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Summary: All activities of the Exascale Co-design Center for Materials in Extreme Environments (Ex-
MatEx) are focused on the two ultimate goals of the project: (1) demonstrating and delivering a prototype
scale-bridging materials science application based upon adaptive physics refinement, and (2) identifying
the requirements for the exascale ecosystem that are necessary to perform computational materials science
simulations (both single- and multi-scale). During the first year of ExMatEx, our focus was on establishing
how we do computational materials science, by developing an initial suite of flexible proxy applications.
These “proxy apps” are the primary vehicle for the co-design process, involving assessments and tradeoff
evaluations both within the ExMatEx team, and with the entire exascale ecosystem. These interactions have
formed the basis of our second year activities. The set of artifacts from these co-design interactions are the
lessons learned, that are used to re-express the applications and algorithms within the context of emerging
architectures, programming models, and runtime systems.

1 ExMatEx Goals, Objectives, and Year 2 Milestones

Exascale computing presents an enormous opportunity for solving some of today’s most pressing problems,
including clean energy production, nuclear reactor lifetime extension, and nuclear stockpile aging. At their
core, each of these problems requires the prediction of material response to extreme environments. Our
Center’s objective is to establish the interrelationship between software and hardware required for materials
simulation at the exascale while developing a multiphysics simulation framework for modeling materials
subjected to extreme mechanical and radiation environments.

When considering the exascale computing drivers and use cases within the context of materials in ex-
tremes, the increased computational power is increasingly needed to improve the fidelity of sub-scale physics
models, such as the equation-of-state and strength models used in engineering-scale hydrocodes, rather than
more traditional brute force increases in mesh size (and dimensionality) or timescale. While great effort has
gone into developing transferable models valid across the entire range of parameter or phase space likely to
be encountered, the large computational cost and often unknown accuracy of such models is unsatisfactory.
Based upon these concerns about the physics fidelity, and the emerging architecture trends towards massive
concurrency and asynchronous, dynamic approaches rather than traditional bulk synchronous parallel mod-
els, our science strategy is an adaptive physics refinement in which coarse-scale simulations dynamically
spawn tightly coupled and self-consistent fine-scale simulations as needed. This strategy is crucial for cap-
turing how the macroscale, bulk response is influenced by microstructural detail. Thus, in a high strain-rate
loading problem, a finite element method calculation may spawn finer-scale crystal plasticity or atomistic
models as needed when the available empirical constitutive model is inadequate.
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As originally stated in our March 1, 2011 planning report [1], and kept unchanged during our annual
reassessment of our plans, we targeted four Level-2 (L2) milestones during Year 2 (Y2):

1. Use SST simulation and GREMLIN interface layers to mimic exascale machine behavior on petas-
cale platforms. As described in more detail in Section 2.3.1, a key accomplishment this year was the
development and application of GREMLINs for power, performance, and resilience challenges at ex-
ascale. A conclusion from these studies, and from an SST hackathon we organized, was that there is
a great need for performance modeling of advanced memory systems, including multilevel memory
support and cache coherency protocols, e.g. to model interactions between OpenMP threads; such
capabilities were the focus of this year’s ExMatEx-supported SST work, as detailed in Section 2.3.2.

2. Identify critical features of programming models This was largely accomplished through the var-
ious hackathons with vendor and X-stack partners, another key accomplishment this year which is
described more fully in Sections 2.1.2 and 2.2.1.

3. Assess and deliver data/resource sharing requirements, for both scale-bridging and in situ analy-
sis/viz to exascale software partners. Our work on scale-bridging has followed two convergent paths:
a top-down analysis and proxification of our target adaptive sampling scale-bridging application, as
well as the bottom-up development of a flexible scale-bridging proxy to perform our initial assess-
ments of programming models and runtimes, as described below in Section 2.2.3.

4. Release latest instantiation of Aspen/SST, GREMLIN, scalable tools used for evaluation and proxy
apps to exascale ecosystem. Although we initially developed and applied these tools to ExMatEx
proxy applications for our own co-design tradeoff analysis, they are broadly applicable by the wider
community, including other application co-design centers and vendors. The 3-state cache coherency
version and OpenMP support within SST has been released, as have the GREMLIN framework and
individual GREMLINs, both described in Section 2.3. In addition, updated versions of the CoMD,
VPFFT, CoGL, and ASPA proxy apps have been released on GitHub within the past year, as well
as CoHMM’s initial release and this month’s updated CoMD within the Mantevo Suite Release 2.0.
These proxy apps have provided the central mechanism for our co-design engagements, as described
in Section 2.1.

These activities have led to three key accomplishments in Y2:

1. Multiple deepdive hackathons with our Fast Forward and X-stack partners using proxy applications
has proven to be an extremely effective co-design engagement.

2. An initial evaluation of runtime system requirements for our scale-bridging workload was under-
taken using our CoHMM proxy app.

3. The GREMLIN emulation infrastructure has proven to be effective to study power, performance,
and resilience impacts at exascale, and has been released to the exascale community.

2 Project Accomplishments

2.1 Application & Algorithms

Applications and algorithms relate the computational demands of our materials science workload, both
single-scale and scale-bridging, to the exascale ecosystem. Our proxy apps and the algorithms they contain
are the primary vehicle for collaboration with external partners, particularly FastForward vendor projects
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Table 1: Hackathons and other key engagements with external ecosystem partners during 2013.
Host Location Dates Participants Key Outcomes
IBM Yorktown Jan 21-22 Richards Map key kernels to AMC using

assembler, critique of architecture
Sandia SST Albuquerque April 10-12 Belak, Richards,

McPherson,
Mohd-Yusof

Put SST Toolkit in hands of
co-design app developers, identified
need for OpenMP support

Intel FF I Santa Clara June 4-6 Belak, Richards,
Keasler, Karlin,
Mohd-Yusof

Focus on CoMD, LULESH, debug
infrastructure, used pthreads, need
OpenMP, identified HW ops

IBM DCDC Argonne July 16-17 Richards Improved simulator, AMC mods,
compiler

Intel XStack Hillsboro Aug 6-8 Belak, Keasler,
Mohd-Yusof,
Mniszewski

EDT/OCR programming model,
Roger Golliver’s EDT
implementation of LULESH

Nvidia FF Santa Clara Aug 13 Keasler Focus on CUDA programming,
Michael Garland engaged on RAJA
and PHALANX

AMD FF Austin Sept 11-12 Belak, Laguna,
McPherson,
Mohd-Yusof,
Mniszewski,
Richards, Rountree

Focus on CoMD deep dive,
resilience and power side
engagements

Intel FF II Santa Clara Oct 22-24 Belak, Keasler,
Karlin, Mohd-Yusof

OpenMP now supported, all CD
centers invited, focus on EXaCT

within the past year, and are heavily used within our center. Our proxy applications and algorithms pro-
vide the context for these assessments by expressing the scientific requirements, and are the basis for the
interrelationships with the Programming & Systemware and Hardware-Interfacing Tools areas.

2.1.1 Proxy applications status

During year 1 we created an initial suite of proxy apps to represent the materials science workload at a va-
riety of length and time scales. This suite includes CoMD (classical molecular dynamics), VPFFT (crystal
plasticity), CoGL (meso scale phase evolution), LULESH (Lagrangian hydrodynamics), ASPA (adaptive
sampling), and CoHMM (hetergeneous multiscale model). During year 2, engagements with external part-
ners and internal explorations have lead us to update and improve these proxies, as well as to produce
multiple versions of some proxy apps in a variety of programming models. Because CoMD and LULESH
were selected as part of the suite of apps used to assess progress of the Fast Forward projects, these two
proxies have received the bulk of our attention for external engagements. Internally, CoHMM has been
improved to facilitate evaluation of run time environments, and LULESH and ASPA have been combined to
produce an integrated scale-bridging mini-app.

In response to vendor requests we released CoMD 1.1, which includes both MPI and OpenMP ver-
sions and removes features such as reading large files that created difficulties for architectural simulators.
CoMD 1.1 was contributed to the Matevo project which won a 2013 R&D 100 award. Versions of CoMD
have been created in OpenCL, CUDA, X10, and task-based OpenMP, and ports to specific hardware have
been produced. LULESH has been extended to support more complicated constitutive models.
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Figure 1: Components of a scale-briding application. A coarse-scale model runs across multiple nodes, each
utilizing adaptive sampling to either spawn fine-scale models (FSM) as needed, or interpolate previous fine
scale responses stored in a database (DB), consisting of an on-node cache and a distributed database.

2.1.2 Applications engage the ecosystem

Our most effective interactions with the Fast Forward and X-Stack communities have been in the form
of hackathon or deep-dive meetings. Such meetings typically last 2–3 days, involve 10–30 participants,
and include detailed presentations on hardware architecture, simulation tools, programming models, proxy
app structure, and domain science, each by the developers in those areas. These presentations are usually
highly interactive and result in all participants gaining a broader understanding of capabilities and trade-off
potentials in other ecosystem components. The other important ingredient is at least 1 day of hands-on
time for projects such as bringing up a proxy app in a vendor simulation environment. Table 1 lists our Y2
hackathon engagements.

The success of the hackathons is measured by the impact they have had on participants. The ExMatEx
team has gained a much deeper understanding of future architectures and each of the Fast Forward vendors
presented results from the hackathons in their semi-annual reviews. Hackathons have also identified specific
hardware & system software features that are likely to have high impact, such as atomic operations in
hardware, support for OpenMP in simulators, and compiler features.

2.1.3 CoHMM improvements

CoHMM presents the basic workflow requirements of a scale-bridging application as illustrated in Fig. 1.
The coarse- and fine-scale models, and “glue” connecting the two, are intentionally kept simple to focus at-
tention on the dataflow and workload requirements of a task-based scale-bridging model, enabling CoHMM
to be rapidly reimplemented using various programming models, execution models, and runtime systems as
described in Section 2.2.3. This year we have created CoHMM 2.0 which provides algorithmic improve-
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Figure 2: Illustration of spatial adaptive sampling applied to 1D elastodynamic shock propagation. (a) Red
dots denote representative microscopic regions of the system, each of which is modeled by ∼ 103 atoms.
(b) The HMM obtains constitutive data from fine-scale molecular dynamics simulations, performed on a
regular grid. (c) In spatial adaptive sampling, we dynamically adapt the location of fine-scale simulations to
increase the efficiency of the HMM simulation.

ments compared to the original version. Instead of spawning a fine-scale simulation for each coarse scale
element as in the original Heterogeneous Multiscale (HMM) method, we have developed a new, spatial ap-
proach to adaptive sampling. No database is required. Rather, at each macro-scale time step, we reconstruct
the required constitutive data by interpolating fine-scale simulations on the d ≤ 3-dimensional simulation
domain. We use a predictive approach to determine the important sample points at the beginning of each
macro-scale time-step (see Fig. 2). At the highest resolutions studied, spatial adaptive sampling yields
three orders of magnitude speed-up relative to brute-force HMM, and more importantly, provides a dynamic
workload that more closely represents that of our scale-bridging target application, described next.

2.1.4 Scale-bridging target application

A fundamental premise in ExMatEx is that scale-bridging performed in heterogeneous MPMD materials
science simulations will place important demands upon the exascale ecosystem that need to be identified
and quantified. As depicted in Fig. 1, we envision coarse “engineering” scale models coupled with concur-
rently executing “on demand” fine-scale models. The expense of performing fine-scale model evaluations,
a large fraction of which will likely be similar to those previously performed, is mitigated by the use of
adaptive sampling to “learn” the fine-scale response. In Y1 of our project, we focused on the single-scale
components needed for a proxy implementation of this strategy, including LULESH, VPFFT and ASPA. In
Y2, we have developed more of the “glue” needed to assemble a scale-bridging mini app that will eventually
operate in the manner shown in Fig. 1 applied to a collection of demonstration problems. This will enable
the quantification of problem-dependent “speeds and feeds” that are essential for the specification of job
scheduling and database requirements.

To provide a concrete and fully documented scale-bridging proxy app, we created a design document de-
scribing an elastoviscoplasticity (EVP) model and time integration algorithm. Beginning with a Lagrangian
coarse-scale model, the EVP model incorporates viscoplastic material response (i.e., inelastic deformation
that depends upon the rate at which loads are applied) using a fine-scale crystal plasticity model of the ma-
terial microstructure in a representative volume element. The fundamental assumption coupling the coarse
and fine-scale models is that the coarse-scale deformation gradient can be decomposed as F = V ·R ·Fp,
where V is a symmetric, thermoelastic stretch tensor, Fp is the plastic deformation gradient determined by
the fine-scale model, and R is a rotation between the fine and coarse-scale frames. This relation leads to a
system of rate equations for the evolution of V and rotation R over a coarse time step
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where D and D̄ are the coarse and fine-scale strain rates, respectively, W and W̄ are the coarse and fine-
scale spin rates, respectively, J = det(V), a = J1/3, dots denote time derivatives and primes denote tensor
deviators. Once V is known at a new coarse time step, its logarithm can be used as a measure of strain in an
appropriate elasticity model to obtain the stress needed by the coarse scale model. Although seemingly a bit
complicated, we nevertheless believe that this choice for a scale-bridging algorithm coupling a continuum
mechanics model with a mesoscale crystal plasticity model balances the competing goals of materials sci-
ence relevance, minimization of complexity in a proxy app that will be used for multiple co-design purposes,
and flexibility with respect to exploring a large model and algorithm space.

In order to serve as the coarse-scale model in the EVP proxy, an extension of LULESH was necessary
to support high-strain-rate solid-phase materials. This involved the replacement of LULESH’s original ideal
gas equation of state with a strength model expressed as a full stress tensor σ computed from an appropriate
constitutive model. The divergence of the stress tensor yields the momentum equation force term used to
accelerate element nodes,

ρ v̇ = ∇ ·σ +ρf, (4)

and the inner product of its deviator σ ′ with the velocity gradient L≡ ∇⊗v provides an additional term in
the energy equation

ρ0ė = ησ
′:L− (p+q) η̇ . (5)

Since this extension to LULESH had always been anticipated, the modifications are highly localized and
cause no significant modification to the overall code structure.

Using this extension of LULESH, as well as the existing VPFFT and ASPA proxy apps, we have created
an initial implementation of the specified EVP algorithm. This primarily required the addition of the rate
equations (1)-(3) and some refactoring of ASPA to enable a constitutive model library to be created, which,
at least for the time being, is statically linked with LULESH. The new proxy app is currently being tested
on a Taylor cylinder impact problem, which has been selected because it represents a moderate strain rate
problem in which the effects of anisotropy in the fine-scale microstructure are readily observable in the
coarse-scale material behavior. We will also soon begin applying the EVP proxy to a high-strain-rate shock
problem in preparation for our Y4 demo.

2.2 Programming & Systemware

As explained in Section 2.1.4, our target multi-scale application is composed of various pieces, or compo-
nents, that must interact with each other in a dynamic and adaptive fashion as the code runs (Fig. 1). These
components include a coarse scale computation (e.g. LULESH) that adaptively launches a dynamically
varying number of fine-scale computations (e.g. VPFFT or CoMD) as the simulation progresses through
time. In addition, the application may cache previously computed results in a database to reduce or eliminate
duplicate computation. Unfortunately, it seems clear that no single programming language will emerge that
supports all of this required functionality—multiple languages and systems must be used in concert to build
the final application. This realization has focused our research efforts on selecting and developing the best
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combination of programming models and systemware that will enable us to efficiently build and run these
multi-scale computations. Our selection of this subset, tested and validated using proxy apps, will be driven
by our scale-bridging target application (Section 2.1) and our analysis, modeling and simulation capabilities
(Section 2.3).

Our research targets three specific areas of functionality that address different aspects of our applica-
tions. First, we investigate component- or node-level programming models. Second, we are exploring
domain-specific languages as a way to insulate the application developer from the complexities and diver-
sity of multiple programming models. Third, we look at programming in the large—how we couple the
individual components of our applications and execute them using runtime systems and system services. In
the following three sections we describe our efforts and results in each of these three areas.

2.2.1 Component-level Programming

Each individual, single-scale, component of our target application must execute efficiently on the available
hardware. Using this requirement as a driver, we have used our proxy apps to evaluate and assess various
programming models and languages. Our goals are twofold: to identify programming models best suited to
particular algorithms and hardware, and to provide feedback to vendors and standards bodies based on our
results and experience. In year 2 of the project we have examined a wide variety of programming approaches
including CUDA, OpenCL, OpenMP, X10, Chapel, and Open Community Runtime (OCR).

Based on our experiences with this variety of models, it is clear that no single programming model has
emerged as a universal soultion to exascale challenges, and we believe that programmers will continue to
use a variety of programming models. It is also clear that practically all programming models still require
significant expertise in hand tuning, often machine specific, in order to obtain high performance. It is critical
that programming models continue to evolve to provide a more favorable balance between programmer
productivity, code maintainability, and application performance. Features that provide more flexible and
effective ways to express concurrency, as well as more powerful mechanisms for expressing data locality,
will be critical. Support for legacy code, composability with other models, and abilities to control execution
scheduling and express data dependencies are also important ingredients for any programming model to be
sucessful at exascale.

2.2.2 Domain-specific Languages

To insulate application scientists and programmers from low-level language details, we have embarked on
a high-risk, high-payoff project of developing a domain-specific language (DSL) infrastructure. DSLs are
concise programming languages that are designed to naturally express the semantics of a narrow problem
domain. The use of DSLs can provide significant gains in the productivity and creativity of application
scientists, the portability of applications, and enhanced application performance.

The Liszt DSL for unstructured meshes is our vehicle of choice, providing language-level primitives
for traversing and operating on the elements of a mesh (e.g. faces, vertices, edges, etc.). In Y1, we im-
plemented LULESH in a version of Liszt that used a Scala1-based compiler framework. In the process we
identified two major issues with the design of Liszt. First, the ordering of mesh elements was inconsistent
in Liszt, while LULESH required ordered vertex access. This demonstrates that DSLs must be designed, as
part of a language co-design process, in direct collaboration with the domain scientists that will use them.
Second, although the Liszt version of LULESH used half the lines of code that the serial implementation
of LULESH did, it ran only half as fast. This performance penalty is mitigated by the feature that the same
Liszt source code compiled to multiple compute platforms (serial, multi-core, and GPU) as well the fact
that minor changes to the Liszt generated C-code improved performance to within a factor of 1.2 of the

1Scala is a multi-paradigm language built on top of the Java virtual machine.
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serial version of LULESH. In addition to non-optimal code generation, other issues were identified in the
Scala-based compiler infrastructure, including the need to interoperate with legacy software written in C,
C++ and Fortran; the ability to be more adaptive, both to processor and node architecture, and to internal
data structures (e.g., for dynamic meshes); and the ability to support multiple, interoperating DSLs (e.g., for
multiphysics applications).

For these reasons, we decided to re-implement the compiler infrastructure and have built Terra, a new
low-level system programming language for building DSLs. Terra is designed to interoperate seamlessly
with Lua, a high-level dynamically-typed programming language. We designed Terra to make it easy to
write JIT-compiled DSLs, and integrate them with existing applications. Generated Terra code is fast. Terra
programs use the same LLVM backend that Apple uses for its C compilers. This means that Terra code
performs similarly to equivalent C code. Terra also includes built-in support for SIMD operations, and other
low-level features like non-temporal writes and prefetches. Lua can be used to organize and configure the
application, and then call into Terra code for controllable performance.

The Lua-Terra ecosystem is easy to integrate with existing applications. Lua was designed to be embed-
ded in C programs. We leverage this design to make it easy to embed Lua-Terra programs in other software
as a library. This design allows addition of a JIT-compiler, or integration of a DSL with existing high-
performance code. The code that Terra generates works with code written in C, C++, or FORTRAN. Terra
is available at terralang.org as open source, and has been used it to implement several domain-specific
languages. We presented our design of Terra at PLDI [2] and along with several example applications.

We are converting the Liszt language to an implementation based on Terra. Using Terra will allow us
to optimize Liszt kernels based on dynamically determined information, allowing us to remove many of the
previous restrictions in the language. Mesh topology can change over the course of the program; kernels
will be able to call already existing C, C++, or FORTRAN code; and features such as particles or custom
mesh formats will be easier to add. The front-end of the Terra port of Liszt is now compiling programs
and generating code for the single-core runtime that reads mesh files, runs iterative computations over per-
element mesh values, and prints results. In order to port LULESH, we are implementing language features
that allow programmers to invoke function calls from parallel Liszt code, and updating the code generation
to use the updated runtime.

2.2.3 Runtimes and System Services

Many, if not most, of today’s scientific simulation applications are developed using a fairly limited set of
software technologies: a standard programming language such as C, C++, or FORTRAN, MPI for com-
munication, and a static scheduler, such as Slurm or Moab, to execute the computation on the machine.
Should a developer need to load balance their computation, they need to provide this functionality them-
selves. Similarly, fault-tolerance requires programmers to periodically write data to disk for later recovery.
Likewise, communication patterns are generally fixed—dynamic communication patterns must be designed
and implemented by the programmer. System services, or runtime systems, can provide much of this func-
tionality. These services support “programming in the large”—coupling multiple diverse components of a
dynamic multi-scale computation and orchestrating its execution on the system. These services, in category
of functionality, are:

• Scheduling: concurrent, asynchronous, adaptively executing computational components, launched
on-the-fly, and exiting when complete.

• Discovery: locating system resources based on application-supplied requirements (e.g. provide a list
of all nodes with GPU accelerators).
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Table 2: CoHMM implementations in various asynchronous task-parallel programming/execution models
and runtime sytems, listed in chronological order.

System Dimension Adaptive Database Fault Tolerant Implementation? Status
Scala 1D No No No Simple MD
Erlang 1D No No Process CoMD 1.0
“Cloud” 1D No Multiple Process CoMD 1.1
Swift 1D No No Process CoMD 1.0
HPX Bugs and poor documentation in v0.9.5, esp. for distributed systems Abandoned
Charm++ Load balancing evaluated w/synthetic benchmarks; difficult to reconfigure Eval. only
Mesos Evaluated favorably, pursue with Spark running on top of Mesos Eval. only
Swarm Evaluated favorably, but early version limited to 128 child processes Eval. only
Pathos 1D Yes No Process CoMD 1.1
Scioto 1D, 2D AMR, Kriging redis No CoMD 1.1
Spark 1D, 2D AMR, Kriging redis CoMD task CoMD 1.1
CnC 2D No No No (requires Intel MPI) CoMD 1.1

• Messaging: setup and tear down, on-the-fly, dynamic, adaptive communication links between com-
ponents of the calculation.

• Caching: services for temporarily storing data, perhaps in-memory, and retrieving it from anywhere in
the computation. Caching can help prevent duplicate computation or store data to be used for recovery
from faults. Caching can also be used for communication. Instead of sending messages, processes
can store their data in the cache for retrieval by other processes.

• Fault detection: working with the application, operating system, and hardware, detect faults in the
system and provide facilities for application notification or automated restart.

In general, there are two ways in which these services (or subsets of them) are implemented. First,
there are the distributed monolithic systems that are closely tied to a programming language or model (e.g.
Charm++, X10, Chapel, CnC, Erlang). These systems include a runtime2 component that implements fea-
tures of the programming models such as scheduling, communication, data distribution, etc. Second is a
more loosely coupled approach that uses various single-function software, usually open source, to build an
integrated, dynamic system. This approach is closer to what “industrial” developers use to build cloud- or
web-based scalable systems (e.g. Netflix, Facebook, LinkedIn, Google, etc.).

In Y1, we began exploring this space with the initial CoHMM proxy app. As a monolithic approach, the
Erlang programming language provides the desired features in a single language and runtime system. Our
cloud-based approach used a more diverse set of tools including Apache ZooKeeper (for discovery, schedul-
ing, and process tracking), node.js to manage the overall execution of the code, and multiple NoSQL
databases (MongoDB, memcached, Riak, Couchbase) to cache data for fault tolerance. In both cases, the
implementations simply managed the dynamic coupling between the coarse- and fine-scale components of
CoHMM. All of the mathematical computation was done in the component-level APIs that those compo-
nents used (e.g. MPI or OpenMP).

This year, we extended and expanded this work, primarily through the Los Alamos IS&T Co-Design
Summer School. This team of talented students, with backgrounds in both computer science as well as
physics, refined our CoHMM and CoMD proxy apps and used them to test a variety of runtime systems

2These system-level runtimes should not be confused with low-level runtimes provided by componet-level programming lan-
guages such as CUDA or OpenMP. They often provide the same conceptual features but at a much finer level of granularity.
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from industry and academia. Our students evaluated software that acts as the “glue” between the coarse-
and fine-scale components of CoHMM, whose simplicity allowed us to investigate a wide swath of software
technologies—both monolithic and cloud-based. Our evaluations focused on some of the primitive features
we describe above: scheduling, communication, caching, and fault tolerance. Various schedulers were
tested against how well they supported dynamic and adaptive task scheduling. The students implemented
multiple forms of adaptivity in both 1- and 2-D implementations—spatial sampling, which does not require a
database, and kriging, which uses an in-memory database (redis) to cache previously computed results. In
addition, fault tolerance was implemented using two approaches. In the first, process-level case, the runtime
system detects the crash of a fine-scale CoMD process and the system restarts it from its initial conditions
(potentially on another node) without crashing the entire application. In the second case an in-memory
database (again, redis) is used to periodically cache particle positions from each CoMD process. If the
runtime system detects a crash, the CoMD process is now restarted from the conditions encapsulated in the
most recently cached particle positions—not from the initial conditions. These developments also enhanced
our original test applications; fault tolerance was added to the Erlang version, and our cloud version now
uses the proven redis database. Table 2 shows a condensed representation of the space we have explored
in runtime systems and system services. This list is by no means definitive—there are many more potential
systems to explore. It is clear that we must spend much of next year narrowing down the list of contenders
to a small subset best suited to our particular problem domain and target application.

We can already draw some lessons learned on potential limitations or issues with this approach to pro-
gramming in the large. Given that all of the computational time is spent in the CoMD calls (the coarse-scale
computation, even at 2-D is quite fast, while each of the thousands of CoMD runs take over 20 seconds to
converge) the overhead of scheduling and communication is minimal. If the granularity of our fine-scale
calculations is small this overhead may become a concern. Similarly, at the scales at which we ran, database
overhead was small (even using only a single node for the redis database). Scaling to larger numbers
of nodes and cores, along with a reduction in fine-scale runtime, may drive this overhead higher. This is
one of the prime motivations for building our EVP scale-bridging proxy—to generate realistic “speeds and
feeds” for our target problem. We can use these to more accurately capture potential scaling issues with this
approach.

2.3 Hardware-Interfacing Tools

Performance analysis and modeling is critical for almost any aspect of the exascale co-design process. It
allows us to both understand and anticipate computation and communication needs in applications, it identi-
fies current and future performance bottlenecks, it helps drive the architectural design process and provides
mechanisms to evaluate new features, and it aids in the optimization and the evaluation of transformations
of applications. No single analysis technique or methodology alone is capable of providing the necessary
insight into application code behavior that is required to drive the co-design process. Instead, we require
a wide range of techniques combining analytical models, architectural simulation, system emulation and
empirical measurements to create a holistic picture of the behavior of a target application (see Fig. 3).

ExMatEx targets all four areas—using existing technology where available and developing new ap-
proaches, where necessary: we use empirical techniques to create baseline performance profiles for our
proxy apps (as reported in year 1); we develop and apply the GREMLIN infrastructure to enable archi-
tectural emulation for power, performance, and resilience aspects (Section 2.3.1); we deploy architectural
simulation using SST to improve our understanding of the impact of the memory system (Section 2.3.2); and
we provide high-level and scalable models for our proxy applications using Aspen (Section 2.3.3). Com-
bined, these techniques enable us to gain a deep insight into the performance of the applications relevant
to ExMatEx, as well as to establish a comprehensive performance analysis infrastructure that provide the
tools which can be used in any DOE co-design effort. In addition, we organized a deep-dive hackathon to
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Figure 3: Techniques contributing to a holistic performance analysis.

expose the SST toolkit to the application developers and identified key aspects of the baseline programming
environment SST needs to support, e.g. OpenMP.

2.3.1 GREMLINs: Emulating Exascale Conditions on Petascale Machines

The GREMLIN framework [3] enables architectural emulation. It allows us to go beyond measurements on
existing machines, while still executing full applications, but within a controlled environment in which we
can expose characteristics we expect of future extreme scale platforms. The GREMLIN framework provides
this ability in a highly modular fashion. One or more modules, each responsible for emulating a particular
aspect, are loaded into the execution environment of the target application. Using the PNMPI infrastruc-
ture [4] we accomplish this transparently to the application for an arbitrary combination of GREMLINs,
providing the illusion of a system that is modified in one or more different aspects.

This year, we have matured the concepts of the GREMLIN framework and have released3 the base
infrastructure as well as several fundamental GREMLINs: power GREMLINs that artificially reduce the
operating power using DVFS or cap power on a per node basis [5, 6], memory GREMLINs that limit
resources in the memory hierarchy such as cache size or memory bandwidth by running interference threads,
and fault GREMLINs that inject faults into target applications and enable us to study the efficiency and
correctness of recovery techniques. In the following we present some key results from all three areas. We
are planning a GREMLIN hackathon during the coming year to expose the GREMLIN tools to the broader
extreme-scale community.

Power GREMLINs: Emulating a Power Constrained World

Power will be one of the limiting resources on the road to exascale. Driven by both the cost to operate
machines and the machine room infrastructure required, future systems will be limited in the amount of
power they can use. This will likely lead to overprovisioned systems, on which we can no longer run each
node at full power and on which we are faced with strict power caps at the node, rack and system levels [5].

To emulate the effects that such power caps have on application performance, we implemented a power
capping GREMLIN using Intel’s RAPL (Runtime Average Power Limits) interface. RAPL enables us to set
per processor power caps through a set of Machine Specific Registers (MSRs), which are then enforced by
the processor hardware through different voltage and frequency levels. The GREMLIN itself is therefore
rather simple: we simply set the appropriate limit during initialization and then continue the execution under
RAPL’s hardware control.

Figure 4 shows the results of executing the CoMD proxy app on 128 processors under three different
per processor power caps using a Sandy Bridge Infiniband DDR-3 cluster with 2 sockets/16 cores per node.

3https://computation-rnd.llnl.gov/gremlins/
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Figure 4: Impact of power cap on performance of
CoMD.

Figure 5: Impact of changes in cache size on
LULESH performance.

Ignoring individual outliers, the graph shows that, as expected, lower power bounds lead to lower power
consumption, while prolonging the execution of the application. However, we also see a second trend:
while execution time is fairly uniform at the highest power bound of 80W, lower bounds lead to increasingly
larger variations in execution time.

These experiments show that future power limitations will manifest themselves in performance varia-
tions directly visible to the application. In other words, power caps can lead to imbalanced applications
even if their workload is fully balanced.

Memory GREMLINs: Emulating a System with Constraints in the Memory System

A second resource that is expected to be severely limited in future architectures is the memory system. This
refers to both memory bandwidth, in particular off-chip bandwidth which is limited by physical constraints,
and cache sizes. We can recreate these trends on today’s platforms using carefully calibrated competing
threads on each node, which either consume predefined amounts of bandwidth or cache storage and thereby
“steal” the resource from the target application [7]. Fig. 5 shows the results of executing LULESH [8, 9]
under the cache GREMLIN for multiple working set sizes. Reducing last level (L3) cache size to 35% only
leads to a small impact on application performance, while further reductions cause significant changes in
application performance, especially for large working sets.

Resilience GREMLINs: Emulating a World with More Faults

A third critical area for exascale system design is the expected rise of fault rates caused by larger component
counts, reduced slack in architectural designs, as well as smaller feature sizes and possible near-threshold
voltage operation. To study this effect, GREMLINs can be used to inject faults into an application’s exe-
cution, enabling us to monitor effects on execution time and correctness as well as to study the impact of
countermeasures implemented within applications.

As a simple first example, we instrumented LULESH with RETRY blocks, which create local mini-
checkpoints at which the application stores its data and which can be used to roll back to, in case a fault
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main()	  {	  
TRY	  {	  
	  	  	  while()	  {	  
	  	  	  	  	  	  funct1();	  
	  	  	  	  	  	  funct2();	  
	  	  	  	  	  	  funct3();	  
	  	  	  }	  
}	  
}	  

Method	  1	  
MAIN_FUNC_ONLY	  

main()	  {	  
TRY	  {	  
	  	  	  while()	  {	  
	  	  	  	  	  	  TRY	  {	  funct1();	  }	  
	  	  	  	  	  	  TRY	  {	  funct2();	  }	  
	  	  	  	  	  	  TRY	  {	  funct3();	  }	  
	  	  	  }	  
}	  
}	  

Method	  2	  
CORE_FUNCTIONS	  

main()	  {	  
TRY	  {	  
	  	  	  while()	  {	  
	  	  	  	  	  	  TRY	  {	  
	  	  	  	  	  	  funct1();	  
	  	  	  	  	  	  funct2();	  
	  	  	  	  	  	  funct3();	  
	  	  	  	  	  	  }	  
	  	  	  }	  
}	  
}	  

Method	  3	  
CORE_LOOP	  

main()	  {	  
TRY	  {	  
	  	  	  while()	  {	  
	  	  	  	  	  	  TRY(N)	  {	  
	  	  	  	  	  	  funct1();	  
	  	  	  	  	  	  funct2();	  
	  	  	  	  	  	  funct3();	  
	  	  	  	  	  	  }	  
	  	  	  }	  
}	  
}	  

Method	  4	  
N_BACK	  

main()	  {	  
	  	  	  /*	  init...*/	  
	  	  	  while()	  {	  
	  	  	  	  	  	  funct1();	  
	  	  	  	  	  	  funct2();	  
	  	  	  	  	  	  funct3();	  
	  	  	  }	  
}	  

LULESH	  
Baseline	  

Figure 6: Instrumenting LULESH with RETRY blocks

is encountered within that block. Figure 6 shows the range of potential instrumentation locations, ranging
from all of main() to wrapping the three functions called by main individually. The decision on where to
place the RETRY annotations is critical or large overheads can occur.

We then implement a “fake” fault GREMLIN that periodically assumes non-correctable faults and in-
forms the application through a fault interface (without actually causing a fault, but triggering the recovery
mechanism in the application). We use this setup to measure the execution time of LULESH for varying
fault rates. The results show a high, but nearly constant, overhead for protecting every function in the
main loop, caused by frequent checkpoints but short rollbacks, while protecting all of main() leads to high
overhead that rises sharply as we increase the error rate, since a fault causes the entire program to be re-
executed. Protecting individual iterations shows a similar trend as protecting individual functions, but at
much lower overheads, due to the reduced checkpointing. Protecting every Nth iteration provides a good
balance between the extremes, with 25 iterations between mini-checkpoints being a sweet-spot.

2.3.2 SST: Detailed Performance Simulation

The above study of applying GREMLINs to the memory system shows the ability to run real applications in
scenarios with reduced memory bandwidth, but also indicates some limitations. For instance, since caches
are transparent for the application and any GREMLIN, any emulation has to be approximate. Further, more
advanced approaches, which fundamentally change the memory system, cannot be emulated at all. For
these tasks in our performance evaluation spectrum, we apply the Structured Simulation Toolkit (SST),
albeit with significantly increased execution times and limited to smaller size applications and kernels. In
addition, we have added SST support for multi level memory (e.g. NVRAM) to enable the assessment of
the heterogeneous memory emerging for exascale computing. In the following, we focus on hardware-based
coherency.

Obtaining information relating to hardware-based coherency events is extremely difficult and often re-
quires vendor specific tools or access to simulation environments. We have utilized the processor core, cache
and memory modeling capabilities in SST/Micro to evaluate the coherency events for a simple 8-core pro-
cessor cluster which could be used as a ‘tile’ for a future many-core exascale class processor. In this study
we employ a simple coherency protocol which approximately maps to MESI (modified, exclusive, shared,
invalid)—a common coherency mechanism used in contemporary processors. A diagram of how a stream
of instructions is captured by SST and fed into the model is shown in Fig. 7.

Our analysis of LULESH shows the cost of invalidations for varying OpenMP thread counts. These are
essentially a first order approximation for the cost of coherency within a processor since they are commands
to the cache to invalidate (mark a cache line as invalid), essentially flushing the data. Any energy expended
migrating this data into the caches has been wasted if the data is invalidated. Whilst it is impossible to have
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Figure 7: Representation of using SST to evaluate coherency mechanisms

a fully coherent cache system without invalidation events, a design goal for future processors will be reduce
these through a richer coherency protocol or the appropriate selection of core count or cluster size. The
data provided by SST is also able to show that by fixing the problem size but executing over a larger thread
count, a greater number of memory requests are resolved by other caches at the first level (up to∼5%). This
can be used by algorithm designers and hardware architects and can be viewed through two perspectives:
(1) a resolution in an alternative L1 cache requires that data to be moved to the requesting L1 or processor
core forcing a data movement to take place; alternatively, (2), the overall capacity of cache on the chip is
increased if all processor cores can make more effective use of the data stored with them, thus reducing the
need to obtain data from memory, which is even higher in energy consumption and time.

2.3.3 Aspen: A DSL for Performance-Modeling

While both GREMLIN and SST provide valuable insights into the performance on expected architectures
and applications, their application can be limited by their speed, scalability, and flexibility. In order to
address these limitations in ExMatEx, Aspen has been designed as a prototype system for the analytical
modeling of extreme-scale applications and architectures. Aspen (Abstract Scalable Performance Engineer-
ing Notation) [10] is a modeling framework that is based on a domain specific language (DSL). Scientists
write structured models of their applications and architectures using Aspen’s DSL. Aspen specifies a formal
grammar for describing two types of models. This approach has several benefits including formal checks on
semantics, composability, modularity, reusability, flexibility, and speed.

During the past year, we made significant progress on Aspen in terms of new language features, model
development, and user-facing infrastructure, and have created new Aspen models for CoMD, LULESH, and
VPFFT. With these models in hand, we can run any of our tools on these models.

The language itself has received major new features. First, the current version of the Aspen modeling
language now supports conditionals, where parameters in the model define the execution paths or resource
requirements. Second, the language now supports probabilistic execution, which can be used to model
branches, load imbalance, and other certain classes of nondeterministic behavior, frequently found in scien-
tific applications. Third, one of the most significant changes is the unification of control flows and execution
kernels.

In terms of use of these Aspen models, we have developed several tools. First, we designed a full web-
driven collaborative user interface and analysis tool, AspenLab. AspenLab hosts application and machine
models, grouped by user. Once models have been uploaded or created in AspenLab, users can run a model
checker and suite of analysis tools, including tables and interactive charts showing resource usage by kernel,
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over parameterized variables, kernel data usage, and computational intensity. Second, we created a general-
purpose performance model design space exploration engine. Using non-linear optimization, modelers can
select machine or application constraints and request the tool to minimize or maximize certain parameters.
For example, the user might request the optimizer to find the largest problem size for a given application
model which fits in a given machine’s RAM and runs in less than a given time limit. This tool is flexible and
supports a wide range of optimization tasks. Finally, we have created an interface from Aspen to SST/Macro,
where the Aspen model is used to generate a parameterized synthetic workload for interconnect simulation.
We have successfully tested several models end-to-end through this new framework.

3 Summary and Ongoing Activities

Our emphasis this past year has been on exposing our application workload to the exascale ecosystem, in
particular via deep engagements with all of the FastForward vendors (e.g., via hackathons), with program-
ming models from Xstack projects, both node-level and task-based execution models and runtime system;
and establishing the tools for quantifying the metrics for tradeoff analysis. As detailed in this report, three
key accomplishments resulted from these activities:

1. Multiple deepdive hackathons with our Fast Forward and X-stack partners using proxy applications
has proven to be an extremely effective co-design engagement.

2. An initial evaluation of runtime system requirements for our scale-bridging workload was under-
taken using our CoHMM proxy app.

3. The GREMLIN emulation infrastructure has proven to be effective to study power, performance,
and resilience impacts at exascale, and has been released to the exascale community.

As envisioned in our original project plan [1], the agile management process involves a continual re-
evaluation and rewriting of the project milestones. Based on this year’s assessment, and the key Y4 mile-
stone to demonstrate task-based scale-bridging on 10+ PF platforms, our revised Y3 milestones are:

3.1 Define petascale (Y4) and exascale high strain-rate scale-bridging target problems, and a working
smaller-scale prototype app.

3.2 Establish and document requirements, and initial implementation, of single-physics and
scale-bridging programming models.

3.3 Assess uncertainty requirements for scale-bridging and implement within initial prototype
scale-bridging app.

3.4 Use power and resilience analysis to inform programming models and runtime services.
3.5 Develop Aspen model for scale-bridging app, and use Aspen/SST coupling to assess scalability.
3.6 Release updated proxy applications and analysis tools/extensions.
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