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CHARACTERISTICS AND STABILITY ANALYSES OF TRANSIENT

ONE-DIMENSIONAL TWO-PHASE FLOW EQUATIONS

AND THEIR FINITE DIFFERENCE

APPROXIMATIONS

by

R. W. Lyczkowski, Dimitri Gidaspow

C. W. Solbrig and E. D. Hughes

ABSTRACT

Equation systems describing one-dimensional," transient, two-

phase flow with separate continuity, momentum,and energy equations

for each phase are classified by use of the method of characteristics.

Little attempt is made to justify the physics of these equations.

Many of the equation systems possess complex-valued characteristics

and hence, according to well-known mathematical theorems, are not

well-posed as initial-value problems (IVPs). Real-valued characteristics

are necessary but not sufficient to insure well-posedness. In the * i

absence of lower order source or sink terms (potential type flows), ;

which can affect the well-posedness of IVPs, the complex characteristics ;!

associated with these two-phase flow equations imply unbounded exponential !
i

growth for disturbances of all wavelengths. ,:.j

i
Analytical and numerical examples show that the ill-posedness '1of IVPs for the two-phase flow partial differential equations which •'

possess complex characteristics produce unstable numerical schemes. ;|



These unstable numerical schemes can produce apparently stable and

even accurate results if the growth rate resulting from the complex

characteristics remains small throughout the time span of the numerical

experiment or if sufficient numerical damping is present for the increment

size used. Other examples show that clearly nonphysical numerical insta-

bilities resulting from the complex characteristics can be produced. These

latter types of numerical instabilities are shown to be removed by the

addition of physically motivated differential terms which eliminate the

complex characterisitics.
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1. INTRODUCTION

Transient two-phase flow analysis is of importance in many

engineering fields, for example, in the field of safety analysis

of pressurized light water nuclear reactors. During the hypothetical

loss-of-coolant accident (LOCA) in a pressurized water reactor,

the entire spectrum from subcooled water to superheated steam is

possible (Ybarrondo, Solbrig, and Isbin, 1972). Therefore, the

fluid-solids .wo-phase models which consider the pressure drop to

take place only in the fluid appear inadequate to describe all flow

regimes. Examples of such flow descriptions are the nonsteady

one-dimensional flow analysis of Rudinger and Chang (1964) and those

of steady supersonic two-dimensional flow presented by Hoffman (1963)

and Saltanov (1972). Murray (1965) in his fluidization analysis

considers pressure drops in the solid and gas phases but, on the

basis of a physical argument, drops the pressure gradient in the

solid phase. These equation sets have real characteristics and hence

satisfy the necessary condition required for well-posed initial-value

problems (IVPs).

Of the equation sets which consider pressure drops in both

phases, disagreement exists as to the handling of the pressure gradient

term. Delhaye (1969), Kalinin (1970), Nigmatulin (1967), Panton

(1968), Pai (1973), and Soo (1967) present momentum equations with

the volume fraction of each phase in the gradient of pressure.

Harlow and Amsden (1975) consider this treatment as unrealistic even

though this paper shows that the characteristics are real^ . In

contrast,Jarvis (1965), Wallis (1969), Boure et al. (1971), Mecredy

and Hamilton (1972), and Boure, Bergles and Tong (197.3) represent the

volume fraction as multiplier on the pressure gradient. This paper ^ shows

[a] Results of a preliminary nature were presented by Gidaspow et al.
(1973)
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that the characteristics of the equations presented by these latter authors

for compressible transient one-dimensional flow are complex-valued for

subsonic two-phase flow except for equal phase velocities* K Mathemati-

cally such equations are ill-posed as initial-value problems according

to the theorems summarized in Appendix A. Ill-posed initial-value

problems are unsatisfactory because all finite difference schemes consistent

with the differential equations are unstable (Richtmyer and Morton, p 59,

1967). Jarvis (1965) attempted to solve his equation set using the Lax method.

He attributed the instabilities he encountered to the fact that the system was

found to be nonhyperbolic, that is, the system may have complex characteristics.

Siegmann (1971) did not even attempt to solve such similarly ill-posed problems

and Boure (1973) appears to have encountered severe stability difficulties.

Analytical and numerical examples are presented in this paper to illustrate

that the ill-posedness of IVPs for the two-phase flow partial differential

equations which possess complex characteristics can produce numerical instabilities

which are clearly nonphysical in nature. These numerical instabilities can be

removed by the addition of physically motivated differential terms which eliminate

the complex characteristics.

[bj Boure (1973) workinR independently also found complex characteristics.
Gidaspow (1974) showed analytically that when both phases are incompres-
sible, two of the characteristics are always complex,for a two-phase
mixture.



2. BASIC TWO-PHASE FLOW EQUATIONS

The continuity equation for phase a is:

It" + fc (P* V*> " »*• • - *• 8

where £ refers to the liquid and g refers to the gas and where 2 n»a • 0

due to overall conservation of mass for both phases. In Equation (1)

p is the partial density of phase a which equals the volume fraction,

a , tines the thcrmodynamic density, p . The phase velocities are
3

a *a

denoted by v and the rates of formation of phases are denoted by m .
The spatial coordinate is denoted by x and the time is denotsd by t.

The conservation of momentum in one-dimension, with friction and aa

inside the pressure gradient, has been written as (for example, Kalinin,

1970)

a va) . 3(pa v a va) . 3(aa P) a .
+ if + a£ - -P s +

In Equation (2), P is the pressure, Aafe is the interphase area

per unit volume, U . is the drag coefficient, and va is the intrinsic

velocity associated with the source term. F* is the wall friction

for phase a, and g is t!ie acceleration of gravity. As in the Mecredy

and Hanilton article (1972) A& D. - A - D „. The total wall friction



is (the sum of F . For potential type two-phase flow, the right hand

side of Equation (2) remains the same whether friction is treated

throu£h the use of drag coefficients or by means of Reynolds stresses.

The momentum equations have been written as in Equation (2) for classifica-

tion purposes only. We found that the characteristics for the case of a a

outside the gradient of pressure in the phase momentum equations could always

be obtained by setting P • 0 in the characteristic determinants which were

obtained.

The energy equation for phase a in terms of the entropy per

unit mass, S , can be written as

3(pft S )
g
 A.

3x
+ r= (P* va s.)

where T is the phase temperature and to includes disspation due
A 3

to friction and mass transfer, as well as external and interphase heat

transfer. Equation (3) is similar to Kalinin's (1970) Equations

(32) and (33), except that his equations are based on the assumption

of no change in phase volumes. In place of the entropy equations

a uniform temperature could have been specified, as is done for gas

transmission in pipelines (Wilkinson, et al., 1965).



The equation of state for phase a is

p« " pa (S.» P ) (4)

where the usual (Boure et al. p 75, 1971) hydrostatic type local

equilibrium assumption has been applied by postulating that

P - P. - P . (5)
I g

Closure is obtained by Equations (1) through (4) for a - fc, g and with

a + aB • 1. For rapid interfaceal rates of heat transfer the phase tempera-

tures become equal and then Equation (4) may be replaced by

P. • P^ <T, P). (5a)

,3S|.



3. CJIARACTERISTICS ANALYSIS OF THE BASIC EQUATIONS

Equations (1) and (3) can be combined to obtain

d S u S ma

where d/dt = 3/3t + va 3/8x is the convective derivative along va

The chain rule may be applied to Equation (4) to eliminate

the density of phase a in Equation (1) with the expression

dta 3 P S dta 3Sa P dta

The adiabatic speed of sound for each phase is defined by

-2
where C > 0 according to the Second Law of Thermostatics.

After Equation (6) is substituted into Equation (7), the convective

derivative of density is seen to be a function of the derivative

of pressure and the nonhomogeneous terms from Equation (6). The



nonhomogenecus terms which correlate heat and mass transfer and

friction are assumed not to involve partial derivatives. Therefore,

the characteristics will not be affected by them . These nonhoinogeneous

terms consequently are now dropped from further considerations.

The fundamental set U - (a8,P,v fv
8
eS ,S») is used. Equations (6),

8 *

(7X and (8) are combined through use of Equation (1), and Equations (1),

(2), and (6) are written in matrix form as

(9)

where

A -

£
a

-P. -o

0 0 0

0 0 0

0 0 0

0 p"

(10)

{a] However, well-posedness and stability are generally affected by these
lower-order nonhomogeneous terms (Ramshaw and Trapp, 1?75)



and

B - P

-P

a v

p8v8 0 0

p v 0

0

0

v8 0

0 0 v

(ID

The characteristic polynomial resulting from det (AX + B) = 0

was algebraically evaluated through use of an IBM FORMAC computer

program (Xenakls, 1969) and expressed in terms of the dimensionless relative

velocity v0 «= (v - ve)/C as
*8 m

A,2 -

(12a)

where p is the usual mixture density defined by Equation (16) and
m

A - (v8 + A)/Cm.Cm.



The natural scale factor, C , is the usual (Wood, 1946, Wallis,

1969) speed of sound in the mixture obtained for the homogeneous

(equal phase velocity) model. This factor is derived in Appendix B

for the case v^ = v by the method of characteristics. The homogeneous

speed of sound i& distinctly different from the so-called homogeneous

equilibrium speed of sound, derived similarly in Appendix C. The

former sound speed is frequently referred to as the "frozen" sound speed,

whereas the latter sound speed is usually referred to simply as the

"equilibrium" sound speed for mixtures.

From Equation (12a), X = -v and X = -v are characteristics

as they must be, since from Equation (6) the phase entropies S

and So propagate along with the phase velocities v
8 and v . Hence,

At

Equation (6) is a compatibility condition for the invariants S

along dx/dt = -X. The propagation of S along v is analogous

to the propagation of the single phase entropy,S, along with the

fluid velocity, v.

The characteristic determinant obtained for the case of aa

outside the pressure gradient in the momentum equations is

I g

- X2 ̂ s . (^g + ;>
2 ! A ] . o. a2b)



Of interest is the fact that Equation (12b) is Equation (12a)

with P » 0. The quartic factor in this equation is the same characteristic

determinant obtained by Boure (1973). For equal phase velocity (v£g = 0)

in Equation (12b) for the case with 0t outside the pressure gradient, four

real characteristics are obtained, two of which were reported as

Equations 6.105 and 6.106 by Uallis (1969). The four characteristics

are

A - -v + C

and .; (13)

X m —v • -v • —v

where C is the so-called stratified flow sound speed given by

(14)

with a pseudo density defined by

(15)

10



which contrasts with the mixture density given by

pm " pg

For the case of any finite nonzero relative velocity, and as shown in

Figure la , two characteristics from Equation (12b) were found to possess

complex conjugates for compressible subsonic flow, except for aqual velocit-

ies and single phase flow. The regions of real and complex roots of the

quartic factor in Equations (12a) and (12b) are indicated on the figure.

With the volume fractions inside the gradient, as in Equation (2),

the characteristics are real in a large region of interest, as shown in

Figure lb. Therefore, this alternate set of equations satisfies the nec-

essary condition for well-posed IVPs. However, Figure 2 shows that an

imaginary region can appear in this case for equal phase velocities and

high pressures for other values of phase densities and sound speeds.

Harlov and Amsden (1975) consider the set of momentum equations with a

inside the gradient of pressure to be unrealistic. Pai (1973) on the other
a

hand considers the terms P -g— as "new" interaction terms "due to the

pressure".

la] Gidaspow (1974) showed that two of the characteristics are always
complex for all nonzero relative velocities when the phases are
both incompressible.

11



The accuracy of the computer program used to calculate the eigenvalues

was checked by comparing the results to analytical expressions for the .

eigenvalues in simplified cases. The analytical solutions used are given

in the following.

The boundary between the real and complex regions can be predicted

analytically for the case of aa inside the gradient for v =v^=0. It is

given by
4 I

" 2 I — v* *" ( 7T" ) I- p C fi7\

where C_ is a pseudo-two-phase sound speed given by

CP ° Cg + ° Ci. (18)

For zero relative velocities Determinant (12a) gives

>h (19)

and X is real if

(20)

otherwise as many as four complex roots may be obtained. Then the system

of continuity and momentum equations will be elliptic. Equation (19)

shows that X is given by + C f a g t and + C g l o w where C f a g t and C g l o w are

"fast" and "slow" sound speeds analogous to those found in magnetoacoustlcs

(Jeffrey and Taniuti, 1964).

12



For single-phase flow, two additional limiting subcases of the

general Determinant (12) can be obtained. The characteristics in this

case are (in addition to the phase velocities)

Case I: a*5 ° 0

*" " v £ g ± 1 (21)

which implies that

The extraneous roots are

X = -v8 + ̂ p7p"g • (22a)

which implies that

Case II: q£ = 0

A - + 1 . (23)

which implies that

h - -v 8 + C . (23a)
S

The extraneous roots are

13



which implies that

(24a)



4. CHARACTERISTICS ANALYSIS OF THE BASIC EQUATIONS WITH TRANSIENT FLOW FORCES ADDED

Addition of transient flow force terms to the momentum equations has

been found to eliminate large portions of imaginary regions if the terms are

of the proper form. The transient flow forces depend mainly on the rela-

tive acceleration of the two phases. The exact form of the relative

acceleration is conjecture (Anderson and Jackson, 1967, Hinze, 1959, Murray,

1965, Tchen, 1947). Equation (2) may be rewritten as

D.b

(25)

Cvb - va)

to include a general form of this transient flow force. aa has been

included inside the gradient of pressure for the reasons given earlier.

Two forms of the relative acceleration -jr- (v - v a) are investigated

here although more have been proposed in the literature (Anderson and

Jackson, 1967, Mecredy and Hamilton, 1972, for example).

A form of the coefficient Am was proposed by Zuber (1964). However,

the form suggested by Mecredy and Hamilton (1972) was used throughout this

study and is

(26)

15



The transition in Equation (26) was not given in Mecredy and Hamilton j

(1972) but is assumed here as reasonable. A^ is zero when or equals 0 or 1 ,
i

and has its maximum value for a equal to 0.5 at which it jumps in value !
o >

from p^ to p .

One form of the relative acceleration proposed by Anderson and

Jackson (1967) is

The characteristic determinant for the system of Equations (1),

(3), (25), and (27) was evaluated by the FORMAC program. The factored

quartic is, in dimensionless form,

A2 (v. + X) 2 - A pm (a1 p + Pa8 + Am )

DENOM

C* (DENOM)

DENOM

where
A C 2 p g

DENOM - 1 + " " " " "
V*

Mien A - 0, the previous determinant, Equation (12a), results and when

In addition P « 0, Equation (12b) results. When P * 0, the characteristic

determinant for the case of a* outside the pressure gradient Is obtained.



th'. • '-%.-; ^.•a*s:"t t.",K SST.T r s £n

= 5 >
8

-u

-<* • v ' ) 2 [< a« p, a1 p ) ( ^-± • a8 0 }

17



* • g *

+ A A [(A + v 8)* (A + vl) (a8 p ) ( —r-*- + —-=-& ) (30)

a 1 7 9 a P» a P-
+ (A + v8) (A + v V (a p.) ( —J+ + =& )

- (A + v8) (a* p p ) - (A + vl) (a8 P pe)]

• -o8 pg a p£ P .

Since the relative velocity is no longer a natural group, the character-

istics maps were plotted using the actual velocity (v with v8 as a parameter)

rather than the dimensionless relative velocity. In order to conveniently

note any improvement over the zero added mass cases, Figure 1 has been re-

plotted dimensionally as Figure A. The characteristics maps for vB = 0

o
ft/sec, 3500 ̂  v _> 0 ft/sec are plotted in Figure 5 for steam-water at

2200 psia. Use of the Mecredy and Hamilton form of the coefficient, A ,

together with Equation (29), results in the imaginary regions for

both forms of the pressure force terms being shrunk, unlike the case

for the relative acceleration of the form of Equation (27). Figure 5a

which corresponds to Figure 4a shows that the real region extends

nearly to zero liquid velocity for a8 « 0.5 which is where the added mass

has its maximum value. Figure 5b which corresponds to Figure 4b shows

that the imaginary regions have broken up and shrunk to 'almost zero area.

For v8 * 2000 ft/sec, no imaginary region exists from 0 £ v 5 3500. For

v8 • -2000 ft/sec, the imaginary region is larger than for v8 • 0, it is

smaller than for no added mass, continuous, and no imaginary region exists

for v* - v8 < 2300 ft/sec.

18



Additional studies at 1000 and 14.696 psia led to the conclusion that use

of the Mecredy and Hamilton form of the added mass coefficient A and .

relative acceleration given by Equation (29) is not sufficient to completely

eliminate the region of complex characteristics shown in Figure 1 (or

Figure 4). However, these additional studies show that if the coefficient

is sufficiently large, the characteristics are made real everywhere. Real-

istic values for the coefficient requires evaluation of experimental data.

19



5. CHARACTERISTICS ANALYSIS FOR ANOTHER TWO-PHASE FLOW SYSTEM

Abbott (1966) extended the classical theory of one-dimensional long

wave motions to a two-layer stratified fluid. He obtained a quartic

very similar to those obtained in this paper. However, in his limited

investigation he obtained and interpreted only real characteristics.

Further study of his work showed that if he had investigated a larger

range of parameters, he would have obtained complex roots as shown in

Figure 6. This figure shows a plot of his results presented in his

Figure 4.14. Also plotted on the graph are results for other values of

velocities, u, for the lighter of the two fluids. The characteristics for

the case of the fluids flowing countercurrently at one foot per second

(velocity difference of two feet per second) are still real but when the

lighter of the two fluids flows countercurrentjy at ten feet per second,

two complex characteristics result as indicated in Figure 6 by the curve

for u = -10 ft/sec which intersects the zero axis only twice.

20



6. STABILITY ANALYSIS OF A FULLY IMPLICIT NUMERICAL SCHEME

We will now illustrate by an example which shows that when the basic

two-phase flow equation set is ill-posed as an initial-value problem because

of the existence of complex characteristics, that a fully implicit numerical

method which is unconditionally stable for hyperbolic systems becomes unstable

for nonhyperbolic systems.

The centrally differenced completely implicit finite difference

approximation to Equation (1) at node j is

The standard von-Neumann stability analysis for the amplification factor

5 results in an eigenvalue problem for determination of that factor. The

observation that the determination of the characteristics of the partial

differential equations involves solving a similar eigenvalue problem for

the characteristics, X, results in a relationship between e and X given

by

C - (1 - X i ~- sin w ) " 1 . (32)

If X takes the form s a + ib, the magnitude of the growth factor is

.la « + 4 (a2

21



where to a TTAX/2L for a -disturbance of wavelength 2L, where L is the

characteristic length of the system.

From Equation (33) | £| can be shown to be ̂  1 whenever

At ± b

Ax - . 2 2. . * (34)
(a + b ) s m w

If A is real, that is b • 0, the well known result that stability is

unconditional is obtained. For the case A = a - ib, even if the

characteristic eigenvalues are complex, Equation (36) predicts time-step

stability above some (•?-) for a given u). Obviously, such a stability

restriction does not allow convergence of the finite difference scheme

to be tested by decreasing the time-step size. Since stability cannot 5

be obtained for all io, the numerical scheme is, therefore, defined to be ;

unstable because "the initial data seldom have the required properties for i

stability and even if they do, round off errors are likely to perturb •;

the calculation into a neighboring diverged situation" (Lax and Richtmyer, :

1956). 1

Computations of l£l were made with the complex A from the basic i

a • i

equation set with a sutside the pressure gradient for steam-water with i

b) = TTAX/2L. Figures 7 and 8 show ISI (the magnitude of the maximum |

time-step eigenvalue).resulting from the complex characteristics having =

negative b at 500 psia for a large range of relative velocities, |v - v8|, i

and a°i where a" is the volume fraction of steam. For v » v 5 = 0 and 1

a® = 0 and 1, real characteristics result, j£| becomes <_ 1, and stability |

results. I
S
1



Examination of Figures 7. and 8 leads to the following. The basic

set ot" two phase flow equations with a outside the pressure gradient even

though ill-posed as an initial-value problem can theoretically yield

stable solutions if the time-step is large enough. The time-step required

for time-step stability is a function of the relative velocity and volume

fraction. This time-step size decreases for increasing relative velocity

for fixed volume fractions. As the volume fraction increases at fixed

relative velocity, this time-step increases. Accuracy of the numerical

solutions might be very poor, however, because the time-steps are quite

large. Clearly, a convergence study would be difficult to perform because

I?| always has a maximum value significancy greater than unity. Possibly,

some transient calculations could be performed until significant error

growth accumlates. For At of 0.1 to 2 msec needed to study fast transients,

the error accumulates faster in the region of low volume fractions and

high relative velocities. Similar results with smaller |£ | were observed

at 1000 psia for the liquid-vapor water system.

23



7. A SAMPLE CALCULATION ILLUSTRATING ERROR GROWTH CAUSED BY COMPLEX CHARACTERISTICS

A sample calculation was made for the basic two-phase equation set with

a outside the pressure gradient for the approximate conditions shown in

Figures 7 and 8 to obtain an indication of the nature of the predicted instability.

The calculations were made with the code UVUT (Unequal Velocity Unequal

Temperature) under development by Aerojet Nuclear Company. The completely

implicit equations were solved using a stable iteration scheme based on

the modified ICE method developed at Los Alamos Scientific Laboratory

(Harlow and Amsden, 1971).

A horizontal pipe 13.44 feet long is initially filled with a mixture

of 80 volume percent steam and 20 volume percent water at 1000 psia. At

t = 0+, one end of the pipe is opened to a reservoir maintained at 750 psia

and the other end is opened to a reservoir maintained at the initial pres-

sure, phase energies, and volume fraction. The momentum and mass transfer

mechanisms (f. in Wallis1 book, 1969) were set equal to zero so that the

equations solved had no sources or sinks. Nine finite difference nodes

and a time-step size of 0.5 msec were used. The expected behavior for

this sample problem would be p steady state situation having smoothly

varying volume fraction, pressure, and velocity profiles. However, as '.

Figures 9 and 10 show, massive instabilities develop in the profiles for ]

pressure and volume fraction. At 68 msec, the pressure is actually below <

ambient pressure over most of the pipe length. Clearly, these instabilities

are nonphysical in nature and are caused by significant error growth ;

directly attributable to the complex characteristics because |£ | is much '
ID33C ''

greater than unity for the relative velocities developed (greater than 2000 f
•)

ft/sec). I

II



Stable and accurate code calculations all the way to steady state were

possible for the parabolic decrease in area for a liquid flowing downward

in gravity dominated flow predictable from Bernoulli's equation as shown

in Figure 11. These calculations compare favorably with the analytical

solution for this case. No instabilities were noted because the predicted

value of I£1 was only very slightly above unity at such low relative

velocities. Steady state conditions were achieved before considerable

error could accumulate. Other problems run with single phase steam or

water have been run successfully with the same code with no signs of

instability.

In order to show that the addition of terms which render the character-

istics real could stabilize the computations, the following numerical

experiment was performed.

The bubble expansion work terms found in Milne-Thompson, p 490 (1965)

were generalized for phases flowing at unequal velocities as

v. «••-*'> [if1 • ^ • » s £ 1 ] .
Equation (35) with C - h was added tc the right side of the vapor momentum

equation and subtracted from the left siciu of the liquid momentum equation.

Analysis of the characteristics showed that the addition of this term

rendered the nonhyperbolic set hyperbolic over a large region of physical

interest. When the sample problem was rerun, the results were stabilized

as Figures 9 and 10 show.

Several other stabilizing terms were investigated. Criteria for such

terms were that the terms render the characteristics real and the steady-

state results for the gravity dominated flow sample problem agree closely

25



t

with the steady-state analytical solution without the terms. Although

the addition of Equation (35) to the phase momentum equations did not

greatly affect this steady-state result, another term was found which

not only had a greater region of real characteristics but which was

numerically smaller. It is given by

Equation (36) was added and subtracted from the right side of the oomentun

equations with C » 2. The existence of such a term has been hypothesized

by Wallis (1969, p 135) to account for forces produced by concentration or

void gradients. This term also stabilized the horizontal pipe sar.nle problem.



8. CONCLUSION'S

Equation systems which describe transient one-dimensional two-phase

flow have been classified using the etcthod of characteristics. The

analysis showed that most two-phase i'low models proposed in the literature

yield conplcx-valued characteristics in the practical regions of interest

(or the two-phase sccaic-vatc.r syvten.

Well-known mathematical thcorces led to the conclusion that if a set

of quasilincar first order partial differential elation* has complex

characteristics, it is ill-posed as an initial value problem'*'. This ill-

posedness manifests itself us instability of the differential equations,

with no sources or sinks, to disturbances of all. wavelengths and as numerical

instability for aljt finite difference schemes consistent with these differ-

ential equations. Apparently stable and even accurate computations can be

performed using a completely implicit, centered difference numerical scheme

(which trust be iteration stable). The class of problems which can be solved

cannot yet be predicted a priori.

Computer experiments verified predicted tine-step instability for an

ill-posed set of equations from the separated one-dimensional potential

two-phase flow literature. Addition of physically motivated terms rendered

the set hyperbolic (well-posed) as an initial-value problem and numerically

stable.

[a] These theorems arc summarized in Appendix A.
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APPENDIX A

SUMMARY OF MATHEMATICAL DEFINITIONS AND THEOREMS ON HYPERBOLICITY
AND WELL-POSEDNESS

Tills appendix summarizes the definitions and theorems pertaining to

hypcrbolicity and well-posedncss of systems of first order partial dif-

ferencial equations (FOPDEs). This summary is considered necessary because,

although these theorems and definitions are well-known to mathematicians

and mathematical scientists, they are not that well-known to the community

of two-phase flow engineers and scientists. These theorems, definitions

and additional clarifying comments from the mathematical literature show

that real-valued characteristics are necessary but not sufficient to insure

the well-posedness of FOPDEs. Lack of well-posedness caused by the exis-

tence of complex characteristics implies growth of disturbances of all wave-

lengths in the absence of stabilizing sources or sinks. The complex

characteristics in addition cause numerical instabilities when these FOPDEs

are solved by finite differences.

31



A-1. DEFINITION OF THE FROH1.EM UNDER CONSIDERATION

This section defines the problem to which a solution is desired. This

problem is the same problem solved by all thermal hydraulic codes.

A system of quasilinear FOPDEs

" * A * J % * •• l i J i o Ura

is under consideration here where the square n x n matrices A, A. and B

depend only on (U, t,^, x2» ... xm) and U is the column vector of n

dependent variables. If A is nonsingular, the system may be conveniently

written as

f • " *3 f- • i (wo

where

• A" A. (A-2b)

and

B « A B (A-2c)

The initial-value problem under consideration is to find a solution

of System (A-2a) in some region

a i - x i - b i

t > Q



subject to the Initial condition

U(0,x) - C(x) f (A-3)

and the value of U prescribed on the boundaries

bi '

<, i <. n) CA-«)
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A-2. CHARACTERISTICS, WELL-POSEDNESS AND STABILITY OF THE DIFFERENTIAL EQUATIONS

This section will establish by definitions and theorems that unless

the system of FOPDEs has real characteristics, the system is not well-posed

as an initial-value problem.

Definition 1. (Lax, 1958)

The initial-value problem is said to be well-posed (or properly posed)

if Equations (A-2), (A-3), and (A-4) have a unique solution for all suf-

ficiently (say j times) differentiable data G (x).

Pal (1969) has pointed out that the B matrix is known not to influence

falconvergence for any numeric 1 procedure . That matrix is dropped in all

further discussions.

Theorem 1. (Lax, 1958)

The initial-value problem, Equations (A-2), (A-3), and (A-4) are

well-posed if and only if all linear combinations £ A.y. of the coefficient

matrices A. with real coefficients y. have only real eigenvalues. The

solution depends continuously on the data, that is, the value of the solu-

tion at any point is a continuous linear functional of the data.

Theorem 1 essentially defines complete hyperbolicity for a system of

FOPDEs.*b^

Definition 2. (Pal, 1969 adapted from Richtmyer and Morton, 1967, and Lax, 1974).

System (A-2a) is hyperbolic if all linear combinations J A y . of the

coefficient matrices with real numbers \i. have only real eigenvalues

(a] Lower order terms can influence well-posedness, however. |

[b] Distinct characteristics (strict hyperbolicity) are sufficient for §
well-posedness, but not necessary (Lax, 1974). J
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A., X_ ... X and n linearly independent eigenvectors so that a nonsingular

matrix T(y) exists such that

<*-5)

is symmetric and T depends smoothly on p. Sedney (1970) has stated that

if the system is not completely hyperbolic many possibilities of system

classification exist and that not all types have even been given names.

Garabedian (1964) gives a heuristic motivation for hyperbolic clas-

sification by considering the case for which the A. matrices are evaluated

at soine reference condition. In this manner a separation of variables

solution yields

U = Uo e
1 <"i xl + - V J e l*t , (A-6)

where u1, ... \i , X are such that

m
+ * P, A j » 0 , (A-7)

and IT is a column vector (nontrivial) with the property

AUo + I Aj ^ UQ = 0 (A-8)

Garabedian further states that when (!,, ... u , and X are real, Equation

(A-6) is the general term in a Fourier expansion. He then asks that for

all real choices of the parameters P-, ... u , every root X of the charac-

teristic Equation (A-7) be real too. Then an oscillatory dependence of

35



Equation (A-6) on the space variables x., ... x results in a function U

which neither grows nor decays exponentially with time t. These eigen-

values also satisfy

|T I Aj n T'1 - \\ - 0 , (A-9)

which is the determinant of Equation (A-5). All X real defines hyperbolicity.

All X distinct defines strict hyperbolicity. Ill-posedness (complex X) would,

therefore, imply the exponential time growth of perturbations introduced at

zero time even in thi absence of sources and sinks.



A-3. CHARACTERISTICS AND STABILITY OF THE FINITE DIFFERENCE EQUATIONS

This section shows that the initial-value problem for the FOPDEs

must be well-posed in order for general explicit numerical schemes to be

stable in the Von Neumann sense.

A general explicit finite difference form of Equation (A-2) is given

by

Un+1(x) -r C. Un (x + i j (A-10)
J J •

Lax's Equivalence Theorem (Lax and Richtmyer, 1956)

Given the properly posed initial-value problem (Equations A-2, A-3,

and A-4) and a finite difference approximation to it that satisfies the

consistency condition, stability is a necessary and sufficient condition

that it be a convergent approximation.

Lax's Condition^(Lax, 1958)

If all linear combinations £ y.C. of the coefficient matrices C. in

a difference scheme have only real eigenvalues and if each C. is nonnegative,

that is, all eigenvalues of the C. are nonnegative, then the finite difference

scheme is convergent.

Pal (1969) points out that in most difference schemes, the coefficient

matrices C. are linear combinations of the coefficient matrices1 J of the

differential system, and so for a hyperbolic system, the first condition

is satisfied. The second condition is achieved by restricting the bounds

on At/Ax^ By Lax's equivalence theorem, then, the difference scheme is

stable.

[a] This condition is due to Friedrichs when the C. are symmetric. Lax
showed this condition implies the Von Neumann condition (Lax, 1974).

[b] Lax believes this statement is not generally true, tor example, tne
Lax-Vendroff scheme is nonlinear in the A matrix (Lax, 1974).



A-4. SOLVABILITY OF ILL-POSED PROBLEMS

The theorems cited in Sections A-2 and A-3 assure that real character-

istics result in hyperbolic equations which will yield stable, unique

solutions when the equations are solved by consistent numerical methods.

But what happens when some of the characteristics become complex warrants

investigation. John (1955) states that typically for improper problems

the solution does not depend continuously on the data (Lax and Richtmyer,

1956). An illustration is given by the following. If some of the charac-

teristics are complex, they occur as complex conjugates of the form

X » a + bi . . (A-ll)

Then Equation (A-6) assumes the form

U - Uo £ 1 ( a t

The characteristic root with imaginary part, X = a - bi, would cause

growth in time on the order U Jl just as Garabedian stated. This growth

would occur for disturbances of all wavelengths. If all the characteristics

are complex, then the equations must be solved as a boundary value problem

(Courant and Lax, 1949).. If some of these characteristics are complex and

some are real, then as many data are prescribed on the initial curve as

there are real characteristics and as many data on the whole boundary as

there are complex conjugate pairs (Courant and Lax, 1949). In either case,

information must be supplied at some future time. This prescription is

clearly physically impossible and is conjectured to possibly even violate

the Second Law of Thermodynamics.



The literature devoted to solving other ill-posed initial-value

problems for Laplace's or Chaplygin's equation offers some other possible

approaches (Payne, 1960, Schaefer, 1967, and 1973, Payne and Sather 1967,

and 1967a for example), to render them well-posed. These solutions

include:

a) Restricting the class of initial data,

b) Imposing hypotheses on general coefficients in the differential

equations,

c) Removing the unstable or physically unacceptable solutions from

the solution space.

The restrictions on the initial data may not allow physical data to

be admissible according to John (1955). Imposing hypotheses on the

equation coefficients may result in problems that have no physical meaning

according to Payne and Sather (1967). The solution space might possibly

not contain the solution to the problem under consideration. The only re-

solution appears to be that the original set of equations be restructured

to hyperbolic ones. This restructuring is necessary from a computational

standpoint because Richtmyer and Morten (1967) show that "if the initial-

value problem is improperly posed... then no difference scheme that is

consistent with the problem can be stable".
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APPENDIX B: DERIVATION OF HOMOGENEOUS MIXTURE SOUND

SPEED USING METHOD OF CHARACTERISTICS

In the homogeneous model, the phases are assumed to move at the

sane velocity that is v v8 = v. Summation of Equation (2) over

index a yields the overall momentum equation as

£•« • • (B-l)

vith friction, mass transfer, and body forces neglected, where -r— denotes

the convsctive derivative, and where p , the mixture density, is given by

Pg (B-2)

The continuity equation for phase g with no interphase heat or mass transfer

can be written in convective form by use of the definition of sound given

by Equation (8) as

dt

Use of the relation

_2
P 8 C g

dt

in the second continuity equation results in

(B-3)

(B-4)

2 dt
1 3v

3x (B-5)



Equations (B-l), (B-3), and (B-5) in matrix form are

-P.

at

ap
at

av
at

V

-Ptv

0

«*v

<

a v

1

P8

Pl

P v

ax

ap
ax

av
ax

(B-6)

Equation (B-6) is in the standard form

» « • » « - • (B-7)

The characteristic determinant

A X + B (B-8)

for Equation (B-6) is

(v + X) 3 - (v + X) C 2 - 0 (B-9)

where the group C is the usual sound speed for a homogeneous mixture of
m

isentropic phases rather than an isentropic mixture of phases at equal

temperature. The sound speed, C , is given by

C 2 P" P C 2 p, C? } (WO)
m g g i t



Equation (B-9) shows that the characteristics for the homogeneous system

are

X - -v and X « -v + C (B-ll)
— n

analogous to the well-known problem in gas dynamics (von Mises, 1958).

A partial differential equation for the pressure can be obtained as

follows. Differentiation of Equation (B-l) with respect to x and a re-

versal of cross partials yields:

Summation of continuity Equations (B-3) and (B-5) gives

dP , 3v
2 dT + 37

Differentiation of Equation (B-13) with respect to the time gives

dt * "ix * " ~dT 2u T2 dt '
a Ka a

Since the lef t hand sides of Equations (B-12) and (B-14) are the same

8i a p C

a a

In acoustics the convective derivative

<tt = 3t + V 3x



becomes a partial with respect to tima only after average and fluctuating.-

quantities are substituted. Equation (B-15) becomes

a pa Ca

Clearly, the pressure propagates with the mixture sound speed velocity C as

defined by Equation (B-10). The value of this quantity has been verified ex-

perimentally for bubbly flow (Karplus, 1961, Henry, Grolmes and Fauske, 1969).

In general the individual sound speeds in C are evaluated at constant
m

entropies. However, for a nearly isothermal mixture, as in many experimental

investigations, they should probably be evaluated at the constant temperature

of the experiment, because heat conduction through the liquid is fast.
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APPENDIX C. HOMOGENEOUS EQUILIBRIUM MODEL

The homogeneous sound speed was derived in Appendix B. The equili-

brium homogeneous model is the most common one used in modeling two-phase,

single component flow. It is used, for example, in the RELAPA computer

program for transient thermal-hydraulic analysis (Moore and Rettig, 1973).

However, the derivation of two-phase sound speeds and characteristics

usually involves laborious calculations and unnecessary simplifying as-

sumptions. For example, Fis.cher and Hafele (1967) assume the liquid to

be incompressible and neglect the volume of the gas compared to that of

the liquid. This assumption is not good for pressurized water reactor

safety analysis. Siegraann (1971) deletes work terms in the energy equation*

To present a rigorous simple derivation is therefore useful.

The conservation equations with no friction or external heat input,

with phases moving at the same velocity, v, are:

Continuity;

3p m
 3fc>n

v>

Momentum:

3 (p V) 3 (p w ) . _
m , n , 9° _ |«k (C—21

Energy;

3(p S ) 3(p vS )
" m + ° n - 0 (C-3)

where the mixture density is ?

p - a V + agp (C-4) I

and where a mean mixture entropy can be defined by |

9
S - o p.S. + aBp S ,„ e»
n m H i l *g g (C-5)

&& '&.



(C-6)

This definition of mean mixture entropy leads to the important result

that

dS
• • a 0

which is obtained by combining the energy equation with the continuity

equation.

Along the two-phase envelope the density of the liquid and of the

gas is a function of pressure only. Thus, p in Equation (C-4) is a

function of pressure and the void fraction a8. But Equation (C-5) fixes

a\ Therefore,

pm " Pm <P« V .; - (C-7)

or if the inverse function is assumed to exist

Therefore, in Equation (C-2), the pressure gradient-can be written as

A lengthy thermodynamic evaluation given by Bridgman (1961), page 223

or Landau and Lifshitz (1959), p 248 shows that

fek
m v

where

dP



T is the temperature, C is the heat capacity of the mixture at constant

volume, h and h. are the enthalpies and V and V. are the specific volumes

of the gas and the liquid, respectively. The specific heat in Equation

(C-10) is always a positive quantity according to the second law of thermo-

statics. Its expression is given in the references cited.

The system of equations (C-l) and (C-2) can; therefore, be written as

at
Sv
at

m

JL_/lP_\ *
P U P JS
• a V mj a

dp
mdx

av
.S x

0

0

The characteristic dctcnainant is simply

(C-12)

v + X
m

v + X

The characteristic directions are then given by

\.o _v and -v +

m

(C-13)

(C-14)

Therefore, a complete analogue exists between gas dynamics and the

equilibrium homogeneous flow. Also, the equilibrium sound speed is

defined even if both phases are incompressible.
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Figure 9

Two-phase open pipe blowdown - conparison of volume
fraction transients for Ca=0 and Ca=l/2. I n i t i a l
volume fraction = 0.8, £.P = 250 psla, it = 0.5 msec,
9 volumes.
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Figure 10

TWo-Miase open pipe blowdown - comparison of volume fraction

trnusionts comj>atod for il.l-po«cd .ind W*'1.1-,>O«.HJ .M,uatioim.

I n i t i a l volnmo lrao.tion « O.S, &P =. 250 psia, At » 0.5 msec,

9 volumes.
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Figure 11

Comparison of steady state analytical solution
with calculations of UVUT code for well-posed
equations. Necking down of a water column in
gravity dominated flow.
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