feasible. Required reduction of between 3 and 10 over an operating period not exceeding the expected mean life. (R&D, tests, and redundancy required)
- Level C "Remotely" Feasible. Required reduction of 1 to 2 orders of magnitude over a period exceeding mean life expectation. (Basic applied research required)

Specifications are:

- 1) Level A specify as from design requirement.
- Level B specify as from design requirement but final layout, complexity, and additional space requirements may be prohibitive and require specification revision.
- 3) Level C specify as design objective in a formal research program to assist in establishing final design specifications.
- G. ESTABLISHMENT OF MAINTAINABILITY AND AVAILABILITY IN THE DESIGN PHASE

Step 1. Availability (A) = $\frac{\text{Uptime}}{\text{Uptime} + \text{Maintenance Downtime}}$

$$= \frac{1}{1 + \frac{\text{Mean time to Repair (MTR)}}{\text{MTBF}}}$$

MTR (required) =
$$\left(\frac{1}{A^*} - 1\right)$$
 MTBF*

*Tentative design specification.

MTR is defined as total time lost due to the malfunction (including detection time). The definition may be expanded to include preventative maintenance (PM).

- Step 2. Estimate AEG feasibility from experience charts for conventional design (see Figure 3-11). Using minimum MTR and maximum MTBF as indicated from figure bandwidth, an estimation of maximum feasibility can be obtained.
- Step 3. Estimate maintenance feasibility by analysis of design concept. Analyze each subsystem for complexity, failure rate, failure rate or redundancy improvement, mean repair time (no waiting time), and mean waiting time. Solve for availability and compare with that required.

Design improvement is given by:

Improvement = $\frac{1 - A \text{ (expected)}}{1 - A \text{ (predicted)}}$.

Step 4. Evaluate effect of duty cycle on subsystem availability. It is usually assumed that no deterioration of mechanical systems occurs during study. This assumption must be reviewed for each subsystem and converted if warranted.

Repairs during study or idle time are weighed in by adjustment of MTR.

Example: If upon a random demand the equipment is needed only 10% of the total time (such as startup equipment following a scram) and repair can be accomplished during reactor operation, then

$$A_{o} = \frac{1}{1 + \frac{MTR(D)}{MTBF_{o}}}$$

D is the fractional duty cycle (i.e., 0.1 for example). This also applies to on-line repair of standby redundant equipment. Active redundant equipment must be analyzed differently since the system MTBF also varies during the on-line repair, unless modular replacement is a function of design.

If deterioration occurs during standby, the probability of availability during standby is

$$A_{s} = \frac{1}{1 + \frac{MTR_{s}(1-D)}{MTBF_{s}}}$$

where (1-D) = the standby duty cycle, D = the fractional duty cycle, and MTBF_s and MTR_s are for standby duty cycle. Actual availability:

$$A = A_{o}A_{s} = \frac{1}{1 + \frac{MTR_{o}(D)}{MTBF_{o}}} \times \frac{1}{1 + \frac{MTR_{s}(1-D)}{MTBF_{s}}}$$
$$R_{o}(t) \quad (operational reliability) = \exp \frac{-t}{MTBF_{o}}$$
$$R_{s}(t) \quad (Standby Reliability) = \exp \frac{-t}{MTBF_{s}}$$

$$E(t)$$
 (Effectiveness) = A x R(t).

Step 5. Assess effectiveness growth potential. Compare effectiveness of "conventional" design with predicted "feasible" level of effectiveness achieved by proposed new design. Plot these as a function of mission time and examine improvement ratio.

V. CURRENT STATE-OF-THE-ART

The most current information on the state of reliability methods as applied to mechanical systems was given at the 7th Annual Reliability and Maintainability Conference at San Francisco, California, July 14-17, 1968.

A. SUMMARY

A review of portions of the transactions, "Annals of Assurance Sciences, 1968, "follows. LMEC feels that the work presented in the last two sessions will be of particular value in assisting the development of reliability and availability and of evaluation models of sodium components and systems.

Reliability Techniques and Their Role in Program Optimization

This session summarizes very well the history of reliability development during the last few years, and denotes the relationship between Reliability Engineering, Quality Assurance, and Management.

Assurance by Testing, Aging, and Surveillance

The evaluation of aging is rather new to the reliability field. This session described extensive work being conducted in endeavors to understand the molecular and atomic transitions which occur during aging. In defining the technical representation of these effects, a correlation was made with the wearout portion of the bathtub curve.

While aging was the topic of this meeting, the aging concept could readily apply technically to better understanding of the concept of wearout.

Human Error Prediction and Control Through Human Factors Engineering

Throughout much of the work conducted at LMEC in evaluating malfunction data, it has been shown that human factors have contributed to approximately 35% of the failures. These papers described development over the last couple of years in refining the methods of understanding and correcting human error as contributing to massive failures in the aerospace systems.

Bayesian Applications to Reliability and Maintainability

Bayesian applications have been known for many years to those who deal in cost analysis and logistics from the statistical standpoint. The great advantage associated with the Bayesian method was that it tends to define a degree of confidence in statistical results without the need of a large population sample examination. On the surface, it would tend to be assumed that this would be actually the type of analytical method needed for reliability applications to analysis of mechanical systems wherein a large population sample is impossible to obtain. In 1967, LMEC examined the potential of this approach by studying the literature available at that time and arrived at the conclusion that the theory was not acceptable with any degree of confidence to LMEC needs. This is the first Rel. and Maint. Conf. session given on Bayesian applications to reliability and maintainability. Much theoretical work has gone into development of more refined techniques of applying the method to mechanical components and complex analytical systems. The fundamental idea is to make greater use of individual experiences over the many past years of in-house operational, maintenance, and construction personnel to come up with a reasonable a priori estimation of life for specific components in a specified environment even though very little or no actual failure data are recorded. These guesses are designated as priors to reliability calculations. Compared with system tests, each failure or success weights the prior expectation. Details of this method will be extensively studied* and should prove very valuable to LMEC.

Research (Structural and Mechanical)

This probably was the most important session in so far as mechanical components are concerned. It followed rather logically the Bayesian session since the speaker was again talking about applying best guess through extrapolation of data to analytical model development of failure distribution functions and

: \

^{*}LMEC has published a report on its initial investigation into Bayesian applications. It is titled, "Bayesian Statistical Model Theory for Mechanical Systems," by J. P. Walter, LMEC-69-8.

comparing these estimates to a minimum of experimental data. The safety margin concept applied by North American Rockwell Space Division and Rocketdyne to the evaluation of expectation of reliability for the propulsion motors did not prove very successful as applied. However, there have been recent indications of technology improvement. Much work has been done both by industry and by university professors and graduate students to expand the theory and correct the facilities in the engineering models. Dr. Kececioglu, of the University of Arizona at Tuscon, has been especially active in advancing the technological aspects of this endeavor. Several additional parameters have been added to the original model concept and the details of analysis have been very carefully developed along with some graphic models for data evaluation. These models were for exponential, normal, and log-normal distributions and will prove of extensive value to LMEC.

B. DISCUSSION

1. Reliability Techniques and Their Role in Program Optimization (Session 1)

"Survey of Reliability Prediction Techniques," by C. M. Ryerson, Senior Scientist, Hughes Aircraft, Culver City, California

MIL-HDBK-217A, which is essentially the principal reference document on electronic failure evaluation, is to be supplemented with MIL-HDBK-217B in which mechanical system failures have been developed. Normalization factors have been applied to some equipment in order to relate laboratory environment data to the worst condition of actual environment. (This handbook was developed by Hughes Aircraft Company under contract to NASA and has since been released.)

Some 12 methods of reliability prediction were discussed with respect to effectiveness and application to specific areas. Methods 6, 7, and 8 were derating approaches and were considered as being a sound basis for purification of data and clearing up numerical discrepancies. Method 9 is used as a confirmation of assumptions urgently needed with respect to interface conditions at the time of the test. The author felt that these methods were the most important available and could be applied with confidence if used in proper perspective. "System Analysis Via Probability Diagrams," by R. W. Stoffel, Martin Marietta, Denver, Colorado

This paper is an interesting treatise on methods of representing system reliability evaluation through block diagrams set up similar to Karnaugh maps. Several new roles have been applied to increase the variety and versatility of the techniques.

"Role of Reliability and Quality Assurance in Program Management," by M. N. Olsen, Manager, Florida Operations, TRW Systems, Cape Canaveral, Florida, and W. H. Shaw, Manager-Product Assurance, Systems Engineering and Integration Division, TRW Systems, Redondo Beach, California

This paper is an excellent treatise on the discussion of responsibility within NASA organizations between engineering design, fabrication, reliability, reliability assurance, configuration and data management, and quality assurance. The paper is well worth reading by all LMFBR managerial personnel and a reproduction of the managerial flow chart, which is almost self-explanatory, is shown in Figure 3-12.

2. Assurance By Testing, Aging, and Surveillance (Session 2)

This session was opened with a discussion by the chairman, C. A. Locurto, Manager of Aging and Surveillance Programs, General Electric Co., Philadelphia, Pa. Reference here was made to MIL-STD-785. The chairman made a strong recommendation that the government should initiate a program for acquisition and dissemination of data on aging in storage, warehousing, and shipping. He stipulated that there is a large gap in knowledge and in development of aging characteristics, and that little is known of the effect on reliability of the low stresses incurred during a long-term storage. It is known that the usual checkout procedures of systems in receiving are not designed to detect degradation functions associated with this type of aging. Extrapolation of aging data can be ineffectual in estimation of service life methods. What is needed is to design a firm theory on inspection methods for incipient degradation, then correlate actual test data to confirm the validity of the defined theory. Preferentially,

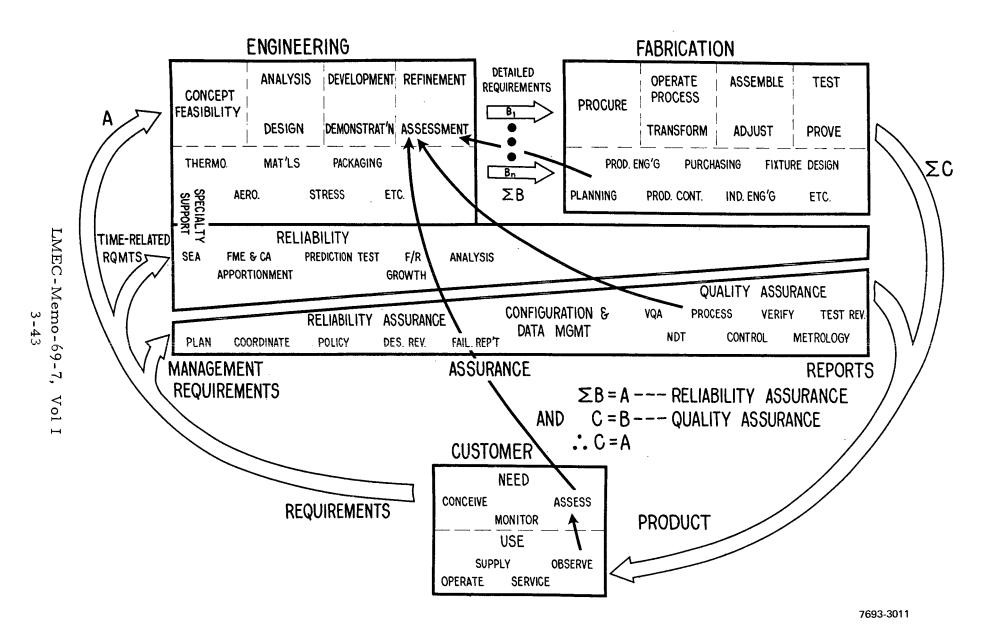


Figure 3-12. The Industrial Process

investigation should be made on aging mechanisms that indicate a high activity rate, since investigation of low activation rate mechanisms have generally proven fruitless. It has also been shown that acceleration tests with high stress rates are also unreliable for age determination. The field of age evaluation is a highly technological field which must attract highly qualified personnel in order to incorporate aging into its truly important status as a core part of reliability engineering.

"Aging Characteristics Identified by Instrumental Analytical Methods," by J. A. Levisky and C. W. Rogers, AFLC Ogden AMA, Hill Air Force Base, Utah

Mr. Levisky's paper concentrated on describing atomic/molecular changes in component materials which contribute to the aging phenomenon. One of the methods of detecting these changes in the materials was chromatographic sampling. Most of his presentation covered the aging of organic materials such as fuels and lubricants. One of the important facets of this effort was associated with determining the reversability characteristics of the aging phenomenon. In performing these analyses, samples must be from identical materials if a comparison is to be made between aged and non-aged samples. This is found to be particularly critical with respect to various types of Teflon and rubber. Criteria for developing confidence limits associated with service life prediction of aged materials are given on page 192 of the transactions.

"Service Life Prediction Program With a Minuteman LGM/30 Propulsion System," by J. L. Myers, Head, Systems Engineering Support Section, Chemical Engineering, and E. L. Moon, TRW Systems, Redondo Beach, California

Of particular interest is development of organizational steps in establishing procedures for service life prediction and isolation of aging variables. Use is made of the term Initial Service Life Estimate (ISLE). When Minuteman was first initiated, no analytical method or familiarity with age testing was available. The closest correlation to statistical aging was the tail end of the familiar bathtub curve in which wearout was represented. By applying the same mathematical approach for wearout to evaluation of aging, development of a basic theory was initiated. In work at LMEC, since mechanical systems are subjected to wearout, the aging theory developed will be reversed and applied to wearout analysis. Heavy emphasis is placed on the need of long lead time during the

development of any complex program such as Minuteman. In the 7 yr during which Minuteman was developed, 5 yr was used in design modification and improvement and the last 2 yr was needed for lead time. This lead time was used to provide advanced information on cost effectiveness and for development of maintenance requirements and life expectancy estimation of each of the critical components. (The same concept of 2-yr lead time to develop detailed maintenance procedures on large civilian aircraft is a requirement by the Federal Aviation Agency.)

Estimates of ISLE are used to calculate life expectancies of components, to evaluate compliance by vendors to minimum life requirements, to identify critical elements where design changes are needed, to eliminate intensive approximations, to identify missing information, and to design test requirements. Many tests are made which afford considerable useless information in that applications of the test data were not designed or related to a specific need or environmental condition. As a result, the data could not be applied to any actual environmental condition. Emphasis was again made that accelerated aging tests would not give useful information, only qualitative indications of trends. Program planning is essential with respect to vendor compliance and bidding on contracts; test analysis procedures must be uniform between contractors. The project must form ground rules and assumptions which are clearly understood. The author feels that the use of a three-sigma limit in these studies is far more useful and easier to understand than confidence limits.

"Advanced Missile Models and Methods for Availability Prediction," by I. Doshay, Chief AS&T Program Effectiveness Branch, Effectiveness Engineering, and D. P. Shube, Douglas Aircraft Co., Santa Monica, California

Mr. Doshay questioned whether tests are run to determine prior aging failures through continuous checks at receiving and how the possibility is weighed that there still exist undetected failures. He lists several checkout methods of evaluating these probabilities on page 207 of the transactions. Trade-offs are made of the number of checks conducted (i.e., inspection, etc.) against the true value of availability expectation. These studies and qualifications are based on the basic assumption that, given a failure, the component which failed is replaced with a new un-aged component, and the checkout is then continued.

Inspection and replacement of components having rapid aging tend to negate the effects of components in the complex system which have long-aging characteristics due to more continuous inspection of the latter. This paper combines statistical analyses with testing and maintenance.

"Testing For Spacecraft Reliability - A Management Overview," by A. M. Smith, Manager Advanced Concepts, and W. R. Waltz, General Electric Co., Philadelphia, Pa.

At what level of system complexity should tests be conducted? This question has been posed to attempt to resolve the fact that components act considerably different, whether they are treated as ideally located in a laboratory setup or whether they are mounted within their allocated system location and subjected to the environmental and aging conditions which the system may contribute. A good deal of discussion was conducted in this paper on acceptance test adequacy. Specifically, differentiation is made between qualification test adequacy and the functional phase which includes manufacturing and test design. The various areas and levels of responsibility are developed in rather interesting detail and are based on considerable knowledge of the author and his associates. The most important factor emphasized by this paper and by many of the others was that the failure analyses of the systems has to be implemented very early in the design and development stage.

It was pointed out that the component failure distribution functions tend not to be normal but to have long extended tails which contain 5% of the major components, but that these 5% contribute to a very large portion of the total critical failures associated with aborting a mission or loss of system availability.

3. Human Error Prediction and Control Through Human Factors Engineering (Session 3)

The session chairman, J. A. Kraft, Assistant Manager, Biotechnology, Lockheed Missiles and Space Co., Sunnyvale, California, introduced the session by discussing effect of human errors on operational safety and cost of the facility, and stipulated that human errors are not design-in errors and that human engineers should work very closely with the facility designers. 'The Classification of Human Reliability, "by D. B. Jones, Human Factors Branch, Missile and Space Systems Div., McDonnell-Douglas Corp., Culver City, California was not published in the transactions but can be obtained by request.

Evaluation was made of the failure or rejection reports referred to as FAR's. Generally, human error, as defined by human factors engineers, does not include workmanship, initiation, design of procedures, or overall inadequacy of leadership. Human error decreases more rapidly with time than the total error function. He gave some examples of distribution of human error which Douglas has encountered. He says that handling and inspection accounted for 53%, inadequate human engineering and design for 28%, and inappropriate procedures and inherent lack of understanding for 19%. Included in these could be a fourth category, shipping, packaging, and hauling. Another breakdown listed receiving and inspection as 11%, fabrication assembly as 23%, installation 32%, checkout 25%, launch operation 9%. Labor, equipment, or design changes tend to increase human error about 20% from the normal level after the experience curve has leveled out. Usually this returns to a normal of about 30% of the functional error, but only 9% of all failures reported.

The question and answer period was also interesting: "Are reports prepared not by experienced analysists but by human factor engineers?" Answer: "These are major functional failures only, and not those discovered and corrected on the spot. They are prepared by human factors engineers and the time dependency tends to follow the equation,

$Y = K + X \ln t$ "

where K and X are proportionally constant and t is time. Question: "Is there a reluctance to report on human errors?" Answer: "Yes. That is why we tend to bend over backwards to negate punitive implication from reporting. We have been partially successful in this."

'Measurement of Human Errors with Existing Data," by K. Inaba and R. Matson, Serendipity Associates, Chatsworth, California

Mr. Inaba's paper relates maintenance and human error. In their experience at Serendipity Associates, they find that they get better data on human error by sticking to existing data records. This is because forms meet with adverse reaction and are quite often falsified or shaded to reduce the punitive implication.

By going to the direct records, they are better able to correlate human error with its effect upon performance. They break down the information area of human error through four categories: (1) good called bad, (2) bad called good, (3) evaluated the wrong component, and (4) induced a malfunction. The method of handling and processing the data was indicated in a detailed flow chart, Figure 1 of page 303 of the transactions. The computer program used to process the data is quite detailed, somewhat along the order of a FARADA type system, even to the point of following actions under specific chief operators in the facility. One trend in maintenance which came to light was the fact that systems sent in for shop maintenance often were sent back to the field incomplete in that shop maintenance tend to buck-pass some of their work to field maintenance. One of the questions from the audience was as to whether they had endeavored to associate carbon dioxide content in breathing air with a change in human error frequency. The answer was no, that in their studies they had made no endeavor to associate any cause with the mode of failure. They were interested only in studying modes and classifying them.

"Potential Damage Evaluation - A Method for Determining the Potential for Human-Caused Damage in Operating Systems," by P. F. Muller, Human Factors Staff Engineer, Lockheed Missiles and Space Co., Sunnyvale, California

Mr. Muller is an engineering psychologist in charge of human factor engineering at Lockheed Missile and Space Company. He states that one of the major problems with the use of trouble and failure reports in evaluating human error is that usually the cause is unknown. In the Polaris logistics studies, it was found that 25% of the failures or suspected failures were due to repeated handling of the missile, so they set up logistic flow charts to follow the many handlings of the missile being shipped to various destinations throughout the world. They then identified the potential damage to be expected at each location by conducting interviews with the field operators in which they were requested to fill out the blanks in a sheet which listed all of the operations conducted at a specific location with a number from 1 to 100 showing their expressed opinion as to the relative possibility that a failure could be incurred by that operation at that facility. Five operators' opinions were considered sufficient for averaging purposes. Any number of 10 or less was considered to be essentially 0 and equated to 10. A big point here was to make use of

the maintenance and operator personnel to obtain an opinion, but only for relative scoring of potential expectation. Subsequent opinion stated that, generally, the field man is not in a position to describe why a thing occurred. He should only be asked to describe what occurred. The definition of why should be left to the investigating specialists such as system engineers, human engineers, reliability engineers, and quality assurance personnel.

"Effects of Assembly Error on Product Acceptance and Reliability," by L. V. Rigby and A. D. Swain, Systems Reliability Division, Sandia Corp., Albuquerque, New Mexico.

Mr. Rigby investigated the probability that an assembly error gets through inspection to cause a system failure and goes on to develop weighting factors to relate the probability of detection or failure to detect such events by an inspector. These weighting factors are obtained again by direct consultation with the men in the field. That is, the inspectors are questioned and asked to rate themselves on a specific operation. The paper was heavily oriented toward electronics and goes through details on planning, fabrication, construction procedures, and prediction of expectation of human malfunction and inspection.

4. Bayesian Application to Reliability and Maintainability (Session 4)

Introductory remarks were made by the chairman, W. T. Weir, Manager, Reliability and Effectiveness Analysis, General Electric Co. (RSD), Philadelphia, Pa.

Mr. Weir reviewed the basic principles of Bayes' Theorem and the normal applications as applied to conditional probability relationships. The primary question, to set the mood for the session, was "Can engineering judgment be included in reliability equations with any degree of legitimate confidence?"

"Bayesian Estimation of Time-Varying Reliability," by A. M. Breipohl, Associate Professor, School of Electrical Engineering, Oklahoma State University, and W. C. McCormick, Jr., Director of Technical Support, Air Force Missile Development Center, Holloman Air Force Base, New Mexico

Mr. Breipohl's discussion went through the graphic application of the step-by-step time development extrapolation of refining the initial estimate for these successive data points. The primary advice to the Bayesian statistician is to always record your subjective estimation and the assumptions that go with these estimates, since these are the fiducial point of origin. Question: "What about the independence requirements of the separate subjective estimation parameters?" The answer: "If the parameters are not independent, then the data acquisition gets out of hand. Experienced judgment has usually been able to design reasonably independent parameters." Question: "What about real system validation of the theory?" The answer: "The present contract only called for development of the theory."

"Use of Bayes Theorem in Its Discrete Formulation for Reliability Estimation Purposes," by W. J. MacFarland, Reliability Engineer, General Electric Research and Development Center, Schenectady, New York

This paper began by advising that any assumed hypotheses should be assigned at least some uncertainty weighting factor. The emphasis is placed on a strong belief method as differentiated from a weak belief method. Of the two, the weak belief method should be used in the original guess if only a small sample exists prior to initiation. Thus, the sample exerts greater influence. Extensive examples are given in applications of the two methods and their relative validity.

"Some Comparisons of Bayesian and Classical Confidence Intervals in the Exponential Case," by J. J. Deely and W. J. Zimmer, Staff Members, Sandia Laboratory, Statistical Research Division, Albuquerque, New Mexico

Numerous involved formulas and charts are presented for comparing classical confidence intervals and the savings associated with the number of tests to the Bayesian confidence intervals and makes extensive use of the inverse gamma function parameter as implementation of the Bayesian reliability and measurement program. The author has actually applied some of these theories to obtain higher reliability of structural components. The gamma distribution is applied to simulation of other probability of obtaining system success. In the future, they would like to apply the theory to test planning. The absolute determination of realistic reliability of specific structures is still in doubt since the validity of the results depends very heavily on the qualification of the estimator and the validity of the estimation method. Question from the audience was what about the application of iteration to resolve the test data with a new guess. The answer was that this is regarded

by certain Bayesian statisticians as valid, but that others feel that if your initial guess was made with any degree of confidence, then it should be retained in its original form because the data samples may not be true samples.

The chairman of this session summarized by stating that while Bayesian theory has a long way to go in this area before it can be applied with the confidence of pure statistical sampling, it is still far better than the purely subjunctive approach of relying entirely upon the guess. Whether the designer or the analyst realize it or not, they are continually applying Bayesian thinking to all preliminary analysis or design work.

5. Research (Structural and Mechanical) (Session 5)

Chairman of the session, Dr. D. Kececioglu, Professor of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, making his introductory remarks suggested that the expected reliability of a component or system should be obtained before it is ever designed. Reliability analyses to affect design objectives should be inserted into the early conceptual design trade-off studies.

"Designing for Reliability Based on Probabilistic Modeling Using Remote Access Computer Systems," by G. E. Ingram, C. R. Herrmann, and E. L. Welker, TEMPO-General Electric Co. (Center for Advanced Studies), Santa Barbara, California

Dr. G. E. Ingram presented a mathematical dissertation here which is considerably new in that methods of addition, multiplication, division, and subtraction of distribution functions are given both mathematically and with illustrations. The methods developed are easily understood and simple to use by the average reliability engineer. They do not go into the heavy mathematics of the convolution integral functions.

"Probabilistic Strength Mapping-Reliability vs Life Prediction Tool," by M. J. Bratt, H. A. Truscott, and G. W. Weber, General Electric Co., Cincinnati, Ohio

G. E. analyzed a turbinewheel dove-tail-post metallurgical fatigue failure through mockup tests of a similar material and analysis of the mechanisms of failure under ideally simulated cyclic stress initiation. Since this was lowcycle fatigue, an area in which very little data have been accumulated, it was necessary to make assumptions through an initial guess as to the shape of the Modified Goodman Diagram for cyclic stress analysis. These guesses are then applied to the Bayesian mathematical approach in an endeavor to develop a systematic correlation analysis of the data. The paper was of considerable interest with many questions from the floor. Final concensus of opinion was that the method was worthy of extensive additional investigation, but that the conclusions, as presented, could not be relied upon too extensively.

> "Designing for Expected Fatigue Life," by E. R. Forrester and V. H. Thevenow, Allison Division, General Motors Corp., Indianapolis, Indiana

It was pointed out that the log-normal failure description function generally fitted fatigue life. The authors felt that the cumulative damage effect method was alright, but that no experience had been obtained for verification of the data. This was in reference to the previous paper. This paper went extensively into the use of the Modified Goodman Diagram again and developed a concept of summation of the various environmental effects such as disintegrating factors, type of loading, material processing, size effect, surface finish, surface treatment, stress concentration, speed of loading, and certain combinations of these.

> "A Unified Look at Design Safety Factors, Safety Margins and Measures of Reliability," by D. Kececioglu (Session Chairman) and E. B. Haugen (Session Co-Chairman)

Dr. Kececioglu effectively summarized developmental work over the last couple of years in improving the mathematical methods of relating stress distribution functions to strain distribution functions. These were extensively used by North American Aviation in the Apollo Program, but left much to be desired with correlation between theory and actual experience (see previous section). Prior to this meeting, LMEC was given to understand that considerable work had been going on in various parts of the country to improve the theoretical method. The improved parametric selection and correlation methods have been excellently summarized in this paper; and the authors express the feeling that with these improvements, considerably better correlation between theory and experience should result in the future. Some laboratory model testing has been done on sample torsion bars with some degree

or correlation. Under the direction of the author, considerable work has been done by graduate students at the University of Arizona in developing graphical methods for direct determination of expected reliability given the parameters of the distribution functions and whether they are normal or log-normal distributions. The next period of investigation is to extend the development of graphical methods to other distribution functions such as the Weibull, etc.

VI. FAULT TREE ANALYSIS

A. INTRODUCTION

The Fault Tree method of analysis was first applied to the Minuteman ICBM missile when it was found that established methods of determining performance reliability, such as failure-mode-and-effects analysis, were very difficult to apply to the cumbersome six-company organization involved in the design. Specific probabilistic computer techniques were developed for fault tree analysis. These include Monte Carlo, $\lambda \tau$ approximation, and use of special hybrid computer in addition to other digital computer programs.

A fault tree is a graphic method of tracing and analyzing the potential of one or more casualties to produce an undesirable event. Probability of occurrence, repair time, inspection intervals, and protective action are parameters incorporated in the analysis. Physically, the fault tree appears as tree roots (events and actions) terminating in the tree trunk (the undesirable event which is not wanted to occur). Standardized symbols (which are sometimes modified for special problems) for fault tree construction are shown in Figure 3-13. The OR gate is activated if any or all of the input events are present while the AND gate required all inputs to exist. Priorities and restrictions may be placed on any gate. Branches of the fault tree may be developed downward to as fine a detailed level as nuts, bolts, transistors, and relay logic. The desired level of development depends upon the status of design and the immediate objective. The undesirable events will be different at the top levels for a fault tree on system operation reliability than for safety reliability. The nuts and bolts branches, however, may be quite similar. Fault trees may be quickly put together as graphic representations of relative safety for talking purposes or design review. In final complex tree development, each branch of the tree is assigned statistical parameters and analyzed for the probabilistic occurrence of the undesirable event or events. Every potential accident, no matter how improbable, is placed upon the fault tree initially. This forces examination and reduces the potential that something will be overlooked. As the design is formed, most of the protective system and redundancy requirements have evolved. There is every

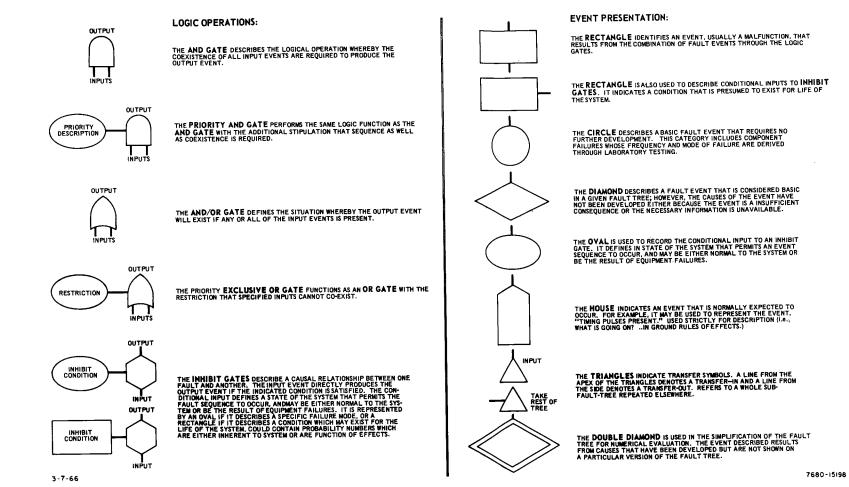


Figure 3-13. Standardized Symbols and Symbol Definition for Fault Tree Construction

LMEC-Memo-69-7, Vol 3-56

Н

indication that future power reactors will be required to undergo a probabilistic analysis of malfunction and risk. This is the task for which the fault tree was specifically created.

The fault tree technique by itself should not be construed to be a panacea. It must be combined with failure-mode-and-effects analysis and skilled "eyeballing" in order to be effective. The outstanding value of fault tree is the capacity to analyze a system in greater detail and less time than is possible for any other method to date.

One great advantage of fault tree methods is that none of the branches cross over each other and all lead to a common "undesired event." This permits detailed fault tree development of specific components on subsystems which may be used repeatedly as building blocks in completely different facility system designs. The aerospace industry constructed a book of such fault trees especially adaptable to that industry.

- B. STEPS IN FAULT TREE DEVELOPMENT FOR AVAILABILITY ANALYSIS AND UPGRADING OF POWER PLANTS
- 1. Step 1 Obtaining Required Information on Plant or Facility

This information will generally consist of the following:

- A detailed description of the reactor and fuel processing systems. This will include reactor heat transfer, electrical distribution, instrumentation, fuel handling, fuel processing, and auxiliary systems.
- 2) A description of operating, fuel processing, and preventive maintenance procedures and schedules.
- 3) A detailed description of any special test loops.

In addition to the above, historical data concerning reactor operation, reactor trips (both manual and automatic), component failures, and preventive maintenance will be needed prior to the performance of a quantitative analysis of plant availability.

2. Step 2 - Constructing the Paths

Select a specific "undesired event" and begin the construction of a fault tree by indicating all events which could lead to the "undesired event" and all events

which could inhibit it or protect against it. As the construction of the fault tree and the evaluation of historical data on the plant progresses, weaknesses in system design, operating and maintenance procedures, and scheduling will become obvious on a qualitative basis. A description of these areas, along with preliminary suggestions for improvement, are then developed.

In conceptual plant design trade-off studies, several iterations of Step 2 transpire as a result of the "eyeballing" or critical path approach long before any attempt at statistical probability analysis is made.

3. Step 3 - Approximation

Compilation of "best guess" component failure rate data will be pursued throughout this step. This data will be obtained partially from generic failure rates and partially from historic operating failure rates observed at similar facilities. The failure rate data will continually be upgraded as additional failure rates will be generic and poorly associated to the plant; the comparative availability analysis of individual branches and perturbations will be reasonably accurate.

4. Step 4 - Analysis

Initial quantitative analysis of availability is usually performed using a Boolean algebra method called the $\lambda \tau$; however, the generating function approach mentioned earlier may be employed in certain areas. Holmes and Narver, Inc., in HN-190, modified a digital program, developed by North American Rockwell for fault tree evaluation of a missile reliability, called the ARMM program, for power plant availability analysis. This method is fine for certain applications; there are many others.

A careful evaluation of the analytical results is then made to establish the regions where (by either design, scheduling, or manpower utilization changes) it would be feasible to increase the plant availability. Once these specific planned changes have been established, an analysis is made, assuming the changes, to determine the approximate magnitude of the effect of each change on predicted plant availability. If the predicted availability is less than that desired, the procedure is repeated until the predicted availability reaches the desired value.

The procedure is very similar for plant safety evaluation. The primary "undesired event" must be related as "Excessive Radiological Release to the Environs."

C. STATISTICAL AND PROBABILISTIC ANALYSIS METHODS

1. Introduction

Many methods have been devised for evolution of fault trees for probability of occurrence assuming the existence of reasonably acceptable and applicable failure rate data. The following have been devised for small fault trees or subsystems:

- 1) Boolean algebra
- 2) $\lambda \tau$ method (the hand or computer calculation of fault tree probability under assumptions of no repair, constant interval, and/or constant repair)
- 3) Boolean matrices (Boolean algebra matrix method of transmission) function analysis for complex relay circuits)
- 4) Karnaugh maps (binary transmission function utilizing multidimensional lattices).

The following methods have been devised for complex fault trees:

- 1) Hybrid computer methods
- Monte Carlo random input function generation (Phyllis M. Negel, Boeing, has developed this area very extensively)
- Digital programs with prestipulated probability of occurrence (North American Rockwell ARMM program revised by Holmes and Narver in HN-190).

For the following example, the $\lambda \tau$ fault tree method is discussed.

Definitions:

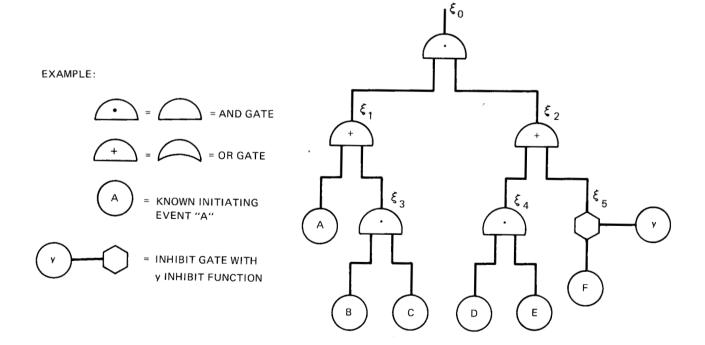
 $\lambda = \frac{1}{A} =$ failure rate where $\hat{\theta} =$ MTBF

 τ = time interval of interest

 ξ = an undesirable event

 $Q(\xi) = \text{probability of } \xi = (1 - e^{-\lambda} \xi^{\top} \xi) - \text{for an assumed exponential}$ distribution

$$(1-e^{-\lambda}\xi^{\mathsf{T}}\xi)\cong {}^{\lambda}\xi^{\mathsf{T}}\xi$$
 for ${}^{\lambda}\xi^{\mathsf{T}}\xi<10^{-3}$.


The $\lambda \tau$ mathematical method is not as accurate or as versatile as stochastic coincidence methods (for which specific distribution functions other than or including the exponential may be selected for each fundamental input) but is very amenable to hand calculation. It is quite good for probabilistic comparison of two systems. Three common repair or inspection techniques are applicable:

- 1) No repair (very conservative)
- 2) Constant interval (low)
- 3) Constant repair (more realistic).

Symbols:

Boolean \cap = and \cup = or

Fault Tree

The failure rates are given as:

$$\lambda_{A} = 10^{-4} \text{ (per unit)}$$

$$\lambda_{B} = 2 \times 10^{-4}$$

$$\lambda_{C} = 4 \times 10^{-4}$$

$$\lambda_{D} = 5 \times 10^{-4}$$

$$\tau_{o} = \text{ system life} = 100 \text{ time units}$$

$$\lambda_{E} = 10^{-3}$$

$$\lambda_{F} = 10^{-4}$$

$$y = 0.5 - \text{ the inhibit gate}$$

Inhibit function y = 0.5 means that although $MTBF_F(\lambda_F) = 10^{-4}$, only failures of a given type contribute to event $Q(\xi_0)$ and that these are only 0.5 of probability of failure F, Q(F).

The example may be represented as the equation,

$$\xi_0 = \xi_1 \xi_2 = (A + BC)(DE + yF) = ADE + BCDE + yAF + yBCF. \qquad \dots (1)$$

2. Type I - No Repair (During Plant Life)

$$Q(\xi_0) = Q(ADE) + Q(BCDE) + Q(yAF) + Q(yBCF) \qquad \dots (2)$$

$$= 5 \times 10^{-5} + 4 \times 10^{-6} + 5 \times 10^{-5} + 4 \times 10^{-6}$$
$$= 1.08 \times 10^{-4}$$

3. Type II - Constant Interval

This technique assumes regular inspection and complete repair at a regular specified interval, τ_1 , with no repair requirement during the interval. As applied to the fault tree, it means that the tree is analyzed for the time base, τ_1 , to obtain an equivalent overall failure rate, λ'_0 , and the total probability of failure during τ_0 is λ'_0 times the number of new time units $\tau'_0 = \tau_0/\tau_1$ or

$$Q(\xi_{o}) = \lambda'_{o} \tau_{o} / \tau_{1} = \lambda'_{o} \tau_{o}. \qquad \dots (4)$$

Equation 3 thus becomes

$$Q(\xi_{o}) = \left(\lambda_{A} \lambda_{D} \lambda_{E} \tau_{1}^{3} + \lambda_{B} \lambda_{C} \lambda_{D} \lambda_{E} \tau_{1}^{4} + y \lambda_{A} \lambda_{F} \tau_{1}^{2} + y \lambda_{B} \lambda_{C} \lambda_{F} \tau_{1}^{3}\right) \tau_{o} / \tau_{1} \qquad \dots (5)$$

The term in the bracket is λ'_0 . If the constant interval is selected as $\tau_1 = 10$, then

$$Q(\xi_{o}) = \left(5 \ge 10^{-8} + 4 \ge 10^{-10} + 5 \ge 10^{-7} + 4 \ge 10^{-9}\right) \frac{10^{2}}{10}$$
$$= \lambda'_{o} \tau'_{o} = (5.54 \ge 10^{-7}) \ 10$$
$$= 5.54 \ 10^{-6}.$$

4. Type III - Constant Repair

This technique includes all contributions to outage or its elimination such as inspection, repair time, etc. Again, each new $\lambda_i \tau_i$ establishes the new failure rate, λ_i , for the fault tree branch, ξ_i , and its new interval time base, τ_i . For subsequent analysis, the branch, ξ_i , is no longer required; but a clear understanding of τ_i is required. As an example, events A, B, C, D, F are given τ_i of

$${}^{T}A = 10$$
 ${}^{T}D = 50$
 ${}^{T}B = 1$ ${}^{T}E = 10$
 ${}^{T}C = 5$ ${}^{T}E = 50.$

Tables have been developed for assisting in the computations, one of which is reproduced here as Table 3-1. From this table, λ_i and τ_i are calculated for the output of each "and" or "or" gate event, ξ_i .

Applying Table 3-1 to the foregoing sample sketch,

$$\lambda \xi_{3} \cap = \lambda_{B} \lambda_{C} (\tau_{B} + \tau_{C}) = 4.8 \times 10^{-7}$$

$$\tau \xi_{3} \cap = \frac{\tau_{B} \tau_{C}}{\tau_{B} + \tau_{C}} = \frac{5}{6}$$

$$\lambda \xi_{4} \cap = \lambda_{D} \lambda_{E} (\tau_{D} + \tau_{E}) = 3 \times 10^{-5}$$

$$\tau \xi_{4} \cap = \frac{\tau_{D} \tau_{E}}{\tau_{D} + \tau_{E}} = \frac{500}{60} = \frac{50}{6}$$

 $^{\lambda}\xi_{5}$ (inhibit gate) = $y_{\lambda_{5}} = 0.5 \times 10^{-4} = 5 \times 10^{-5}$

$${}^{\tau}\xi_{5} = {}^{\tau}F = 50$$

$$\lambda\xi_{1} = \lambda_{A} + \lambda\xi_{3} = 4.8 \times 10^{-7} + 1 \times 10^{-4} = 1 \times 10^{-4}$$

$${}^{\tau}\xi_{1} \cup = \frac{\lambda A \tau A + \lambda \xi_{3} \tau \xi_{3}}{\lambda_{A} + \lambda \xi_{3}} = \frac{(10^{-4}) 10 + (4.8 \times 10^{-7}) \frac{5}{6}}{10^{-4} + 4.8 \times 10^{-7}}$$

$$= 10 + 4 \times 10^{-3} = 10$$

$$\lambda\xi_{2} \cup = \lambda\xi_{4} + \lambda\xi_{5} = 3 \times 10^{-5} + 5 \times 10^{-5} = 8 \times 10^{-5}$$

$${}^{\tau}\xi_{2} \cup = \frac{\lambda\xi_{4} \tau \xi_{4} + \lambda \xi_{5} \tau \xi_{5}}{\lambda \xi_{4} + \lambda \xi_{5}} = \frac{3 \times 10^{-5} (\frac{50}{6}) + 5 \times 10^{-5} \times 50}{3 \times 10^{-5} + 5 \times 10^{-5}}$$

$$= \frac{275}{8}.$$

$$LMEC-Memor 69-7. Vol I$$

3-63

TABLE	3 -1
-------	-------------

^{''λ} τ ^{''} COMBINATION	'' COMBIN	ATION
--	-----------	-------

			2 Inputs	3 Inputs	n Inputs
	τ's U N E	λ∩	$\lambda_1 \lambda_2 (\tau_1 + \tau_2)$	$\lambda_1 \lambda_2 \lambda_3 (\tau_2 \tau_3 + \tau_1 \tau_3 + \tau_1 \tau_2)$	$\lambda_1 \lambda_2 \cdot \cdot \cdot \lambda_n (\tau_2 \tau_3 \cdot \cdot \cdot \tau_n + \tau_1 \tau_3)$ $\cdot \cdot \cdot \tau_n + \cdot \cdot \cdot + \tau_1 \tau_2 \cdot \cdot \cdot \tau_{n-1})$
A N	Q U A L	τ∩	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$	$\frac{\tau_{1}\tau_{2}\tau_{3}}{\tau_{2}\tau_{3}+\tau_{1}\tau_{3}+\tau_{1}\tau_{2}}$	$\frac{1}{\frac{1}{\tau_1} + \frac{1}{\tau_2} + \dots + \frac{1}{\tau_n}}$
D	τ's E Q	λΟ	$2\lambda_1\lambda_2\tau$	${}^{3\lambda}{}_{1}{}^{\lambda}{}_{2}{}^{\lambda}{}_{3}{}^{\tau}{}^{2}$	$n\lambda_1\lambda_2 \dots \lambda_n \tau^{n-1}$
-	U A L	$\tau \cap$	$\frac{\tau}{2}$	$\frac{\tau}{3}$	<u>τ</u> n
	τ's U N E	λυ	$\lambda_1 + \lambda_2$	$\lambda_1 + \lambda_2 + \lambda_3$	$\lambda_1 + \lambda_2 + \dots + \lambda_n$
0	Q U A L	τυ	$\frac{\frac{\lambda_1 \tau_1 + \lambda_2 \tau_2}{\lambda_1 + \lambda_2}}{\frac{\lambda_1 \tau_1 + \lambda_2}{\lambda_1 + \lambda_2}}$	$\frac{\lambda_1 \tau_1 + \lambda_2 \tau_2 + \lambda_3 \tau_3}{\lambda_1 + \lambda_2 + \lambda_3}$	$\frac{\lambda_1\tau_1+\lambda_2\tau_2+\ldots+\lambda_n\tau_n}{\lambda_1+\lambda_2+\ldots+\lambda_n}$
R	τ's E Q	λυ	$\lambda_1 + \lambda_2$	$\lambda_1 + \lambda_2 + \lambda_3$	$\lambda_1 + \lambda_2 + \dots + \lambda_n$
	U A L	τυ	τ	τ	τ

)

LMEC-Memo-69-7, Vol I 3-64

()

The failure rate,

$$\lambda_{\xi_{0}} = \lambda_{\xi_{0}} \cap$$

$$= \lambda_{1}\lambda_{2} (\tau_{1} + \tau_{2})$$

$$= 10^{-4} \ge 10^{-5} (10 + \frac{275}{8})$$

$$= \frac{8 \ge 10^{-9} \ge 355}{8} = 3.55 \ge 10^{-7}$$

$$Q(\xi_{0}) = \lambda_{\xi_{0}}\tau_{0} = 3.55 \ge 10^{-7} (100) = 3.55 \ge 10^{-5}.$$
...(6)

This could have been solved from the Canonical form of Equation 2.

$$Q(ADE) = Q(A\Omega D\Omega E)$$
 - an "and" gate with 3 inputs.

From Table 3-1,

$$\lambda_{ADE} \cap = \lambda_A \lambda_D \lambda_E (\tau_A \tau_D + \tau_A \tau_E + \tau_D \tau_E)$$

= 10⁻⁴ x 5 x 10⁻⁴ x 10⁻³ (500 + 100 + 500) = 5.5 x 10⁻⁸
Q(ADE) = \lambda_{ADE} \tau_0 = 5.5 x 10⁻⁸ (100) = 5.5 x 10⁻⁶.

Applying Table 3-1 to the other 3 gates,

$$Q(BCDE)$$
, $Q(YAF)$, and $Q(YBCF)$,

and summing to obtain $Q(\xi_0)$, the result will be the same.

It should be observed, however, that gates with sequencing conditions or other conditions difficult to describe as a simple number are readily handled by direct application to the TREE, but are very difficult to apply to the canonical approach.

5. Summary

The value of $Q(\xi_0) = 1.08 \times 10^{-4}$ for no repair is seen to be considerably overconservative, and the constant repair time value of 3.55×10^{-5} is seen to be somewhat in between.

D. EXAMPLES OF FAULT TREE APPLICATION

1. Example No. 1

An excellent example of fault tree application to resolution of conceptual design problems is the preliminary work performed at Atomics International in 1966 on the 500-Mwe Heavy Water Organic Cooled Reactor (HWOCR) Demonstration Plant, a concept no longer under USAEC consideration. This first example demonstrates the fundamentals of Steps 1 and 2 in which no mathematical probability analysis is required or even anticipated.

The fault tree constructed for the demonstration plant is depicted in Figures 3-14 through 3-18. The top of the tree is shown on Figure 3-14 with "Excessive Radiological Release to Environs" defined as the undesirable event. The remaining figures shown in the branches of the tree will carry the development to lower levels of detail.

Figure 3-14 indicates that excessive radiological release to environs can result from any of three input events: (1) excessive release from auxiliary structure, (2) excessive release from containment structure, or (3) solid waste handling. The solid waste handling accident is not of interest at this time and thus has not been developed. A "release from the auxiliary structures" can result from a release from any of the following: (1) radioactive liquid waste system, (2) radioactive waste gas system, (3) D_2O processing and handling system, or (4) either of the two coolant loops. Each of the above branches is discussed below; however, since the coolant loops are identical, only the first coolant loop is discussed.

The release from the first coolant loop is the output from an AND gate which represents the containment effect of the piping and vessels comprising the coolant loop. In the event of an accidental radiological release to the first coolant loop system, either the coolant loop or coolant process system must be breached before a release to the auxiliary structure can occur. In addition, to obtain a radiological release to the portion of the first coolant loop exterior to the containment building, the isolation valves between the core and the steam generator (see Figure 3-19) must have failed. The steam generator is outside of the containment in the auxiliary building. In addition, fission products in the reactor coolant system can only result from fuel melting or a large number of cladding

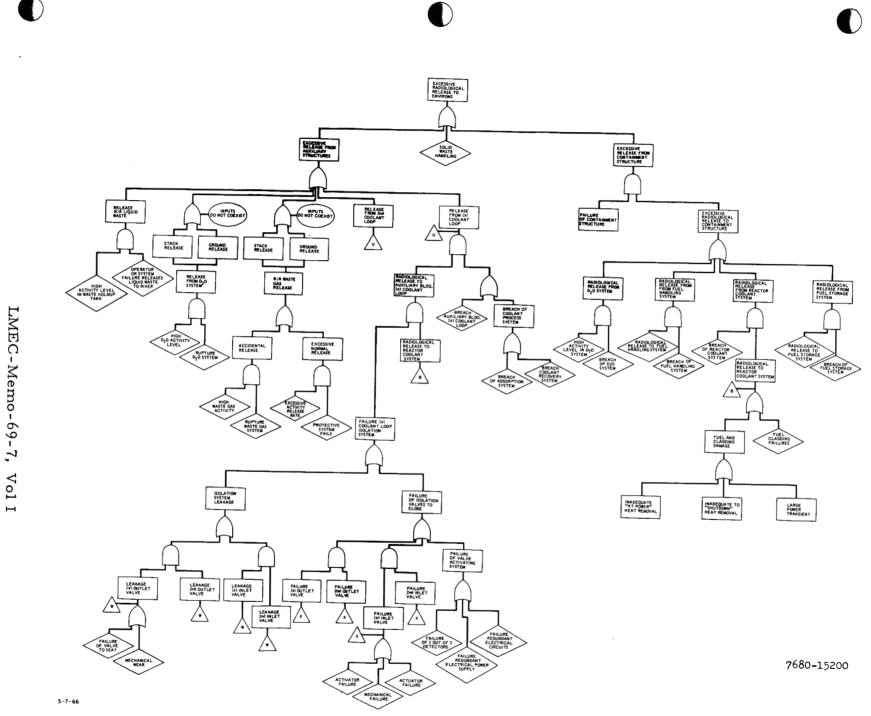


Figure 3-14. Excessive Radiological Release to Environs

3-67

Figure 3-15. Large Power Transient

 \mathbb{D}

LMEC-Memo-69-7, Vol I 3-68

 \mathbf{D}

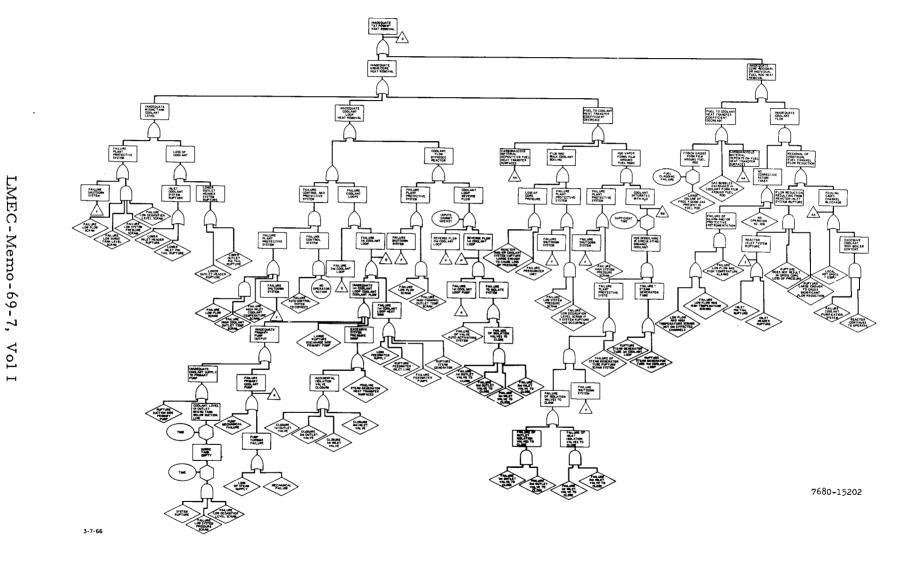
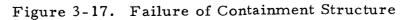



Figure 3-16. Inadequate At-Power Heat Removal

LMEC-Memo-69-7, 3-69

FAILURE OF CONTAIN EXCESSIVE NORMAL LEAK BATE ISOLATION SYSTEM FAILURE BREACH OF CONTAINMENT STRUCTURE AIR LOCK SYSTEM FAILURE VENTILATION ISOLATION SYSTEM FAILURE ISOLATION COMPONENT DEGRADATIO HIGH MTERNAL PRESSURES GROUND DR AIRBORNE VEHICLE AND M CRASHES APPLIED FONCE GREATE THAN STRUCTUL CAN WITHSTAN ACTS OF WAR EXTERNAL WISSILE IMPACT AS A RESULT OF EXPLOSION EVENT MUST OCCUR BETWEE PERIODIC TEST Δ STRUCTURAL FRESH AIR INLET VAL FAILS TO CLOSE CONTINUOUS LEAK RATE MONITORING FAILS TO DETEC DEGRADATION STACK EXMALST VALVES FAILS TO CLOSE PHET SECOND DODR PAILS ⁄2∖∖ APPLIED WIRING PENETRATION SEALS DEGRADATION DEGRADATION OF AIR LOCKS DEGRADATION OF PIPING PENETRATION SEALS FAULTY CONSTRUCTIO INSUFFICE KNOWLEDG HENOMENA TO PROPER DE SAFET ALLOWAN DEGRADATION FAILURE FIRST VALVE FAILURE SECOND VALVE DEPENATOR /₁∖、 INTERLOCK SYSTEM FAILS FIRST /•\ NORMAL THERMAL CYCLING HIGH INTERNAL PRESSURES ACTS OF NATURE DERATOR LEAVES DOOR OPEN NADEQUAT FERAT SEAT DAMAGE DOOR SEAL WEA NTERLOC YSTEM FA HORMAL MECHANIC WEAR DEGRADAT AUTO-ACTIVAT FAILS <u>Z'</u> HING IMPROPER POOR LARGE THERMAL TRANSIENT TSUN TEMPERATURE HIGH WATER TABLE FLOODS HIGH WIN DS FIRES IN CONTAINMENT BUILDING FAILURE PROTECTIVI SYSTEM FAILURES FIRE FOG SYSTEM HEAT SOURCE EXPLOSIONS EXPLOSIVE GAS OR VAPOR RELEASED SLOW ENDUGH TO PERMIT AUTO- ACTIVATION OF FIRE FOG FAILURE FIRE FOG SYSTEM STEAM RELEASE FIRES IN CONTAINMEN BUILDING STEAN RELEASE FAILURE FIRE FOG SYSTEN IGNITION /。\ ∕.∖ ◬ EXPLOSIV ATMOSPHE IN CONTR EXPLOS ATMOSP IN NORM ATMOSP /。\ FAILURE FIRE FOG SYSTEM FIRES IN CONTROLLED ATMOSPHERE REGIONS FAILURE OF EXPLOSIVE A TWOSPHERE PROTECTIVE SYSTEM FINES IN NORMAL A TMOSPHEN REGIONS RELEASE OF EXPLOSIVE VAPORS OR GASES LOSS OF INERT ATMOSPHERI ALARN FAILURE OFF GA LOSS OF INERT ATMOSPHE FLAMMABL MATERIAL RELEASE FLAMMABLE MATERIAL RELEASE /"\ ORGANIC 7680-15203 ORGANIC COOLANT RELEASE ELECTRI ARCING FRICTION SPARK ERROR GASIFIE DFF GAS DRGANIC COOLANT RELEASE 3-7-66

 \mathbf{D}

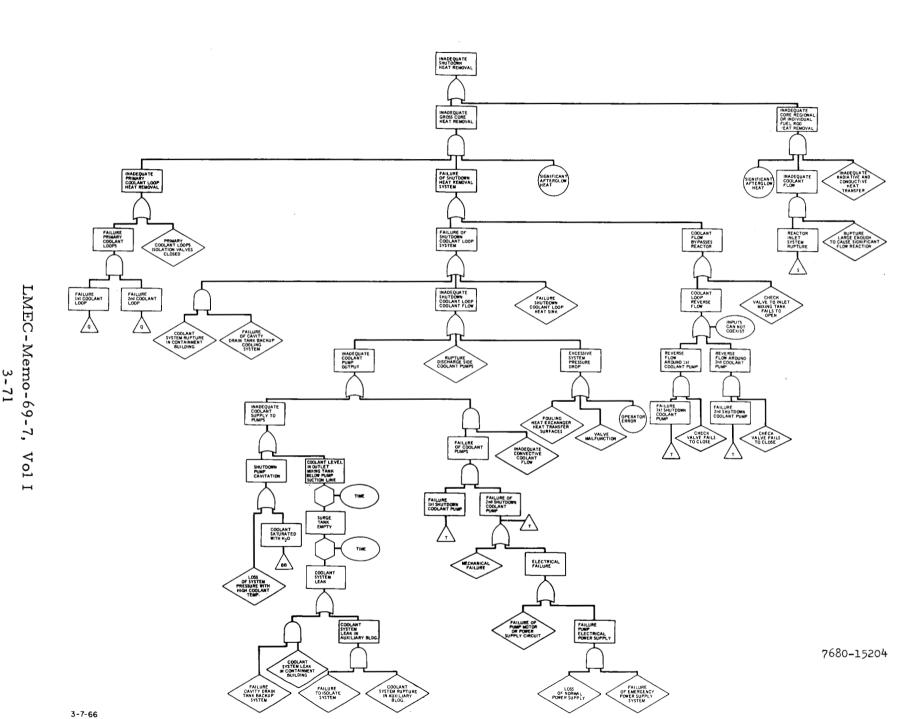
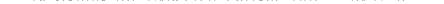
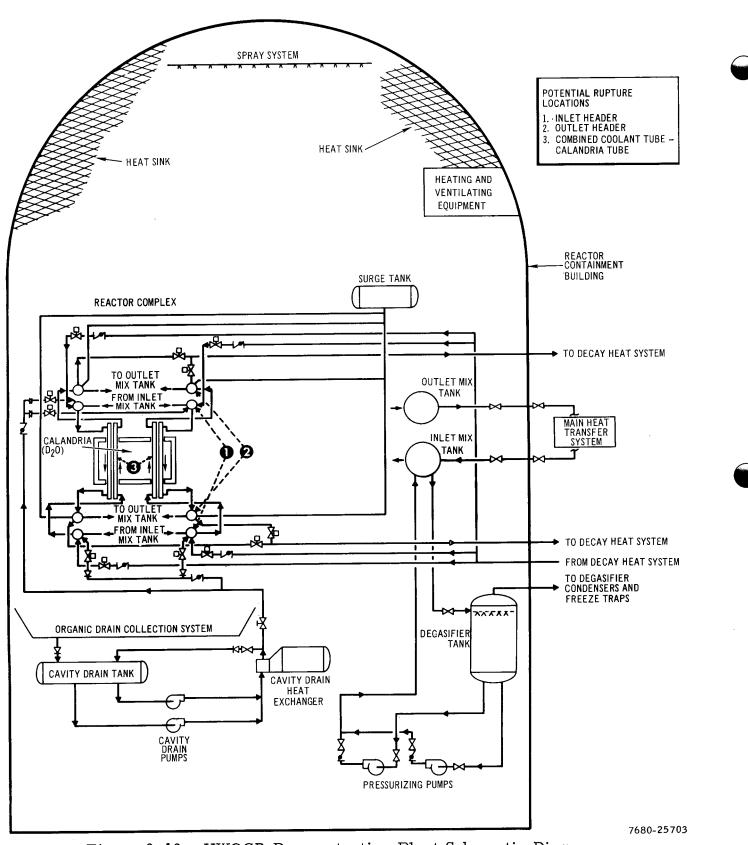
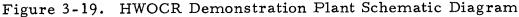





Figure 3-18. Inadequate Shutdown Heat Removal

failures. Thus, this system provides redundant protection against a release to the auxiliary building. Further, no credit is taken for the fire protection devices in the auxiliary building as it has been assumed that the activity released with the coolant is immediately released to the environs.

The isolation system failure is shown as resulting from valve leakage or failure to close. Since the valves on both the inlet and outlet lines are redundant, both inlet or both outlet valves must leak to constitute a failure. Failure of the valves to close can result from an individual failure or a failure of the activating system. The effects of an individual valve failure are again reduced by the double isolation valve construction and individual activators and actuators. Since failure of the valve activating system will result in the failure of all the valves on all three coolant loops to close, all components of this system (detectors, power supplies, electrical circuits, etc.) must be redundant. Additional fault tree development of the isolation valve activators, actuators, and actuating system will be prepared as analysis of this system continues.

The absence of an AND gate between the top and bottom of the tree with respect to "activating system" failure requires that this system be designed with extreme care both from a standpoint of adequate redundance to assure activation and of adequate coincidence to prevent false tripping.

Excessive radiological release to environs from the radioactive waste gas system can result from either the rupture of a portion of the system containing highly active gases or the failure of the auto-control valve to close when, for some reason, the normal gaseous activity released becomes excessively high. The severity of the release is dependent on whether it is a ground release or a stack release and on the maximum allowable activity for each case to determine the necessity of providing stack fan backup. Additional effort will be required to complete the analysis of this system.

The radiological release from the D_2^0 system results from a high activity in the D_2^0 and a rupture of the system. The tritium problem was evaluated separately.

The major concern regarding a liquid waste release centers about the possibility of dumping liquid waste from the holdup tank to the river. This could result from either an operator error or the malfunction of a valve. For

this reason, redundant valving and a radiation detector with an alarm should be installed on the dump line. The installation of a detector downstream from the adsorber and filter to prevent the pumping of highly radioactive waste to the holdup tank would also be desirable. The maximum allowable activity inventory in the holdup tank will be determined.

The excessive radiological release from the containment structure event is the output from an AND gate which requires the coexistence of both inputs (failure of the containment structure and radiological release to the containment structure) to produce the output event. This AND gate represents the effect of the containment structure in preventing a radiological release to the environs.

The failure of containment structure branch is shown in Figure 3-14 and will be discussed later.

The important facet under excessive radiological release to the containment structure is that a radiological release from the reactor coolant system requires both a release to the reactor coolant system and a breach of the coolant system. The release to the coolant system can result from fuel cladding failures or fuel and cladding damage. The fuel cladding failures referred to are the cracking of cladding, etc., without any fuel damage. A number of such failures can be tolerated without exceeding release limits. Fuel and cladding damage can result from inadequate at-power heat removal, large power transient, or inadequate shutdown heat removal. The branches leading to these events are depicted in Figures 3-15, 3-16, and 3-17.

Failure of containment structure (see Figure 3-15) can result from an excessive normal leak rate, isolation system failure, or a breach of the containment structure.

The excessive normal leak can result from high internal pressure or isolation component degradation. Protection is provided against the component degradation event, as is indicated by the AND gate, by requiring both continuous leak rate monitoring and periodic pressure testing. The use of both methods of leak rate testing will greatly reduce the probability of this event.

Isolation system failure can result from an air lock failure or a ventilation system failure. Redundant inlet and outlet valving on the ventilation system and

the double doors with both mechanical and electrical interlocks on the airlocks act to reduce the likelihood of this event. Coolant system isolation valves are not shown under this event as they are covered under the release from the auxiliary structure.

A number of input events leading to the breach of the containment structure have been considered, even though some are highly improbable.

The inadequate at-power heat removal (see Figure 3-16) event is shown as resulting from either inadequate gross core heat removal, inadequate core regional, or individual fuel rod heat removal. Inadequate core regional or individual fuel rod heat removal is the more probable cause of fuel damage because of the lack of protective system action (as is indicated by the absence of AND gates in this branch of the tree). Low channel coolant flow and high channel coolant outlet temperature alarms on each channel will provide a warning to the operator. Inadequate gross core heat removal could result from any of the three input events. A loss of core pressure, resulting in a fuel-tocoolant heat transfer coefficient decrease, does not have the redundant scram protection of other accidents, except in the case of a system rupture. It therefore probably represents the more critical input. Redundant scram protection is provided for the other accidents leading to the inadequate gross core heat removal event.

Several critical areas exist in the large power transient (see Figure 3-17) branch of the tree. The positive coolant and moderator temperature reactivity coefficients are a source of concern. As a result of these coefficients, the large power transient event is an input event leading to the coolant heating and/or channel void and moderator system heating events. This closed loop effect is of concern from both safety and plant control viewpoints. A careful investigation of this area is required.

A second area of concern is the boric acid xenon compensation system. The inadvertent removal of boric acid during shutdown poses a startup accident problem. Shutdown interlocks which prevent boric acid removal during reactor shutdown, and the boric acid concentration monitor and alarm when coupled with adequate startup procedures, should provide adequate protection in this area. Inadequate core regional or individual fuel rod heat removal (see Figure 3-18) is not as critical in the inadequate shutdown heat removal branch as in the inadequate at-power heat removal branch because of the greatly reduced heat flux and the backup cooling system.

If, in the case of a system leak, the backup cooling system failed, a gross core, rather than regional effect, could be expected The critical area of the inadequate gross core heat removal branch is the rupture of the primary coolant system in the auxiliary building coupled with a failure to isolate the rupture coolant loop. Under these circumstances, the backup coolant system has to be supplied coolant from makeup tanks and sufficient coolant may not be available. Provisions for pumping primary system coolant from the auxiliary building back into the system might be desirable.

Several months following this work, a fault tree was also prepared for the FBR Design Basis Accident (fuel melting). In this case, relative order of magnitude probabilities were assigned to the various fault modes and the critical paths were scribed on the fault tree diagrams by variation of the lines connecting events (others have used color coding with red for critical).

Though this approach is qualitative, it was valuable in pointing out areas of design weaknesses; e.g., the need for in-core flow and/or temperature protective instrumentation was indicated in the "Inadequate At-Power Heat Removal" by the total lack of AND gates in the network leading to and from the "inadequate Core Regional and/or Individual Fuel Pin Heat Removal" event. This lack of protective instrumentation rendered this as the most probable mode of failure leading to the output event.

Of interest is the fact that, even for such widely different concepts as the HWOCR and FBR, the fundamental structure of many of the fault tree branches developed for the HWOCR were applicable to the FBR concepts. Thus, when a fault tree for a specific reactor has been constructed, much of the fundamental structure can be applied to other reactor concepts.

2. Example No. 2

In this example, the question to be answered was whether the configuration analyzed in example No. 1 and schematically represented in Figure 3-19 (Scheme A) would be as safe from the standpoint of potential radiological release to the environs as a larger containment vessel with the steam generators placed within the containment (Scheme B). The latter would relieve the dependence upon isolation valves in the primary system but would require more containment penetrations and a larger heating and ventilating system.

In this analysis, a gross fuel failure was assumed to have occurred and the probability of release traced through the fault tree for each scheme.

The following are excerpts from the Addendum to AI-CE Engineering Document TSR-014-93-002, dated 4/27/67, which shows the results, assumptions, and fault tree simplifications from previous Scheme A fault trees and their expansion to include the new configuration of Scheme B. These fault trees are shown in Figures 3-20 through 3-23 with the containment penetration schemes shown in Figures 3-24 and 3-25. The sketches and calculations follow the method as explained and may be obtained from information contained in Table 3-2, but are not repeated here. The reader should note that while the results are reasonably convincing, the numerical magnitude of difference will change quite drastically with changes in some of the design assumptions, but very little with reasonable changes in the expected failure rate.

The probabilities of radioactivity release for Schemes A and B are summarized as follows:

	Probability of Release from Auxiliary Structures	Probability of Release from Reactor Containment Structure	Total Probability of Release
Scheme A (Reactor Containment)	$Q_1 = 1.06 \ge 10^{-7}$	$Q_2 = 4.62 \times 10^{-5}$	$Q_0 = 4.63 \times 10^{-5}$
Scheme B (Reactor + Loop Con- tainment)	$Q_1 = 7.08 \times 10^{-8}$	$Q_2 = 7.55 \times 10^{-5}$	$Q_0 = 7.56 \times 10^{-5}$

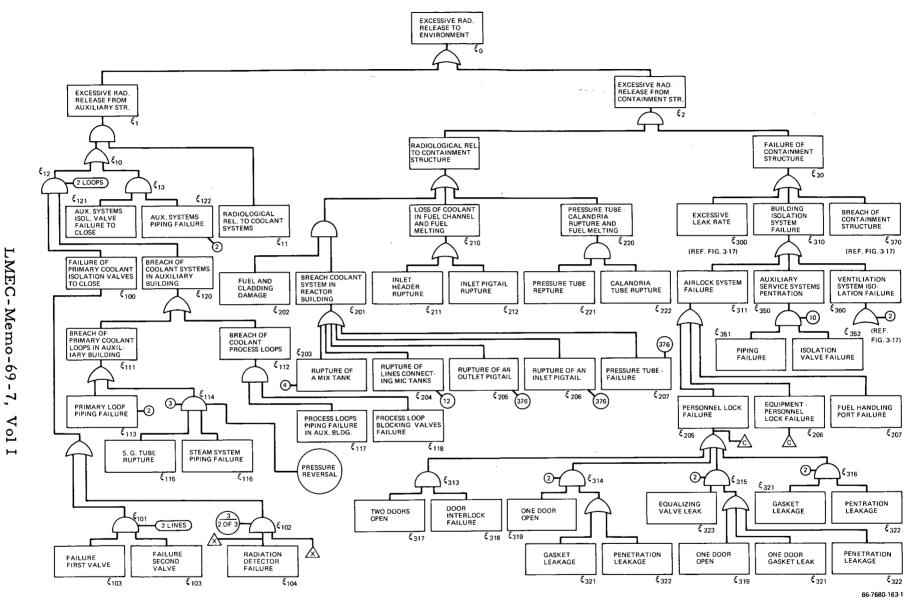


Figure 3-20. Reactor Containment Fault Tree, Scheme A

Memo-69-3-78 7,

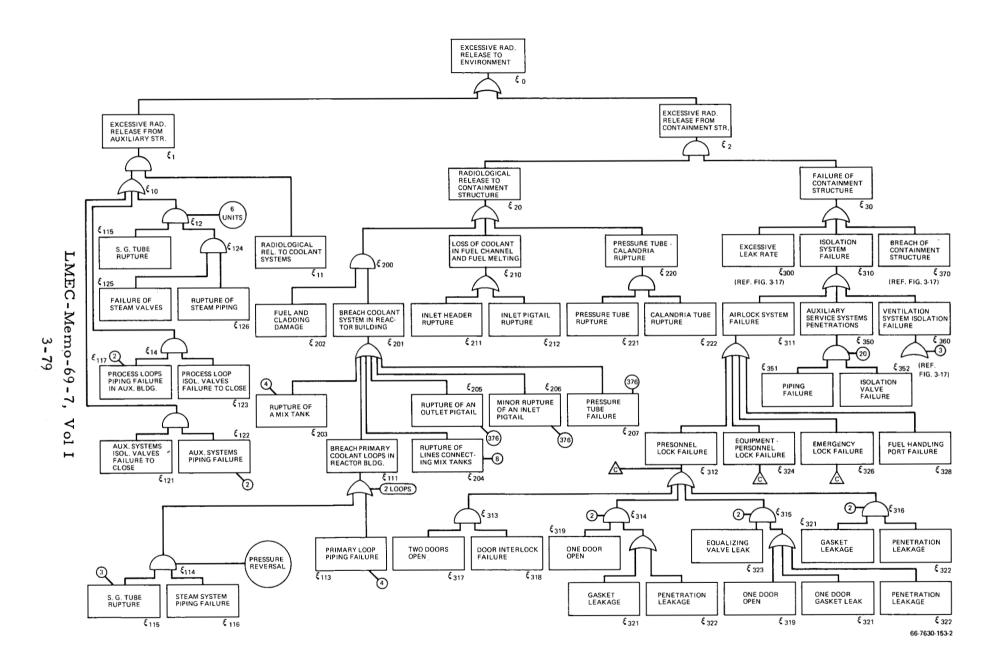
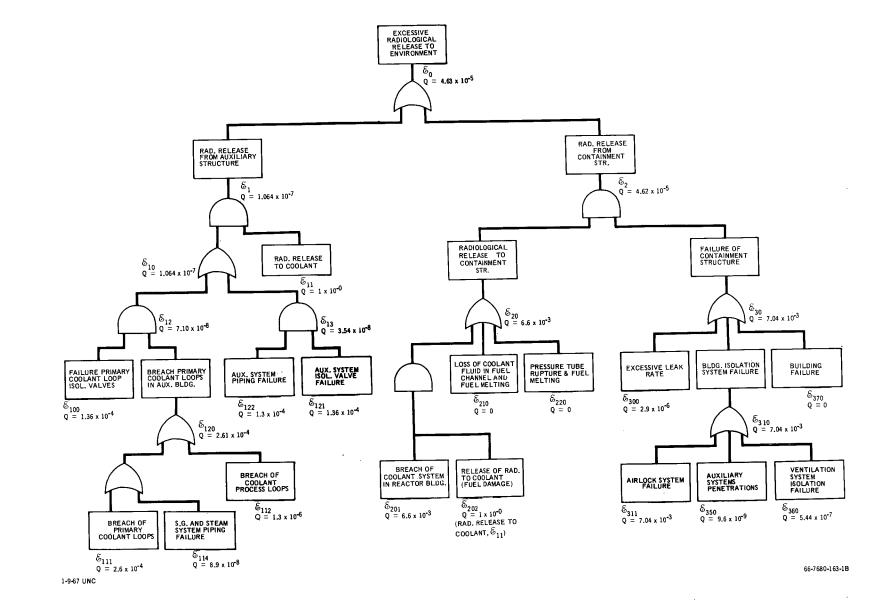
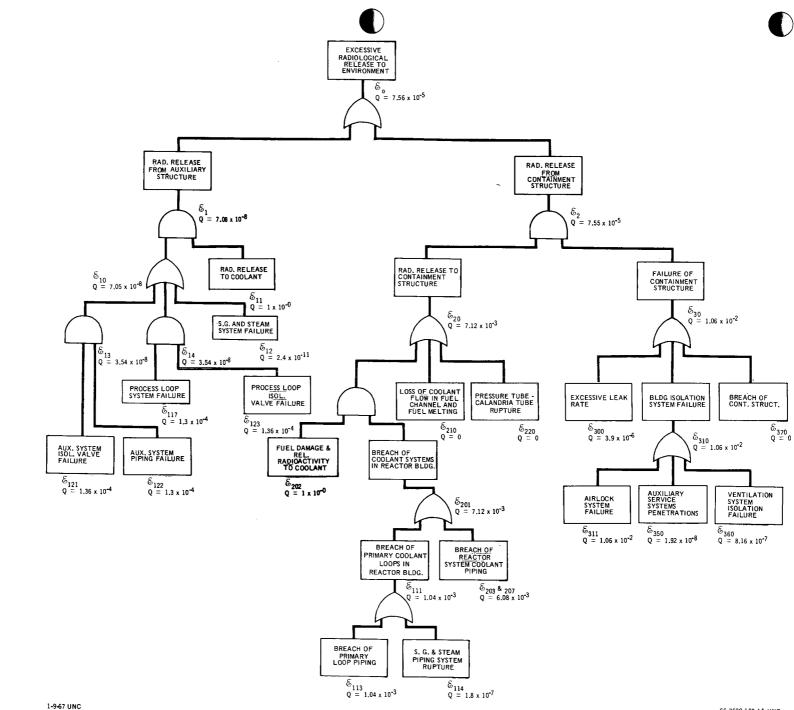
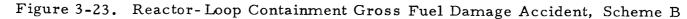


Figure 3-21. Reactor-Loop Containment Fault Tree, Scheme B


Figure 3-22. Reactor Containment Gross Fuel Damage Accident, Scheme A

LMEC-Memo-69-7, Vol 3-80

н

66-7680-163-1A UNC

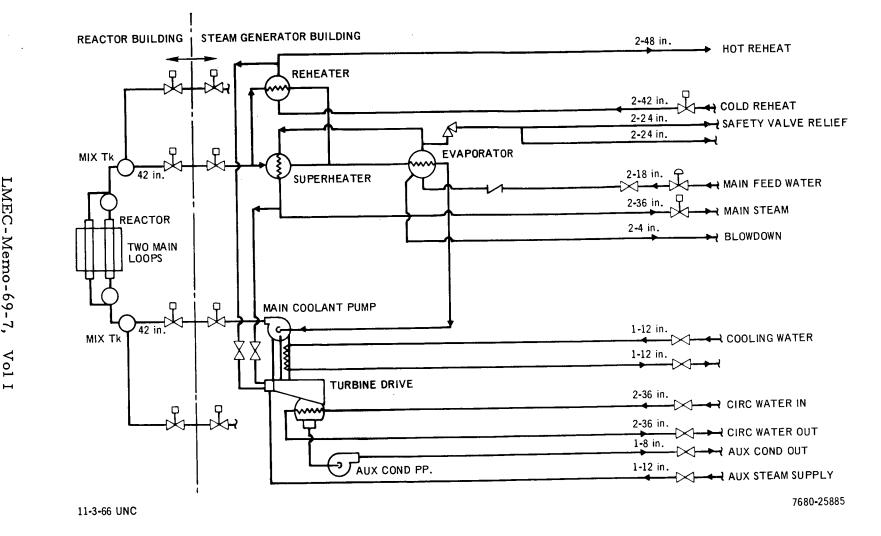
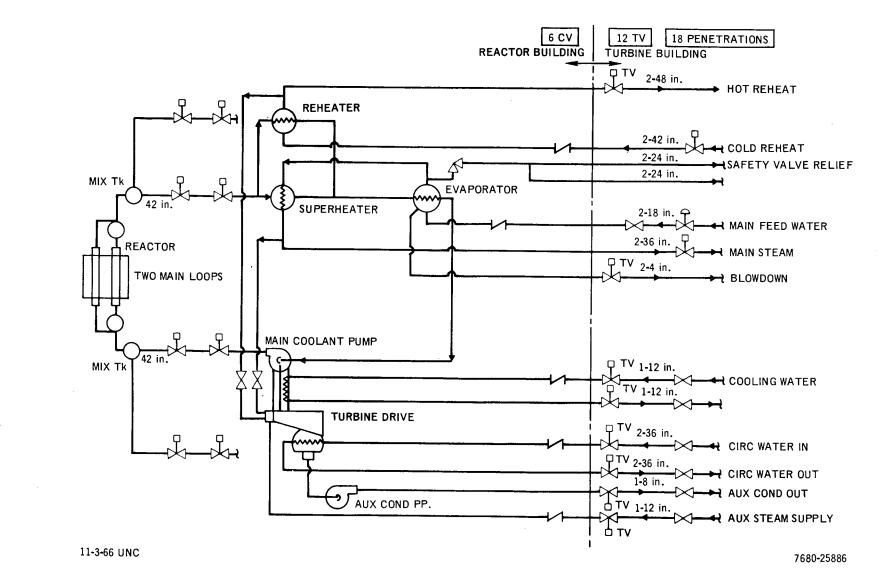
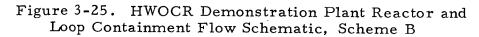




Figure 3-24. HWOCR Demonstration Plant Containment Flow Schematic, Scheme A

LMEC-Memo-69-7, Vol 3-83

н

Component/Event	Reference No. [§]	λ (failures/hr)	τ (hrs)	Reference/Remarks
Radiological Release to Coolant System	11	1	-	Assumed to have occurred. Same as event 202 (fuel and cladding damage)
Coolant Isolation Valve	103	$8.6 \ge 10^{-6}$	720	EEI Publication No. 63-42, Edison Electric Institute, N.Y. 17; (F.W. Valves and Piping, Table 2E)
Coolant Radiation Detection System	104	2.7×10^{-5}	168	AHSB(S)R99, Reliability Assess- ment of Protective Equipment for Nuclear Installations (Table II)
Coolant Loop Piping	113	5.6 x 10 ⁻⁶	24	Assume 3σ standard deviation stress margin at end of life (30 yr) per section of pipe (n). A section of pipe is defined as that length of pipe between those supports which constitute calculational end points.
Heat Exchanger Tubes	115	9.4 x 10^{-6}	24	Reference same as 103 (Failure Rate for Generating Tubes, Table 2E)
Steam System Piping	116	5.6×10^{-6}	24	Reference same as 103 (Failure Rate for Steam Valves and Piping, Table 2E)
Process Loop Piping System	117	$5.6 \ge 10^{-6}$	24	Same as event 116
Process Loop Blocking Valve	118	$4.6 \ge 10^{-6}$	2160	Martin-Denver Reliability Handbook (Glove, Gate, and Ball Valve Failure Rate)

INPUT DATA FOR FAULT TREE INITIATING EVENTS (Sheet 1 of 5)

INPUT DATA FOR FAULT TREE INITIATING EVENTS (Sheet 2 of 5)

Component/Event	Reference No.ξ	λ (Failures/hr)	(hrs)	Reference/Remarks
Auxiliary System Isolation Valves	121	See remarks	-	Same probability as $Q_{\xi_{100}}$
Auxiliary System Piping	122	5.6×10^{-6}	24	Same as event 113
Process Loop Isolation Valves	123	See remarks	-	Same probability as Q ξ_{100}
Steam Isolation Valves	125	See remarks	-	Same probability as Q ξ_{100}
Steam Piping	126	$5.6 \ge 10^{-6}$	24	Same as event 113
Mix Tank	203	4×10^{-9}	24	Assume 3σ standard deviation stress margin at end of life (30 yr)
Lines Interconnecting Mix Tanks	204	$5.6 \ge 10^{-6}$	24	Same as event 113
Outlet Pigtail Rupture	205	$4 \ge 10^{-8}$	168	Reduce by 2 orders of magnitude to reflect instrument penetrations
Inlet Pigtail Rupture	206	$4 \ge 10^{-8}$	168	Same as event 205
Pressure Tube Rupture	207	4×10^{-9}	1	Assume reliability of 0.999 per pressure tube. Assume end seal bellows will fail concurrently.
Fuel and Cladding Damage	202	1	_	Assumed to have occurred. Same as event 11 (radiological release to coolant)

Component/Event	Reference No.ξ	λ (failures/hr)	au(hrs)	Reference/Remarks
Fuel Damage Due to Loss of Coolant	210	0	-	This analysis has assumed fuel damage from another course and that this event does not occur concurrently
Pressure Tube - Calandria Tube Failure	220	0	-	Same as event 210
Degradation of Wire Penetration Seals	301	Single Seal, 1 x 10 ⁻⁷ ; Double Seal, 1 x 10 ⁻¹⁴	0	Single failure rate calculated from Holmes and Narver Nuclear Plant Safety Study, HN-185 (preissue copy). Ref. Supplement I to IL from C. W. Griffin, Relative Integ- rity of HWOCR Containment Con- figurations, dated October 3, 1966, Continuous Leak Monitoring.
Degradation of Ventilation Valves	305	1×10^{-7}	8766	Assumed to be same failure rate for wiring penetrations, event 301. No continuous monitoring.
Degradation of Piping Penetrations	303	Single Seal, 1×10^{-7} ; Double Seal, 1×10^{-4}	0	Same as event 301. Continuous monitoring.
Other Leakage Paths (i.e., liner welds)	304	~0	-	Assume double containment around all welds

INPUT DATA FOR FAULT TREE INITIATING EVENTS (Sheet 3 of 5)

Component/Event	Reference No.ξ	λ (failures/hr)	(hrs)	Reference/Remarks
Two Air Lock Doors Open and Interlock Failure	313	~ 0	-	Assumes interlock failure and subsequent failure of operator to close two doors negligible
One Air Lock Door Open	319	10 ⁻²	1/4	Assumed that only 1 in 100 opera- tors would leave a door open under an emergency condition. $\tau = 15$ min. was assumed to be the time required for detection and subsequent closing of the door.
Personnel, Equipment, Air Lock and Emergency Door Gasket Leakage	321	4.6×10^{-6}	4383	Reference same as event 301. Used higher equipment air lock failure rate data to assure this value is conservative
Personnel, Equipment, Air Lock and Emergency Penetration	322	$4.6 \ge 10^{-6}$	4383	Same as event 321.
Fuel Handling Port	328	~ 0		For leakage to occur, four valves must fail or two valves and a pipe; this would be $Q \cong 10^{-20}$
Personnel and Equipment, Air Lock and Emergency Equalizing Valve Leakage	323	$4.6 \ge 10^{-6}$	4383	Same as event 321.
Auxiliary and Service Piping Systems	351	$5.6 \ge 10^{-6}$	24	Same as event 113

INPUT DATA FOR FAULT TREE INITIATING EVENTS (Sheet 4 of 5)

Component/Event	Reference No.ξ	λ (failures/hr)	(hrs)	Reference/Remarks
Isolation Valve Failure	351	4.6×10^{-6}	2160	Same as event 118
Ventilation Valve Failure	363	4.8×10^{-7}	780	Reference same as event 301; failure rate is for ventilation valves.
Breach of Containment Structure	370	~ 0		Insignificant probability
NOTE: Equipment - Personnel Air Lock consists of large bolted door with personnel door in it.				

INPUT DATA FOR FAULT TREE INITIATING EVENTS (Sheet 5 of 5)

The numbers indicate that the probability of releasing radioactive material to the environs is greater for Scheme B than for Scheme A for the accident studied (gross fuel failure). There are, of course, other important accidents which must be studied to determine the overall relative reliability between the two concepts.

An examination of Figures 3-22 and 3-23 indicates that the higher degree of relative reliability of Schem A over Scheme B (for the gross fuel damage accident) is primarily due to the following:

- 1) The containment building for Scheme B is larger, has more piping and electrical penetrations, more ventilation system penetrations, and an additional air-lock. These increase the probability that the containment building will not be isolated when required. The isolation feature comparison (event ξ_{310}) shows that the probability of failure for Scheme B is 1.06 x 10⁻², compared to 7.04 x 10⁻³ for Scheme A. This is a ratio of 10.6 x 10⁻³/7.04 x 10⁻³ = 1.5.
- 2) The combined probability of failure of the primary coolant loop isolation values (ξ_{100}) to close and the failure of the primary loops (ξ_{120}) is low. This value, (ξ_{12})Q = 7.1 x 10⁻⁸, does not result in a significant probability of release of radioactivity from the auxiliary structure, (ξ_1)Q = 1.06 x 10⁻⁷.
- 3) The placing of the main heat transfer loop into the containment building does not significantly increase the probability of radioactive coolant getting into the building. The fault rate data indicate that the probability of failure in the reactor system coolant piping (inlet and outlet pigtails, pressure tube, inlet and outlet headers, etc.) is about six times greater than the probability of release from the primary coolant loops.

$$(\xi_{203} & \xi_{207})/\xi_{111} = 6.08 \times 10^{-3}/1.04 \times 10^{-3}$$

VII. BIBLIOGRAPHY

A. INTRODUCTION

The literature search that resulted in this compilation of titles, authors, books, articles, papers, reports, and specifications was undertaken for the Pacific Northwest Laboratories (PNL) in conjunction with reliability development in the Fast Flux Test Facility (FFTF). It is recognized that there may be omissions and that while the compiler rated publications to the best of his knowledge with respect to FFTF applicability, these may be subject to controversy.

The following categories are identified:

- A. Mathematical and Statistical Tables and Formulas
- B. Theory of Statistics, Probability and Logic of Design
- C. The Design of the Statistical Experiment
- D. Reliability Engineering and Management
- E. Maintainability, Availability, and Logistic
- F. Environmental Testing and Effects of Environment
- G. Nondestructive Testing Methods
- H. Data Handling Methods for Statistical Applications
- I. Failure Rates and Failure Modes
- J. Miscellaneous Other Texts
- K. Reliability Documentation
- L. Quality Assurance
- M. Maintainability
- N. Safety Documents
- O. Human Factors
- P. Value Engineering
- Q. Technical Journals and Periodicals

Categories A through J are ranked as to the degree of applicability of the text to reliability engineering for reactor design work. The following four ranks, identified by numerals 1, 2, 3, and 4, in the second column of the tables have been established:

- <u>Most</u> of the text is directly applicable to the type of reliability engineering required for past, present, or future reactor development work.
- 2. <u>Some</u> of the text is directly applicable and <u>most</u> of the text can be applied by engineering interpretation for past, present, or future reactor development work.
- 3. <u>None</u> of the text is directly applicable, but <u>some</u> of the text can be applied by engineering interpretation for past, present, or future reactor development work.
- 4. <u>None</u> of the text is directly applicable and <u>little</u> of the text can be applied by engineering interpretation for past, present, or future reactor development work.

The term, "Most", signifies the great majority if not the complete content of the text, and the term, "Some", signifies an <u>Appreciable Part</u> of the text, hence, more than just a few paragraphs or a few selected pages.

In general, it should be realized that almost all of the listed references, specifications, and data have been developed in engineering fields which are unrelated to atomic energy and reactor application design. The operating environments of power generating plants are vastly different from those affecting the operations of airborne systems, spacecrafts, or ground supportdigital computers, yet most failure data available are concerned with these types of hardware. Interpolation to account for the differences in the mode of operation, in the magnitude of environmental stress, etc., are necessary and will influence the ultimate release of new data and reports specifically written for the field of atomic reactor design and application.

The extreme right-hand column of categories A through J also indicates the physical form of the text by the following code: "B" for hard-bound book, "A" for a single article published in a technical magazine, " \mathbb{P} " for a single paper delivered at a technical meeting or symposium, and "S" for a <u>soft</u>bound book or brochure.

B. REFERENCES ON RELIABILITY-MAINTAINABILITY-SYSTEM EFFECTIVENESS AND RELATED SUBJECTS APPLICABLE TO FFTF

1. Category A - Mathematical and Statistical Tables and Formulas

No.	Rank	Author(s)	Title	Publisher/Year	Cod
A - 1	1	Burington-May	Probability and Statistics Handbook Presenting both tables and theory, arranged for handy application for the reliability engineer and statistician. Reviewed by American Statistical Association.	McGraw-Hill, NY, 1951	в
A-2	1	NBS	Tables of the Binominal Probability Distribu- tion, National Bureau of Standards Inexpensive compilation of the 7 - place table. Applied Mathematics Series # 6.	U.S. Government Printing Office, Washington D.C., 1949	В
A-3	2	Ryswick-Weiss	Tables of the Incomplete Gamma Function of Integral Order NAVWEPS Report 7292	U.S. Naval Ordnance Lab, White Oak, Md. 1960	s
A-4	1	Defense System Dept G.E.	Tables of the Individual and Cumulative Terms of Poisson Distribution (8 Places)	D. Van Nostrand Company, NY	В
A-5	1	NBS	Tables of Normal Probability Functions National Bureau of Standards Applied Mathematics Series # 23	National Bureau of Standards, 1953	В
A-6	1	No Author	Tables of the Cumulative Binomial Probability Distribution	Harvard University Press, Cambridge, Mass. 1953	в
A-7	2	NBS	Probability Tables for the Analysis of Extreme Value Data Applied Mathematics Series # 22	National Bureau of Standards, 1953	в
A-8	1	Jahnke/Emde	Tables of Functions 4th Edition A good report for reliability estimates.	Dover Publications Inc., New York	в
A -9	2	Dwight, H.B.	Tables of Integrals and Other Mathematical Data Of general interest to the mathematician only.	The Macmillan Co., New York, 1934	В
A-10	2	Resnikoff/ Lieberman	Tables of the Non-Central t-Distribution American Statistical Association	Stanford University Press, Stanford, California, 1957	в
A-11	1	Blythe/ Hutchinson	Table of Neyman-Shortest Unbiased Confidence Intervals for the Minomial Parameter Paper- Biometrica, Parts 3 and 4	1960	S .
A-12	2	Sarhan/ Greenberg	Tables for Best Linear Estimates by Order Statistics of the Parameters of Single Experi- mental Distributions from Singly or Doubly Censored Samples Journal of the American Statistical Association, pp58-87	1957	А
A-13	2	Sarhan/ Greenberg	Contribution to Order Statistics	John Wiley and Sons, New York City, 1967	B

No.	Rank	Author(s)	Title	Publisher/Year	Code
A-14	I		Confidence Intervals for the Product of 2 Binomial Parameters Journal of the American Statistical Association, pp 482-493	1953	Р
A-15	1	Space Tech- nology Labs TR-59-0000- 00756	Tables of Upper Confidence Limits on Failure Probability of 1, 2, and 3 Component Serial Systems	Space Technology Lab, Inc., Pasadena Calif., 1959	S
A-16	2	Miller, J.C.P.	Table of Binomial Coefficients	Cambridge University Press, Cambridge, Mass., 1954	в
A - 17	I	Hald, A.	Statistical Tables and Formulas	John Wiley and Sons, Inc., New York City 1952	В
A-18	2	Bulfinch, A. ORD BB-NR 126	Reliability Handbook Quality Assurance Div. Picatinny Arsenal, Dover, New Jersey. Its value are some of the condensed tables of lower limits - Binomial Confidence Intervals	1962	S
A-19	1	Abramowitz- Stegun	Handbook of Mathematical Functions With Formulas, Groups, and Math Tables Applied Mathematics Series # 55	National Bureau of Standards, 1964	в
A-20	1	Greenwood, J.A. and Hartley, H.O.	Guide to Tables in Mathematical Statistics Catalogues a large selection of tables used in mathematical statistics.	Princeton University Press, Princeton, N.J., 1962	в
A -21	2	Owen, D.B.	Handbook of Statistical Tables Recommended by U.S. Dept of Commerce	Addison-Wesley Publishing Co., Inc. Reading, Mass. 1962	в
A-22	2	Beyer, W.H.	Handbook of Tables for Probability and Statistics	Chemical Rubber Co., Cleveland, Ohio, 1966	В
A-23	I	Kitagara, T. & Mitome, M.	Tables for the Design of Factorial Experiments	Bai Fukan, Tokyo, 1953	в
A-24	1	Romig, H.G.	50-100 Binomial Tables	John Wiley & Sons, New York City, 1953	в
A-2 5	2	NBS	Fractional Factorial Experiment Designs for Factors at Three Levels Applied Mathematics Series # 54	Statistical Engineer- ing Lab, National Bureau of Standards, 1959	В
A-26	2	Robertson, W.H.	Tables of the Binomial Distribution Function for Small Values of p	Office of Technical Services, Dept of Commerce, Washington, D.C., 1960	В

-

No.	Rank	Author(s)	Title	Publisher/Year	Code
A-27	1	U.S. Ordnance Corp	Tables of the Cumulative Binomial Probabilities HDB: ORDP 20-1	Office of Technical Services Washington, D.C.1963	в
A-28	3	Goode, Henry P. & Kao, John H.	Weibull Tables for Bio-Assaying and Fatigue Testing 9th National Symposium on Reliability and Quality Control	Dept of Industrial & Engineering Adm., Cornell University Ithaca, New York,1963	В
A-29	2	Smirnov, N.	Table for Estimating the Goodness of Fit and Empirical Distributions Annals of Mathematical Statistics, Vol 19, pp 279-281	1948	А

-

2. Category B - Theory of Statistics, Probability, and Logic of Design

No.	Rank	Author(s)	Title	Publisher/Year	Code
B-1	2	Freund, John E.	Modern Elementary Statistics Good introduction into the field of statistics without involving too much advanced mathematics. (American Statistical Assn.)	Prentice Hall, Englemont Cliffs, N. J. 1956	в
B-2	1	Parzen, Emanuel	Modern Probability Theory and Its Application Popular introductory text, not involving complex theories.	John Wiley & Sons, New York City, 1960	в
B-3	1	Crow-Davis- Maxfield	Statistical Manual Dover Edition Good compilation of the initial elements of statistics within a small volume. (American Statistical Assn.)		В
B-4	2	Kahn, H Mann, I. RM-1829-1	Techniques of System Analysis Fundamentals in operational research, reflecting the experience of the pioneering effort.	Rand Corporation, Research Memorandum, 1957	В
B-5	1	Feller, William	An Introduction to Probability Theory and Its Application (Vol 1, 1968; Vol 2, 1966) A very popular work, with Volume 1 particularly suitable for application to reliability engineering.	John Wiley & Sons, New York City 1957 (original)	В
B-6	3	Bharucha-Reid, A.T.	Elements of the Theory of Markov Processes and Their Applications Good introduction into the theory of trial/ depending processes, in contrast to independent processes.	McGraw Hill, New York, 1960	в
в-7	1	Cramer, H.	Mathematical Methods of Statistics Although over 20 years old, the text still enjoys popularity among the students of statistical mathematics.	Princeton University Press, Princeton, N.J., 1946	в
в-8	1	Mood, A.M.	Introduction to the Theory of Statistics A second choice volume, but still in use.	McGraw Hill, New York City, 1950	в
B-9	2	Dynkin, E.B.	Theory of Markov Processes (translated from Russian) Classic text on this subject, highly theoretical	Prentice Hall, Englemont Cliffs, New Jersey, 1961	в
B-10	3	Takacs, L.	Stochastic Processes (Reviewed by the American Statistical Assn.)	Methuen & Co. Ltd., or John Wiley & Sons, New York City, 1960	В
B-11	3	Kemeny, John G. Snell, J.L.	Finite Markov Chains Recommended by G. E., Defense System Dept., American Statistical Assn.	D. Van Nostrand Co. 1959	В

No.	Rank	Author(s)	Title	Publisher/Year	Code
B-12	2	Paradine, C.G Rivett, B.H.	Statistics for Technologists A text based primarily on quality control experience, but sampling methods and techniques are applicable today as they were 20 years ago.	D. Van Nostrand Co. 1954	в
B-13	1	Bowker, A.H Lieberman, G.J.	Engineering Statistics Recommended by Lloyd-Lipow, American Statistical Assn.	Prentice Hall, Englemont Cliffs, New Jersey, 1959	В
B-14	1	Croxton, F.E Cowden, D.J.	Applied General Statistics (2nd Edition) Reviewed by American Statistical Assn.	Prentice Hall, Englemont Cliffs, New Jersey, 1955	в
B-15	1	Wald, Abraham	Sequential Analysis	John Wiley & Sons,Inc New York, 1947	В
B-16	2	Gumbel, E.J.	Statistics of Extremes Reviewed by American Statistical Assn.	Columbia University Press, New York,1958	в
B-17	1	Molina, E.C.	Poisson's Exponential Binomial Limit Recommended by Lloyd-Lipow; apparently the only authoritative text on this specialized subject.	D. Van Nostrand Co., Princeton, New Jersey, 1942	В
B-18	2	Wilks, S.S.	Mathematical Statistics An older and rather general text on statistics, not written for reliability engineering application, but suitable as basic theory. American Statistical Assn.	Princeton University Press, Princeton, N. J 1943	В
B-19	3	Aitchison, J. & Brown, J.A.	The Lognormal Distribution, With Special Reference to its Use in Economics	Cambridge University Press, Cambridge, Mass., 1957	в
B-20	3	Cohen, A.C.Jr.	Estimating the Parameters of a Modified Poisson Distribution Journal of the American Statistical Assn., pp 139-43	1960	Р
B-21	2	Rao, C.R.	Advanced Statistical Methods for Biometric Research	John Wiley & Sons, Inc., New York, 1952	в
в-22	3	Kao, J.H.K.	A Graphical Estimation of Mixed Weibull Parameters in Life Testing of Electron Tubes Technometrics, pp 389-407	1958	А
B-23	2	Cohen, A.C.Jr.	Simplified Estimators for the Normal Distribution When Samples Are Singly Censored or Truncated Technometrics pp 217-237	1959	Α
в-24	2	Carslaw, H.S.& Jaeger, J.C.	Operational Methods in Applied Mathematics, 2nd Edition	Oxford University Press, Oxford, England, 1943	В

No.	Rank	Author(s)	Title	Publisher/Year	Code
B-25	3	Eisenhart-Hastay -Wallis	Techniques of Statistical Analysis, Chapter 6	McGraw Hill Book Co. New York City, 1947	В
в-26	2	AMP Report 101 1R-SRG-P #40	Statistical Analysis for a New Procedure in Sensitizing Experiments Applied Mathematics Panel, National Defense Research Committee	1944	S
B-27	2	A. Hald	Statistical Theory With Engineering Application	John Wiley & Sons,Inc. New York City, 1952	в
B-28	2	Hiltz, P. A. NAA-549-T	Statistical Techniques for Reliability Space Division, NR report. Fundamentals of statistics for the spacecraft designer and space-oriented reliability engineer.	North American Rockwell	S
B-29	3	Hiltz, P. A. NAA-549-L	Application of Signal Flow Diagram Techniques to the Markov Process for System Reliability Analysis Space Division, NR report. A good introduction, written for spacecraft design engineers.	North American Rockwell	S
B-30	3	Hiltz, P. A. S&ID 67-603	Mathematical Considerations for Operational Readiness Space Division, NR report. A condensed text on operational methods and analysis	North American Rockwell, 1967	S
B-31	1	Hiltz, P. A. NAA-543-K	Symbolic/Brolean Logic as Applied to Reliability Engineering Space Division, NR report. Various forms of proportions and their basic relationship to symbolic logic are described.	North American Rockwell	S
B-32	1	Hiltz, P. A. S&ID-67-886	Applications of Probabilistic Concepts to Strength Analysis Space Division - NR report. The application of tolerances and standard deviations on the design of structural members, an introductory report.	North American Rockwell, 1968	S
B-33	1	Hiltz, P. A. SD68-10	Mean Value Consideration for Reliability and Quality Control Estimating Space Division, NR report. A simplified explanation of the various distributions such as Gamma, Chi Sigma, and Weibull; leading to mean-value estimates.	North American Rockwell, 1968	S
B-34	2	Clark & Tarter	Preparation for Banc Statistics Easy-to-use programmed treatise, suitable for independent self-study; provides neces- sary math background.	McGaw Hill Book Co., New York City, 1968	В

No.	Rank	Author(s)	Title	Publisher/Year	Code
B-35	2	Raj, Des	Sampling Theory (U. N. Development Program) Comprehensive presentation for the mathe- matically trained reader.	McGraw Hill Book Co., New York City, 1968	в
B-36	1	Cox, D. R.	Renewal Theory	John Wiley & Sons, New York City, 1962	В
B-37	2	Bazovsky, Igor (Tr)	Appraisal of Guaranteed MTBF Warranty Programs Annals of Assurance Sciences, 7th Reliability and Maintainability Conference, San Francisco, California	1968	Р
B-38	2	McFarland, W. J.	Use of Bayes Theorem in its Discrete Formulation for Reliability Estimation Purposes Annals of Assurance Sciences, 7th Reliability and Maintainability Conference	1968	Ρ
B-39	1	Raiffa, H. & Schlaifer, R.	Applied Statistical Decision Theory	Harvard Press, Harvard University, Boston, Mass., 1961	в
B-40	2	Kendall, M.G.	The Advanced Theory of Statistics 3 volumes	Charles Griffin & Co., Ltd., London, 1958	в
B-41	2	Dixon, W.J Massey, F.J.	Introduction to Statistical Analysis 2nd Edition	McGraw Hill Book Co., New York City, 1957	в
B-42	2	Siegel, S.	Non-Parametric Statistics for Behavioral Sciences	McGraw Hill Book Co., New York City, 1956	в
B-43	3	Quenoville, M. H.	Fundamentals of Statistical Reasoning	Stechert-Hainer,Inc., New York City, 1959	в
B-44	1	Anderson- Bancroft, T.A.	Statistical Theory in Research Recommended by E. C. Thein, USAF	McGraw Hill Book Co., New York City, 1952	в
B-45	3	Bartlett, M.S.	An Introduction to Stochastic Process with Special Reference to Methods and Application	1955	
B-46	2	Hannan, E.J.	Times Series Analysis	John Wiley & Sons, New York City, 1960	в
B-47	2	Saaty, T. L.	Mathematical Methods of Operations Research	McGraw Hill Book Co., New York City, 1959	в
B-48	2	Sasiene-Yaspan- Friedman	Operations Research	John Wiley & Sons, New York City, 1959	в
B-49	3	Deming-Berge	On the Statistical Theory of Errors Graduate School, Department of Agriculture Washington, D.C. Recommended by E. C. Theiss, USAF, as use of the fundamental books, lending to failure analysis on a statistical basis.	1934	

· · · -

- -

. _

. . . .

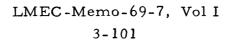
. .

-

- -

• •

No.	Rank	Author(s)	Title	Publisher/Year	Code
3-50	2	Bancroft, T. A.	Intermediate Statistical Methods	University of Iowa Press, Des Moines, Io.	в
B-51	2	Beran, Mark J.	Statistical Continuum Theory	John Wiley & Sons, New York City, 1968	в
B-52	1	Burr, I. W.	Engineering Statistic and Anality Control	McGraw Hill Book Co., New York City, 1953	в
B-53	2	Deutsch, Ralph	Estimation Theory	Prentice Hall, Englewood Cliffs, N. J., 1965	в
B-54	3	Ferguson, T.S.	A Method of Obtaining Best Asymptotically Normal Estimates Annals of Mathematical Statistics, pp 1046-1062		А
B-55	3	Fraser, Donald A. S.	The Structure of Inference (Measurements and models, statistical analysis, conditional analysis, etc.) For test engineering application.	John Wiley & Sons, New York City, 1968	В
B-56	1	Freund, John E.	Mathematical Statistics	Prentice Hall, Englewood Cliffs, N.J., 1962	В
B-57	. 2	Girshick, M.A. and Rubin	A Bayes Approach to a Q.C. Model Annals of Mathematical Statistics Vol. 23 #1, p 114	1952	A
B-58	1	Hahn, Gerald and Shapiro, S. S.	Statistical Models in Engineering	John Wiley & Sons, New York City	в
B-59	2	Harris, Theorodore E.	The Theory of Branching Processes	Prentice Hall, Englewood Cliffs, N. J., 1964	в
в-60	1	Hodges Jr.J.L. and Lehmann, E.L.	Basic Concepts of Probability and Statistics	Holden-Day, 728 Montgomery St., San Francisco, Calif, 1964	В
B-61	3	Hooke, R.	Introduction to Scientific Inference	Holden-Day 728 Montgomery St., 1963	В
B-62	3	Jenkins, G.M. and Watts, D. G.	Spectral Analysis and Its Applications	Holden-Day, 1968	В
B-63	2	Johnson, P.O. and Jackson	Modern Statistical Methods: Descriptive and Introductive	Rand McNally, Chicago, Ill., 1959	В


LMEC-Memo-69-7, Vol I 3-100

.

No.	Rank	Author(s)	Title	Publisher/Year	Code
B-64	3	Schulhof, R.J. and Lindstrom, D. L.	Application of Bayesian Statistics in Reliability - HAC, Space Division, El Segundo, California	Hughes Aircraft Co., El Segundo, Calif., 1967	Р
B-65	2	Lange, F. H.	Correlation Techniques	Van Nostrand, Princeton, N. J., 1967	В
B-66	2	Li, C. C.	Introduction to Experimental Statistics	McGraw Hill BookCo., New York City	В
B-67	1	Loeve, M.	Probability Theory Presents theory of distribution functions.	Van Nostrand, Princeton, N. J., 1955	в
B-68	1	Munroe, M. E.	Theory of Probability	McGraw Hill Book Co. , New York Çity, 1951	В
в-69	2	Noether, Goftfried E.	Elements of Non-parametric Statistics	John Wiley & Sons, New York City	В
в-70	1	Ostle, B.	Statistics in Research	Iowa State University Press, Des Moines, Ia., 1963	В
B-71	2	Parzen, Emanuel	Stochastic Processes	Holden-Day, San Francisco, Calif. , 1962	В
B-72	4	Riardon, J.	Introduction to Combinatorial Analysis	John Wiley & Sons, New York City, 1958	В
B-73	3	Robinson, Enders A.	Applied Regression Analysis	Holden-Day San Francisco, Calif. , 1968	В
B-74	3	Rozanov, Y. A.	Stationary Random Processes .	Holden Day, San Francisco,Calif., 1967	В
B-75	2	Savage, L. J.	The Foundations of Statistics	John Wiley & Sons, New York City, 1954	В
в-76	3	Scheffe, Henry	The Analysis of Variance	John Wiley & Sons, New York City, 1959	В
в-77	2	Schlaifer, R.	Probability and Statistics for Business Decisions	McGraw Hill Book Co., New York City, 1959	В
B-78	3	Smillie, K.W.	An Introduction to Regression and Correlation	Academic Press, 1966	в
B-79	4	Thurstone, L.L.	Multiple Factor Analysis	University of Chicago Press, Chicago, 11., 1947	В
B-80	2	Van Der Waerden, B.	Mathematische Statistik	Springer Verlag, Berlin, 1957	В

-

- -

.

No.	Rank	Author(s)	Title	Publisher/Year	Code
B-81	2	Walsh, John E.	Handbook of Non-parametric Statistics		
B-82	2	Wolberg, John R.	Prediction Analysis	Van Nostrand, Princeton, N.J.	в
B-83	4	Lindley, D.U.	Introduction to Probability and Statistics from a Bayesian Viewpoint	Cambridge University Press, Cambridge, England, 1965	В
B-84	4	Fieller, E. C Lewis, T. and Pearson, E. S.	Correlated Random Normal Densities Tracts for Computers 26	Cambridge University Press, Cambridge, England, 1955	B
B-85	4	Hull, T. E. and Dobell, A. R.	Random Number Generators Society of Industrial and Applied Mathematics Report No. 4, pp 230-254	1962	S
в-86	3	Aitchison, J. and Brown, J.	The Log Normal Distribution	Cambridge University Press, Cambridge, England, 1957	В
B-87	2	Steck, G. P.	Upper Confidence Limits for the Failure Probability of Complex Systems/Exponential Sampling Plans JC-4133 (TR)	Sandia Corporation, Albuquerque, New Mexico, 1959	S

LMEC-Memo-69-7, Vol I 3-102

1

3. Category C - Design of the Statistical Experiment

No.	Rank	Author(s)	Title	Publisher/Year	Code
C-1	3	Lipp, J. P.	Topology of Switching Elements versus Reliability IRE Transactions in Reliability and Q.C., PGRQC-10	1957	S
C-2	2	Sparling, Rebecca M.	Testing in the Guided Missile Industry ASTM Bulletin No. 218, pp 52-56 General consideration on the subject.	1956	S
C-3	2	Culbertson- Vorhees	Control Charts and Automation Applied to Analysis of Field Failure Data Proceedings of the 2nd National Symposium on Quality Control and Reliability in Electronics, Washington, D. C. January 1956.	Available from IRE, 1 E 79 Street, N.Y. 21, N.Y.	S
C-4	2	Zelen, M.	Factorial Experiments in Life Testing Article, Technometrics, pp 269-288	1959	А
C-5	3	Zelen, M. Danne-miller	Are Life Testing Procedures Robust? Proceedings of the 6th National Symposium on Reliability and Quality Control in Electronics (IRE) Washington, D. C.	1960	Р
C-6	1	Deming, W. E.	Some Theory of Sampling Recommended by Lloyd-Lipow	John Wiley & Sons, New York, 1950	В
C-7	3	Acheson, M.A.	Life Factors Affecting Acceptance Procedures Proceedings of the 2nd National Symposium in Quality Control and Reliability in Electronics, Washington, D. C.	1956	Р
C-8	2	Allen, W.R.	Inference From Tests with Continuously Increasing Stress Operations Research, pp 303-312	1957	Р
C-9	3	Bartholomew, D. J.	Testing for Departure from the Experimental Distribution Biometrika, Parts 1 & 2, pp 253-257	1957	A
C-10	3	Bartholomew, D. J.	A Problem of Life Testing Journal of the American Statistical Association, pp 350-354	1957	Р
C-11	3	Walsh, J. E.	Assymptotic Efficiencies of a Nonparametric Life Test for Smaller Percentiles of a Gamma Distribution Journal of the American Statistical Association, pp 467-480	1956	Р
C-12	2	Brown, H. B.	The Role of Specifications in Predicting Equipment Performance Proceedings of the 2nd National Symposium on Q. C. and Reliability, Washington, D. C.	1956	P

No.	Rank	Author(s)	Title	Publisher/Year	Code
C-13	• 2	Jobel, M. and TischenDorf,	Acceptance Sampling with New Life Test Objectives Proceedings of the 5th National Symposium on Reliability and Quality Control in Electronics, Philadelphia, Pa., January 1959	1959	s
C-14	2	Goode and Kao	Sampling Plans Based in the Weibull Distribution Proceedings of the 7th National Symposium on Reliability and Quality Control in Electronics, Philadelphia, Pa., January 1961	1961	S
C-15	1	РВ 171581	Statistical Techniques in Life Testing U.S. Department of Commerce Office of Technical Services, Washington 25, D.C.	1961	S
C-16	1	Epstein-Sobel	Segmential Life Tests In the Exponential Case Annals of Mathematical Statistics, pp 82-93	1955	P
C-17	1	Epstein-Sobel	Life Testing Journal of the American Statistical Association, pp 486-502	1953	Р
C-18	3	Breakwell, J.V.	Economically Optimum Acceptance Tests Journal of the American Statistical Association, June 1956, pp 243-256	1956	Р
C-19	3	Epstein, B	Statistical Developments in Life Testing Proceedings of the 3rd National Symposium on Reliability and Quality Control, Washington, D. C., January 1957	1957	S
C-20	2	Moriguti, Sigeiti	Efficiency of a Sampling Inspection Plan Reports of Statistical Applications Research, Union of Japanese Scientists and Engineering	1956	S
C-21	2	Sobel, M.	Statistical Techniques for Reducing the Experiment Time in Reliability Studies Bell System Technical Journal, pp 179-202	1956	Р
C-22	3	Ayer-Brunk- Ewing, etc.	An Empirical Distribution Function For Sampling With Incomplete Information Annals of Mathematical Statistics, pp 641-647	1955	A
C-23	3	Gabriel, K. R.	The Distribution of the Number of Successes in a Sequence of Dependent Trials Parts 3 and 4, Biometriku, pp 454-460	1959	A
C-24	1	Davies, O.L.	Design and Analysis of Industrial Experiments	Oliver and Boyd, London and Edinburgh	В
-					

No.	Rank	Author(s)	Title	Publisher/Year	Code
C-25	2	Cochran, W.G. Cox, G.M.	Experimental Design 2nd Edition [.]	John Wiley & Sons, New York City, 1957	В
C-26	2	KempThorne, V.	The Design and Analysis of Experiment Recommended by Lloyd - Lipow	John Wiley & Sons, New York City, 1952	В
C-27	3	Hartvigsen, D. E. and Lloyd, D. K.	The Application of Statistical Test Designs to Qualification Testing of Rockets in Guided Missiles Proceedings Western Regional Conference, ASAC, San Francisco, Calif.	1957	Р
C-28	3	Acheson, M.A.	Quality Acceptance Practices in Specifications Proceedings of the 3rd National Symposium on Reliability and Quality Control in Electronics, (IRE) pp 136-140	1957	Р
C-29	2	Kuzmin, W.R.	Experiments to Expose Marginal Reliability Design Proceedings of the 5th National Symposium on Reliability and Quality Control in Electronics, (IRE) pp 55-64	1959 '	Р
C-30	3	Zelen, M.	Problems in Life Testing: Factorial Experiments Transactions of the 13th Mid-West Quality Control Conference, ASQC, November 1958, pp 21-33	1958	S
C-31	3	Anscombe, F.J.	Quick Analysis Methods for Random Balance Screening Experiments Technometrics, pp 195-209	1959	A
C-32	2	Hiltz, P.A. SID 67-480	Testing Data for the Representative Distribution Space Division - NR report How to interpret data retrieved from quantitative testing of spacecraft components.	North American Rockewell, 1967	S
C-33	3	Smith - Waltz	Testing for Spacecraft Reliability - A Management Overview Annals of Assurance Sciences, 7th Reliability and Maintainability Conference, San Francisco, Calif.	ASME, 1968	Р
C-34	2	Box, Connor, Cousins, Davis, etal	Design and Analysis of Industrial Experiments	Hafner, New York, 1956	В
C-35	2	Fisher, Sir R.A.	The Design of Experiments 6th Edition	Oliver & Boyd, London, 1951	В
C-36	3	USAF,WADC 59-490	Environmental Test Sequence and Number of Test Items ASD Wright Patterson Air Force Base, Ohio	1959	S
			·		

•

· · · ·

- --

- -

-

No.	Rank	Author(s)	Title	Publisher/Year	Code
C-37	4	Stewart, Walter A.	Statistical Method from the Viewpoint of Quality Control Graduate School, U.S. Dept of Agriculture, Washington, D.C. Recommended by Thein, USAF, as use of the fundamental books for Q.C.	1939	в
C-38	2	Freeman, D. and Weiss, L.	Sampling Plans Which Minimize the Maximum Expected Sample Size Journal of the American Statistical Association Vol 59, pp 67-88	1964	A
C-39	2	Joreskog, K.G.	Testing A Simple Structure Hypothesis in Factor Analysis Educational Testing Services, Research Bulletin RB-65-1 Princeton University, New Jersey	1965	S
C-40	1	Lehman, E.	Testing Statistical Hypothesis	John Wiley & Sons, New York City, 1959	в
C-41	3	Pugachev, V.S.	Theory of Random Functions and Application to Control Problem	Pergamon Press, New York City, 1965	В
C-42	1	Stuart, Alan	Basic Ideas of Scientific Sampling	Hafner, New York City, 1962	В
C-43	4	Thomas, R.E. and Mendelhall, R.V. ECRC Report No. 2	Development of Models for Analysis of Accelerated Test Data Battelle Memorial Institute, Columbus, Ohio	1961	S
C-44	4	Thomas, R.E. and Drennan, J.E. ECRC No. 3	Development of Models for Analysis of Accelerated Test Data Battelle Memorial Institute, Columbus, Ohio	1961	S
C-45	3	Bailey, J.H. and Mikhail, W.F.	Segmential Testing of Electronic Systems Development Labs, Systems Division, IBM - Poughkeepsie, New York 9th National Symposium on Reliability and Quality Control	IBM, 1963	S
C-46	4	Goldin, Paul J.	RCA's Experience With AGREE Testing Aerospace Communication and Controls Division, RCA-Camden 9th National Symposium on Reliability and Quality Control	1963	S
C-47	3	Conner, W.S.	Evaluation by Overstress Research Triangle Institute Industrial and Engineering Chemistry, Vol 53, P 73A	1961	A
C-48	3	Paccone, R.H.	A Proposed Program for the Evaluation of Electrical Connections Report No. 58-816-39, IBM Corp., Unego, New York	IBM, 1958	S

No.	Rank	Author(s)	Title	Publisher/Year	Code
C-49	3	Plumb, S.C.	A Program for Statistical Reliability Evaluation by Synthetic Sampling (Stress) IBM - Poughkeepsie, New York TR 00,834	IBM, 1962	s
C-50	2	Ryerson, C. M.	Reliability Testing Theroy Based on the Poisson Distribution Proceedings, 4th National Symposium for Reliability and Q.C., pp 3-18	1958	s
C-51	3	Smith, J.H.	Significance Tests of Effects of Wear-out Failures Proceedings, 3rd National Symposium for Reliability and Q.C. pp 103-107		S

4. Category D - Reliability Engineering and Management

No.	Rank	Author(s)	Title	Publisher/Year	Code
D-1	3	Hiltz, P. A. SID 67-726	Equivalent Linear Representations of Nonlinear Electronic Elements Space Division - NR report	North American Rockwell	s
D-2	1	Bollman, J. H.	Instructions and Data for Failure and Prediction Report Bell Telephone Laboratories	1957	s
D-3	2	TR59-46-1	Reliability Stress Analysis for Electronic Equipment RCA Technical Report, Camden, New Jersey		S
D-4	3	Ketelle, J.	Least Cost Allocation of Redundancy Presented at the Seventh National Meeting of the Operations Research Society of America		Р
D-5	4	AGREE Report	Reliability of Military Electronic Equipment This book contains the original work of the Advisory Group in Reliability of Electronic Equipment ordered by the Assistant Secretary of Defense	U. S. Government Printing Office, Washington, D. C. 1957	В
D-6	2	Hall, A. D.	A Methodology for Systems Engineering Relation of system development to reliability engineering; fairly basic; in frequent use.	D. Van Nostrand, Princeton, N. J. 1962	В
D-7	3	Henney, K.	Reliability Factors for Ground Electronic Equipment A book written primarily for ground instal- lation (ground support equipment) but perhaps outdated because of greater accumu- lation of data from later equipment.	McGraw Hill, New York 1956	в
D-8	2	Flagly, C. D. Huggins, Ray	System Engineering and Operations Research Emphasis in Operations Research leads to the application of reliability engineering techniques.	John Hopkins Press, Baltimore, Md. 1960	В
D-9	1	Sandler, G. H.	System Reliability Engineering Favors the statistical approach with emphasis on maintained and nonmaintained systems	Prentice Hall, New Jersey 1963	в
D-10	1	Lloyd, D. K. and Lipow, M.	Reliability: Management, Methods and Mathematics One of the better books on the subject, it favors the statistical and probability analysis approach; heavy in mathematics.	Prentice Hall, New Jersey 1962	В
D-11	1	Calabro, S. R.	Reliability, Principles and Practices Includes good sections in maintainability- availability. Emphasis is on the practical approach to reliability engineering.	McGraw Hill, New York 1962	В

No.	Rank	Author(s)	Title	Publisher/Year	Code
D-12	1	Van Alvin	Reliability Engineering One of the best and latest books in this subject, it reflects the vast experience of ARINC Research in the AVIONIC field.	Prentice Hall, New Jersey 1966	В
D-13	1	Haugen, E. B.	Probabilistic Approach to Design A new approach, which ties design factors in structural design to the probabilistic distribution of tolerance and failures.	John Wiley & Sons, New York 1968	В
D-14	1	Welker-Horne (ARINC Mono- graph No. 9)	Concepts Associated with System Effectiveness ARINC Research Corp. Washington, D. C. Some of the first considerations which led to the basic principle of system effectiveness.	1960 -	S
D-15	2	Kneale, S. G.	Reliability of Parallel Systems With Repair and Switching 7th National Symposium on Reliability and Q. C. in Electronics	1961	S
D-16	2	Soucy, Chester I.	A Broad Survey of the Military Electronic Equipment Reliability Problem and Its Controlling Factors. Proceedings, Electronic Components Symposium, May 1956. A general interest-type study, perhaps useful for reactor appliaction.	1956	S
D-17	1	Connor, J. A.	A Systematic Plan for Predicting Equipment Reliability Proceedings, Electronic Component Symposium, May 1956. Practical considerations on the planning and operations of reliability program plans.	1956	Р
D-18	2	Matosoff, H. I.	Corrective Action in a Quality Control Program. Industrial Quality Control, January 1956		А
D-19	2	Warner, W. K.	Benefits of Time Recording for Producer and Consumer ASQC National Convention Transactions, 1959, pp 597-602. Reliability consideration and time.		Р
D-20	1	Bazovsky, Igor	Reliability Theory and Practice Recommended by G.E., Defense System Dept	Prentice Hall, New Jersey 1961	В
D-21	1	Chorafas, D. M.	Statistical Processes and Reliability Engineering Statistical theory, engineering oriented. Popular text.	D. Van Nostrand Co. 1960	В
D-22	1	Goode, H. H. and Machol, R. E.	System Engineering: An Introduction to the Design of Large Scale Systems	McGraw Hill Book Co., New York 1957	В
D-23	2	Dreste, F. E.	A Reliability Handbook for Design Engineers Electronic Engineers, pp 508-512 Only a skeleton of a handbook, but handy reference tables and graphs.	1958	Α

LMEC-Memo-69-7, Vol I 3-109

^

No.	Rank	Author(s)	Title	Publisher/Year	Code
D-24	2	Cox, D. R.	The Analysis of Exponentially Distributed Life Times With Two Types of Failure Journal of the Royal Statistical Society, London, pp 411-421	1959	р
D-25	1	Eldredge, G. G.	Analysis of Corrosion Pitting by Extreme – Value Statistics and Its Application to Oil Well Tubing Caliper Surveys. Corrosion, pp 51t – 60t	1957	A
D-26	1	Herd, G. R.	Estimation of Reliability Functions Proceedings of the 3rd National Symposium on Reliability and Quality Control in Electronics, (IRE) Washington, D. C.	1957	Р
D-27	1	Connor, W. S.	Interpreting Reliability by Fitting Theoretical Distribution to Failure Data Ind. Chem. Eng., February and April 1960	1960	A
D-28	2	Aroian, L. A. and Myers, R.H.	Redundancy Considerations in Space and Satellite Systems Proceedings of the 7th National Symposium on Reliability and Quality Control, Philadelphia, January 1961	1961	P
D-29	2	Cohen, G. D.	Predicting Performance Failures Machine Design, 29/20, pp 106-111 Considering some mechanical aspects on failure prediction.	McGraw Hill, New York 1957	A
D-30	3	Box, G. E. P.	Evolutionery Operation: A Method for Increasing Industrial Productivity Applied Statistics, pp 3-23	1957	A
D-31	3	Box-Wilson	On the Experimental Attainment of Optimum Conditions Journal of the Royal Statistical Society, Series B, p 18	1951	P
D-32	1	Hiltz, P. A.	Fundamentals of Fault Tree Analysis Space Division - NR report Introductory treatment for space applications	North American Rockwell, Downey, California	s
D-33	2	General Dynamics Corp.	Reliability Design Handbook Not too involved in theory, the book offers a fairly good approach for the reliability engineer of small electronic-electro- mechanical components with ground-to- ground missile application.	General Dynamics, Pomona Division, Pomona, California	S
D-34	2	Barker-Blais- Hansen- Underwood	Rift Reliability and Maintainability Consider- ations Arising from Nuclear Propulsion Proceedings, 4th Annual Seminar on Reliability in Space Vechiles	1964	Р
D-35	3	Boehm, G. A.W.	Reliability Engineering Fortune 72, 4, pp 124-127, 181-182, 184, 186	1963	A

- - - -

LMEC-Memo-69-7, Vol I 3-110

١

No.	Rank	Author(s)	Title	Publisher/Year	Cod
D-36	1	Shooman, Martin L.	Probabilistic Reliability: An Engineering Approach Presenting method in which probability theory can be used to model, analyze, and synthesize component-system reliability.	McGraw Hill Book Co., New York City 1968	I
D-37	2	Dieckkamp- Falcon-Hoffman	Planning Today to Meet Tomorrow's Nuclear Needs Nuclear News	American Nuclear Society 1967	Æ
D-38	2	Olsen-Shaw	The Role of Reliability and Quality Assurance in Program Management Annals of Assurance Sciences, 7th Reli- ability and Maintainability Conference	American Society of Mechanical Engineers, New York 1968	I
D-39	3	Levinsky- Rogers	Aging Characteristics Identified by Instru- mental Analytical Methods Annals of Assurance Sciences, 7th Reli- ability and Maintainability Conference	American Society of Mechanical Engineers, New York 1968	F
D-40	3	Myers-Moon (TRW Systems)	Service Life Prediction Program for the Minuteman LGM 30 Proportion System Annals of Assurance Sciences, 7th Reli- ability and Maintainability Conference	American Society of Mechanical Engineers, New York 1968	I
D-41	3	Soltau, R.	Reliability in Space Vehicles	Engineering Publish- ers, Elizabeth, New Jersey	S
D-42	2	Kececioglu- Haugen	A Unified Look at Design Safety Factors, Safety Factors, Safety Margins, and Measures of Reliability Annals of Assurance Sciences, 7th Reli- ability and Maintainability Conference	American Society of Mechanical Engineers, New York 1968	I
D-43	3	Koch, I. R.	Experience Derived Guidelines for Effective Failure Analysis (based on case histories of X-15, Centaur, Gemini, and PRIME programs) Annals of Assurance Sciences, 7th Reli- ability and Maintainability Conference	American Society of Mechanical Engineers, New York 1968	F
D-44	2	Winthrop, A.F.	Implementation of a Design Review Program (as used by Space Tech Lab - TRW) IRE Seminar of Space Vehicles, Los Angeles	1962	S
D-45	4	Hodgeman, Weast, and Selby	Handbook of Chemistry and Physics	The Chemical Rubber Publishing Co., Cleveland, Ohio 1961	E
D-46	3	Davis, D. J. and Verhulst	Operational Research in Practice	Perganon Press, New York 1958	Е
D-47	2	Williams, J. D.	The Complete Strategyst	McGraw Hill Book Co., New York City 1954	E
D-48	3	Davis, D. J.	An Analysis of Some Failure Data Journal of the American Statistical Association No. 258, pp 113-150		А

No.	Rank	Author(s)	Title	Publisher/Year	Code
D-49	2	Duncan, A. J.	Quality Control and Industrial Statistics	R. D. Irwin Co. 1959	в
D-50	2	Good, C. V. and Seates, D. E.	Methods of Research	Appleton-Century, Crofts 1954	В
D-51	2	Hadley, G.	Introduction to Probability and Statistical Decision Theory	Holden-Day, San Francisco 1967	В
D-52	3	Hold, Anders	Statistical Theory with Engineering Applications	John Wiley & Sons, New York City 1952	в
D-53	1	Mack, C.	Essentials of Statistics for Scientists and Technologists	Plenum Press, New York 1967	В
D-54	3	Frederick, W.C.	System Worth and Incentive Contracts ARINC Research Corporation Proceedings, 9th National Symposium on Reliability and Quality Control	1963	Р
D-55	2	Pieruschka, Erich	Mathematical Foundation of Reliability Theory Research and Advanced Development Division Ordnance Missile Labs, Redstone Arsenal	1958	P
D-56	3	Masafume, Sasaki	An Easy Allotment Method Achieving Maximum System Reliability Electrical Engineering Dept, Defense Academy, Yokosuka, Japan 9th National Symposium on Reliability and Quality Control	1963	P
D-57	2	Tiger, B. and Smith, M. J.	Methodology for System Reliability Analysis Proceedings, 8th National Symposium on Reliability and Quality Control	1962	P
D-58	2	McClure, J. Y. and Winlund, E. S.	Design Review Philosophy-Policy 9th National Symposium on Reliability and Quality Control	1963	Р
D-59	4	Bracha, Lt. Col. Vincent J.	Analysis of Reliability Management in Defense Industries, BSD-TDR-62-48 USAF Ballistic System Div., Air Force System Command, USAF	1962	s
D-60	4	Norris, R. H.	"RUN IN - BURN IN" of Electronic Parts A comprehensive quantitative basis for Choice of Temperature, Stress, and Duration General Engineering Labs, G.E., Schenectady, New York 9th National Symposium on Reliability and Q.C.	1963	P
D-61	4	Shwop, J. E.and Sullivan, H. J.	Comparison of Operating Life Tests and Storage Tests Chapter 13, Semi Conductor Reliability	Reinbold Publishing & Engineering Pub- lishers, Elizabeth, New Jersey 1961	в

No.	Rank	Author(s)	Title	Publisher/Year	Code
D-62	3	Gladstone, S. et al	The Theory of Rate Processes (The kinetics of chemical reaction, diffusion, and electro-chemical phenomena)	McGraw Hill Book Co., New York City 1941	в
D-63	2	Weibull, W.	A Statistical Representation of Fatigue Failures in Solids Royal Institute of Technology, Stockholm, Sweden	1949	S
D-64	3	Katzenstein, Henry	System Design for Reliability 9th National Symposium on Reliability and Quality Control	Solid State Publica- tions, 'Inc. Los Angeles, Calif. 1963	В
D-65	2	Breslow, D. H.	Automatic Fault Location Using Building Block Logic Proceedings, 6th National Symposium on Reliability and Quality Control	1960	S
D-66	2	Bryson, H. C.	The Training Aspects of Design Reviews Proceedings, 4th National Symposium on Reliability and Quality Control	1958	S
D-67	3	Earles, D. R.	Reliability Application and Analysis Guide Martin Co., AD 262390	1961	S
D-68	3	Fridell, H. G.	System Operational Effectiveness - Reliability/ Performance/Maintainability Proceedings, 5th National Symposium on Reliability and Quality Control	1959	S
D-69	2	Griswald, J.W.	Management of Engineering Reliability Activities Proceedings, 8th National Symposium on Reliability and Quality Control	1962	P
D-70	4	Keller, J. L.	Forced Air Cooling and Reliability Proceedings, 8th National Symposium on Reliability and Quality Control, pp 408-415	1962	Р
D-71	3	Kirkpatrick, I.	Predicting Reliability of Electro-Mechanical Devices Proceedings, 6th National Symposium on Reliability and Quality Control, pp 272-281	1960	Р
5-72	2	Kuehn, R. E.	Reliability Aspects of Environmental Testing Report 59-816-80	IBM Corporation, Owego, New York 1959	S
0-73	2	Mackechnie, H. K.	General Procedures for Establishing and Conducting Design Reviews Proceedings, 8th National Symposium on Reliability and Quality Control	1962	Р
0-74	3	Marble, Q. G.	61-907-44, Report	IBM Corporation, Owego, New York 1960	S
0-75	2	Moore, C. G.	A Summary of Reliability Literature Proceedings, 3rd National Symposium on Reliability and Quality Control, pp 291-331	1957	Ρ

. .

- - - -

LMEC-Memo-69-7, Vol I 3-113

.

-

No.	Rank	Author(s)	Title	Publisher/Year	Code
D-76	3	Motes, J. H.	KWIC Index to Reliability and Quality Control Proceedings, 9th National Symposium on Reliability and Quality Control;pipp 556-581	1963	s
D-77	3	ARINC	Effects of Cycling in Reliability of Electronic Tubes and Equipment Volume 1, Overall Test Results Volume 2, Results of Test by Type of Equipment ARINC Research Corp, Publication 101-26- 160	ARINC Research Corp 1960	В
D-78	2	Raymońd, G. A.	Reliability Versus the Cost of Failure Proceedings, 4th National Symposium on Reliability and Quality Control, pp 187-188	1958	S
D-79	1	Ryerson, C. M.	Glossary and Dictionary of Terms and Defini- tions Relating Specifically to Reliability Proceedings, 3rd National Symposium on Reliability and Quality Control, pp 59-84	1957	S
D-80	2	Saltz, M. H.	Methods for Evaluating Reliability Growth and Ultimate Reliability During Development of a Complex System Proceedings, 5th National Symposium on Reliability and Quality Control, pp 89-97	1959	S
D-81	4	Scott, D.	The Effects of Politics on Quality Control The Garrett Corporation, El Segundo, Calif.	1961	S
D-82	3	Shainin, D.	Techniques for Determining Cause and Effect in the Presence of Many Variables Proceedings, 3rd National Symposium on Reliability and Quality Control, pp 220–222		S
D-83	1	Tall, M. M.	Reliability Management Proceedings, 5th National Symposium on Reliability and Quality Control, pp 137-145	1959	Р

5. Category E - Maintainability, Availability, and Logistics

م الم المب و ال

-

· —

No.	Rank	Author(s)	Title	Publisher/Year	Code
E-1	2	Morse, P.M.M.	Queues, Inventories, and Maintenance Recommended by G. H. Sandler	John Wiley & Sons, New York City, 1958	в
E-2	3	Cox, D. R. and Smith, N. L.	Queues	Methues & Co. Ltd, London, and John Wiley & Sons, New York City, 1961	В
E-3	2	Barlow, R. E. and Proschan, F.	Planned Replacement Boeing Scientific Research Laboratories Seattle, Washington	Boeing Aircraft Co. , 1961	s
E-4	2	Hall, K. M.	System Maintainability Proceedings of the 8th National Symposium on Reliability and Quality Control in Elec- tronics, Washington, D. C.	1962	P
E-5	2	Kamins, M.	Determining Checkout Intervals for Systems Subject to Random Failures Rand Corp, Research Memorandum	Rand Corporation, Santa Monica, Calif. 1960	s
E-6	1	Lahs, W. R. and Ohlenkamp	Availability Assessment of Nuclear Plants Transactions, 1968 Annals of Assurance Science, 7th Reliability and Maintainability Conference, San Francisco, July 14-17, 1968	ASME, New York 1968	P
E-7	1	Edison Electric Institute	Analytical Report of Equipment Availability for a Seven Year Period, 1955-61	Edison Electric Institute Publications 1963	S
E-8	1	Edison Electric Institute	Report on Equipment Availability for the Seven Year Period, 1960–1966	Edison Electric Institute Publications 1967	s
E-9	2	Holland, M. M.	A Technique for Availability Prediction for Advanced Support Program Development Annals of Assurance Sciences, 7th Relia- bility and Maintainability Conference, San Francisco, Calif.	1968	S
E-10	3	Kennedy, MaxK	A Closed Loop Logistic Study in a Coolant Environment (Project PACER SORT, USAF) Annals of Assurance Sciences, 7th Relia- bility and Maintainability Conference, San Francisco, Calif.	ASME, New York 1968	P
E-11	2	Davenport, George	System Availability, A Management Approach Launch Support Division, Bendix Corp. Annals of Assurance Sciences, 7th Relia- bility and Maintainability Conference	ASME, New York	Р
E-12	1	Drummond, A. Harrison, G T.	Maintainability Prediction - Theoretical Basis and Practical Approach ARING Research Corporation .207-1-275	ARINC Research Corp., Washington, D. C. 1962	S
			LMEC-Memo-69-7, Vol I		l

3-115

No.	Rank	Author(s)	Title	Publisher/Year	Code
E-13	3	Margulies, G. and Sacks, J.	Bureau of Ships Maintainability Specification System Effectiveness Section, Bureau of Ships, 9th National Symposium on Relia- bility and Quality Control	1963	P
E-14	3	Nagy, George	The Reliability of Repairable Systems Goodyear Aircraft Co., Akron, Ohio 9th National Symposium on Reliability and Quality Control. Includes curves of reliability versus MTF and MR for T = 1000 hr. and different availability ratings.	1963	P
E-15	3	Bryan, G. L., et al	The Role of Humans in Complex Computer Systems: Maintenance EPR No. 26 University of Southern California	1959	S
E-16	3	Cooper, J. I. and Rigby, L. V.	Proceedings of Short Sleeve Seminar on Maintainability Report NOR 60-320 NORAIR Division, Northrop Aircraft Corp., Hawthorne, California	1960	S
E-17	2	Fitzpatrick, R., et al	The Design of Test Devices for Preventative Maintenance of Ground Electronic Equipment, Test Report RADC, 58-172 Rome Air Development Center Griffin Air Force Base, New York	USAF 1958	S
E-18	3	Folley, J. D. Jr.	Maintenance Job Simplification Without Automation AIR Memo No. 14 American Institute for Research, Pittsburch, Pa.	1959	S
E-19	2	Franks, P. E. and Furnish, C. W.	Automated Maintenance: Theory, Practice, and Implication for Training, WADD Tech Report 60-412, Wright Air Development Div., Wright-Patterson Air Force Base, Ohio	USAF 1960	S
E-20	4	Miller, R. B.	Anticipating Tomorrow's Maintenance Job, Research Review No. 53-1 Human Resources Research Center Lackland Air Force Base, Texas	USAF 1953	S
E-21	3	Cho, H. H.	On the Proper Preventative Maintenance LFE Electronics Systems Div., Lab for Electronics, Boston 9th National Symposium on Reliability and Quality Control	1963	q
E-22	2	Harrison, George	A Practical Approach to Maintainability Prediction ARING Research Corporation, Washington, D. C. 9th National Symposium on Reliability and Quality Control	1963	Ρ

No.	Rank	Author(s)	Title	Publisher/Year	Code
E-23	2	Harrison, George	Maintainability Prediction, Theoretical Basis and Practical Approach ARING Research Publication No. 207-1-275 ARING Research Corp., Washington, D. C.	1962	S
E-24	2	Feyerherm, M. P.	Practical Maintainability Numerics Proceedings of the 6th National Symposium on Reliability and Quality Control	1960	P
E-25	1	Flehinger, B.J.	A General Model for the Reliability Analysis of Systems Under Various Preventive Maintenance Policies (Renewal Theory), RW 2	IBM - Yorktown Heights, New York 1961	s
E-26	2	Herman, R.J.	Principles for Substituting Spare Units at Remote Locations to Maintain A Given Level of Reliability Proceedings, 4th National Symposium on Reliability and Quality Control	ASME, New York 1958	P
E-27	3	Madison, R.L.	An Analysis of the Effects of Maintenance on Part Replacement Proceedings, 4th National Symposium on Reliability and Quality Control, pp 19-29	ASME, New York 1958	P
E-28	3	Meyer, R.	Some Considerations of Scheduled Maintenance Proceedings, 8th National Symposium on Reliability and Quality Control, pp 343-356	ASME, New York 1962	Р
E-29	3	Miles, R. A.	Maintainability Prediction and Measurement Proceedings, 8th National Symposium on Reliability and Quality Control, pp 335-342	ASME, New York 1962	Р
E-30	2	Moeller, C. G.	Coordination of Maintenance Planning During Equipment Development Proceedings of the 6th National Symposium on Reliability and Quality Control, pp 330- 334	ASME, New York 1960	P
E-31	3	Page, H. J.	The Human Element in the Maintenance Package Proceedings, 8th National Symposium on Reliability and Q. C., pp 322-334	ASME, New York 1962	Р
E-32	2	Ruther, F. J.	Reliability Control of Re-Order Spares Proceedings, 8th National Symposium on Reliability and Quality Control, pp485-488	ASME, New York 1962	S
E-33	3	Schechtel, J.	Maintainability Index Study in Ship Bound Electronic Equipment and Systems Proceedings, 6th National Symposium on Reliability and Quality Control, pp 335-342		S
E-34	2	DOD MIL-HDBK-472	Military Standardization Handbook-Specs Maintainability Predictions	1966	s
E-35	2	DOD MIL-HDBK-471	Military Standardization Handbook-Specs Maintainability Demonstration		S

6. Category F - Environmental Testing and Effects of Environment

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-1	3	USAF-WADC 53-324	Water - Mist Separation in Air Conditioning Systems ASD, Wright-Patterson Air Force Base, Ohio	USAF	s
F-2	3	Dunn, William H.	An Insulation MaterialsDesign to Achieve A High Reliability, Medium Weight Wire Annals of Assurance Sciences, 7th Reliability and Maintainability Conference	1968	Р
F-3	2	Navy, NAVWEP OD 29304	Guide Manual for Reliability Measurement Programs Dept of Navy Special Projects Office Washington, D. C.	Defense Documenta- tion Center, Washington, D. C. 1965	S
F-4	3	Rosato, D. V.	Environmental Effects on Polymeric Materials Volume 1 - Environments Volume 2 - Materials	John Wiley & Sons, New York City 1968	В
F-5	1	Snowdon, J. C.	Vibration and Shock in Damped Mechanical Systems (Considering Reliability)	John Wiley & Sons, New York City 1968	в
F-6	2	Lloyd, D. K.	Multi-environmental Life Testing of Parts and Components in Rockets and Guided Missiles by Statistical Design IRE Transaction, Reliability and Quality Control, December 1958.	1958	Р
F-7	3	USAF (Theiss- Mileaf-Egan) ASD No. TR- 61-363 also AD 272-272	USAF Handbook of Environmental Engineering Defense Documentation Center Defense Supply Agency, Cameron Station Alexandria, Virginia (in Armed Service Tech Information Agency, Arlington 12, Virginia)	1961	s
F-8	3	McGee-Polak WADC, TR 59- 697	The Development of Standard Environmental Test Specimen - Report [AF 33(616)-6116] Air Research and Development Command Wright-Patterson Air Force Base, Ohio	USAF 1959	S
F-9	2	NASA MTP-AERO- 63-8	Natural Environment (Climatic) Criteria Guidelines For Use in MSFC Launch Vehicle Development Reunion (later are perhaps avail- able) George C. Marshall Space Flight Center, Huntsville, Alabama	National Aeronautical & Space Administra- tion , 1963	S
F-10	2	Court, Arnold	Wind Extremes as Design Factor Journal of the Franklin Institute, Vol 256, pp 39-56	1953	A
F-11	3	Sonter, Emerson	Summary of Available Hail Literature Langley Aeronautical Laboratory Langley Field, Virginia	1952	S
			· · · · · · · · · · · · · · · · · · ·		
	ł		LMEC-Memo-69-7, Vol I		

1	Weather			
	Bureau	Climatologicol Data National Summary - (latest available) United States Department of Commerce, Washington, D.C.	1960 (or later)	S
2	Thom, H.C.S.	Distribution of Extreme Winds in the U.S. Journal of Structural Division Proceedings of the ASCE, pp 11-24	1960	S
1	Humphrey, W.J.	Physics of the Air Recommended as a text book by the Marshall Space Flight Center, Huntsville, Alabama	McGraw Hill Book Co., New York City 1940	В
1	Army, M-183	Weather Extremes Around the World Environmental Protection Research Division Quartermaster Research and Developmental Command, Natik, Mass.	Defense Documenta- tion Center, Washington, D.C. (no date)	S
2	Hogne, D.W. RER-9	Temperatures of North America Research Study Report, Environmental Protection Research Division, Quartermaster Research and Development Command, Natik, Mass.	Defense Documenta- tion Center Washington, D.C. 1956-57	S
2	Meigs-dePercin EP-25	Frequency of Cold-Wet Climatic Conditions in the U.S. (7-83-03-008B) Environmental Protection Research Division, Quartermaster Research and Development Command, Natik, Mass.	Defense Documenta- tion Center Washington, D.C. 1956	S
2	O'Bryan J. E. WCSPE, TN 54-6	Mass Values of Humidity at Various Tempera- tures, Relative Humidity and Sea Level Press- ure (RDO No. 560-87) Environmental Criteria Branch, USAF, Wright-Patterson Air Force Base, Ohio	USAF 1954	s
2	Pauly, James WADC TR 56-556	The Dust Environment and Its Effect in Dust Penetration Southwest Research Institute [AF 33(616)- 3280], No. 111 USAF-ASD Wright-Patterson Air Force Base, Ohio	USAF 1956	S
1	Trewartha, G. T.	An Introduction to Climate General treatise in the efforts of climatic deviations	McGraw Hill Book Co. New York City 1954	В
2	Grenthouse, Wessel	Deterioration of Materials, Causes and Preventative Techniques	Reinhold Publishing Corporation, 430 Park Ave., New York City 1954	в
3	WADC-TR 59-253 Schroeder-Towe- Lake- Wunderman	Study of Equipment Cooling Systems Contract AF 33(616) - 5784, Task 61221 USAF, ASD Wright Patterson Air Force Base, Ohio	USAF	S
	1 2 2 2 1 2	 Army, M-183 Army, M-183 Hogne, D. W. RER-9 Meigs-dePercin EP-25 O'Bryan J. E. WCSPE, TN 54-6 Pauly, James WADC TR 56-556 Trewartha, G. T. Grenthouse, Wessel WADC-TR 59-253 Schroeder-Towe- Lake- 	Army, M-183Recommended as a text book by the Marshall Space Flight Center, Huntsville, Alabama1Army, M-183Weather Extremes Around the World Environmental Protection Research Division Quartermaster Research and Developmental Command, Natik, Mass.2Hogne, D. W. RER-9Temperatures of North America Research Study Report, Environmental Protection Research Division, Quartermaster Research and Development Command, Natik, Mass.2Meigs-dePercin EP-25Frequency of Cold-Wet Climatic Conditions in the U. S. (7-83-03-008B) Environmental Protection Research Division, Quartermaster Research and Development Command, Natik, Mass.2O'Bryan J. E. WCSPE, TN 54-6Mass Values of Humidity at Various Tempera- tures, Relative Humidity and Sea Level Press- ure (RDO No. 560-87) Environmental Criteria Branch, USAF, Wright-Patterson Air Force Base, Ohio2Pauly, James WADC TR 56-556The Dust Environment and Its Effect in Dust Penetration Southwest Research Institute [AF 33(616)- 3280], No. 111 USAF-ASD Wright-Patterson Air Force Base, Ohio1Trewartha, G. T. MasselAn Introduction to Climate General treatise in the efforts of climatic deviations2Grenthouse, WesselDeterioration of Materials, Causes and Preventative Techniques3WADC-TR S9-253 Schroeder-Towe- Lake-Study of Equipment Cooling Systems Contract AF 33(616) - 5784, Task 61221 USAF, ASD Wright Patterson Air Force Base, Ohio	Recommended as a text book by the Marshall Space Flight Center, Huntsville, AlabamaCo., New York City 19401Army, M-183Weather Extremes Around the World Environmental Protection Research Division Quartermaster Research and Developmental Protection Research Division, Quartermaster Research and Development Command, Natik, Mass.Co., New York City 19402Hogne, D. W. RER-9Remeratures of North America Research Study Report, Environmental Protection Research Division, Quartermaster Research and Development Command, Natik, Mass.Defense Documenta- tion Center Washington, D. C. (1956-57)2Meigs-dePercin EP-25Frequency of Cold-Wet Climatic Conditions in the U. S. (7-83-03-008B) Environmental Protection Research Division, Quartermaster Research and Development Command, Natik, Mass.Defense Documenta- tion Center Washington, D. C. 1956-572O'Bryan J. E. WGSPE, TN 54-6Mass Values of Humidity at Various Tempera- tures, Relative Humidity and Sea Level Press- ure (RDD No. 560-87) Environmental Criteria Branch, USAF, Wright-Patterson Air Force Base, OhioUSAF 19542Pauly, James WADC TR 56-556The Dust Environment and Its Effect in Dust Penetration Southwest Research Institute [AF 33(616)- 3260], No. 111 USAF-ASD Wright-Patterson Air Force Base, OhioMcGraw Hill Book Co. New York City 19541Trewartha, G. T. An Introduction to Climate General treatise in the efforts of climatic deviationsMcGraw Hill Book Co. New York City 19542Grenthouse, WesselDeterioration of Materials, Causes and Preventative TechniquesRecinhold Publishing <b< td=""></b<>

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-23	3	Crede-Lunney WADC-TR 56-503	Establishment of Vibration and Shock Tests for Missile Electronics as Derived from Measured Environment AF 33(616)-2188, Task 41772 USAF ASD Wright-Patterson Air Force Base, Ohio	USAF 1956	S
F-24	2	Maron, William	Temperature - Humidity Tests U.S. Testing for Signal Corps Engineering Labs Contract DA-36-039 SC-63088, File No. 218-PH-54-91 (3430)	1957	S
F-25	3	Clower, J.I.	Oil Filters in Public Utility Fleet Operation SAE Journal, Vol 41, No. 2	Society of Automotive Engineers 1937	A
F-26	1	Broadway, N.J. REIC Report No. 3	The Effects of Nuclear Radiation on Elasto- meric and Plastic Material [AF 33-(616)-5171, Task 60001] The Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	Battelle Memorial Institute (B. M. I.) 1958	s
F-27	1	Broadway, N.J. REIC Report No. 3	First Addendum to F-26	Battelle Memorial Institute (B. M. I.) 1959	s
F-28	1	Reinsmith, G.	Nuclear Radiation Effects in Materials ASTM Bulletin American Society for Testing of Material Philadelphia, Pa.	ASTM 1958	s
F-29	2	Leininger, R. I. REIC Memo No. l	The Effect of Nuclear Radiation in Fluorinated Elastomers in Different Environments The Radiation Effects Information Center, Battelle Memorial Institute, Columbus,Ohio	Battelle Memorial Institute (B. M. I.) 1957	S
F-30	2	Broadway- Palinchak REIC Memo No. 17	The Effect of Nuclear Radiation on Fluor- polymers AF 33(616)-6564, Cont. of AF 33(616)-5161, Task 60001 The Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1959	S
F-31	1	Javitz, A.E.	Impact of High-Energy Radiation on Dielectrics Electrical Manufacturing	1955	A
F-32	1	Wyant, R.E. REIC Memo No. 13	The Effects of Nuclear Radiation on Organic Heat Transfer Materials Radiation Effects Information Center, Battelle Memorial Institute, Columbus,Ohio	B. M. I. 1959	S
F-33	1	Allen-Wolff- Elsen-Frist REIC Memo No. 5	The Effect of Nuclear Radiation on Structural Metals [AF 33(616)-5171, Task 60001] Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1958	S
F-34	2	Riley-Capping- Duck-REIC Memo No. 9 (Nov. 1958)	The Effects of Nuclear Radiation on Glass [AF 33(616)-5171, Task 60001] Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1958	S

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-35	1	Moody, J.W. REIC Memo No. 14	The Effect of Nuclear Radiation on Electrical Insulating Material [AF 33(616)-5171, Task 60001] Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1959	s
F-36	1	Lamale-Schall REIC Memo No. 2	Electrical Leakage in Insulators Exposed to A Nuclear Environment Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio Also part of this report: The Effect of Nuclear Radiation in Electronic Components and Systems	B. M. I. 1958	S
F-37	2	Dvorak, H.R.	Radiation Environments Space Aeronautics	Conover-Mast Publication, 205 E. 42nd St., New York 1958	А
F-38	2	Robinson, C.C.	Nuclear Effects in ^E lectronic Components Electrical Manufacturing	1956	S
F-39	1	Broadway- Palinchak REIC Memo No. 8	The Effects of Nuclear Radiation on Seals, Gaskets, and Sealouts Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1958	S
F-40	1	Schroeder, M.C. REIC Memo No. 13	The Effects of Nuclear Radiation on Hoses and Couplings Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1959	S
F-41	1	Cosgrove, S. L. REIC Memo No. 4	The Effects of Nuclear Radiation on Lubricants and Hydraulic Fluids Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio Also, first addendum, March 1959.	B. M. I. 1958	S
F-42	1	Hillenbrand, L. J. REIC Memo No. 11	The Effects of Nuclear Radiation in Hydro- carbon Fuels Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1958	S
F-43	4	USAF	Development of Combined Environmental Qualification Test Programs for Air Force Equipment U.S. Testing, Inc., AF 33(616)-6315, ASD, Wright-Patterson Air Force Base, Ohio	USAF	S
F-44	2	Brown, W.J. Jr. ASTIA No. AD 139961	Physiological Hazard of Non-Ionizing Radiation Lockheed Aircraft Corp.	LAC - Burbank, Calif. 1952	S
F-45	2	Casarett, G. W. ASTIA No. AD 133226	Acceleration of Aging by Ionizing Radiation Atomic Energy Project P. O. Box 287, Station 3, Rochester 20, New York	1957	S

.

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-46	4	Berks, W.I. AL-1933	Temperature and Thermal Stresses in Missile Structures L. A. Aircraft Division, North American Rockwell Corp., El Segundo, Calif	1954	S
F-47	3	Behrens-Thanll	The Effect of Short Duration Neutron Radiation in Semi-Conductor Devices IRE Seminar in Reliability, Proceedings	1958	S
F-48	3	Hassler, K. E Wyler, E. N.	The Effect of Nuclear Radiation on Transistors The Radiation Effects Information Center Battelle Memorial Institute, Columbus, Ohio	В. М. I. 1958	S
F-49	2	Hausner- Friedemann ASTIA No. AD 89082	Effect of Irradiation in Solids A Bibliography Atomic Energy Div., Sylvania Electric Products Inc., Bayside, New York	Sylvania Electric Products Co.	S
F-50	3	Lightfoot, Rivera	Problems Which Arise During Engineering Evaluation of Radiation Effects on Organic Material A report by Convair, General Dynamics Corp., Fort Worth, Texas		S
F-51	3	Omanski, Joseph T. WADC TR 56-551 ASTIA No. AD 110462	Experimental Investigation to Correlate the Recurrence of Fatigue Failures in a Typical Aircraft Structure With Vibratory Amplitude Cook Electric Company for USAF-ASD Wright Patterson Air Force Base, Ohio	USAF	s
F-52	4	Scholose, W. F. WADC, TR 57-387	Explosion-Proof Test Criteria for Recon- naissance Equipment Aerial Reconnaissance Lab., Directorate for Labs, USAF, ASD, Wright-Patterson Air Force Base, Ohio	USAF 1958	S
F-53	2	Surosky, A.E.	The Nuclear Jungle Environmental Quarterly	1956	Α
F-54	1	Wyant, R.E. REIC Memo No. 16	The Effect of Nuclear Radiation on Refrigerants The Radiation Effects Information Center, Battelle Memorial Institute, Columbus 1, Ohio	В. М. І.	S
F-55	1	Keenan-Kaye	Gas Tables, Thermodynamic Properties of Air	John Wiley & Sons, New York City 1948	в
F-56	3	USAF	Handbook of Geophysics Geophysics Research Directorate, Air Force Cambridge Research Center Air Research and Development Command, Bedford, Mass.	1957	S
F-57	2	Wilson, E. Jr.	An Introduction to Scientific Research	McGraw Hill Book Co, New York City 1952	в
F-58	3	Hooper, R.S.	Evolution of Environmental Testing 1959 Proceedings of Annual Meeting of the Institute of Environmental Sciences, Mt. Prospect, Ill.	1959	S

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-59	1	Editorial	Heat Expansion of Materials Electronics, Vol 32, No. 22	McGraw Hill Book Co., New York City 1959	В
F-60	3	Blake-Kitchin- Pratt	The Microbiological Deterioration of Rubber Insulation Technical Paper 53-59, American Institute of Electrical Engineers, Proceedings	19,52	Ρ
F-61	3	DuPont BL-41	Fungus Growth on Rubber, Neoprene, and Butadienne - Acrylomitrile Type of Synthetic Elastomers	DuPone-DeNemours & Co., Wilmington, Del., 1942	S
F-62	4	Allen-Fraser, H.	The Biological Determination of Thiokol Lining for Gasoline Storage Tanks U.S. Naval Research Report, P-2902	1946	S
F-63	2	Eckert-Drake Jr.	Heat and Mass Transfer	McGraw Hill Book Co., New York City 1959	В
F-64	4	Hamilton, F.L. WADC TR 55-72	A Compilation of Data from Evaluation of Fungus Resistance Properties of Air Force Materials, USAF ASD Wright Patterson Air Force Base, Ohio	USAF 1955	S
F-65	2	Lowe, Russell T. Report No. 370	The Role of Damping in Structural Design Barru Controls Inc., Watertown 72, Mass.	1959	S
F-66	2	Teresi- Newcombe ASTIA No. 153304	A Study of Maximum Permi ss able Concentra- tions of Radioactive Fallout in Water and Air Based Upon Military Exposure Criteria U.S. Naval Radiological Defense Lab, San Francisco	1957	S
F-67	3	Shinn, D.A. WADC TR 55-150	Materials-Property-Design Criteria for Metals USAF Contract 33(616)-2303, Project 7360 ASD Wright Patterson Air Force Base, Ohio	USAF 1956	S
F-68	3	Smith, P.W.Jr.	Sound Induced Vibration Noise Control, Vol 4, No. 6	1958	A
F - 69	1	Kircher, J.F. REIC Memo No. 11	Survey of Irradiation Facilities The Radiation Effects Information Center, Battelle Memorial Institute, Columbus, Ohio	B. M. I. 1960	S
F -7 0	3	USAF WADC, TN 59-531	Simulated Combined Vibration, Sustained Acceleration and Extreme Temperature Environments ASD Wright Patterson Air Force Base, Ohio	USAF 1959	S
F-71	3	USAF WADC TR 56-546	Feasibility of Combined Environment Testing ASD Wright-Patterson Air Force Base, Ohio	USAF 1956	S
F-72	4	Abernathy, A. H.	Combined Environments in Large Test Chambers 1959 Proceedings of the Annual Meeting of the Institute of Environmental Sciences, Mt. Prospect, Illinois	1959	Ρ

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-73	3	Cammarata, John	Review of Environmental Test Equipment Electrical Manufacturing	1957	А
F-74	2	Crandall, S.H.	Random Vibration Massachusetts Institute of Technology, Boston, Mass.	The Technology Press of M. I. T. 1948	в
F-75	3	Granick, Neal	Response of Structures Under Random Vibra- tion Journal of Environmental Engineering c/o Institute of Environmental Sciences, Mt. Prospect, Ill.	1959	А
F-76	4	Harris, C.M.	Handbook of Noise Control	McGraw Hill Book Co., New York City 1957	в
F-77	3	Morrow, C.T.	Shock Spectrum as A Criterion of Severity of Shock Impulses Journal of Acoustical Society, Vol 29, No. 5	1957	s
F-78	4	Morrow, C.T.	Shortcomings of Present Methods of Measuring and Simulating Vibrational Environments Journal of Applied Mechanics, Sept 22,1955	1955	S
F-79	3	Schauch - Bell ASTIA No. AD 9527	A High Temperature Recirculating Air Oven For Physical Property and Structural Com- ponent Testing		Р
F-80	2	Schulman, James H.	Glass Dosimeters for Radiation Measurement The Industrial Atom, TID-8006		A
F-81	1	Sumnicht, H. I. ASTIA No. AD 157082	A Method of Measuring Effective Energy From Radiation Sources		S
F-82	2	DOD-R&E	Index to the Shock and Vibration Bulletin A Publication of the Shock and Vibration Information Center, Naval Research Laboratory, Washington, D.C.	Defense Documenta- tion Center, Washington, D.C. 1968	s
F-83	2	Felgar, R.P.	Reliability and Mechanical Design Shock and Vibration Bulletin No. 27, 27-IV-113.	Defense Documenta- tion Center Washington, D.C. 1958	S
F-84	2	Tomlinson	A Facility for Research in the Effects of Pulsed Nuclear Radiations Ballistic Research Labs, Aberdeen Proving Grounds, Shock and Vibration Bulletin No. 28, Part III, p 154	Defense Documenta- tion Center, Washington, D.C. 1959	S
F-85	3	Winston- Stagner	A Free-Field Stress Gage and Test Results in a New 1000 PSI Dynamic Pressure Tank United Electrodynamics Inc., Pasadena, Calif.	1960	S
F-86	4	R.R. Bouche	Instruments and Methods for Measuring Mechanical Impedance 30-II-18 ENDEVCO Corp., Pasadena, Calif.	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1961	Р

σ.

No.	Rank	Author(s)	Title	Publisher/Year	Cod
F-87	3	Blake, R. E.	A Method for Selecting Optimum Shock and Vibration Tests Lockheed Missile and Space Co, Sunnyvale, Calif. 31-II-88	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D.C. 1962	P
F-88	1	Kennedy, R.	A Comparison of Shock and Vibration Data For Rail, Air, Sea, and Highway Transportation, 31-III-81 US Army Transportation Engineering Agency, Fort Eustis, Virginia	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1962	Ρ
F-89	3	Sandler, I.J.	Techniques of Analysis of Random and Combined Random-Sinusoidal Vibration Autonetics Division, NR, Downey, Calif. 31-III-211	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D.C. 1962	P
F-90	2	Neidhart- Harkin	Energy Distribution in A Half Space Under Nuclear Loads General American Transportation Co., 31-II-124	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D.C. 1963	Р
F-91	1	Crede, Charles	Shock Isolation of Structure Contents California Institute of Technology, Pasadena Calif. 32-III-1	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D.C. 1963	Р
F-92	3	Ball, Leslie	Reliability and Environment Engineering Boeing Co., Seattle, Wash. 33-II-1	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D.C. 1964	Р
F-93	3	Morrow, C.T.	Reflections in Shock and Vibration Technology Aerospace Corp., El Segundo, Calif.	Shock & Vibration Bulletin DOD, Defense Doc, Center, Washington, D.C. 1964	Р
F-94	3	Bieniecki, H.S.	Combined Hi-Temp/Vibration Test Techniques McDonnell Aircraft Co., 33-III-137	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D.C. 1964	P
F-95	2		Problem Areas in the Interpretation of Vibra- tion Qualification Tests, 33-III-203 Lockheed-California Company, Burbank, Calif.	Shock & Vibration Bulletin DOD, Defense, Doc. Center, Washington, D. C. 1964	Р
F-96	3	Smith, J.E.	Evaluation of A Machinery Installation by Mechanical Impedance Methods, 34-I-67 Portsmouth Naval Shipyard	Shock & Vibration Bulletin DOD, Defense Doc. Center Washington, D.C. 1965	Р
	-				

No.	Rank	Author(s)	Title '	Publisher/Year	Code
F - 97	4	Binder, R.C.	Response of Multi-Degree-of-Freedom System to Random Excitation, 34-II-47 University of Southern Calif.	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1965	P
F-98	3	Stronge-Fisher	Structural Response to a Velocity-Dependent Stochastic Excitation, 34-II-51 U. S. Naval Ordnance Test Station	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1965	P
F-99	3	Kaplan-Petak	Determination of System Fixed Base Natural Frequencies by Shake Tests, 34-III-95 U. S. Naval Research Laboratory	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1965	Р
F-100	2	Zaid-Marnell	Life Time Evaluation Procedures for Random Shock and Vibration, 35-III-125 Technik Incorporated, Jericho, New York	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1966	P
F-101	3	Ray-Blanford	A Practical Approach to the Determination of Electrical Support Equipment Test Require- ments Which Assure Proper Operation in High Stress Service Equipment G. E. /Apollo-Support Dept, Daytona Beach, Florida, 35-III-235	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1966	P
F-102	3	Smith, K. W.	A Procedure for Translating Vibration Envi- ronment Into Laboratory Tests (Fatigue Life Demonstration) White Sands Missile Range, 33-III-159	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1964	P
F-103	4	Masri, Sami F.	Cummulative Damage Caused by Shock Excitation California Institute of Technology, Pasadena, Calif., 35-III-57	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1966	P
F-104	3	McClymonds- Gandung	Combined Analytical and Experimental Approach for Designing and Evaluating Struc- tural Systems for Vibration Environments, 34-II-159 McDonnell Douglas Corp.	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1965	P
F-105	2	Clevenson- Steiner	Fatigue Life Under Various Random Loading Spectra NASA - Langley Research Center, Langley Station, Hampton, Va., 35-II-21	Shock & Vibration Bulletin DOD, Defense Doc. Center, Washington, D. C. 1966	Р

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-106	3	Brennan, J. N.	Bibliography on Shock and Shock Excited Vibration, Volumes I and II Engineering Research Bulletin No. 68 Pennsylvania State University, University Park, Pa.	1957, Vol I 1958, Vol II	S
F-107	1	Timoskenko- Young	Vibration Problems in Engineering Leading text in this subject, but purely analytical treatise.	D. Van Nostrand Co., New York 1955	В
F-108	2	Love, Augustus E. H.	A Treatise On the Mathematical Theory of Elasticity 4th Edition	Dover Publications, London, England 1944	В
F-109	2	Nadai, A .	Theory of Flow and Fracture of Solids (Theory of the Tensile Text, Tests on Yielding and Fracture Under Combined Stress)	McGraw Hill Book Co New York City 1950	В
F-110	4	Robbins, C. D. and Mulcahy, E. L.	Combining Induction Heaters With Existing Environmental Facilities to Conduct Tests at Re-Entry Temperatures Shock and Vibration Symposium, D.O.D., Bulletin 33-III-141	Defense Documentation Center, Washington, D. C. 1964	Р
F-111	4	Arnold, A. A.	The NEL Experimental Vibration Test Stand for Use in Chambers U. S. Navy Electronic Labs, Bulletin 33-III-149	Defense Documentation Center, Washington, D. C. 1964	Ρ
F-112	3	Hanes, C. F. and Fudge, R. W.	A Technique for Performing Vibration Tests at High Temperatures in Excess of 3500°C, 33-III-153 TEMCO Electronics and Missiles Co.	Defense Documentation Center, Washington, D. C. 1964	Р
F-113	1	Balkwill, J. K.	Mechanical Elements Operating in Sodium and Other Alkali Metals Volume I. Literature Survey (LMEC-68-5) Volume II. Experience Survey (To be released) Liquid Metal Engineering Center, Canoga Park, Calif.	North American Rockwell 1968	S
F-114	1	Sarnecki, S. E.	Materials for Mechanism Operating in 1200°F Sodium NAA SR-Memo-9340, AI Division	North American Rockwell 1963	S
F-115	1	Vail, D. B.	Life Test of Liquid Metal Lubricated Thrust Bearing KAPL, Knolls Atomic Power Lab	1951	S
F-116	1	Crown, P. L.	Sodium Pump Reliability Demonstration NAA-SR-Memo-11485 - AI Division	North American Rockwell 1965	S
F-117	1	Cygan, R.	Static Sodium Test of Westinghouse Flow Controller Bearing NAA-SR-Memo-5951 - AI Division	North American Rockwell 1960	S

.

F-118 1 Scheibelhut, C. H. EBR-II Materials Experience Proceedings of Sodium Components Develop- ment Program. Information Meeting, CONF- 650620, p 127 1965 S F-119 1 Shoudy, A. A. Jr. FERMI Materials Experience Proceedings of Sodium Components Develop- ment Program Information Meeting, CONF- 650620, p 91 1965 S F-120 1 Long, William G. Testing Electrical Components for the SNAP (50620, p 91) Institute of Environment Atomics International, NR 1965 Institute of Environmental Sciences, 1965 F-121 2 Elder, Glenn E. Nuclear Effects Facilities at White Sands Missile Range Nuclear Effects Branch, TE-E White Sands Missile Range, New Mexico 1965 Froceedings of Environmental Sciences Nuclear Effects Detarton Sciences Proceedings of Environmental Sciences Nuclear Effects Detarton Sciences Nuclear Effects Detarton Sciences Nuclear Effects Detarton Sciences Nuclear Effects Detarton Sciences Nuclear Effects Detarton Sciences Nuclear Effects Detarton Sciences Nuclear Effects Detarton Sciences New York City 1961 1965 S F-123 1 Harris, C. M. & Creak, A. M. Shock and Vibration Engineering 1965 S F-124 1 Morrow, G. T. Shock and Vibration Engineering John Wiley & Sons, Inc. New York City 1961 B F-125 2 Murray, W. M. Fatigue and Fracture of Metals John Wiley & Sons, Inc. New York City 1952 B	No.	Rank	Author(s)	Title	Publisher/Year	Code
1 Lossy, M. M. P. Proceedings of Sodium Components Development Forgram Information Meeting CONF- 650620, p 91 Institute of Environmental Sciences, M. Prospect, Ill. F-120 1 Long, William G. Testing Electrical Components for the SNAP (Systems for Nuclear Auxiliary Power) Institute of Environmental Sciences, M. Prospect, Ill. Institute of Environmental Sciences, M. Prospect, Ill. P. F-121 2 Elder, Glenn E. Nuclear Effects Branch, TE-E White Sands Missile Range, New Mexico 1965 Institute of Environmental Sciences P. F-122 3 McClanaham, T, M. & Fagan, J. R. Shock Capabilities of Electro Dynamic Shakers Noulear Effects Division, Princeton, N. J. 1965 S F-123 1 Harris, C. M. & Crede, C. E. Shock and Vibration Handbook 3 volumes McGraw Hill Book Co., New York City 1961 B F-124 1 Morrow, C. T. Shock and Vibration Engineering John Wiley & Sons, Inc., New York City 1963 B F-125 2 Murray, W. M. Fatigue and Fracture of Metals John Wiley & Sons, Inc., New York City 1952 B F-126 1 Gebhart, B. Heat Transfer Sth Edition John Wiley & Sons, Inc., New York City 1956 B F-128 3 ARINC Effects of Cycling in Reliability of Electronic Sth Edition <td>F-118</td> <td>1</td> <td></td> <td>Proceedings of Sodium Components Develop- ment Program Information Meeting, CONF-</td> <td>1965</td> <td>S</td>	F-118	1		Proceedings of Sodium Components Develop- ment Program Information Meeting, CONF-	1965	S
F-120 1 Bong, which differentiation for Nuclear Axiliary Power) Environment Atomics International, NR 1965 Proceedings of Environmental Sciences, Mt Prospect, III. Environmental Sciences, Mt Prospect, III. F-121 2 Elder, Glenn E. Nuclear Effects Facilities at White Sands Missile Range, Nuclear Effects Branch, TE-E White Sands Missile Range, New Mexico 1965 Proceedings of Environmental Sciences Mt Prospect, III. Institute of Environmental Sciences 1965 F-122 3 McClanaham, J. M. & Fagan, J. R. Shock Capabilities of Electro Dynamic Shakers RCA - Astro-Electronics Division, Princeton, N. J. 1965 F-123 1 Harris, C. M. & Crede, C. E. Shock and Vibration Handbook 3 volumes McGraw Hill Book Co., New York City 1961 B F-124 1 Morrow, C. T. Shock and Vibration Engineering For Volumes John Wiley & Sons, Inc. New York City 1952 B F-125 2 Murray, W. M. Fatigue and Fracture of Metals John Wiley & Sons, Inc. New York City 1952 B F-126 1 Gebhart, B. Heat Transfer Sth Edition John Wiley & Sons, Inc. New York City 1956 B F-127 2 Jakob Heat Transfer Sth Edition John Wiley & Sons, Inc. New York City 1956 B F-128 3 ARINC Effects of Cycling in Reli	F-119	1	Shoudy, A. A. Jr.	Proceedings of Sodium Components Develop- ment Program Information Meeting CONF-	1965	S
F.11.1DIndify Groun LinMissile Range Nuclear Effects Branch, TE-E White Sands Missile Range, New Mexico 1965 Proceedings of Environmental Sciences Mt Prospect, III.Environmental Sciences 1965F-1223McClanaham, J. M. & Fagan, J. R.Shock Capabilities of Electro Dynamic Shakers RCA - Astro-Electronics Division, Princeton, N. J.1965SF-1231Harris, C. M. & Crede, C. E.Shock and Vibration Handbook 3 volumesMcGraw Hill Book Co., New York City 1961BF-1241Morrow, C. T. Shock and Vibration EngineeringJohn Wiley & Sons, Inc., New York City 1963BF-1252Murray, W. M. Fatigue and Fracture of MetalsJohn Wiley & Sons, Inc., New York City 1952BF-1261Gebhart, B. Heat TransferHeat Transfer Sth EditionMcGraw Hill Book Co., New York City 1952BF-1283ARINCEffects of Cycling in Reliability of Electronic Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp. Publication #101-26-160ARINC Research Corp. Washington, D. C. 1960SF-1292Coffin, L. F. Jr. Transaction ASME, Volume 76, pp 931-949American Society of Mchanical Engineers New York CityS	F-120	1	Long, William G.	(Systems for Nuclear Auxiliary Power) Environment Atomics International, NR 1965 Proceedings of Environmental Sciences,	Environmental Sciences	Р
F 122JMcGramman, Fagan, J. R.Chock and Vibration Engineer Dynamics RCA - Astro-Electronics Division, Princeton, N. J.McGraw Hill Book Co. , New York City 1961F -1231Harris, C. M. & Crede, C. E.Shock and Vibration Handbook 3 volumesMcGraw Hill Book Co. , New York City 1961BF -1241Morrow, C. T. Murray, W. M.Shock and Vibration Engineering Fatigue and Fracture of MetalsJohn Wiley & Sons, Inc. New York City 1963BF -1252Murray, W. M. Gebhart, B.Fatigue and Fracture of MetalsJohn Wiley & Sons, Inc. New York City 1952BF -1261Gebhart, B.Heat TransferMcGraw Hill Book Co. , New York City 1951BF -1272JakobHeat Transfer Sth EditionJohn Wiley & Sons, New York City 1961BF -1283ARINCEffects of Cycling in Reliability of Electronic Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp. Publication #101-26-160ARINC Research Corp. Washington, D. C. 1960SF -1292Coffin, L. F. Jr.A Study of the Effects of Cyclic Thermal Stresses on A Ductile Metal Transaction ASML, Volume 76, pp 931-949American Society of Mechanical Engineers New York CityS	F-121	2	Elder, Glenn E.	Missile Range Nuclear Effects Branch, TE-E White Sands Missile Range, New Mexico 1965 Proceedings of Environmental Sciences	Environmental Sciences	
F 1121New York City 1961F - 1241Morrow, C. T.Shock and Vibration EngineeringJohn Wiley & Sons, Inc. New York City 1963F - 1252Murray, W. M.Fatigue and Fracture of MetalsJohn Wiley & Sons, Inc. New York City 1952F - 1252Murray, W. M.Fatigue and Fracture of MetalsJohn Wiley & Sons, Inc. New York City 1952F - 1261Gebhart, B.Heat TransferMcGraw Hill Book Co., New York City 1961F - 1272JakobHeat Transfer Sth EditionJohn Wiley & Sons, New York City 1961F - 1283ARINCEffects of Cycling in Reliability of Electronic Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp. Publication #101-26-160ARINC Research Corp. Vashington, D. C. 1960F - 1292Coffin, L. F. Jr.A Study of the Effects of Cyclic Thermal Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949American Society of Mechanical Engineers New York City	F-122	3	J. M. &	RCA - Astro-Electronics Division,	1965	S
F = 1241Montow, O. T.Substant Horman EnglishingNew York City 1963F = 1252Murray, W. M.Fatigue and Fracture of MetalsJohn Wiley & Sons, Inc. New York City 1952BF = 1261Gebhart, B.Heat TransferMcGraw Hill Book Co., New York City 1961BF = 1272JakobHeat Transfer 5th EditionJohn Wiley & Sons, New York City 1961BF = 1283ARINCEffects of Cycling in Reliability of Electronic Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp. Publication #101-26-160ARINC Research Corp. Washington, D. C. 1960SF = 1292Coffin, L. F. Jr.A Study of the Effects of Cyclic Thermal Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949American Society of Mechanical Engineers New York CityS	F-123	1			New York City	в
F = 1232Mairay, w. w.Fanges and Freedore of MairaNew York City 1952F = 1261Gebhart, B.Heat TransferMcGraw Hill Book Co., New York City 1961BF = 1272JakobHeat Transfer 5th EditionJohn Wiley & Sons, New York City 1956BF = 1283ARINCEffects of Cycling in Reliability of Electronic Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp. Publication #101-26-160ARINC Research Corp. Washington, D. C. 1960SF = 1292Coffin, L. F. Jr.A Study of the Effects of Cyclic Thermal Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949American Society of Mechanical Engineers New York CityS	F-124	I	Morrow, C. T.	Shock and Vibration Engineering	New York City	в
F-1201Geblart, D.Heat Transfer 5th EditionNew York City 1961F-1272JakobHeat Transfer 5th EditionJohn Wiley & Sons, New York City 1956BF-1283ARINCEffects of Cycling in Reliability of Electronic Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp. Publication #101-26-160ARINC Research Corp. Washington, D. C. 1960SF-1292Coffin, L. F. Jr. Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949American Society of Mechanical Engineers New York CityS	F-125	2	Murray, W. M.	Fatigue and Fracture of Metals	New York City	В
F-121DJukobInternationNew York City 1956F-1283ARINCEffects of Cycling in Reliability of Electronic Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp. Publication #101-26-160New York City 1956SF-1292Coffin, L. F. Jr.A Study of the Effects of Cyclic Thermal Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949American Society of Mechanical Engineers New York CityS	F-126	1	Gebhart, B.	Heat Transfer	New York City	В
F-1202Coffin, L. F. Jr.A Study of the Effects of Cyclic Thermal Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949Washington, D. C. 1960Washington, D. C. 1960F-1292Coffin, L. F. Jr.A Study of the Effects of Cyclic Thermal Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949American Society of Mechanical Engineers New York City	F-127	2	Jakob		New York City	В
Stresses on A Ductile Metal Transaction ASME, Volume 76, pp 931-949 New York City	F-128	3	ARINC	Tubes and Equipment, Volumes 1 and 2 ARINC Research Corp.	Washington, D. C.	S
	F-129	2	Coffin, L. F. Jr.	Stresses on A Ductile Metal	Mechanical Engineers New York City	S

No.	Rank	Author(s)	Title	Publisher/Year	Code
F-130	2	Crittenden, Jr.	Nuclear Radiation and Electronic Equipment General Electric Co. (Report)	1959	S
F-131	3	Jumerlin	Quantitative Reliability Acceptance Testing Proceedings, pp 159-164 3rd National Symposium on Reliability and Quality Control	1957	Р
F-132	2	No author	Symposium in Radiation Effects on Material Proceedings from Symposium Vol 1 (1956), Vol 2 (1957), Vol 3 (1958), etc.		S
F-133	2	ASTM	Radiation Effects on Materials, 3 Volumes American Society for Testing and Materials, Philadelphia, Pa.	1957-58	S
F-134	2	Billington, D. S.	How Radiation Affects Materials Nucleonics, Vol 14, p 55	1956	A
F-135	2	Harwood, J. J.		Reinhold Publishing Co., New York 1958	В
F-136	2	Sun, K. H.	Effects of Atomic Radiation on High Polymers Modern Plastics, Vol 32, p 141	1954	A

....

7. Category G - Nondestructive Testing Methods

No.	Rank	Author(s)	Title	Publisher/Year	Code
G-1	1	Parker, Henry	Simplified Mechanics and Strength of Materials	John Wiley & Sons, New York 1951	В
G-2	2	Manson, S. S.	Fatigue, A Complex Subject - Some Simple Approximations Experimental Mechanics, Vol 5, No. 7	1965	A
G-3	4	Coffin, L. F. Jr.	A Study of the Effects of Cyclic Thermal Stresses in a Ductile Metal Transactions of the ASME, Vol 76	American Society of Mechanical Engineers, New York City 1954	S
G-4	3	Hirschberg- Manson-Smith D-1574	Fatigue Behavior of Materials Under Strain Cycling in the Low and Intermediate Life Range NASA Technical Note	National Aeronautical and Space Agency, Washington, D. C. 1963	S
G-5	2	Juvenall, R. C. and Lipson, C.	Handbook of Stress and Strength Recommended by Truscott of G. E. (Cincinnati) as good reference, applicable to structural and electromechanical design	McMillan Co. 1963	В
G-6	1	Peterson, R. E.	Stress Concentration Design Factors	John Wiley & Sons, New York City 1953	В
G-7´	2	Peterson, R. E.	Analytical Approach to Stress Concentration Effect in Fatigue of Aircraft Materials WADC TR 59-507	USAF 1959	s
G-8	2	Kooistra, L. F.	Effect of Plastic Fatigue in Pressure Vessel Materials and Design Welding Research Supplement	1957	
G-9	1	Manson, S. S.	Thermal Stress and Low Cycle Fatigue	McGraw Hill Book Co., New York City 1966	в
G-10	3	Freche- Nachtigall- Manson	A Proposed Relation for Cumulative Fatigue Damage in Bending Proceedings of ASTM	American Society for Testing of Material, Philadelphia, Pa. 1961	S
G-11	2	Bratt-Truscott Weber	Probabilistic Strength Mapping A Reliability Versus Life Prediction Tool (G.E.) Annals of Assurance Sciences, 7th Reliability and Maintainability Conference	American Society of Mechanical Engineers, New York City 1968	Р
G-12	3	Forrester - Thevenow	Designing for Expected Fatigue Life (S-N diagrams and their application to Reliability) Annals of Assurance Sciences, 7th Reliability and Maintainability Con- ference	American Society of Mechanical Engineers, New York City 1968	Р
				· ·	

3-130

No.	Rank	Author(s)	Title	Publisher/Year	Code
G-13	3	Van Valkenburg, H. E.	The Theory of Ultrasonic Material Testing Mechanical Engineering, Vol 71, No. 10, pp 817-820	1949	S
G-14	2	Turan, Jos. M.	Quality Control Handbook	McGraw Hill Book Co., New York City 1951	в
G-15	4	Vanzetti, Dr. Ricardo	Infrared Techniques Enhance Electronic Reli- ability Equipment Division, Raytheon Co. 9th National Symposium on Reliability and Quality Control New inspection methods with ultraviolet, black lights, etc.	1962	S
G-16	3	Unknown	The Weibull Distribution Function for Fatigue Life Materials Research and Standards, Vol 2, No. 5, p 405	1962	А
G-17	4	Altman, J. W. Folley, J. D. Jr. Wilkinson, F. R.	A Study to Determine the Feasibility of Fully Routine Trouble Shooting Procedures American Institute for Research, Pittsburgh, Pa. AIR-37-59-FR-213	1959	S

• • • •

LMEC-Memo-69-7, Vol I 3-131

i x

8. Category H - Data Handling Methods for Statistical Applications

Rank	Author(s)	Title	Publisher/Year	Code
2	Culbertson- Vorhees	Control Charts and Automation Applied to Analysis of Field Failure Data		
3	Howard, R.	Dynamic Programming and Markov Processes Recommended by Sandler	MIT Technology Press, Cambridge, Mass. 1960	В
2	Bellman, R.	Dynamic Programming	Princeton University Press, Princeton, N. J. 1957	в
2	Riley, V. and Gas's, S. I.	Linear Programming and Associated Techniques: A Comprehensive Bibliography in Linear, Non-Linear and Dynamic Programming	The John Hopkins Press, Baltimore, Md. 1958	В
4	Kao, J.H.K.	Computer Methods for Estimating Weibull Parameters in Reliability Studies IRE Transactions, Reliability and Quality Control	1958	Ρ
3	Pierce, W.H.	Asymptotic Properties of Systems Synthesized for Maximum Reliability Information Control 7.3, pp 340-359	1964	Р
1	Orchard-Hays	Advanced Linear-Programming Computing Techniques Good information for the experienced computer programmer, including linear programming, the math of algorithms, debugging, basic documentation, etc.	McGraw Hill BookCo., New York City, 1968	в
4	Collopy-Serlogi	Digital Computer Application to Non-Linear Vibrations AVCO Corporation Vibration and Shock Bulletin 34-II-85	Defense Documentation Center, Washington D.C.	S
2	Korn, G.A.	Random Process Simulation and Measurement	McGraw Hill BookCo., New York City	в
1	Leeds, Herbert D. and Wein- berg, G. M.	Computer Programming Fundamentals	McGraw Hill Book Co., New York City, 1961	в
3	O'Connel, E.P.	Utilization of the IBM 650 Computer in the Analysis of Field Failure Data Proceedings, 6th National Symposium on Reliability and Quality Control, pp489-496	1960	Р
3	Reeve, E.A.	Circuit Reliability Life Test Planning and Data Reduction Methods IBM Corp., Owego, New York, Report No. 59-816-61	1959	S
	2 3 2 4 3 1 4 2 1 4 2 1 3	 Culbertson-Vorhees Howard, R. Bellman, R. Bellman, R. Riley, V. and Gass, S. I. Kao, J. H. K. Pierce, W. H. Orchard-Hays Collopy-Serlogi Korn, G. A. Leeds, Herbert D. and Weinberg, G. M. O'Connel, E. P. 	2 Culbertson- Vorhees Control Charts and Automation Applied to Analysis of Field Failure Data 3 Howard, R. Dynamic Programming and Markov Processes Recommended by Sandler 2 Bellman, R. Dynamic Programming and Associated Gass, S. I. 2 Riley, V. and Gass, S. I. Linear Programming and Associated Techniques: A Comprehensive Bibliography in Linear, Non-Linear and Dynamic Programming 4 Kao, J. H. K. Computer Methods for Estimating Weibull Parameters in Reliability Studies IRE Transactions, Reliability and Quality Control 3 Pierce, W. H. Asymptotic Properties of Systems Synthesized for Maximum Reliability Information Control 7.3, pp 340-359 1 Orchard-Hays Advanced Linear-Programming Computing Techniques Good information for the experienced computer programmer, including linear programming, the math of algorithms, debugging, basic documentation, etc. 4 Collopy-Serlogi Digital Computer Application to Non-Linear Vibrations AVCO Corporation Vibration and Shock Bulletin 34-II-85 2 Korn, G. A. Random Process Simulation and Measurement 1 Leeds, Herbert D. and Wein- berg, G. M. Computer Programming Fundamentals 3 O'Connel, E. P. Utilization of the IBM 650 Computer in the Analysis of Field Failure Data Proceedings, 6th National Symposium on Reliability and Quality Control, p489-496 3 Reeve,	2 Culbertson- Vorhees Control Charts and Automation Applied to Analysis of Field Failure Data 3 Howard, R. Dynamic Programming and Markov Processes Recommended by Sandler MIT Technology Press, Cambridge, Mass. 1960 2 Bellman, R. Dynamic Programming and Associated Techniques: A Comprehensive Bibliography in Linear, Non-Linear and Dynamic Programming Princeton University Press, Princeton, N. J. 1957 2 Riley, V. and Gass, S. I. Linear Programming and Associated Techniques: A Comprehensive Bibliography in Linear, Non-Linear and Dynamic Programming The John Hopkins 4 Kao, J. H. K. Computer Methods for Estimating Weibull Parameters in Reliability Studies IRE Transactions, Reliability and Quality Control 1958 3 Pierce, W. H. Asymptotic Propraties of Systems Synthesized for Maximum Reliability Information Control 7.3, pp 340-359 1964 4 Collopy-Serlogi Digital Computer Application to Non-Linear Vibrations AVCO Corporation Vibration and Shock Bulletin 34-II-85 Defense Documentation Center, Washington D. C. 4 Collopy-Serlogi Digital Computer Application to Non-Linear Vibrations McGraw Hill Book Co., New York City, 1961 5 Computer Programming Fundamentals McGraw Hill Book Co., New York City, 1961 6 O'Connel, E. P. Utilization of the IBM 650 Computer in the Analysis of Field Failure Data Proceedi

9. Category I - Failure Rates and Failure Modes

No.	Rank	Author(s)	Title	Publisher/Year	Cod
I-1	1	DOD MIL- HDBK-217	Military Standardization Handbook Reliability Stress and Failure Rate Data for Electronic Equipment The data compiled here is essentially based on RCA Report TR-1100, but has been enlarged and experience of the Rome Air Development Center is included.	Defense Documenta- tion Center, Washington, D.C.,1962	S
1-2	1	RADC RD 161894-1	U.S. Department of Commerce, Office of Technical Services, Rome Air Development Center Reliability Notebook Original release contains Sections 1 through 7; Supplement 1 contains Sections 8, Part Reliability Factors	Defense Documenta- tion Center, Washington, D.C. 1961 (+ late revision)	S
I-3	2	TR-59-416-1	Reliability Stress Analysis for Electronic Equipment RCA Technical Report Camden, N.J.	Radio C'orporation of America, 1959	S
I-4	2	TR-133 NAVSHIP 93820	Handbook for the Prediction of Shipboard and Their Electronic Equipment Reliability Vitro Laboratories	1961	S
I-5	3	General Dyna- mics	Reliability Design Handbook General Dynamics Corp, Pomona Division Includes a table of generic failure data with upper and lower extremes, as applicable to the small missile system, Army-Navy- Marine use.		S
1-6	3	Hughes Aircraft RS-305	Research Study Electronic Parts Failure Rate Analysis Aerospace Group, HAC, Culver City, Calif.		S
I-7	2	Supt. /Docu- ments H 109	Quality Control and Reliability Handbook (Interim edition) Superintendant of Documents, Washington, D.C.	1960	S
I-8	4	Hecht, Bernard	Prediction of Failure Rate with Accelerated Life Tests Sprague Electric Co. Sprague Technical Paper 58-1		P
1-9	2	Brauer, Joseph	Phy sics of Failure Technical Memorandum RAD-TM-62-1, Applied Research Lab., Rome Air Develop- ment Center, USAF	Defense Documenta- tion Center, Washington, D.C., 1962	S
I-10	3	Brown, J. M. Leve, H. L. and White, P. H.	Reliability Design Criteria Hughes Aircraft Co. , Culver City, Calif	1959	S
I-11	2	Earles, D.R.and Eddins, Mary F.	Failure Criteria Reliability Engineering Data Series AVCO Research and Advanced Development Division	1962	S

3-133

No.	Rank	Author(s)	Title	Publisher/Year	Code
I-12	2	Earles, D.R. and Eddins, Mary F.	Failure Mechanisms and Failure Rates Reliability Engineering Data Series AVCO Research and Advanced Development Division	1962	s
I-13	3	Earles, D.R. and Eddins, Mary F.	Reliability Physics (inclusive Failure Rate Tables), and G. E. / Daytona Beach, 9th National Symposium on Reliability and Quality Control	1963	Р
I-14	3	Adams, Daniel A.	Component - Part Failure Rate Curve Consid- eration Space Guidance Center, IBM-Oswego, New York 9th National Symposium on Reliability and Quality Control	1963	S
I-15	3	Ebel, George H. and Lang, A.J.	Reliability Approach to the pare Parts Problem (With Failure Rate Examples) 9th National Symposium on Reliability and Quality Control	1963	P
I-16	4	Hepp, J. D.	Failure Modes of Precision Potentiometers Proceedings, 6th National Symposium on Reliability and Quality Control, pp183-184	1960	Р
I-17	3	Hopkinson, K.	Reliable Values and their Performance in Service Equipment Proceedings, 5th National Symposium on Reliability and Quality Control	1959	P
I-18	2	Horn, R. L.	Determination and Use of Failure Patterns Proceedings, 8th National Symposium on Reliability and Quality Control	1962	P
I-1 9	3	Jeffcoat, C.D.	Failure Modes of Component Parts Proceedings, 6th National Symposium on Reliability and Quality Control	1960	P
I-20	4	Lotka, A.	A Contribution to the Theory of Self-Renewing Aggregates with Special Reference to Industrial Replacement Annals of Mathematical Statistics, Vol 10, pp 1-25	1939	S
1-21	4	Pieruschka, E. G.	Failure Categories of Guided Missiles Proceedings, 6th National Symposium on Reliability and Quality Control	1960	S
I-22	3	Price, W.C.	Mean Life of Parallel Electronic Components- Exponential Distribution Case Proceedings of the Symposium on Redun- dancy Techniques for Computing Systems	Spartan Books Inc, Washington, D.C. 1962	В

10. Category J - Miscellaneous Other Texts

No.	Rank	Author(s)	Title	Publisher/Year	Code
J-1	3	Myers-Holm- McAllister	Handbook of Ocean and Underwater Engineer- ing Sponsored by Ocean Systems Operations, North American Rockwell	McGraw Hill Book Co., New York, 1968	в
J-2	3	Siegel, S.	Non-Parametric Statistics forthe Behavioral Sciences	McGraw Hill Book Co., New York, 1956	В
J-3	3	Inaba-Matson	Measurement of Human Errors with Existing Data Annals of Assurance Sciences, 7th Reliability and Maintainability Conference	1968	P
J-4	2	USAF DH-1	System Safety Handbook System Engineering Group Wright-Patterson AFB, Ohio	Defense Documenta- tion Center, Washington, D.C., 1967	S
J-5	4	Hurlbut, Jr., C.S.	Dana's Manual of Mineralogy l6th Edition	John Wiley & Sons, New York City, 1953	В
J-6	3	Lee, Y.W.	Statistical Theory of Communication	John Wiley & Sons, New York City, 1960	в
J-7	4	Gardner, W.R., Morgan, C.T. and Chapanis	Applied Experimental Psychology	John Wiley & Sons, New York City, 1949	В

C. CURRENT MILITARY, NASA, OR EQUIVALENT INDUSTRIAL SPECIFICATIONS AND STANDARDS ON RELIABILITY, MAINTAIN-ABILITY, AND SYSTEM EFFECTIVENESS (INCLUDING TESTING)

The list of Current Military, NASA or Equivalent Industrial Specifications and Standards on Reliability, Maintainability, and System Effectiveness (Including Testing) contains a number of documents, which have been superseded. They have been included because many long-term contracts are based on these obsolete documents.

Symbology

Most of the listed publications have been assigned a serial number prefixed with one of the following codes:

AFRAir Force RegulationAFSCAir Force Systems CommandAFSCRAir Force Systems Command RegulationAMCAir Material CommandAMCRAir Material Command RegulationASPRArmed Service Procurement RegulationsASTIAArmed Service Technical Information AgencyDDCDefense Documentation CenterDODDDept of Defense DirectiveDODHDept of Defense InstructionDSAHDefense Supply Agency ManualDSARDefense Supply Agency RegulationGSEGround Support EquipmentMIL-HDBKMilitary HandbookMIL-STD-Military StandardODOrdnance Department
SAFR Special Air Force Regulation
SPINST Special Projects Instruction (USN)
TR Technical Report
WADD Wright Air Development Depot
NASA National Aeronautical & Space Agency

1. Category K - Reliability Documentation

No.	Specification No.	Title	Remarks
K-1	MIL-STD-441	Reliability of Military Electronic Equipment	
K-2	MIL-STD-690A	Life Testing Sampling Proc. for Estab. Levels of Rel. & Confidence in Elect. Parts Specifications	Superseded by MIL-STD-785 Released 7/65
K-3	MIL-STD-721A	Definitions of Terms for Reliability Engineering	
K-4	MIL-STD-756A	Proc. for Pred. & Reporting Pred. of Reliability of Weapon Systems	
K-5	MIL-STD-757	Reliability Evaluation from Demonstration Area	
K-6	MIL-STD-781A	Test Levels and Accept/Reject Criteria for Rel. of Non-Expendable Equip. Effective 12/10/65 Note: Supersedes MIL-STD-781, MIL-R-23094A, MIL-R-26667A	
K-7	MIL-STD-785	Requirements for Reliability Program for Systems & Equipment Note: Supersedes MIL-STD-441, WS 3250, MIL-R-22256, MIL-R-26474, MIL-R-27070, MIL-R-27542, MIL-R-55231 (EL)	Effective 6/30/65
K-8	MIL-STD-790	Life Test Sampling Proc. for Established Levels of Rel. & Confidence in Elect. Parts Specifications	
K-9	MIL-STD-790A	Reliability Assurance Program for Elect. Part Specifications	
K-10	MIL-STD-810A	Military Standard-Environmental Test Methods for Aerospace & Ground Equipment	USAF, 23 June, 1964
K-11	MIL-STD-839	Parts with Established Rel. Levels, Selection and Use of	
K-12	MIL-STD-1304	Reliability Reports	Effective 7/66
K-13	LeRC-REL-la	Reliability Program Privisions for Research & Development Contracts	NASA LEWIS Document
K-14	AFBSD 61-55	Proc. for Conduct of Prel. Design Reviews and Critical Design Reviews	
K-15	AFR 80-5	Reliability Program for Systems, Subsystems and Equipment (R&D)	Supersedes AFR 375-5
K-16	D.O.D. H-108	Sampling Proc. & Table for Life and Rel. Testing (Based on Exponential Dist.)	
		LMEC-Memo-69-7, Vol I	
		3-137	

.

No.	Specification No.	Title	Remarks
۲_17	NASA NPC 250-1	Reliability Program Provisions for Space System Contractors	
C-18	NASA Circular #293	Integration of Reliability Requirements into NASA Procurements	
<-19	OCTI 300-6-60	Special Weapons Stockpile Reliability	
-20	USAF BLTN 519	Bibliography of Reliability Documents	Cancelled
-21	AR-705-5	Research and Development of Material	
<u>-22</u>	AR-705-15	Operation of Material Under Extreme Conditions of Environment	
к-23	AR-705-25	Reliability Program for Material and Equipment	
K-24	USAF BLTN 2629	Reliability Requirements for Ground Electronic Equipment	705
к-25	WS-3250 (BUWEPS)	General Specifications for Reliability	Superseded by MIL-STD-785
к-26	NASA NHB 5320.2	Contractor Reliability Plans and Performance Evaluation Manual	Effective 10/65
K-27	NASA-SP-6001	Apollo Terminology	Effective 8/63
K-28	NASA-SP-6002	Program Standards, Reliability Program Evaluation Procedures	Released 10/63
K-29	MIL-A-8866 (ASG)	Airplane Strength and Rigidity Rel. Req., Repeated Loads & Fatigue	
K-30	MIL-R-19610	General Specification for Reliability of Prod. Electronic Equipment	
K-31	MIL-R-22732B	Reliability Req. for Shipboard and Ground Electronic Equipment	
K-32	MIL-R-22973	General Spec. for Rel. Index Determination for Avionic Equip. Models	
K-33	MIL-R-26484A	Reliability Req. for Development of Electronic Subsystems for Equip.	
K-34	MIL-R-27173	Reliability Requirements for Electronic Ground Checkout Equip.	
K-35	MIL-R-38100B	General Spec. for Reliability and Q.A. Req. for Established Rel. Parts	
K-36	MIL-R-55413	Reliability Prediction & Demonstration for Airborne Surveillance System	Superseded by MIL-STD-785
K-37	AFBM-STL	Reliability Policies and Procedures	

.

No.	Specification No.	Title	Remarks
K-38	AGREE Report	Reliability of Military Electronic Equipment	
K-39	IDEP I	Interservice Data Exchange Program I	
K-40	IDEP II	Interservice Data Exchange Program II	
K-41	NARM Report	Reliability Guidelines for Relays	Released 6/63, National Assoc. of Relay Manuf.
K-42	NARM Report	Recommended Specification for High Reliability Relays	
K-43	PSMR-1	Volumes I and II, Part Specification Management for Reliability	Known as Darnell Report
K-44	TPS-4	Reliability Control in Aerospace Equipment Development (SAE)	Outstanding Ref. Doc.
K-45	AFSC-TR-4	Sampling Proc. & Tables for Life and Reliability Testing, Weibull Dist.	Hazard Rate Criterion
K-46	AFSC-TR-6	Sampling Proc. & Tables for Life, Reliability Testing, Weibull Dist.	Reliable Life Criterion
K-47	AFSC-TR-7	Factors & Procedures for Applying MIL-STD-105D to Life & Rel. Testing	
K-48	SPL-TI-7-58	Integrated Polaris Missile System Reliability Program	Navy
K-49	11ND-P-393	Suggestions for Designers of Electronic Equipment	Same as NEL 1058-59
K-50	NAVWEPS 00-65-502	Handbook Reliability Engineering	
K-51	SPL-TI-22-64	Fleet Ballistic Missile Trouble and Failure Report System	
K-52	SPL TD 46-61	Reliability, Central Source	Navy
۲-53	SP 63-467- & 470	Failure Rate Data Handbook (FARADA)	
\$-54	N 64 27220	Bibliography on Reliability (1957 through 1963)	25 pages of ref. articles
\$-55	SSD Exhibit 64-3	Standard Format for Reliability Program Plan	
5-56	AFSC-TR-65-1	Requirements Methodology	
57	AFSC-TR-65-2	Prediction Measurement	
-58	AFSC-TR-65-3	Data Collection and Management Reports	
-59	AFSC-TR-65-4	Cost Effectiveness Optimization	
(AFSC-TR-65-5	Management Systems	

-

& Associate EquipmentK-75SPINST 3100.1AFBM Weapon System Trouble and Failure Report SystemK-76SPINST 3900.1Reliability and Failure RateK-77SPINST 3900.2Reliability Reporting Requirements for the FBM Weapon SystemK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK-79OD 21612Reliability Requirements for Primary SubcontractorsK-80OD 21613Reliability Requirements for Secondary Subcontractors	Specification No.	Title	Remarks
1.4.1 Deprime to the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of ter	AFSC-TR-65-6	Chairman's Final Report	
C-64AFSC-TR-80Techniques for Rel. Measurement and Pred. Based on Field Failure DataC-65ESDP 80-3General Req. for Rel. & Maint. Data Collection & Evaluation System for Elect. SystemsC-66ESDP 80-4Rel. & Maint. Prog. Problems Observed During Contractor MonitoringC-67ESDP 80-6Guidance on Proposal Content for Rel. & Maint. in System/Equip. ProcurementsC-68ESDP 80-7Monitoring of Contractors Reliability & Maintainability ProgramsC-69MIL-HDBK-217ARel. Stress & Failure Rate Data for Electronic EquipmentC-70OP 400General Instructions: Design, Manuf. & Inspection of Naval Ord. Equip.C-71AFR 400-46Increased Reliability of Operational Systems (IROS)C-72AMCR 700-15Reliability Program for AMC Material & Associate EquipmentC-75SPINST 3100. 1AFBM Weapon System FBM Weapon SystemU. S. Army Missile Cont & Associate EquipmentC-76SPINST 3900. 1Reliability Reporting Requirements for the FBM Weapon SystemConfidential FBM Weapon SystemC-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsConfidential FBM Weapon SystemC-78OD 21612Reliability Requirements for Primary SubcontractorsConfidential	AMCP 74-1	Supplement to Task Group #1 of AGREE	Also called AMC 74-1
Based on Field Failure DataC-65ESDP 80-3General Req. for Rel. & Maint, Data Collection & Evaluation System for Elect. SystemsC-66ESDP 80-4Rel. & Maint, Prog. Problems Observed During Contractor MonitoringC-67ESDP 80-6Guidance on Proposal Content for Rel. & Maint. in System/Equip. ProcurementsC-68ESDP 80-7Monitoring of Contractors Reliability & Maintainability ProgramsC-69MIL-HDBK-217ARel. Stress & Failure Rate Data for Electronic EquipmentC-70OP 400General Instructions: Design, Manuf. & Inspection of Naval Ord. Equip.C-71AFR 400-46Increased Reliability of Operational Systems (IROS)C-72AMCR 700-15Reliability Program for AMC Material & Associate EquipmentC-75SPINST 3100, IAFBM Weapon System Trouble and Failure Report SystemC-76SPINST 3900, 1Reliability Reporting Requirements for the FBM Weapon SystemC-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsC-78OD 21612Reliability Requirements for Secondary Subcontractors	AMCP 74-1	Description of AGREE Task Group #III	
& Evaluation System for Elect. SystemsK-66ESDP 80-4Rel. & Maint. Prog. Problems Observed During Contractor MonitoringK-67ESDP 80-6Guidance on Proposal Content for Rel. & Maint. in System/Equip. ProcurementsK-68ESDP 80-7Monitoring of Contractors Reliability & Maintainability ProgramsK-69MILHDBK-217ARel. Stress & Failure Rate Data for Electronic EquipmentK-70OP 400General Instructions: Design, Manuf. & Inspection of Naval Ord. Equip.K-71AFR 400-46(HROS)K-72AMCR 700-15Reliability Program for AMC MaterialK-73MICOM REG. 702-1Reliability Prog. Req. for Missile Systems & Associate EquipmentK-75SPINST 3100.1AFBM Weapon System Trouble and Failure Report SystemK-76SPINST 3900.1Reliability Requirements for the FBM Weapon SystemK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK-78OD 21612Reliability Requirements for Secondary Subcontractors	AFSC-TR-80		
K-67ESDP 80-6During Contractor MonitoringK-67ESDP 80-6Guidance on Proposal Content for Rel. & Maint. in System/Equip. ProcurementsK-68ESDP 80-7Monitoring of Contractors Reliability & Maintainability ProgramsK-69MIL-HDBK-217ARel. Stress & Failure Rate Data for Electronic EquipmentK-70OP 400General Instructions: Design, Manuf. & Inspection of Naval Ord. Equip.K-71AFR 400-46Increased Reliability of Operational Systems (IROS)K-72AMCR 700-15Reliability Program for AMC Material & Associate EquipmentK-74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentK-75SPINST 3100.1AFBM Weapon System Trouble and Failure Report SystemK-76SPINST 3900.2Reliability Reporting Requirements for the FBM Weapon SystemK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK-79OD 21612Reliability Requirements for Primary Subcontractors	ESDP 80-3		
in System/Equip. ProcurementsK-68ESDP 80-7Monitoring of Contractors Reliability & Maintainability ProgramsK-69MIL-HDBK-217ARel. Stress & Failure Rate Data for Electronic EquipmentK-70OP 400General Instructions: Design, Manuf. & Inspection of Naval Ord. Equip.K-71AFR 400-46Increased Reliability of Operational Systems (IROS)K-72AMCR 700-15Reliability Program for AMC Material Reliability Prog. Req. for Missile Systems & Associate EquipmentK-74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentK-75SPINST 3100. IAFBM Weapon System Trouble and Failure Report SystemK-76SPINST 3900. 1Reliability Reporting Requirements for the FBM Weapon SystemK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK-79OD 21612Reliability Requirements for Primary SubcontractorsK-80OD 21613Reliability Requirements for Secondary Subcontractors	ESDP 80-4		
Maintainability ProgramsK-69MIL-HDEK-217ARel. Stress & Failure Rate Data for Electronic EquipmentK-70OP 400General Instructions: Design, Manuf. & Inspection of Naval Ord. Equip.K-71AFR 400-46Increased Reliability of Operational Systems (IROS)K-72AMCR 700-15Reliability Program for AMC MaterialK-73MICOM REG. 702-1Reliability Prog. Req. for Missile Systems & Associate EquipmentK-74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentK-75SPINST 3100.1AFBM Weapon System Trouble and Failure Report SystemK-76SPINST 3900.1Reliability Reporting Requirements for the FBM Weapon SystemK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK-79OD 21612Reliability Requirements for Primary SubcontractorsK-80OD 21613Reliability Requirements for Secondary Subcontractors	ESDP 80-6		
EquipmentK70OP 400General Instructions: Design, Manuf. & Inspection of Naval Ord. Equip.K71AFR 400-46Increased Reliability of Operational Systems (IROS)K72AMCR 700-15Reliability Program for AMC MaterialK73MICOM REG. 702-1Reliability Prog. Req. for Missile Systems & Associate EquipmentK74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentK75SPINST 3100. IAFBM Weapon System Trouble and Failure Report SystemK76SPINST 3900. 1Reliability Reporting Requirements for the FBM Weapon SystemK78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK79OD 21612Reliability Requirements for Secondary SubcontractorsK-80OD 21613Reliability Requirements for Secondary Subcontractors	ESDP 80-7		
K71AFR 400-46Inspection of Naval Ord. Equip.K71AFR 400-46Increased Reliability of Operational Systems (IROS)K72AMCR 700-15Reliability Program for AMC MaterialK73MICOM REG. 702-1Reliability Prog. Req. for Missile Systems & Associate EquipmentU. S. Army Missile Con & Associate EquipmentK74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentU. S. Army Missile Con & Associate EquipmentK75SPINST 3100.1AFBM Weapon System Trouble and Failure Report SystemConfidentialK76SPINST 3900.1Reliability Reporting Requirements for the FBM Weapon SystemConfidentialK77SPINST 3900.2Reliability Reporting Requirements for the FBM Weapon SystemConfidentialK78NASA SP-6501Introduction to Evaluation of Rel. ProgramsConfidentialK79OD 21612Reliability Requirements for Primary SubcontractorsReliability Requirements for Secondary Subcontractors	MIL-HDBK-217A		
K-72AMCR 700-15Reliability Program for AMC MaterialK-73MICOM REG. 702-1Reliability, Q. A. & MaintainabilityK-74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentU. S. Army Missile Con & Associate EquipmentK-75SPINST 3100.1AFBM Weapon System Trouble and Failure Report SystemConfidentialK-76SPINST 3900.1Reliability Reporting Requirements for the FBM Weapon SystemConfidentialK-77SPINST 3900.2Reliability Reporting Requirements for the FBM Weapon SystemConfidentialK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsConfidentialK-79OD 21612Reliability Requirements for Primary SubcontractorsReliability Requirements for Secondary SubcontractorsReliability Requirements for Secondary Subcontractors	OP 400		
K73MICOM REG. 702-1Reliability, Q. A. & MaintainabilityK74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentU. S. Army Missile Cont & Associate EquipmentK75SPINST 3100.1AFBM Weapon System Trouble and Failure Report SystemU. S. Army Missile Cont & Reliability and Failure RateK76SPINST 3900.1Reliability Reporting Requirements for the FBM Weapon SystemConfidentialK77SPINST 3900.2Reliability Reporting Requirements for the FBM Weapon SystemConfidentialK78NASA SP-6501Introduction to Evaluation of Rel. ProgramsConfidentialK79OD 21612Reliability Requirements for Primary SubcontractorsReliability Requirements for Secondary Subcontractors	AFR 400-46		
K-74RCR 800-AReliability Prog. Req. for Missile Systems & Associate EquipmentU. S. Army Missile Con & Associate EquipmentK-75SPINST 3100. IAFBM Weapon System Trouble and Failure Report SystemU. S. Army Missile Con Reliability and Failure RateK-76SPINST 3900. 1Reliability and Failure RateConfidentialK-77SPINST 3900. 2Reliability Reporting Requirements for the FBM Weapon SystemConfidentialK-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsConfidentialK-79OD 21612Reliability Requirements for Primary SubcontractorsSubcontractorsK-80OD 21613Reliability Requirements for Secondary SubcontractorsSubcontractors	AMCR 700-15	Reliability Program for AMC Material	
 & Associate Equipment FBM Weapon System Trouble and Failure Report System SPINST 3100. 1A FBM Weapon System Trouble and Failure Reliability and Failure Rate Reliability Reporting Requirements for the FBM Weapon System NASA SP-6501 Introduction to Evaluation of Rel. Programs OD 21612 Reliability Requirements for Primary Subcontractors OD 21613 Reliability Requirements for Secondary Subcontractors 	MICOM REG. 702-1	Reliability, Q.A. & Maintainability	
Report SystemC-76SPINST 3900.1Reliability and Failure RateC-77SPINST 3900.2Reliability Reporting Requirements for the FBM Weapon SystemConfidentialC-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsC-79OD 21612Reliability Requirements for Primary SubcontractorsC-80OD 21613Reliability Requirements for Secondary Subcontractors	RCR 800-A		U. S. Army Missile Command
C-77SPINST 3900.2Reliability Reporting Requirements for the FBM Weapon SystemConfidentialC-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsC-79OD 21612Reliability Requirements for Primary SubcontractorsC-80OD 21613Reliability Requirements for Secondary Subcontractors	SPINST 3100.1A		-
K-78NASA SP-6501Introduction to Evaluation of Rel. ProgramsK-79OD 21612Reliability Requirements for Primary SubcontractorsK-80OD 21613Reliability Requirements for Secondary Subcontractors	SPINST 3900.1	Reliability and Failure Rate	
C-79OD 21612Reliability Requirements for Primary SubcontractorsC-80OD 21613Reliability Requirements for Secondary Subcontractors	SPINST 3900.2		Confidential
K-80 OD 21613 Reliability Requirements for Secondary Subcontractors	NASA SP-6501	Introduction to Evaluation of Rel. Programs	
Subcontractors	OD 21612		
K-81 OD 29304 Guide Manual for Reliability Measurement	OD 21613		
Program	OD 29304	Guide Manual for Reliability Measurement Program	

No.	Specification No.	Title	Remarks
K-82	РВ 121838	NEL Reliability Bibliography	
K-83	PB 121839	Reliability Design Handbook	
K-84	PB 131678	Reliability Stress Analysis for Electronic Equipment	Also called TR-1100
K-85	AD 148801	Methods of Field Data Acquisition, Reduction and Analysis	ASTIA Document
K-86	PB 161894	RADC Reliability Notebook	Latest revision is -3. Same as TR-58-111 or AD-148868
K-87	PB 181080	Rel. Analysis Data for Systems & Components Design Engineers	
K-88	WD-25477	Reliability Engineering Spec. & Rel. Assurance	Film MN 877F
K-89	AD 265577	A Survey of Literature of Reliability	ASTIA Document lists 521
K-90	AD 426501	A Reliability-Maint. Tradeoff Proc. for Navy Electronic Equip.	*
K-91	AD 622676	Survey of Studies & Computer Programming Efforts for Rel., Maint. & Systems Effectiveness	DOD Report, 9/65
K-92	NAVSHIPS 93820	Handbook for Pred. of Shipboard & Shore Electronic Equip. Rel.	
K-93	NAVSHIPS 94501	Bureau of Ship Reliability Design Handbook Review of Quality and Reliability of D.O.D. Material	Dated 12/4/62
K-94	NAVWEPS 00-65-502	Handbook Reliability Engineering Bureau of Naval Weapons	6/1/64

··-··

2. Category L - Quality Assurance

-

No.	Specification No.	Title	Remarks
L-1	MIL-STD-105D	Sampling Procedures and Tables for Inspection by Attributes	Also called ABC-STD-105, (American-British-Canadian)
L-2	MIL-STD-109A	Quality Assurance Terms & Definitions	
L-3	MISTD-252	Wired Equipment Classification of Visual and Mechanical Defects	
L-4	MIL-STD-414	Sampling Procedures and Tables, Inspection by Variables for % Defective	
L-5	MIL-STD-643	Evaluation of Contractor Quality Control Systems	
L-6	MIL-Q-9858A	Quality Control System Requirements for use by Army, Navy and Air Force, Basic DOD QC Spec.	Basic DOD QC Spec.
L-7	MRB Nr 515	[°] Control of Nonconforming Supplies (Tied to MIL-Q-9858 by Notice #2)	Basic MRB Spec.
L-8	D.O.D. H-50	Evaluation of Contractor Quality Control Systems	Explains MIL-Q-9858A
L-9	NASA-LEWIS QA-2A	Quality Assurance Prog. Provisions, Research, Test & Dev. Programs	
L-10	ASPR 14-001.2	Procurement Quality Assurance	Details contractual regulations
L-11	WR-43 (BUWEPS)	Preparation of Quality Assurance Provisions	
L-12	AFR 74-1	Assuring Quality of Production of Complex Supplies and Equipment	
L-13	AFSC 74-1	Quality Assurance Management	
L-14	AFR 74-9	Inspection of Purchase Manufactured by Subcontractors and Vendors	
L-15	RCAF PROC. 101-1	Specification for Quality Control of Aircraft and Associated Equipment	RCAF equivalent of MIL-Q-985
L-16	DODH 105	Sampling Procedure for Acceptance Inspection	
L-17	DODH 106	Multilevel Continuous Sampling Proc. and Tables, Insp. by Attributes	
L-18	DODH 107	Single Level Continuous Sampling Proc. and Tables, Insp. by Attributes	
-19	DODH 109	Statistical Proc. for Determining Validity of Suppliers' Attributes Insp.	
L-20	NASA NPC 200-1A	Quality Assurance Provisions for Government Agencies	Instructions for NASA Insp.
2-21	NASA NPC 200-2	Quality Program Provisions for Space System Contractors	Basic NASA QA Spec.
- 1			

No.	Specification No.	Title	Remarks
L-22	NASA NPC 200-3	Inspection System Provisions for Suppliers of Space Materials, Parts, Components, and Services	
L-23	ORD-M608-10	Ordnance Inspection HandbookSampling Inspection by Variables	
L-24	ORD-M608-11	Ordnance Inspection HandbookProc. & Tables for Cont. Sampling by Attributes	
L-25	AMCR 700-6	Quality Assurance System	
L-26	AMCR 715-509	Army Quality Assurance Technical Procedures	Was ORDM 4-12
L-27	DCAS	Purchased Material Quality Implementation Manual	
L-28	DODD 4155.11	Improved Management for Quality & Reliability Assurance of Material	
L-29	SPINST 4200.1	Waivers & Deviations, Special Proj. Office Policy	
L-30	BUWEPS INST. 4355. 12	Bureau of Naval Weapons Policy for Material Review	Was BUAER Inst. 4355.11
L-31	BUWEPS INST. 4355.20	Procedure for Granting Waivers for Nonconforming Material	
L-32	DSAM 8200. 1	Procurement Quality Assurance Manual	
L-33	DSAR 8205. 1	Preparation and Distribution of Material Insp. & Receiving Reports	Inst. for DD Form 250
L-34	MIL-G-14461	General Quality Control Requirements	U.S. Army
L-35	OD 21454	Ordnance Classification of Defects (OCD) Prod. & Promulgation Inst.	
L-36	MIL-Q-21549B/SPL4	Supplier Product Quality Program Requirements Document for Primary Suppliers	Polaris, Poseidon, Program
L-37	MIL-Q-21549B/SPL5	Supplier Product Quality Program Requirements Document for Secondary Suppliers	Polaris, Poseidon, Program
L-38	MIL-Q-22631B	Q.C., Metal Wrought Products Except Forgings Procured to Non Gov. Spec.	
L-39	OD 28800	Shelf Life Control of Rubber and Bulk Materials	
L-40	MSFC	Material Review Requirements	Effective 3/63

•

3. Category M - Maintainability

No.	Specification No.	Title	Remarks
ví - 1	MIL-STD-280	Definitions of Terms for Equipment Divisions	
M-2	MIL-STD-470	Maintainability Requirements for Systems & Equipment Note: Supersedes MIL-M-26512C (USAF), MIL-M-55214 (EL), MIL-M-45765 (WI), MIL-M-23313A (SHIPS), MIL-M-23603 (WEPS), MIL-STD- 1228 (ARMY), WS-3009 (WEPS)	Effective 3/21/66
4- 3	MIL-STD-471	Maintainability Demonstration	2/15/66
M-4	MIL-STD-721	Definition of Effectiveness Terms for Reliability, Maintainability, Human Factors & Safety	
M-5	MIL-STD-778	Maintainability Terms & Definitions	Cancelled 8/66
M-6	MIL-STD-829	Terms and Definitions for Maintainability	Cancelled 6/64
M-7	MIL-STD-1228	Maintainability Criteria for Tank-Automative Material	Superseded by MIL-STD-470
M-8	WR-30	Integrated Maint. Management for Aeronautical Weapons, Weapons Systems & Releated Equipment	
v I-9	XWR-30A	Integrated Logistic Support Program Require- ments for Weapons Systems Equipment	-
M-10	WS-3099 (BUWEPS)	General Specification for Maintainability	Superseded by MIL-STD-470
M-1 1	AFBM 59-32	Design for Maintainability Program for Weapon and Space Systems	
vi- 12	ASD 61-381	Guide to Design of Mechanical Equip. for Maintainability	Same as ASTIA 269332
M-13	ASD 61-424	Guide to Integrated System Design for Maintainability	
M-14	AFBSD 62-53	Maintainability Design Criteria	
vi- 15	AFR 66-1	Policy, Objectives & Responsibilities - Depot, Field & Organization Maint.	
M-16	AFM 66-1	Maintenance Management - Depot, Field & Organizational Maintenance	
M-17	AFM 66-2	Maintenance Engineering Methods and Management	
M-18	AFM 66-5	Maintainability in Air Force Equipment	
M-19	AFM 66-29	Maintainability - Weapon, Support, Command & Control Systems	

· - · ----

No.	Specification No.	Title	Remarks
M-20	AFR 66-29	Maintainability - Program for Systems, Subsystems & Equipment	
M-21	AFSCM 80-3	Handbook Instructions for Personnel Subsystem Designers	Referenced in MIL-M-265
M-22	AFSCM 80-5	Handbook Instructions for Ground Equipment Designers	Referenced in MIL-M-265
M-23	AFSCM 80-6	Handbook Instructions for Ground Support Equipment	Referenced in MIL-M-265
M-24	AFSCM 80-9	Handbook Instruction for Weapon System Designer	Referenced in MIL-M-265
M-25	AFSCR 80-9	Maintainability Policy for Research & Development	
м-26	MIL-HDBK-472	Maintainability Prediction	
M-27	AR-750-6	Maintenance Planning Allocation and Coordination	
M-28	MIL-I-85000	Interchangeability & Replaceability of Component Parts for Aircraft & Missiles	
M-29	USA OMC	Maintainability Design Factors	
M-30	T.O. 00-20 Series	Supplements to AFM 66-1	
M-31	ORD P 20-134	Maintenance Engineering Guide for Ordnance Design	Same as PB 18132
M-32	RADC TN-60-5	Methods of Maintainability Measurements and Predictions	
M-33	WADD TN 60-82	Maintainability and Supportability Evaluation Technique	
M-34	WWDPR Exhibit 61-42	Maintainability Req. for Reconnaissance Sub- system, Ground Support Systems & Equipment	
M-35	RADC TRD 63-85	Maintainability Engineering	USAF
M-36	CRD 63-140 (AD 405-779)	Criteria for Discard at Failure Maintenance	
M-37	RC-S-64-1	Maintainability Engineering Guide	
M-38	TRD ESD-TDD 64-616	Handbook for Reliability and Maintainability Monitors	Same as AD 611-577
M-39	NAVTRADEVCEN 330-1 Series	Design for Maintainability	Has four additional supplements: -1, -2, -3, & -4
Ì		#	

No.	Specification No.	Title	Remarks
M-40	AD 415-416	Verification of Quantitative Maintainability Requirements	
M-41	AR 705-26	Maintainability Program for Material and Equipment	Note: to be combined with and released as AR-705-25 After 6/66
M-42	AMCP 706-134	Engineering Design Handbook, Maintainability Guide for Design	Effective 2/66
M-43	AMCR 750-6	Maintenance Engineering Objectives	
M-44	AMCR 750-7	Depot Maintenance Pilot Overhaul & Recondition Testing	
M-45	AMCR 750-15	Maintenance Support Planning	
M-46	SLC 4301D (SIG)	Maintainability Design	See MIL-M-55214
M-47	DDC NO. AD 440-381	Mathematical Models for Maintainability Evaluation	
M-48	SPINST P4700.1A	Special Projects Office Preventative Main- tenance Program (SSB (N))	
M-49	OPNAVInstr. 4700.16	Preventative Maintenance System	
M-5 0	NAVSHIPS 4855	Operational Time Log (5-61)	
M-51	Instruction 5420.48	Maintenance & Material Management Project Group	
M-52	NAVSHIPS NO. 8461	Concepts Associated with Systems Effectiveness	
M- 53	BUSHIPS 10050-1	Failure/Replacement Report	
M-54	OD 28801	Service Life Evaluation Program	
M-55	DDC NO. AD 601080	Maintainability A Primer in Designing for Profit	
M-56	DDC NO. AD 603241	Maintainability Prediction Methods and Results	

Category N - Safety Documents 4.

...........

.

DRD M 7-224 SWG 9S-6005 10-CRF-20	Ordnance Safety Manual Handbook of Nuclear Weapon System Safety Check	
10-CRF-20	Check	
		a
ATN (22 2	Code of Federal Regulation on Radiation	
AFM 32-3	Accident Prevention Handbook	
AFSWG TR-60-28	Handbook of Nuclear Systems Safety Design Check	
AFBSD 62-41	System Safety Engineering: General Spec. for Dev. of AF Ballistic Missile Systems	
AFBSD 62-82	Weapon System Safety Criteria	
AFBSD 63-8	System Safety Engineering: Safety Design Criteria for Dev. of Electro-Explosive Ordnance Systems	
AFM 122-1	The Nuclear Weapon Safety Program	References several dozen specific AFR's on subject
EM 385-1-1	Corps of Engineers Safety Manual	
AEC 500	Federal Regulation Handling Radiation Materials	
OPMAN INST 5510.83	Criteria and Standards for Safeguarding Nuclear Weapons	
DOD INST 5530.15	Safety Studies and Reviews of Atomic Weapons Systems	
OPNAV INST. 8020.9A	Safety Studies and Review Involving Nuclear Weapons Systems	
MIL-S-38130	Safety Engineering of Systems and Associated Subsystems and Equipment	
MIL-S-58077	General Spec. for Safety Eng. of Aircraft Systems, Subsystems Equipment	
Office of Industrial Hazards, Bureau of Labor Institute, U.S. Dept of Labor	A Selected Bibliography of Major References Material in Safety Engineering and Related Fields	Dated 9/15/66, 212 pages
	FBSD 62-82 FBSD 63-8 FM 122-1 M 385-1-1 EC 500 PMAN INST 5510.83 OD INST 5530.15 PNAV INST. 8020.9A ML-S-38130 ML-S-58077 Pffice of Industrial [azards, Bureau of abor Institute, U.S.	Dev. of AF Ballistic Missile SystemsFBSD 62-82Weapon System Safety CriteriaFBSD 63-8System Safety Engineering: Safety Design Criteria for Dev. of Electro-Explosive Ordnance SystemsFM 122-1The Nuclear Weapon Safety ProgramEM 385-1-1Corps of Engineers Safety Manual Federal Regulation Handling Radiation MaterialsPMAN INST 5510.83Criteria and Standards for Safeguarding Nuclear WeaponsPOD INST 5530.15Safety Studies and Reviews of Atomic Weapons SystemsPNAV INST. 8020.9ASafety Studies and Review Involving Nuclear Weapons SystemsML-S-38130Safety Engineering of Systems and Associated Subsystems and EquipmentML-S-58077General Spec. for Safety Eng. of Aircraft Systems, Subsystems EquipmentA Selected Bibliography of Major References Material in Safety Engineering and Related Fields

LMEC-Memo-69-7, Vol I 3-147

5. Category O - Human Factors

AMCR 10-4Organizations & Functions, Mission & Functions, of Human Engineering Labs0-5TM 21-62Manual of Standard Practice for Human Factors in Vehicle Design0-6AFM 35-99Human Reliability Program - Military Personnel0-7WADC TR-56-488Human Engineering Guide for Equipment Design0-8WDT 57-8AHuman Engineering Design Standards for Missile System Equipment0-9WADD TR-60-36Human Eng. Testing & Malfunction Data Collection in Weapon System Test Programs0-10AFBM 60-65AAerospace System Develop.0-11AR 70-8Human Factors Operations Research Designers1-12AFSCM 80-3Handbook Instructions for Personnel Subsystem Designers1-14MSFC-STD-391Human Engineering Criteria for Aircraft, Missile and Space Systems Ground Support Part I & II1-16SCL 1787Human Factors Engineering Development of Missile System and Equipment1-17MIL-H-24148Human Factors Engineering Development of Missile Systems & Equipment1-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements Information	No.	Specification No.	Title	Remarks
S-5-65Factors Engineering Requirements0-3AMC P. I. 7-380Human Factors Engineering Contract Clause0-4AMCR 10-4Organizations & Functions, Mission & Functions, of Human Engineering Labs0-5TM 21-62Manual of Standard Practice for Human Factors in Vehicle Design0-6AFM 35-99Human Regineering Guide for Equipment Design0-6AFM 35-99Human Engineering Design Standards for Missile System Equipment0-7WADC TR-56-488Human Eng. Testing & Malfunction Data Collection in Weapon System Test Programs0-9WADD TR-60-36Human Factors Operations Research0-10AFBM 60-65APersonnel Subsystem Develop.0-11AR 70-8Human Factors Engineering Programs0-12AFSCM 80-3Handbook Instructions for Personnel Subsystem Designers0-13AFL 375-5Planning and Programming for System Personnel0-14MSFC-STD-391Human Factors Engineering for Aircraft, (3 Vols) Part I & II0-15MIL-STD-803A Missile and Space Systems Ground Support0-16SCL 1787Human Factors Engineering Development of Missile Systems0-17MIS 10017Human Engineering Requirements for Bureau of Ships-Systems kequipment0-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements Information0-20MIL-S-26634Preparation of Specifications, Weapons System,)-1			
AMCR 10-4Organizations & Functions, Mission & Functions, of Human Engineering Labs0-4AMCR 10-4Organizations & Functions, Mission & Functions, of Human Engineering Labs0-5TM 21-62Manual of Standard Practice for Human Factors in Vehicle Design0-6AFM 35-99Human Reliability Program - Military Personnel0-7WADC TR-56-488Human Engineering Design Standards for Missile System Equipment0-8WDT 57-8AHuman Engineering Design Standards for Missile System Test Programs0-9WADD TR-60-36Human Eng. Testing & Malfunction Data Collection in Weapon System Test Programs0-10AFBM 60-65AAerospace System Personnel - Equip. Data for Personnel Subsystem Develop.111AR 70-8Human Factors Operations Research-12AFSCM 80-3Handbook Instructions for Personnel Subsystem Designers-13AFL 375-5Planning and Programming for System Personnel-14MSFC-STD-391Human Engineering Criteria for Aircraft, (3 Vols) Part I & II-16SCL 1787Human Factors Engineering for Signal Corps System and Equipment-17MIS 10017Human Engineering Requirements for Bureau of Shisel Systems-18MIL-H-24148Human Engineering Requirements for Bureau of Shise-Systems Information-19MIL-S-26634Preparation of Specifications, Weapons System,	0-2			
O-5TM 21-62Manual of Standard Practice for Human Factors in Vehicle DesignEffective 7/65O-6AFM 35-99Human Reliability Program - Military PersonnelEffective 7/65O-7WADC TR-56-488Human Engineering Guide for Equipment DesignEffective 7/65O-8WDT 57-8AHuman Engineering Design Standards for Missile System EquipmentEffective 7/65O-9WADD TR-60-36Human Eng. Testing & Malfunction Data Collection in Weapon System Test ProgramsEffective 7/65O-10AFBM 60-65AAerospace System Personnel - Equip. Data for Personnel Subsystem Develop.Effective 7/65O-11AR 70-8Human Factors Operations ResearchDesignersO-12AFSCM 80-3Handbook Instructions for Personnel Subsystem DesignersEffective 7/65O-14MSFC-STD-391Human Factors Engineering ProgramsEffective 7/65O-15MIL-STD-803A (3 Vols) Part I & IIHuman Factors Engineering for Signal Corps System and EquipmentEquipment of Missile SystemsO-17MIS 10017Human Factors Engineering Development of Missile Systems & EquipmentMIL-H-24148O-19MIL-D-26239Data, Qualitative and Quantitative Personnel of Ships-Systems & EquipmentData, Qualitative and System,	D-3	AMC P.I. 7-380	Human Factors Engineering Contract Clause	
o6AFM 35-99Human Reliability Program - Military PersonnelEffective 7/6507WADC TR-56-488Human Engineering Guide for Equipment DesignEffective 7/6508WDT 57-8AHuman Engineering Design Standards for Missile System EquipmentMissile System Equipment09WADD TR-60-36Human Eng. Testing & Malfunction Data Collection in Weapon System Test Programs010AFBM 60-65AAerospace System Develop.011AR 70-8Human Factors Operations Research012AFSCM 80-3Handbook Instructions for Personnel Subsystem Designers013AFL 375-5Planning and Programming for System Personnel Equipment014MSFC-STD-391Human Engineering Criteria for Aircraft, Missile and Space Systems Ground Support Equipment016SCL 1787Human Factors Engineering for Signal Corps System and Equipment017MIS 10017Human Factors Engineering Development of Missile Systems System and Equipment018MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & Equipment019MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements Information020MIL-S-26634Preparation of Specifications, Weapons System,)-4	AMCR 10-4	Organizations & Functions, Mission & Functions, of Human Engineering Labs	
0-7WADC TR-56-488Human Engineering Guide for Equipment Design0-8WDT 57-8AHuman Engineering Design Standards for Missile System Equipment0-9WADD TR-60-36Human Eng. Testing & Malfunction Data Collection in Weapon System Test Programs0-10AFBM 60-65AAerospace System Personnel - Equip. Data for Personnel Subsystem Develop.0-11AR 70-8Human Factors Operations Research0-12AFSCM 80-3Handbook Instructions for Personnel Subsystem 	0-5	TM 21-62		
O-8WDT 57-8AHuman Engineering Design Standards for Missile System EquipmentO-9WADD TR-60-36Human Eng. Testing & Malfunction Data Collection in Weapon System Test ProgramsO-10AFBM 60-65AAerospace System Personnel - Equip. Data for Personnel Subsystem Develop.O-11AR 70-8Human Factors Operations ResearchO-12AFSCM 80-3Handbook Instructions for Personnel Subsystem DesignersO-13AFL 375-5Planning and Programming for System PersonnelO-14MSFC-STD-391Human Factors Engineering ProgramsO-15MIL-STD-803A (3 Vols) Part I & IIHuman Factors Engineering for Signal Corps System and EquipmentO-16SCL 1787Human Factors Engineering Development of Missile SystemsO-17MIS 10017Human Factors Engineering Development of Missile SystemsO-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & EquipmentO-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements InformationO-20MIL-S-26634Preparation of Specifications, Weapons System,	0-6	AFM 35-99	Human Reliability Program - Military Personnel	Effective 7/65
O-9WADD TR-60-36Human Eng. Testing & Malfunction Data Collection in Weapon System Test ProgramsO-10AFBM 60-65AAerospace System Personnel - Equip. Data for Personnel Subsystem Develop.O-11AR 70-8Human Factors Operations ResearchO-12AFSCM 80-3Handbook Instructions for Personnel Subsystem DesignersO-13AFL 375-5Planning and Programming for System PersonnelO-14MSFC-STD-391Human Factors Engineering ProgramsO-15MIL-STD-803A (3 Vols) Part I & IIHuman Factors Engineering for Signal Corps System and EquipmentO-16SCL 1787Human Factors Engineering Development of Missile SystemsO-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & EquipmentO-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements InformationO-20MIL-S-26634Preparation of Specifications, Weapons System,)-7	WADC TR-56-488	Human Engineering Guide for Equipment Design	
Collection in Weapon System Test Programs0-10AFBM 60-65AAerospace System Personnel - Equip. Data for Personnel Subsystem Develop.0-11AR 70-8Human Factors Operations Research0-12AFSCM 80-3Handbook Instructions for Personnel Subsystem Designers0-13AFL 375-5Planning and Programming for System Personnel0-14MSFC-STD-391Human Factors Engineering Programs0-15MIL-STD-803A (3 Vols) Part I & IIHuman Engineering Criteria for Aircraft, Missile and Space Systems Ground Support Equipment0-16SCL 1787Human Factors Engineering Development of Missile Systems0-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & Equipment0-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements Information0-20MIL-S-26634Preparation of Specifications, Weapons System,	0-8	WDT 57-8A	Human Engineering Design Standards for Missile System Equipment	
Personnel Subsystem Develop.0-11AR 70-8Human Factors Operations Research0-12AFSCM 80-3Handbook Instructions for Personnel Subsystem Designers0-13AFL 375-5Planning and Programming for System Personnel0-14MSFC-STD-391Human Factors Engineering Programs0-15MIL-STD-803A (3 Vols)Human Engineering Criteria for Aircraft, Missile and Space Systems Ground Support)-9	WADD TR-60-36		
O-12AFSCM 80-3Handbook Instructions for Personnel Subsystem DesignersO-13AFL 375-5Planning and Programming for System PersonnelO-14MSFC-STD-391Human Factors Engineering ProgramsEffective 7/65O-14MSFC-STD-803A (3 Vols)Human Engineering Criteria for Aircraft, Missile and Space Systems Ground Support EquipmentEffective 7/65O-16SCL 1787Human Factors Engineering for Signal Corps System and EquipmentSystemsO-17MIS 10017Human Factors Engineering Development of Missile SystemsMitsile SystemsO-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & EquipmentData, Qualitative and Quantitative Personnel Requirements InformationO-20MIL-S-26634Preparation of Specifications, Weapons System,	0-10	AFBM 60-65A		
O-13AFL 375-5Planning and Programming for System PersonnelO-14MSFC-STD-391Human Factors Engineering ProgramsEffective 7/65O-15MIL-STD-803A (3 Vols) Part I & IIHuman Engineering Criteria for Aircraft, Missile and Space Systems Ground Support EquipmentEffective 7/65O-16SCL 1787Human Factors Engineering for Signal Corps System and EquipmentHuman Factors Engineering Development of Missile SystemsO-17MIS 10017Human Engineering Requirements for Bureau of Ships-Systems & EquipmentDevelopmentO-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & EquipmentData, Qualitative and Quantitative Personnel Requirements InformationO-20MIL-S-26634Preparation of Specifications, Weapons System,)-11	AR 70-8	Human Factors Operations Research	
D-14MSFC-STD-391Human Factors Engineering ProgramsEffective 7/65D-15MIL-STD-803A (3 Vols) Part I & IIHuman Engineering Criteria for Aircraft, Missile and Space Systems Ground Support EquipmentEffective 7/65D-16SCL 1787Human Factors Engineering for Signal Corps System and EquipmentHuman Factors Engineering for Signal Corps System and EquipmentD-17MIS 10017Human Factors Engineering Development of Missile SystemsD-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & EquipmentD-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements InformationD-20MIL-S-26634Preparation of Specifications, Weapons System,	-12	AFSCM 80-3		
O-15MIL-STD-803A (3 Vols) Part I & IIHuman Engineering Criteria for Aircraft, Missile and Space Systems Ground Support EquipmentO-16SCL 1787Human Factors Engineering for Signal Corps System and EquipmentO-17MIS 10017Human Factors Engineering Development of Missile SystemsO-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & EquipmentO-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements InformationO-20MIL-S-26634Preparation of Specifications, Weapons System,	-13	AFL 375-5	Planning and Programming for System Personnel	
(3 Vols) Part I & IIMissile and Space Systems Ground Support Equipment0-16SCL 1787Human Factors Engineering for Signal Corps System and Equipment0-17MIS 10017Human Factors Engineering Development of Missile Systems0-18MIL-H-24148Human Engineering Requirements for Bureau of Ships-Systems & Equipment0-19MIL-D-26239Data, Qualitative and Quantitative Personnel Requirements Information0-20MIL-S-26634Preparation of Specifications, Weapons System,	-14	MSFC-STD-391	Human Factors Engineering Programs	Effective 7/65
O-17 MIS 10017 Human Factors Engineering Development of Missile Systems O-18 MIL-H-24148 Human Engineering Requirements for Bureau of Ships-Systems & Equipment O-19 MIL-D-26239 Data, Qualitative and Quantitative Personnel Requirements Information O-20 MIL-S-26634 Preparation of Specifications, Weapons System,	-15	(3 Vols)	Missile and Space Systems Ground Support	
O-18 MIL-H-24148 Human Engineering Requirements for Bureau of Ships-Systems & Equipment O-19 MIL-D-26239 Data, Qualitative and Quantitative Personnel Requirements Information O-20 MIL-S-26634 Preparation of Specifications, Weapons System,	-16	SCL 1787		
O-19 MIL-D-26239 Data, Qualitative and Quantitative Personnel Requirements Information O-20 MIL-S-26634 Preparation of Specifications, Weapons System,	- 17	MIS 10017		
O-20 MIL-S-26634 Preparation of Specifications, Weapons System,	-18	MIL-H-24148		
	-19	MIL-D-26239		
	-20	MIL-S-26634		

No.	Specification No.	Title	Remarks
0-21	MIL-H-27894A	Human Engineering Requirements for Aerospace Systems and Equipment	
0-22	MIL-H-46819	Human Factors Engineering in Development of Missile Systems	
0-23	AR 594-5-62-601	U.S. Government Regulatory Documents Appli- cable to Human Engineering	References over 100 doc- uments on subject
0-24	RH 3398, IDEP Report # 347.10.00	Basic References and Sources of Information in Human Factors Engineering	References 434 documents on subject
O-25	DDC NO. AD 604513	Human Factors in Maintainability	
	Also see other AFSCM 80 series handbooks under MAINTAINABILITY, GENERAL DOCUMENTA- TION as an important source of additional Human Factors Specifications and Documentation.		
			1

- -----

.

LMEC-Memo-69-7, Vol I 3-149

6. Category P - Value Engineering

No.	Specification No.	Title	Remarks
P-1	ASPR I-1705	Value Engineering	Contracting details
P-2	AMCR 11-23	Value Engineering	
P-3	IRDO 40-2	Value Analysis	
P-4	BSD AFPI Supp 57	Value Engineering, General Provisions	
P-5	ASDP 70-1	Guide to Value Engineering	
P-6	AFR 70-16	Value Engineering	Procurement
P-7	D.O.D. H-111	Value Engineering	Released March, 1963
P-8	DSAR 4140.21	DSA Value Engineering/Analysis Program	
P-9	D.O.D. I 5010.8	D.O.D. Value Engineering Program	
P-10	MIL-V-38352	Value Engineering Program Requirements	
P-11	MIL-V-55051	Value Engineering of Signal Corps Equipment	Some copies released accidentally as MIL-E-55051

LMEC-Memo-69-7, Vol I 3-150

D. CATEGORY Q – TECHNICAL JOURNALS AND PERIODICALS AND THEIR DATA SOURCES, PERTAINING TO RELIABILITY AND MAINTAINABILITY

---- -

Industrial Quality Control Journal of the American Society for Quality Control 161 West Wisconsin Ave., Milwaukee, Wisconsin 53203	monthly
The Journal of Environmental Sciences Institute of Environmental Sciences 940 East, Northwest Highway, Mt Prospect, Ill. 60056	bimonthly
Journal of Research, National Bureau of Standards Section A. Physics and Chemistry Section B. Mathematics and Mathematical Physics Section C. Engineering and Instrumentation Superintendent of Documents U.S. Government Printing Office, Washington, D.C. 20402	bimonthly quarterly quarterly
Technical News Bulletin, National Bureau of Standards Superintendent of Documents U.S. Government Printing Office, Washington, D.C. 20402	monthly
Nuclear Safety U.S. Atomic Energy Commission Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402	quarterly quarterly
Nuclear Design and Engineering North Holland Publishing Co. 68-70 N.Z. Voorburgwal, Box 103, Amsterdam C., Netherlands	bimonthly
Nuclear Industry Atomic Industrial FORUM, Inc. 850 Third Avenue, New York, New York 10022	
Nuclear News American Nuclear Society 244 E. Ogden Avenue Hinsdale, Illinois	monthly
IEEE Transactions IEEE Transactions on Human Factors in Electronics John Hopkins Press, Baltimore, Md. 21218	bimonthly
Bulletin of the Operations Research Society of America and Operations Research The Society, Mt Royal and Guilford Aves, Baltimore, Md. 212	202

The Annals of Mathematical Statistics c/o Institute of Mathematical Statistics Prof. George J. Resnikoff, California State College of Haywa Hayward, California 94542	ard,
Edison Electrical Institute Bulletins 750 Third Avenue New York, New York 10017	monthly
IBM - Computing Report for the Scientist and Engineer IBM/Data Processing Division 112 East Post Road, White Plains, New York 10601	bimonthly
Quality Secretariat of the European Org. for Q.C. Rotterdam, Ween 700; Netherlands	quarterly
National Safety News National Safety Council 425 N, Michigan Avenue, Chicago, Ill. 60611	
Experimental Mechanics Society for Experimental Stress Analysis 21 Bridge Square, Westport, Connecticut 06880	
Science American Association for the Advancement of Science 1515 Massachusetts Ave., N.W., Washington, D.C. 20005	weekly
Science and Technology Fountain Press 46-47 Chancery Lane, London W. C2, England	3/year
Scientific American Scientific American Inc. 415 Madison Ave., New York, New York 10017	monthly
Engineering News Heywood-Temple Industrial Publications, Ltd. 33/39 Bowling Green Lane, London, E.C. 1, England	weekly
Test Engineering and Management Mattingley Publishing Co. Oakhurst, New York	monthly
Journal of the American Statistical Association American Statistical Association 810, 18th Street, N.W., Washington, D.C. 20006	quarterly

LMEC-Memo-69-7, Vol I 3-152

Biometrics, Journal of the Biometric Society Biometric Business Office: Dept. Biometry Upper Gate House, Emory University School of Medicine Atlanta, Georgia 30322	quarterly
Review of the International Statistical Institute 2 Oostduinlaan The Hague, Netherlands	3/year
Journal of the Royal Statistical Society Royal Society of London - Notes and Records Burlington House, Picadilly, London W 1, England	irregular
Biometrika Biometrika Trust, University College Gower Street, London, W.C. 1, England	monthly
Technometrics P.O. Box 587 Benjamin Franklin Station, Washington, D.C. 20044	monthly
Quality Assurance Hitchcock Publishing Co. Wheaton, Illinois 60187	monthly
Quality Engineer Institution of Engineering Inspection 45 Great Russell Street, London W.C. 1 England	monthly
Testing, Instruments and Controls c/o W. Meagher P.O. Box 250, N. Sidney NSW, Australia	monthly
Quality Control and Applied Science Executive Sciences Institute Inc. Whippany, New Jersey	quarterly

-

PART 4. MAINTAINABILITY

CONTENTS

.

		Page
I.	Introduction	4-3
II.	Analysis and Prediction	4-4
	A. Qualitative and Quantitative Maintainability	4-4
	1. Maintainability Indexes	4-5
	2. Availability	4-7
	3. Failure Rate Data	4-8
	B. Maintainability Analysis	4-9
	C. Support Analysis	4-9
	D. Prediction	4-10
	1. Federal Electric Method	4-11
	2. Martin Method	4-11
	3. RCA Method	4-11
III.	Design Considerations	4-12
	A. Diagnostic Techniques	4-12
	B. Automatic Checkout Equipment	4-13
	C. Accessibility	4-13
	D. Throw-Away Maintenance	4-13
	E. Contributing Maintainability Factors	4-14
	1. Standardization	4-14
	2. Interchangeability	4-15
	3. Functional Modularization	4-16
	F. Mounting and Packaging	4-17
IV.	Human Factors	4-18
	A. The Capabilities and Limitations of Personnel	4-18
	1. Physical Capabilities and Limitations	4-18
	2. Technician Skills	4-19
	3. Human Errors in Maintenance Work	4-20
	B. Equipment Considerations	4-21
	1. Accessibility and Working-Space Requirements	4-21
	2. Indicator Requirements	4-22
	3. Control Requirements	4-22

CONTENTS (Continued)

	Pa	ıge
	Environmental Considerations 4	-22
	1. Ambient Air	-23
	2. Illumination 4.	-23
	3. Noise 4	-24
	4. Vibration $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	-24
	5. Radiation $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	-24
v.	ade-Offs	-26

LMEC-Memo-69-7, Vol I 4-2

,

PART 4. MAINTAINABILITY

. .

I. INTRODUCTION

This section has been prepared as a source of nuclear power plant maintainability information. It is essentially a summary of the concepts, facts, data, principles, and techniques which comprise this new technology.

At this time the material contained herein, is general and focuses on those topics which directly affect design. However, subsequent revisions will incorporate more specific information and detailed data and will encompass other aspects of maintainability such as testing techniques, assurance procedures, personnel training, maintenance methods, and data collection systems. Emphasis will be placed on those maintainability problems peculiar to mechanical components of nuclear power plants.

Although a number of references were used, Department of the Army Pamphlet 705-1 supplied the bulk of the information contained in this section.

LMEC-Memo-69-7, Vol I 4-3

II. ANALYSIS AND PREDICTION

The optimum opportunity for incorporating maintainability features in a new system occurs during the conceptual and early design phases. Consequently initial efforts center about the analysis of system requirements for maximum maintainability.

As the design of the system takes shape, definite maintainability goals in the form of repair time allocations are established. They become more specific and are refined by prediction as design progresses. The prediction effort starts late in the concept stage and continues until design is completed.

The third stage of the maintainability effort is a demonstration of the validity of the predictions made. This may be done during the design stage if mockups are available, or it may be performed on the actual hardware during the development stage.

A. QUALITATIVE AND QUANTITATIVE MAINTAINABILITY

Because the design features on which maintainability depends are so varied and their interrelationships are so complex, no single all-encompassing factor can be determined as representing desired maintainability characteristics for a given system. Instead, a series of qualitative and quantitative requirements is established for this purpose. Qualitative and quantitative maintainability requirements as used in this content are defined as follows:

- Qualitative Maintainability Requirement: A qualitative maintainability requirement, as the term suggests, is a general nonquantitative statement of a desired feature or characteristic to be incorporated in a system.
- 2) Quantitative Maintainability Requirement: A quantitative maintainability requirement, is a definite statement of the allowable resources or time to be required to perform a given type of support task in the final product. Concepts such as downtime, repair time, turnaround time, and availability are used to formulate the requirement.

1. Maintainability Indexes

Maintainability indexes are quantitative criteria used to determine whether the maintainability requirement stated in the overall system specification has been complied with. The indexes, normally based on time (time-to-repair, time-between-repairs, etc.), are reliable measures of the success or failure of the system's maintainability design.

The overall reference is the point of time a system is operable, as against the period during which it cannot be operated (downtime). Downtime is defined as consisting of active downtime and delay downtime. Active downtime is the period spent in performing inspection, testing, repair, replacement, checkout, and related support activities. Delay downtime consists of the periods of system inoperability attributed to the administration of maintenance and support, unavailability of tools, test equipment and spares, and such other delays not directly attributable to active corrective or preventative action.

With this general concept applied, the basic element of the maintainability indexes is found to be repair time (R_t) . This is defined as the period of active downtime required to return a failed system to normal operation. Frequently referred to as corrective action time (M_{ct}) , it is the period needed to locate, isolate, and correct the fault, to make such readjustments and realignments as are required, and to test to make sure that the fault has been satisfactorily corrected.

Mean-Time-To-Repair (MTTR): Mean corrective action time (M_{ct}) is often construed as being synonymous with mean-time-to-repair. It is the statistical mean of the times required to repair an item or a system, and as such, represents the summation of all repair times, divided by the total number of failures that occurred during a given period. It is expressed by the following equation:

$$MTTR = \frac{\sum_{i=1}^{n} R_{t_i}}{n}$$

where n is the number of failures, and R_t is the time to repair each sample.

2) Mean Preventive Action Time (\overline{M}_{pt}) : To reduce the probability that a system will require corrective action, it normally is taken out of operation from time to time for preventive action (lubrication, cleaning, adjustment, calibration, etc.). Because the time required for this type of action represents a portion of the total period of a system's inoperability, it must be calculated as contributing to total system downtime. Mean preventive action time thus is defined as the statistical mean of the summation of periods required for preventive action, divided by the total number of preventive actions scheduled for a given period as follows:

$$\overline{M}_{pt} = \frac{\sum_{i=1}^{n} M_{pt}}{n}$$

where n is the number of preventive maintenance actions.

3) <u>Mean Active Corrective and Preventive Action Time (M</u>): This index is established to represent all system downtime resulting from both corrective and preventive activities; as such, it represents active downtime, thereby excluding the downtime for which administrative actions, unavailability of tools, etc., are responsible. It is the statistical mean of the periods during which corrective and preventive work is performed on a system during a given period, divided by the total number of all such maintenance actions. It is calculated by use of the following equation:

$$\overline{M} = \frac{\overline{M}_{c}t^{f}c + \overline{M}_{p}t^{f}p}{f_{c} + f_{p}}$$

where f_c is the number of corrective actions f_p is the number of preventive actions.

4) <u>Mean Downtime (MDT)</u>: Mean downtime, which is an index used in computing the operational availability of a system, is the sum of mean active corrective and preventive action time (\overline{M}) and mean

> LMEC-Memo-69-7, Vol I 4-6

delay time for that system during a specified period. Because delay time is determined by administrative and supply factors that cannot accurately be anticipated, they are beyond a designer's control, and accordingly, can play little part in maintainability design.

2. Availability

Inasmuch as availability is both a goal to be accomplished by design and a measurable characteristic of a developed system, it is defined in its various aspects as follows:

1) Inherent Availability (A_i) is defined as the probability that, when used under stated conditions in an ideal environment without consideration for preventive action, a system will operate satisfactorily at any time. The "ideal support environment" referred to exists when the stipulated tools, parts, skilled manpower, manuals, and other support items required are available. As such, the concept of inherent availability excludes whatever ready time, preventive maintenance downtime, supply downtime, and administrative downtime a system may require. It is expressed by the formula:

$$A_{i} = \frac{MTBF}{MTBF + MTTR}$$

where MTBF is mean-time-between failures MTTR is mean-time-to-repair.

2) Achieved Availability (A_a) is defined as the probability that, when used under stated conditions in an ideal support environment, a system will operate satisfactorily at any time. As is readily recognized, it differs from inherent availability only in its inclusion of consideration for preventive action; as in the case of inherent availability, it excludes supply downtime and administrative downtime. It may be expressed as:

$$A_{a} = \frac{MTBM}{MTBM + \overline{M}}$$

LMEC-Memo-69-7, Vol I 4-7 where MTBM is the mean-time-between-required-actions, resulting from MTBF and mean-time-between-preventive-actions, and \overline{M} is mean active downtime resulting from both preventive and corrective actions.

 Operational availability (A₀) is defined as the probability that, when used under stated conditions in an actual support environment, a system will operate satisfactorily at any time. It may be expressed as:

$$A_{o} = \frac{MTBM}{MTBM + MDT}$$

where MDT is mean downtime.

These three concepts of availability have different uses for both a procuring agency and the contractor who designs and develops systems for the agency. Inherent availability and achieved availability summarize the extent to which the contractor has achieved maintainability and reliability by his design of a system; accordingly, they are established as quantitative goals by the procuring agency at the time a contract is let, and the contractor is required to demonstrate the system's capability of attaining them. Operational availability, on the other hand, is a significant characteristic of the system developed, and includes delay time contributions to the downtime of the system. As such, it aids greatly in planning operations in which the system will be used, and is also of special value in estimating total system cost.

3. Failure Rate Data

Failure-rate data usually are estimated during the design of a given system by the reliability group, for which purpose they are compiled on the basis of so many failures per thousand hours of operation. Such reliability estimates directly affect the development of both the qualitative and the quantitative maintainability requirements for the system; that is to say, a highly reliable system can permit a long downtime and yet attain the availability goal, whereas a system with low reliability requires minimal downtime. A comparable principle applies to components, in that components of low reliability must be much more readily accessible than those of high reliability. Since maintainability computations are no better than the reliability data upon which they are based, the data must be examined carefully to determine their validity before they are used.

B. MAINTAINABILITY ANALYSIS

Maintainability and support analyses, which begin in the conceptual stage of the development of a system, provide the following:

- 1) Comprehensive documentation of the specific maintainability requirements to be met in designing the system.
- 2) A list of checkpoints to ensure that appropriate features to meet these maintainability requirements satisfactorily will be incorporated in the system's design, together with an indication, in each instance, of the type of feature that will produce the quantitative result required.
- 3) A list of the corrective and preventative tasks and support requirements for the developed system.

C. SUPPORT ANALYSIS

Concurrent with the start of the maintainability analysis, a systematic support analysis is undertaken. It establishes the basic requirements for the development of the support plan for the system.

Subsystems are analyzed for these purposes as soon as functional data are available. The analysis thus initiated entails a step-by-step accounting of the results of logical diagnosis of possible failures. Beginning with estimates of probable required support, each step for locating a defective part or deficiency is determined; in every instance of this procedure, consideration of access problems and resources is essential.

Because the mean-time-to-repair (MTTR) for a new system is the principal maintainability requirement, a means must be developed early in the program for allocating and controlling the time-to-repair of each subsystem and/or its components. Basically such an allocation procedure consists of (1) determination of the contribution of active downtime, and (2) evaluation of these contributions against the established MTTR for the system.

If the computed MTTR for the system exceeds the system's MTTR goal, three possible courses of action are open: (1) decrease failure rates, (2) decrease mean corrective maintenance times, and (3) decrease either or both on a tradeoff basis.

D. PREDICTION

Maintainability prediction is a method for forecasting the effects of design on system repair. Its findings indicate the extent to which design is contributing to ease of support, and therefore what additional maintainability features will be required. Prediction methods have been developed by intensive work on the part of industry and the military services. It is the means by which reasonably accurate quantitative estimates, based on actual hardware design, are made of the time required for support of a system.

Predictions thus indicate, in advance of a system's operation in the field, the downtime to be expected and also which of its features will be likely to cause serious trouble.

A number of prediction methods, which differ widely in their respective approaches, have been developed. One type employs extrapolations based on the premise that the performance of new equipment can be reasonably predicted from past experience with similar equipment. A second type is a timesummation method based on the breakdown of support effort into discrete work tasks, and on the establishment of average time for the accomplishment of each task. A third type is a checklist procedure which provides that significant procedures of a system be classified and evaluated, and the values then entered on a list.

Although the prediction methods described in the following paragraphs were originally developed for electrical systems, they are, in principle, equally applicable to mechanical systems. These methods represent a cross section of the prediction methodology now in use and also indicate the extent to which industry and government have attempted to reduce maintainability requirements and features to quantitative form. Each method has its own distinct advantages and disadvantages, therefore, selection of a method should be based upon its suitability for the system under consideration.

1. Federal Electric Method

The Federal Electric method applies time analysis to complex maintenance tasks. Its four major steps for any given equipment are as follows:

- 1) Identification of principal parts.
- 2) Determination of the failure rate of each part.
- 3) Determination of the time required for the maintenance of each part.
- 4) Computation of the expected maintenance time of the entire equipment from the data obtained in the first three steps.

2. Martin Method

The Martin method or the Technique for Evaluation and Analysis of Maintainability (TEAM) represents a method which departs from the principle of reliance on experience. TEAM depends on the graphic presentation of a troubleshooting scheme which begins with the symptom of a failure and works logically towards a solution. The time required for each step of the repair process thus traced is estimated for prediction purposes.

3. RCA Method

The RCA method is a checklist technique whereby support time is regarded as the criterion of maintainability. For these purposes, support time is regarded as a function of physical design features, support requirements, and personnel requirements, as measured by the maintenance skills dictated by design.

III. DESIGN CONSIDERATIONS

The ultimate goals of maintainability design are reduction to a minimum of a system's support requirements, and the facilitation of whatever maintenance work the system will require. Important design factors which influence maintainability are diagnostics, automatic checkout equipment, accessibility, throwaway maintenance, standardization, interchangeability, functional modularization, and mounting and packaging.

All combinations of maintainability design features, together with the cost in dollars and associated repair times of each, are considered in order to find the combinations that best meet the systems maintainability requirements. The combinations selected for design incorporation are those that produce a degree of maintainability that satisfactorily meets repair-time requirements at minimum total system dollar cost.

A. DIAGNOSTIC TECHNIQUES

In maintainability engineering, the term diagnostics refers to actions required for actual failure or incipient failure location in an operational system; it is better known as troubleshooting. The primary objective of diagnostics is an overall reduction of system downtime by providing for the rapid location of failures or incipient failures. Different diagnostic techniques are as follows:

- Manual: Manual techniques (which are the type most frequently referred to as troubleshooting) are basically trial-and-error efforts by skilled technicians, who use diagnostic instrumentation, as well as detailed procedures and schematics, to isolate a malfunctioning component by progressively testing all components and eliminating those that are still functioning.
- 2) <u>Semiautomatic</u>: Semiautomatic techniques represent one or more steps toward automation of the failure isolation function. However, they fall short of complete elimination of dependence on direct participation by technicians. The indicators either identify the subsystem, or component in which a malfunction exists, or they direct the technician to the next action to be taken.

3) <u>Automatic</u>: Automatic techniques completely eliminate the need for a technician's participation in locating a failure. Upon failure of a component, a system fitted with automatic techniques switches to a diagnostic mode and isolates and identifies the malfunctioning item to the repair-by-replacement level.

B. AUTOMATIC CHECKOUT EQUIPMENT

Automatic checkout equipment is usually tailored for a particular system or equipment group. It differs from integral test equipment in that its primary use is to check a system prior to operation rather than to monitor it during operation. Automatic checkout equipment may be appended to a system or may be independently packaged, to be connected to it when needed.

C. ACCESSIBILITY

As a prime design factor in relation to maintainability, accessibility relates to the configuration of hardware, rather than to the physical and other limitations of personnel. As such, it is clearly related to packaging requirements.

Accessibility should penetrate design down to the throw-away level only; a module that will be discarded at failure creates no problems of accessibility for its components. On the other hand, it is very important that the modules themselves be readily accessible, the need for this being in direct ratio to their several probable failure rates. Each module must be easily removable.

Accessibility must also be considered for the purposes of testing. If external test equipment is required for fault isolation, the equipment test points or regions must be readily accessible.

D. THROW-AWAY MAINTENANCE

Throw-away maintenance is a maintenance policy whereby components or items of equipment to a given level are discarded at failure, rather than repaired. As a policy, it is based on the principle that every system design has a level of repair at which it is more practical and economically feasible to throw away a failing item or component than it is to repair that item or component. The level of throw-away to be selected for a given design is dependent on a great many factors, and may be established at any point between the entire system and any of the piece parts of its subsystems. The higher levels of throw-away obviously provide for increased availability, but they may dictate costs of such magnitude that a lower level must be chosen. High levels of throw-away are universally acceptable wherever costs are not a determining factor.

Somewhere between the two extremes of throw-away level is the optimum level of throw-away for system design. Selection of that level for a given system depends not only on the cost of initial hardware procurement, as weighted by availability requirements, but also on the user's support costs. A trade-off between pertinent factors is normally accomplished to determine the throw-away level to be adopted by the designer.

E. CONTRIBUTING MAINTAINABILITY FACTORS

Contributing maintainability factors are those, other than the prime factors of diagnostics, accessibility, and throw-away design, that have significant effect on the maintainability of systems. Some of them are prerequisite to consideration of the prime factors, some directly affect system maintainability without influencing any of the prime factors, and a few affect system maintainability indirectly.

1. Standardization

Standardization is a design feature for restricting to a minimum the variety of parts that will meet the majority of a system's hardware requirements. It is important that the design of assemblies and components for a given system be physically and functionally interchangeable with other assemblies and components of the system. Standardization is a major consideration of maintainability design, because it significantly reduces both the original and the support costs of a system.

In any attempt to achieve standardization, the following principles must be carefully considered:

- 1) Make maximum use of common parts in all assemblies.
- Reduce to a minimum the variety of assemblies and parts required, and in doing so, make certain that the basic types are (a) used

LMEC-Memo-69-7, Vol I 4-14 consistently for each given application, (b) compatible with existing usages and practices, and (c) clearly distinguishable to prevent misapplication.

- By careful study of the simplification thus attained, reduce to a minimum the problems of supply, storage, and stocking.
- 4) By the same means, simplify practices in the coding and numbering of parts.
- 5) Make maximum use of off-the-shelf components and other items.

The experience gained by design engineers and the users of systems during the past several decades has established a number of basic principles of standardization design that today are generally accepted:

- 1) Design for liberal (rather than merely adequate) performance margins, to permit increased employment of given assemblies and parts.
- 2) Whenever possible, design equipment that can be supported by tools and test equipment already in common use.
- 3) Design units that are symmetrical as regards a centerline, to eliminate requirements for right- and left-hand parts.
- 4) Specify standard sizes and gauges.
- 2. Interchangeability

Functional interchangeability is attained when a part or unit, regardless of its physical specifications, can perform the specific functions of another part or unit. Physical interchangeability exists when any two or more parts or units made to the same specifications can be mounted, connected, and used effectively in the same position in an assembly or system.

To attain maximum interchangeability of parts and units in a given system, design engineers must insure:

- 1) That functional interchangeability exists wherever physical interchangeability is a design characteristic.
- 2) That physical interchangeability does not exist wherever functional interchangeability is not intended.

- 3) That wherever complete (functional and physical) interchangeability is impracticable, the parts and units are designed for functional interchangeability, and adapters are provided to make possible physical interchangeability wherever practicable.
- 4) That sufficient information is provided in job instructions and on identification plates to enable a user to decide definitely whether or not two similar parts or units are actually interchangeable.
- 5) That differences are avoided in the size, shape, and mounting, and in other physical characteristics.
- 6) That modifications of parts and units do not change the ways of mounting, connecting, and otherwise incorporating them in an assembly or system.
- 7) That complete interchangeability is provided for all parts and units that (1) are intended to be identical, (2) are identified as being interchangeable, (3) have the same manufacturer's number or other identification, and (4) have the same function in different applications (this is especially important for parts and units whose failure rates are high).

To attain effective interchangeability of parts in units in systems being designed, the design engineers should give special attention to the following practical principles:

- 1) Identical parts are to be used wherever possible in similar equipment and in a series of equipments of common type.
- Parts, fasteners and connectors, lines and cables, etc., are to be standardized throughout a system, particularly from unit to unit within a system.
- 3) Mounting holes and brackets are to be made to accommodate parts and units of different makes.

3. Functional Modularization

Functional modularization is the packaging of components and subassemblies in self-contained functional units to facilitate both the operation and the maintenance of a system. Although broad in its applications, functional modularization is specific in its use as a maintainability design factor for complex systems. Its effective employment results in the following advantages:

- 1) Properly employed, functional modularization greatly simplifies troubleshooting.
- 2) The use of automatic and semiautomatic diagnostic techniques is facilitated by functional packaging, inasmuch as modularization allows for the ready prediction of such faults as occur in a system.
- 3) The two results of functional modularization just noted make possible major reduction of the requirements for maintenance personnel and their training, as well as the overall requirements for manuals and other technical information.

F. MOUNTING AND PACKAGING

The requirement for mounting individual parts and subassemblies is a maintainability consideration. For any system, a majority of the parts and subassemblies could be placed in several alternative locations, only some of which would afford maximum advantage to the overall system design. Therefore the decision for the final arrangement of such parts should be based on the following considerations:

- Accessibility: The limitations of the individual operator and technician, and their needs while performing their tasks, are important aspects to be considered in designing for accessibility. Consideration of the failure rates of parts and subassemblies is equally important.
- Environmental Protection: Those parts and subassemblies unusually sensitive to environmental conditions (operating stress, vibration, temperature changes, and the like) deserve special attention.
 Obviously, such parts must not only be placed in preferential locations, but also must be carefully mounted.
- 3) Built-in Equipment: The requirements for built-in test and faultisolation equipment must be established, and provisions made for suitable location and mounting.

IV. HUMAN FACTORS

Human engineering is concerned with the evaluation of technical design in terms of the physical and psychological limitations of the men who are to operate and service the equipment and systems produced.

To maintain a system in a state of readiness, design features to make this possible must be considered from the beginning of work on the system's overall design.

Among the many aspects of a system's support requirements that require maintainability design, those in which human factors play a part, are as follows:

- 1) The capabilities and limitations of personnel.
- 2) Equipment considerations; namely, that equipment design may not require a man to exceed his physical and psychological limitations.
- 3) Environmental considerations; namely, controls to offset adverse environmental conditions and to prevent the deterioration of an individual's performance as a result of environmental conditions.
- 4) Safety conditions.

A. THE CAPABILITIES AND LIMITATIONS OF PERSONNEL

The fundamental characteristics of man have not changed during the ages, even though life expectancy and height have increased in some parts of the world. On the other hand, the advances of science and technology made during the last century have created an urgent need for balancing human behavior, as a constant, against the machine in an attempt to create effective and efficient man-machine combinations.

1. Physical Capabilities and Limitations

Individuals vary in size and strength. The minimums and maximums, in terms of which designers must work should be within the capabilities and limitations of at least 95 percent of the technicians who are expected to work under the environmental conditions in which equipment will be operated and maintained. Lifting, carrying, and strength capabilities of personnel are important considerations. If maintenance or repair tasks require the handling of system equipment beyond established physical capabilities, provisions should be made to eliminate or facilitate such handling.

2. Technician Skills

Physical capabilities and limitations are not the only factors that affect a man's ability to perform work. Intelligence level and intellectual experience and alertness (best expressed as skill level) must also be taken into consideration. Skill level is especially critical, because skilled technicians are normally in short supply. Despite in-service training in both industrial and government fields, shortages continue to exist in the higher skill levels (two or more years of experience), even though surpluses are found in the lower skill levels (less than two years' experience).

Fortunately, training and stratification are not the only means used to solve the problems created by the shortage of skilled technicians. The designing of equipment to require low skills for its support is more and more resorted to, and as such maintainability programs progress, the difficulties created by the shortage of skilled technicians will be alleviated. For the foreseeable future, however, the designers of equipment must stress this phase of their work.

In conjunction with such design work, support concepts and techniques must be developed that are commensurate with the skill levels of the personnel available, if maximum efficiency is to be attained. When a malfunction occurs, the trouble must first be diagnosed before the appropriate remedial action can be taken. An individual's ability to diagnose is usually proportional to his other maintenance skill levels, which means, of course, that highly skilled maintenance diagnosticians are in short supply. Hence the growing trend toward the development of automatic and semiautomatic checkout and failure-locating equipment, and also the increasing use of throw-away modules. Without such designs, successful performances of corrective maintenance might not be possible within acceptable time limits. In this connection, however, a word of caution is needed: it is dangerous to regard automation as a cure-all for maintenance problems and as a satisfactory substitute for continued emphasis on technician training. One of the principal objectives of this training must continue to be in the area of the diagnosing of failures. As was stated earlier, the time required for locating the trouble in a defective system accounts for as much as 75 percent of active maintenance downtime. To keep failure location time to a minimum, systematic troubleshooting procedures must be developed for technicians to use with every type of equipment, and the technicians must be trained to use them effectively. The pattern that all such procedures must follow is reasonably standard, as follows:

- 1) Performance of a routine check to identify the symptoms of malfunction.
- 2) Analysis of these symptoms to identify the area in which the malfunction has occurred.
- 3) Special tests and checks to locate the malfunction as either a replaceable or a repairable part or unit.

3. Human Errors in Maintenance Work

An accident study made by the armed forces, revealed that many of the equipment failures that produced them occurred shortly after completion of periodic inspections. It also showed that many of the mistakes made were repetitious. It was concluded, therefore, that the basic causes of the human failures which resulted in equipment failures were:

- 1) Inadequate basic training in the relevant maintenance practices, policies, and procedures.
- 2) Lack of training in the maintenance of the types and modules of the equipment being maintained.
- 3) Inadequate or improper supervision.
- 4) Inadequate inspection.

It follows that the principal goals towards which designers should work to minimize human failure are:

1) Reduce to a minimum the number of support tasks to be performed for each system.

- Design equipment so that the support tasks required can be performed easily and simply by personnel of specified skills working in specified environments.
- 3) Design equipment with features that make it difficult or impossible for a task to be performed improperly or incompletely.

B. EQUIPMENT CONSIDERATIONS

Human factor considerations of accessibility, indicator design, and control design contribute to the reduction of maintenance and repair time.

1. Accessibility and Working-Space Requirements

Accessibility requirements are determined by the maintenance action required, which may be visual or physical, or both, depending on whether the task be inspection, servicing, adjusting, repairing, or replacing. Generally, they represent two needs; namely, access to an item for inspection and testing, and space in which to adjust, repair, or replace it.

Downtime for a new system can be minimized by giving appropriate consideration to the location and mounting of equipment and by providing access to components. General guidelines for designers to follow in providing for accessibility include the following:

- Locate assemblies, subassemblies, and parts to make possible inspection, servicing, replacement, and/or repair, as required, without removing them and without interference from them.
- When such provisions cannot be made, place the items that are expected to require maintenance most frequently where they will be most accessible.

Once access has been gained to an area in which an assembly or part is to be repaired or replaced, access to that item must be provided. Guidelines for the designer in planning for ease of maintenance work include:

1) Locate assemblies and parts so that structural units and other parts do not block access to them.

- 2) Place assemblies and parts so that sufficient room is available for the use of test probes and other tools needed.
- 3) Place all throw-away items so that they can be removed without the necessity of removing other items.
- 4) Design each assembly so that it need not be removed to troubleshoot any of its components.
- 5) Use plug-in modules wherever feasible.

2. Indicator Requirements

The designing of effective indicators for maintenance use consists of selecting the types desired, deciding where they can best be located, determining the scale markings to be used, and labeling each device properly.

3. Control Requirements

Considerations that influence the design of controls are much the same as those for indicators.

C. ENVIRONMENTAL CONSIDERATIONS

The machine components of man-machine systems are normally designed to give maximum performance within specified environmental limits; when these limits are exceeded, both performance and reliability suffer. Some support is required under all conditions.

In contrast to equipment, the design of which can be changed, the human being has inherent and relatively inflexible "design" characteristics. The only alternative available is, wherever possible, the exercise of control over environmental conditions to provide reasonably acceptable working conditions.

The principal means of controlling conditions in work areas are heating, cooling, and ventilating equipment, and insulation. Whenever this is not possible, personnel efficiency can be increased in a numer of ways, as follows:

1) Rotation of personnel at work stations.

- 2) Decreased work loads.
- 3) Increased work space.

- 4) Individual protection measures.
- 5) Acclimatization (conditioning) of personnel.

It should be noted, however, that adoption of any of these methods will increase support costs by requiring either additional personnel or additional time for training.

Four principal environmental conditions affect man's efficiency during performance of his work.

1. Ambient Air

Temperature, relative humidity, air circulation, and the purity of air all affect human performance. For practical purposes, temperature, relative humidity, and air movement are often combined, and as such, are referred to as Effective Temperature or ET. This is an empirical index that expresses the combined effects of these three characteristics in terms of the subjective feeling of warmth. When the ambient air is completely saturated (100 percent relative humidity) and air velocity is zero, the value of ET is that of the air temperature. Any combinations of temperature, humidity, and air movement that produce the same subjective feeling of warmth are given the same ET value.

2. Illumination

Where expected conditions and facilities will permit optimum illumination to be used, the design of systems should provide for it. In considering what constitutes optimum illumination, the following factors should be noted:

- 1) The level of illumination required.
- 2) Uniformity of lighting throughout the work space.
- 3) Color composition of the light source.
- 4) Brightness contrast between the work and its background.
- 5) Glare.

In addition, safety hazards created by poor illumination should not be forgotten.

3. Noise

Excessive noise in a work area usually reduces the efficiency of the workers, and thus, indirectly, may reduce overall system readiness if the work performed is maintenance.

Exposure to noise of more than 80 db may result in temporary or permanent loss of hearing, the extent of damage being determined by the length of exposure.

Excessive noise also affects personnel psychologically; fatigue occurs more rapidly, ability to concentrate decreases, and annoyance increases. As a result, efficiency declines. Noise conditions in maintenance work areas should be studied and, when necessary, reduced. If reduction is not feasible, the workers should be issued protective devices.

4. Vibration

Low-frequency high-amplitude vibration of the working level frequently causes motion sickness; in the ranges of 25 to 40 cps and 60 to 90 cps, visual acuity may be impaired. Equipment that is vibrating when being worked on by a maintenance man creates many small and large problems for him, ranging from the manipulation of controls to the reading of indicators and labels; in any event, his efficiency is reduced.

Designers should make every reasonable attempt to eliminate vibration from the equipment that maintenance men must work on. The principal means by which this is accomplished, apart from major design features, are vibration insulation, rubber shock mounts, and the cushioning of work platforms and seats.

5. Radiation

The nuclear power plant designer must consider radiation as an additional environmental effect on component maintainability; that is, radioactive contamination of the component or high levels of radiation in proximity to the component location.

A component can be contaminated by: (1) direct irradiation in a neutron flux; (2) fission product deposition from the coolant through mass transport to the cooler regions of the system; (3) activation of dissolved impurities in the coolant which then plate out on the component; or (4) by the freezing of activated or contaminated sodium trapped in the component subsequent to sodium system draining.

High radiation levels in potential working areas result from: activated vessles, piping, or walls; fission products in the coolant of undrained adjacent systems; or adjacent activated primary sodium systems.

Recent experiences with nuclear reactor system repair strongly reinforce the need for a drastic change in maintainability planning by the designer when considering incore components, and primary vessels and piping.

With the advent of the LMFBR, designers must also consider the special problems associated with activated or contaminated sodium systems and provide for ease of access in order to limit personnel exposure time in areas which have the potential for high levels of radiation. Modular construction of large component subassemblies should be considered to permit ready replacement while affording ample time to clean and decontaminate the component under controlled and unhurried conditions.

LMEC-Memo-69-7, Vol I 4-25

V. TRADE-OFFS

Trade-off techniques are analytic processes whereby a complex problem of maintainability design, involving the selection of one of several possible design variants (parameters), is broken down into a number of smaller problems, the successive solutions of which lead directly to solution of the basic problem. Each smaller problem represents one of possible designs to be adopted; having been carefully defined, it is studied in the light of all of the system parameters (e.g., reliability, availability, safety, production schedule) its particular design will affect, and a weighting factor is assigned to the relationship of this design feature with each such parameter to indicate the relative significance of each such relationship. Solution of each smaller problem is arrived at by balancing the advantages and disadvantages to be gained by a particular design feature and expressing the results quantitatively. Step-by-step summation of the findings of all the minor problems produces a numerical basis for solving the major problem, while at the same time providing whatever solutions of intermediate problems may be required.

The principal goal of the trade-off techniques, so applied, is objectively expressed in numerical terms for use in substantiating optimum design decisions. It should be noted here, however, that the optimization of judgment desired can be attained only by considering all the elements of a problem. Incompleteness of treatment is the principal pitfall in the conduct of trade-off studies.

Formally developed trade-off studies are needed at every stage of the design and development of new systems. At the beginning stage, they determine the feasibility of a program. System requirements must be analyzed and weighed in terms of such factors as state of the art, development time required, total cost, extent to which off-the-shelf hardware can be used, potential consumer demand, company capabilities, and profit margin. After the feasibility study has produced a positive finding and design work begins, trade-off techniques are applied to such problems as determining the relative advantage of various system concepts, throw-away-at-failure versus piece-part repair, different packaging concepts, and at every level, variant specific design features.

> LMEC-Memo-69-7, Vol I 4-26

Trade-offs also play a primary role in decision-making during design review, when the diverse interests of several project objectives must be reconciled.

The NSIA and Parametric Time/Cost Comparison methods are two of the more widely used trade-off techniques.