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A coolant l i n e  rupture during operation of a high temperature gas cooled graphite 

moderated reactor would present a serious hazard. 

pressurize and a great deal of air would be Introduced Into the coolant stream. 

The reactor would immediately de- 

As the 

air passed over the graphite moderator a runaway oxidation reaction would probably ensue 

unless an adequate safety system were available. 
b 

This investigation was designed t o  evaluate chlorine as a reactor safeguard t o  

, be used t o  control a 

i n e  i n  an air stream 

runaway reaction. Throughout th i s  study, a small amount of chlor- 

has demonstrated the a b i l i t y  t o  substant ia l ly  reduce the oxidation 

r a t e  of graphite, 

molecular oxygen or  ozone, 

This has been the case even where the principal oxidizing agent was 

Testing will continue i n  the presence of _ionizing radiation t o  evaluate the 

effectiveness of chlorine as an inhibitor under simulated in-reactor environment. 

Chlorine appesrs t o  inh ib i t  graphite oxidation by blocking active s i t e s  on the sur- 

face.. On the basis 

observed behavior. 

\ 

of t h i s  mechanism a rate l a w  was derived which is consistant w i t h  
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,. U t r o d u c t i o n  
- 

Several investigations(l-5) have been conducted t o  evaluate inh ib i tors  of carbon 

oxidation. These inh ib i tors  can be categorized by phase. Solid phase inhibi tors  have 

been very e f fec t ive  i n  laboratory experiments with reactor graphite, but have f a i l e d  

t o  inh ib i t  oxidation during in-reactor t e s t s .  

presence of ionizing radiation, o r  under reactor conditions is not reported i n  the 

Evaluation of gas phase inhibi tors  i n  the 

literature. 

be the most sui table  f o r  use as a reactor  ssfeguard since the  quantity necessary t o  con- 

t r o l  oxidation i s  s m a l l .  

able t o  extinguish burning graphite at  2X)O0 C with the  addition of 0.25 per cent 

chlorine t o  his  oxygen stream. 

O f  the  gas phase inhibi tors  previously Investigated, chlorine appeared t o  

Day(5) i l l u s t r a t e d  the effectiveness of chlorine when he was 

This investigation has been designed t o  evaluate the effectiveness of chlorine as 

an ' inhibitor f o r  control l ing runaway oxidation i n  gas cooled reactors.  In order t o  

m&e a proper evaluation, chlorine w i l l  be tested first i n  the laboratory without ioniz- 

ing radiat ion t o  determine mechanisms and rates. Effects of ionizing radiat ion upon the 

reactions w i l l  then be tested t o  insure the effectiveness of the inh ib i tor  under reactor 

conditions. Testing i n  a neutron flux is  not considered essent ia l  t o  the  program since 

it can be reasonably assumed a reactor  would scram if a coolant l i n e  ruptured and air 

w a s  drawn in to  the  system.. .Gas phase inh ib i tors  would not have t o  withstand high neut- 

ron density f o r  prolonged periods but would have t o  operate under intense ga;mma radi- 

ation, and be capable of reducing the oxidation rate of graphite at elevated tempera- 

tures t o  the  point t h a t a  runaway oxidation could not 

Following these premises, t h i s  investigation was 

oratory experiments i n  the absence of radiation, (11) 

radiation, microwave, and high voltage discharge, and 

systems 

t?uriQg runaway conditions i n  a prototype uni t  

occur . 
planned i n  three phases: 

Experiments i n  the presence of gamma 

(I) Lab- 

(111) ~xperiments to t e s t  the in -  

which is a f u l l  scale  mock-up of 

chamel.  

with temperature and the 9 o2 
All experiments are t o  be oxidations of reactor grade graphite i n  flow 

r a t i o  as independent variables.  
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Phase I--Experimental 

Phase I experiments were conducted a t  four temperatures, (750, 700, 600, 55OoC), 

and a t  chlorine t o  oxygen r a t io s  varying from 0 t o  114. 

taken pa ra l l e l  t o  the  extrusion axis of the bar. 

Samples were of CSF graphite 

CSF i s  a reactor grade, gas purif ied 

graphite, and the  density of the  bar from which the  samples were made was 1.67 g/cm3. 

Samples were made i n  the form of sleeves 2" in length, 0.426" O.D. and 0.25" I.D.  t o  

furnish a r e l a t ive ly  high reaction surface. Samples were not outgassed p r io r  t o  

oxidation. 

A i r  or oxygen was  dried through s i l i c a  gel t o  a measured moisture content of 

5.7 x 

zone by an e l e c t r i c a l  tube furnace. Temperature was controlled wi th  a Wheelco Capi- 

ca t ro l  indicator control ler  using a platinum vs. platinum .. 1s rhodium thermocouple 

g / l  before passing over the  samples. Heat was provided i n  the reaction 

sensing system. The temperature variation during a run was approximately - + 5' C. A t  

l e a s t  one absolute temperature value appears t o  have been in error ;  however, the  

experiments i n  questton w i l l  be rechecked a f t e r  equipment recalibration. 

Helium was used t o  provide an ine r t  atmosphere in  the reaction zone before and 

a f t e r  the oxidations. 

the r a t e  expressed i n  units of gram/gram-hour. 

which the samples were brought t o  7500 C, held f o r  15 minutes, and then cooled t o  room 

Oxidation was measured as a function of graphite weight loss and 

Several control runs were made during 

temperature i n  helium. 

chlorine t o  test f o r  impurities. 

Weight loss was negligible. Similar runs were made w i t h  tank 

The oxidation was again negligible.  

' Phase &-Data 

Data from Phase I experiments agreed w i t h  previous investigations i n  establishing 

the a b i l i t y  of chlorine t o  inh ib i t  oxidation of graphite. However, it was noted that 

,+t constant temperature the oxidation r a t e  varied.inversely wi th  the chlorine t o  oxygen 
' .e - 

ratio. A power function function relationship existed as long as a stoichiometric 
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excess of oxygen was maintained. A mechanism, consistent with observed data, wodd in -  

lve  blocking of active s i tes  on the graphite surface by chlorine, effect ively reduc- 

This mechanism ing the active s i te  concentration, thereby reducing the reaction r a t e ,  

is supported by the f a c t  that activation energies remained constant over widely varying 

chlorine t o  oxygen r a t i o s  (See Figure 1). Values of activation energies were 37.6 

+ .06 kcal/mole a t  a r a t io s  from 0 t o  114. 

principle mechanism and the order of the reaction did not change i n  t h i s  range, 

It may be concluded then, t ha t  the 
02 

On t h i s  basis, the following reactions were assumed: 
ki 

k3 
( 3 )  (G  - C - 0 ) - 4  (G - C*) + 00 (Assume all CO formed i s  removed) 

G -  

c* - 
g -  

i n  - 

bound carbon atoms in  the graphite l a t t i c e  

available active sites 

gas phase 

diffused in to  reaction zone 

It is  assumed tha t  the gas phase concentration remains constant. 

From these reactions,- the r a t e  l a w :  

[e] = k 3 ,  A B  d t  

i s  derived. (See Appendix I) 

Q 
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where A i s  the t o t a l  number of active s i t e s  both occupied and unoccupied 

Data from Phase I experiments appearing i n  Table I are plot ted against  curves calculated 

from the r a t e  l a w  (see Figure 2). Correlation of observed and calculated values confirm 

the l a w .  Nitrogen apparently does not enter into the reaction since similar experiments 

i n  oxygen showed the same behavior. 

a re  ident ical  t o  the oxidation r a t e s  with no chlorine present a t  that temperature. 

Values and dimensionsof k+ Zora specif ic  temperature 

B 

remains essent ia l ly  constant a t  0.1 - + 0.03, i s  insensit ive t o  variation i n  temperature 

and thus has a low net activation energy. 

Figure 2 i s  very useful fo r  predicting the Oxidation r a t e  a t  any chlorine t o  oxygen 

ra t io ,  but because it is  a log  - log p lo t  it d i s to r t s  the picture of actual behavior. 

For t h i s  reason a l i nea r  p lo t  of oxidation rate VS. per cent chlorine a t  TOO0 C i s  shown 

i n  Figure 3. With no chlorine, the  oxidation r a t e  w a s  1.34 x 10-1 g / g  hr. 

was reduced by a factor  of 8 t o  1.7 x lom2 g/g hr. with  1.s chlorine. 

of t h i s  magnitude would be equivalent t o  a temperature drop of 93O C i n  a reactor.  

Figure 3 i l l u s t r a t e s  the high i n i t i a l  rate reduction caused by a low percentage of chlor- 

The r a t e  

A r a t e  reduction 

ine, and then a quasi-saturation effect  a t  about 8. On t h i s  basis, approximately 2$ 

would be the maximum chlorine concentration necessary t o  control a runaway reaction, 

and since the chlorine concentration would be re la t ive ly  low, the corrosion and tox- 

i c i t y  hazards would be diminished. 

Experiments are currently being conducted t o  evaluate chlorine as an inhibi tor  

Data from these experiments w i l l  be in  cases where ozone is  the pr inciple  oxidant. 

correlated w i t h  experiments conducted in a microwave glow discharge where oxygen atoms 

are the principle reactant species. Results should give a clearer  insight Into reactions 

which occur in  the  presence of intense gamma radiation. 
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Ozone Experiments 

Temperatures i n  these experiments were necessarily low ( < 350' C),  because of 
' 4 9  

ozone i n s t a b i l i t y  at  higher ranges. Ekperiments are conducted at  atmospheric pressure, 

with flow ranging from 2.0 cf'h t o  6.0 cf'h of air or  oxygen. The ozone concentration at  

the generator ou t l e t  wae 6$ by volume i n  an oxygen streem and 3$ i n  air; however, the 

concentration was not measured at  the sample position. 

about 6.5 x 10-5 g/l moisture content by passing through s i l i c a  gel and then through a 

dry ice-acetone t rap.  In normal experimentation chlorine was added t o  the c a r r i e r  gas 

, 
Reacting gases were dr ied t o  

between the ozone generator and the  semple posit ion t o  reduce damage t o  the generator. 

Control runs were made in which chlorine was passed through the  generator, but since 

no s igni f icant  difference was noted i n  oxidation r a t e s  t h i s  was discontinued. 

Results I 

Data from ozone oxidation experiments (see Table I) are preliminary but lead t o  

in te res t ing  conclusions. 

i n  an oxygen stream than i n  an air  stream. 

ca. 0.15 reduced the oxidation r a t e  by a fac tor  of 120 i n  an oxygen (ozone) system 

and by only a fac tor  of 5 i n  an air  (ozone) system. The rate reductions i n  an air 

stream are comparable i n  magnitude t o  those experienced i n  thermal work i n  the absence 

of ozoneo and it would be reasonable t o  conclude the rate determining mechanism may be 

the same. Competition f o r  act ive sites, however, w i l l  not explain the  magnitude of 

Chlorine is  a much more e f f i c i e n t  ozone oxidation inh ib i tor  

It may be noted t h a t  a 9 r a t i o  of 
02 

reduction of ozone a t tack  noted i n  an oxygen stream. 

Pete l e s s  e f fec t ive ly  f o r  act ive sites w i t h  ozone than with oxygen, and the rate would 

Chlorine would be expected t o  com- 

be correspondingly higher rather than the lower values that were experienced. 

Since competition f o r  ac t ive  sites does not seem t o  be r a t e  determining i n  an 

oxygen (ozone) chlorine system, the mechanism may involve conversion of ozone t o  less 

act ive species by the chlorine. 
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One possibi l i ty  would be recombination of ozone t o  form molecular oxygen in  the presence 

@of a th i rd  body. Another would be formation of chlorine-oxygen complexes which would 

either be l e s s  reactive with graphite than ozone, or would decompose rapidly t o  form 

molecular oxygen. 

Third body recombination may be tentatively discounted. If th i rd  body recombin- 

ation was significant the nitrogen i n  the air  would also be expected t o  have some in- 

hibit ing effect  on the oxidation by ozone. Within the accuracy with which the  ozone 

concentration was known at the sample position, the oxidation rates i n  the absence of 

chlorine were proportional t o  the ozone concentration, whether the carr ier  gas was oxygen 

or air. 

Formation of chlorine oxygen complexes could be considered t h e  rate limiting 

mechanism, 

cal  discharge or f lash photalysis conditions. (6-7) 

undergo l i t t l e  reaction with graphite. 

Species such as C10 and OClO have been observed t o  be formed under e lec t r i -  

OClO i s  stable and would probably 

C10 rapidly decomposes into C12 and 02. Analysis 

of effluent gas i s  expected t o  aid in determination of the correct mechanism, 

Microwave and Gamma Experimentation 

Oxidation experiments are i n  progress in both microwave glow discharge, and i n  

the presence of high gamma radiation., Work t o  date is  exploratory, however, and 

accurate evaluation of data i s  not possible at this  time. 

Microwave oxidation experiments are conducted ei ther  in  or down stream of a glow 

produced by a Raytheon diathermy unit  producing 112 watts at 2450 megacycles. 

range from a maximum of 40 ml/min down. 

mately 250' C. 

Flows 

Pressure i s  ca. 500 and temperature approxi- 

Experiments in the presence of gamma radiation are being conducted In a radiation 

f i e l d  of 1.2 x lo6 R/hr. 

t o  0.2 cfh. 

Temperature is  varied from 7500 C t o  500° C and flow from 5.0 

A 
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Phase I11 

The prototype uni t  t o  be used in Phase I11 experiments is now being constructed. 

Design is essent ia l ly  complete and is shown schematically i n  Figure 4. 

signed t o  allow experiments similar t o  those of Robinson and Taylor(8) t o  determine con- 

d i t ions  which would support a runaway oxidation reaction in the EGCR. It w i l l  a lso  pro- 

It has been de- 

vide f o r  t e s t ing  corrosive inhibi tors  under these circumstances. Temperature of the 

graphite can be raised as high as 8000 C, wi th  air flow up t o  100 cfm through the annular 

t e s t  zone. 

Experimentation is planned between the flow limits of 63.1 cfm (119 #/hr) and 3.02 

cfm (5.7 #/hr) through the test  zone. These flows correspond respectively with air 

flow through the EGCR central  channel annulus with full blower capacity and convective 

currents w i t h  the blowers off.  Chlorine concentration up t o  5s  in the  air stream can be 

safely tolerated.  

Conclusions 

The experimental program is incomplete a t  t h i s  time so no final evaluation of 

chlorine a6 a reactor  safeguard can be made. 

t a i n l y  j u s t i f y  continuance of the investigation. 

Results t o  date are encouraging and cer- 

Rate reductions i n  thermal work and 

ozone studies, and the  correlation of data with models, makes the  use of chlorine 

appear very favorable. If work in the  gamma f a c i l i t y  follows t h i s  trend, it w i l l  be 

possible t o  make accurate decisions on the amount of chlorine t o  be used i n  a reactor 

accident 

UNCLASSIFIED 
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APPENDIX I 

HW-63902, Rev 

Derivation of the Rate Law 

Basis: 

Assumptions: 1. 

Chlorine inh ib i t s  graphite oxidation by blocking act ive sites. 

Experiments a re  conducted i n  a flow system so that Cl2 and 02 con- 
centrations in  the gas phase remain constant. 

2. Reaction is not diffusion limited, i.e., absorbed C 1 2  and 02 are i n  
equilibrium with gas phase C12 and 02 and their  concentrations a l s o  
remain constant. 

3. 

4. 

Adsorption i s  accompanied by molecular dissociation. 

Most active s i t e s  are occupied by chlorine or oxygen. 

Nomenclature 

A = t o t a l  number of active sites (occupied or  unoccupied). 

C* = available active s i t e s  

G = bound carbons (graphite l a t t i c e )  

i n  = into reaction zone 

UNCLASSIFIED 
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and 

(7) 

Substi tuting equation 6 in to  equation 7: 

(G - C - 0)2 = K2 (02)in (G - C*)2 

(8) (G - C - 0)2 = -I"f"f" (G - C - C1)2 
K5 C12 i n  

A t  constant temperature, 

A = (C*) + (G - C - 0) + (G - C - C1) 
and remains constant. 

( 9 )  gf C* << A, then ( G  - C - C1) A - (G - C - 0) 

from equations 1 and 4 ( loa)  (G - C - 0) (A - (G - C - 0)) 
L d 

2 K? Ki 
K5 Q 

L e t  B = 

from equation 3 

co = k3 (G - C - 0) 
d t  

- 8  
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2 2 L  
750 

700 

600 

550 

L, &. * 
0. 
0,009 
0.W 
5 

106 

0 
0.009 
0 e025 
0,035 
0,2l 
0.30 
5 

106 

0 
0 ,009 
0,055 
0,2l 
5 

106 

lJ.4 

1.34 x 10-1 

4.05 x 10-2 
1,70 x 10-2 
l,55 x 10-2 
1.30 x 10-2 

9.30' x 10-4 

1.19 x 10-2 
1.05 x 10-2 
4.5 x 10-3 
3,2 x 10-3 
6.4 x 10.4 
1.87 x 10-4 

5,3 x 10-2 

4.35 x 10-3 

3,8 x 10-3 
2,78 x 10-3 
1.55 x 10-3 
7.0 x 10-5 
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DATA FROM OaONE GBERIEJLENTS 
TEM?EMTuRE--300°C PFiESSuRE--l ATM--AIR OR OXYGEN FLOW--2.0 cf'h 

EXPERIMEWTS IN OXYGEN (NQMINAL 6$ OZONE1 

c12 
01 
- 
0 
0 

9.0 10-4 
1.8 x 10-3 
,0106 
a0565 

Rate 

7.2 x 10-3 
7.2 x 10-3 
5.69 x 10-3 

6.35 x 10-5 

4.15 10-4 
6.0 x 10-5 

0 
0 

.2l  
0.21 

2.03 x 10-3 

4.42 10-4 
4.81 10-4 

2.24 x 10-3 
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T 
Rate vs. - 1 ,  
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FIGURE 2 

Experimental Values and Calculated Curves 
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I x lo-’ 

L: c 

W 

I x 10-2 

FIGURE 3 

Rate vs .  70 Chlorine 

UNCLASSIFIED 

-, i ‘1 - 0  ry 
$. ’ 1 ‘s .‘ 6 



UNCLASSIFIED 

4 
I 

-17- HW - 6 3902 

EGCR 
OX IDATION 
PROTOTYPE / AIR 

PREHEATER 

\ 
I 

3 

FIGURE 4 

Engineering Scale Prototype Unit 
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