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The weighted density of electronic states (or the charge or spin density ) 

associated with an impurity in a metal is easily derived in terms of a Green ' s 

function for the pure metal. The Green's function for either the pure metal 

or metal with an impurity has a particularly simple form when expressed in 

the Wannier function representation. The weighted density of electronic 

states associated with the impurity is simply related to a generalized 

Green's function for the impurity as shown by Waller for the analogous 

problem in lattice dynamics. The weighted density of electronic states 

so derived is useful in interryreting results on the study of impurity ef-

fects such as the isomeric shift and quadrupole splitting observed in the 

Mossbauer on impurities in metals. For a single conduction band and localized 

impurity interaction potential one easily obtains the results of Clogston for 

the Knight shift at an impurity. Wolff's "self consistent equations" are 

also readily obtained using a simple spin dependence in the matrix element 

of the interaction potential. 
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Lifshitz1 has e~phasized the similarity of the effects which an impurity 

in a crystal lattice has on the distribution of phonon frequencies and on the 

distribution of electron states. In a recent paper concerned with the lattice 

vibration problem for an isotopic impurity, Waller
2 

has derived and made use of 

a very simple relationship between the Green's function for the general lattice 

(containing the impurity) and the Green's function for the unperturbed lattice. 

In this paper we show that Waller's method also has attractive features for 

the electronic side of the impurity problem. 

A convenient set of basis functions 3 for electron wave functions are the 

Wannier functions of the pure host metal. If 0nk(E) is the Bloch function 

describing an electron of wave vector k in the nth band of the pure metal, 

the Wannier function a (r-R.) of the nth band centered on the site R. is 
n- -J -J 

defined by, 

a 
n 

-~ (r-R.) = N 
J 

L: e 
k 

(1) 

We shall approach our problem by first setting down a general discription 

in which it does not matter whether the. system we have in mind is the pure 

metal or the .metal containing the impurity. In either case if the one-electron 

Hamiltonian tor the electrons has·eigen-functions ~ (r) and one-electron energies p-

Ep' then we can expand ~p(E) in terms of the Wannier functions of the pure metal; 

~ (r) = p-
-k2 

N L: 
n, j 

U (n,j) a (r-R.). 
p n - -J 

(2) 

The Wannier functions are orthonormal and since the·functions ~ (r) must be also, . p-

the transformation coefficients U (n,j) form a unitary matrix; 
. p 
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* ) U (n,j) U , (n,j 
p p 

I: u 
p 

p 

* (n, j) U 
p 

(n I J• I) = 0 
' nn' 

The Green's function which we work with is, 

Gnj, n'j' (E) = N-l I: 
p 

0 · • I • 
JJ 

Using H to denote the matrix of the Hamiltonian in the Wannier function 

representation, it is easy to show using (4) that the matrix G(E) whose 

elements are given by (5) satisfies the equation, 

(H - EI) G(E) = I, 

where I is the unit matrix t: t: We now introduce a weighted U • 1 1= U t: n_J,n j nn'ujj'" 

density of states function, 

g (E) = (NO)-l ~ nj, n' j' w 
* U (n',j') U (n,j) o(E-E) p p p 

p 

in terms of which G . , ., (E) can be expressed as 
nJ,n J 

Gnj,n'j'(E) = 0 .r [gnj,n'j'(E')/(E'-E)] dE' 

Here 0 is the atomic volune. In the limit of an infinite lattice, 

will have a continuous part gc(E) corresponding to the bands, but there may 

i i i also be a number of isolated states g (E) = C o(E-E ), lying between the 

bands.. For convenience the Green '.s function (8) can be split into cor

responding parts Gc(E) and I: Gi(E). Using the well-known symbolic identity, 

1 
p ( E 7 -E ) ..p i 11 c (E I -E)' E I -E-i€ 

in which P denotes the principal ·value of the integral, one can write 

m1 gc(E) = Im Gc(E+ie). It is also easy to show from (8) that OCi is 

equal to minus the residue of Gi(E) atE= Ei. Hence, 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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-1 c = (nO) Im G . , .,(E+ie) 
nJ ,n J 

For the pure metal the eigen-functions of the unperturbed Hamiltonian H0 

ik·R. 
are the Block functions 0nk(r) and the U's are simply e- -J. We shall de-

note the corresponding unperturbed functions g . , .,(E) and G . , .,(E). 
nJ,n J nJ,n J 

There are no isolated states i in this case. One can, therefore, use (9) 

to write in the usual way, 

Gnj,n'j' (E+ie)- 0 Fnj,n'j' (E)+ inO gnj,n'j' (E), 

where Fnj,n'j' (E) is the principal value· integral, 

CXl 

Fnj,n'j' (E)= P J [gnj,n'j' (E')/(E'-E)] ~· 
-oo 

Suppose that an impurity is introduced at R , and henceforth take the 
-o . 

unbarred notation in (2) to (10) as referring to the perturbed problem with 

H = H0 
+ H

1
. In a metal the perturbation due to the impurity is localized 

in s.ome degree and only a small number of bands play an important role. Thus 

we may consider the problem in various approximations corresponding to al-

(10) 

(11) 

(12) 

1 lowing different numbers of non-zero matrix elements H . , ., . We suppose that 
nJ,n J 

these non-zero elements are contained in an SxS matrix, where, for example, 

in the case of the one band, S is 1 or Z+l being the number of nearest neighbors.· 

Then, mulitplying (6) on the left by G(E) and using the fact that G(E) is the 

inverse of the matrix (H
0 -EI), one obtains, 

G(E) + a(E) H
1 

G(E) = a(E). (3) 

- 1 -1 1 Defining (I+ G H ) as the inverse of the SxS matrix {I + a(E) H ) whose 

elements correspond to the non-zero elements of H
1

, one,can manipulate (13) 

to nhtAin, 

(4) 
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In the second term on the ri~ht the inner SxS matrices are enclosed by G(E) 

matrices with appropriate rectangular shapes. It is this important expression 

for the perturbed Green's function in terms of the unperturbed Green's function 

2 4 which is central to Waller's treatment of the lattice vibration problem. ' 

We note that G . , .,(E) 
nJ ,n J 

has poles at the unperturbed energies Enk and 

also at energies Er.such that (I+ G H1)-l is singular. r For an energy E 

which is inside one of the bands there occurs resonant scattering of con

duction electrons having this energy. Those energies Ei lying outside any 

of the bands are associated with electron states localized about the im-

purity. The properties of these electron impurity levels have been studied 

3 5 6 extensively by Koster and Slater ' ' who were, however, mainly concerned with 

the form of the wave functions in the scattering.problem. 

If there is only one band of conduction electrons (allowing us to drop 

the band indices), and if the perturbation is confined entirely to the im-

1 purity atom, i.e., H .. , = 
JJ 

us a simple relation; 

V6 6 then the j=j'=o equation of (14) gives 
jo j 'o'' 

G (E) = G (E)/[1 + v G (E)]. (15) 
00 00 00 

This can also be seen immediately from (11). A resonance state or a localized 

' . 0 - 0 state arises if there ex1sts an energy E such that R~(l + V G (E + ie)) = 0. 
' 00 

As an illustration of the use of (15) we calculate a first approximation 

to the charge density from the band of conduction electrons at the nucleus of 

the impurity. If E0 is inside the band, then by putting (11) into (15) to 

obtain G (E+ie), one obtains from (10) the weighted density of states 
oo 

function, 

g (E) = g (E)/[[1 + 0 V F (E)]
2 + [ n 0 V g

00
(E)] 2}, 

00 00 00 

where g. (E) is the usual density of states of the band in the pure metal. 
00 

(16) 
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If, on the other hand, E0 is outside the unperturbed band so that g (E0
) ; 0, 

00 

as well as 1 + 0 V F (E0
') = 0 then one must evaluate. the residue in the 

00 ' 

second term of (10), giving, 

which must be added to (16). Since it is clear how this extra term parti-

cipates when it occurs, we shall for convenience drop it, supposing E0 to 

(16') 

. \ 

lie inside the band. Then summingover alloccupied states p and making use of (7) 

and (16) we obtain, 
E j'l' (R )j2 .~ 

p 0 p 

= 

EF 
oja(O)j 2 I dE g (E)/{[l+OVF (E)] 2 + [nOV g (E)]

2
} 

00 . 00 00 

(17) 

This expression provides a plausible basis for interpreting isomer shifmsuch 

7 as those recently measured by Mozer and Segnan for iron impurities in a number 

of non-magnetic metals. 

One can also write down an expression for the spin density at the impurity 

nucleus.· If the host lattice is non-magnetic so that the energy bands for spin t 
and spin t electrons are the same in the absence of a magnetic field, then in a 

weak field the contributions to the spin density from spin pairs cancel to a 

good approximation and one is left with the contribution from unpaired spin at 

the Fermi energy. Explicitly, summing over occupied states in the band as in 

(17), the spin density at the impurity nucleus is, 8 · 

p (!o ) ; r: I '!' P t <B:o ) I 2 
pt 

E E 

~ ola(O)I2 [r F ~ 
,. 

f' F 
g (E+[.L:SH) dE - , , ~ g . (E -[.LBH) dE} 

00 .. ! -co 00 
-co 

(18) 
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Here we have taken the g-factor of the electrons to be 2. The corresponding 

hyperfine field at the nucleus is 6H = (8n/3) ~ p(!o)· Hence, the Knight 

shift K. 1mp t:,H/H is, 

A similar argument gives for the Knight shift at an atom in the pure hose 

metal, 

Hence, from (16), 

(19) 

(20) 

K /K. = [1 + 0 V F
00

(EF)]
2 + [n 0 V g

00 
(EF)]

2 
, (21) host 1mp 

. 9 10 . 11 
which is equivalent to an expression obtained by Clogston. ' Measurements 

of Al· in a 5% Al 95% Cu alloy give a value of 2. 0 for thiS ratio, whereas for a 5% 

Cd 95% Ag alloy the value is 0.9. 12 The Green's function approach leading 

to (21) has the merit that it is easy to understand the approximations which 

h b d . . h 1' . d . 13 ave een rna e, 1n contrast ~t ear 1er cons1 erat1ons. 

There is a possibility that semi-quantitative c.alcula tions can be per-

formed using (17) or (21). The difficulty is that one needs to know a great 

deal about the unperturbed host lattice. At the present time it would probably 

be expedient to assume some form for g (E) from which F (E) can be found 
. 00 00 

analytically. 9 

·To extend (17) or (21) to treat more than one band or to include con-

tributions from Wannier functions on nearest neighbors, one must use Eq. (14) 

- 1 -1 with (I+ G H ) a matrix of order greater than unity. The complexity of 

the calculation is increased accordingly. 

Finally it is worth mentioning that the Green's function approach 

described here can be used in studying the phenomenon of localized magnetic 

moments associated with iron atoms dissolved in various 4d elements and alloys. 9• 14 - 16 
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For example, Wolff's "self-consistent equations" for the existence of a 

localized moment (Eqs. (18) and (19) of reference 17) follow at once from 

(17) introducing a simple spin dependence into the matrix element V. 

This study was stimulated by a series of lectures on the lattice impurity 

problem by Professor Waller, to whom we are grateful for many interesting 

discussions. 
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