Theory and modeling of active brazing.

PDF Version Also Available for Download.

Description

Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, ... continued below

Physical Description

60 p.

Creation Information

van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B. & Givler, Richard C. September 1, 2013.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

Physical Description

60 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2013-8155
  • Grant Number: DE-AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 1111084
  • Archival Resource Key: ark:/67531/metadc869776

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2013

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Feb. 17, 2017, 5:31 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B. & Givler, Richard C. Theory and modeling of active brazing., report, September 1, 2013; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc869776/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.