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ABSTRACT

The nonequilibrium  con trib u tion  to  the rea ctio n  ra te  o f  an i s o 

thermal multicomponent system i s  obtained by so lu tio n  o f  the appropriate 

Chapman-Enskog equation; the system  i s  composed o f r ea c tiv e  sp e c ie s  in  

contact w ith  a heat bath o f  in e r t  atoms M. I t  i s  found th at the pertur

bation  o f the v e lo c ity  d is tr ib u tio n  fu nctions i s  determined by the 

ex ten t o f the departure o f  the r ea c tiv e  c o l l i s io n  frequency (c^) 

for each rea c tiv e  component y from (c ^ ), the c o l l i s io n  frequency that 

leaves the d is tr ib u tio n  fu nction  unaltered by rea ctio n ; the function

obtained for an isotherm al systems i s  d if fe r e n t  from th at in tr o 

duced prev iou sly  for  an is o la te d  system . An i l lu s t r a t iv e  a p p lica tio n  i s  

made to a model system corresponding to  the H2 +C IJ HCl+H rea ctio n  without 

in tern a l degrees o f freedom; the d ev ia tion  o f the ra te  c o e f f ic ie n t  ra tion  

(kj/k^) from the equilibrium  value (kj°^/k^°^) i s  a few percent.



I .  INTRODUCTION

The perturbation  o f the v e lo c ity  d is tr ib u tio n  fu n ction  by rea ctio n  

for the rea c tiv e  system

A + B J  C + D 

1 2was stu d ied  in  two previous papers. ’ I t  was poin ted  out th at a tr e a t

ment o f the nonequilibrium  behavior o f  r e a c tiv e  system s with the non lin ear  

Boltzmann equation im p lies th at the system  i s  is o la te d . In th is  paper, 

we construct an isotherm al co n stra in t on a corresponding r e a c tiv e  system  

by d isp ersin g  the reactan ts and products in  a heat bath o f in e r t  atoms M 

in  such large  excess th at the heat bath remains unperturbed by the reac

t io n . The system c o n s is t in g  o f r ea c tiv e  sp e c ie s  p lus heat bath i s  held  

at a constant tem perature, so that the rea ctio n  can be considered to  take 

place under isotherm al c o n d it io n s; th a t i s ,  the o v e r a ll temperature o f  

the r ea c tiv e  system remains e s s e n t ia l ly  co n sta n t, although v a r ia tio n  o f  

the "temperatures" o f the in d iv id u a l reactan ts  and products does take p lace  

during the course o f  the rea c tio n . This model corresponds more c lo se ly  

to the usual experim ental s itu a t io n  than the one described in  I and I I .
3

The model r ea c tiv e  system s considered by Pyun and Ross did not 

include an e x p l ic i t  mechanism for m aintaining a constant tempera

ture ; in s tea d , they made the assumption th at the components in  the i s o 

la te d  rea c tiv e  system a l l  have the tr a n s la t io n a l temperature o f the gas
4m ixture. In the work by Pyun, the r e a c tiv e  system was placed in  con tact  

w ith a heat bath, and the perturbation  o f the heat bath was included  

together w ith  the assumption th at the tr a n s la t io n a l temperatures o f  the  

rea c tiv e  components and the heat bath are a l l  eq u a l. This assumption c le a r ly  

d if fe r s  from the isotherm al and co n stra in t used in  the present work; moreover.
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I t  i s  a o t  e v id en t how such an eq u al ten ip era tu re  c o n s t r a in ts  i s  to  be 

in tro d u ced  in to  a r e a l  system  o f th e  type co n sid e red  by Pyun.

The Chapman-Enskog method o f  so lu tio n  o f  th e  Boltzmann equation for  

the model isotherm al system i s  described in  Sec. XI. The e f f e c t  on 

the form o f the Chapman-Enskog equation o f  the isotherm al character o f  

the system i s  d iscu ssed . Comparison i s  made w ith  the methods adopted  by 

the  e a r l i e r  w orkers. . .I£ I ■stfee .^Sonine polynom ial method o f  s o lu t io n

i s  o u tlin ed . I l lu s t r a t iv e  a p p lica tio n s  are made to rea ctio n s w ith  and without 

a c tiv a tio n  energy and to the two model system s correspond ing  to the 

H^+Cl^HCl+H and H2+l2~2HI reaction s introduced in  I I .  A d iscu ssio n  o f  

the r e s u l t s  i s  given in  Sec. IV. In the appendix, the e f f e c t  o f  in c lu d 

ing the perturbation o f the heat bath p a r t ic le s  Is  stud ied  and compari

son i s  made with the r e su lts  obtained by Pyun.^

I I .  THEORY

With the assumption th at the heat bath p a r t ic le s  M are d is tr ib u ted  

according to a Maxwell-Boltzmann v e lo c i ty  d is tr ib u tio n  fu nction  f^ °^ ,

the v e lo c ity  d is tr ib u tio n  fu nction s for  the r e a c tiv e  components f^ obey
5the s e t  o f  Boltzm ann-like transport equations o f  the form (see  I I )

3 f
_ _
3t

Since the heat bath p a r t ic le s  are assumed to be in  large e x c e ss , e l a s t i c  

c o l l i s io n s  between re a c t iv e  sp ec ie s  n eg lected  in  comparison to the 

more frequent e la s t i c  c o l l i s io n s  between the rea c tiv e  components and the 

heat bath p a r t ic le s . In terms o f the d is tr ib u tio n  fu n c tio n s , the number 

d e n s i t ie s  n^ and th e  temperature T o f  th e  system  are given by
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^ “ 3nk 2 ■*■ 3nk ^ 2 “ŷ ^Ŷ -Y

where n®i\, + 2) n and the sum over y  i s  over the r ea c tiv e  components.
Y

Since n ^ » n ^ , Eq. (3) reduces to

^  " 3 ^  I  « >

Solu tion s to  Eq. (1) are obtained fo llow in g  the Chapman-Enskog 

method, which asstanes that the only time dependence o f f^ i s  im p lic it  

through n ^ (t) and T ( t ) . S ince the presence o f  a large  excess o f nonreac

tin g  sp ec ie s  ensures th at the gas m ixture i s  a t  a constant temperature T, 

we can w rite

9 f  3 f  dn

3t 9n dt
Y

where (dn^/dt) i s  obtained by in teg ra tin g  Eq. (1) over c^; th at i s ,

dn
-TT̂  ” - / f  R dc, (6)dt Y Y -Y

Equation (6) i s  the hydrodynamic equation o f transport th eo ry  for  the

res<

(o)
present problem. Expanding f^ about the Maxwellian d is tr ib u tio n  fu n ction

Ŷ

su b stitu tin g  Eq. (7) in to  Eq. (1 ) ,  and making use o f Eqs. (5) and (6 ) ,

we obtain the equation for  f  (zero order in  J ,
Y Y



The so lu tio n  o f Eq. (8) w ith the standard con d ition

i s  the Maxwell-Boltzmann d is tr ib u tio n  function

m 3/2
__X
2irkT

where T i s  the heat bath tem perature.

The equation lin e a r  in  ip i s
T
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(8)

«Y (9)

ex p (-m c^/2kT) (10)
T Y

1
w ith the d e f in it io n  I

i

W ym' V *

-  -  J -  +  8^°^ (13)

I t  i s  important to n o tice  th at the equations for  \py [Eq. (11) ] are not 

coupled; th is  uncoupled s e t  o f  equations co n tra sts  w ith  the coupled s e t  

obtained for  a multicomponent system  in  the absence o f a heat bath (see  I I ) .

As a consequence o f the d e f in it io n  o f  n [Eq. (2 )] and o f  Eq. (9  ) ,  ^
Y Y

must s a t i s f y  the s in g le  a u x ilia ry  con d ition

/f^°^ i|;^dc^- 0 (14)
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Equatlon (14) s e le c t s  a unique so lu tio n  to Eq. (11) by requiring  th at  

the so lu tio n s  to the homogeneous eq u a tio n  K ĵ̂ j(x )̂ 0 do not contribu te

to There i s  only  one such con d ition  in  the present case s in c e  there

i s  only one so lu tio n  to the homogeneous e q u a tio n ; i . e ,  Xy ~ con stan t.

In I ,  the energy i s  a lso  a so lu tio n  to  the homogeneous equation o f  that 

problem and there are two a u x ilia ry  c o n d it io n s .

Through terras l i s t e d  in  the functions \jj ,̂ the forward and reverse  

rates o f  reaction  a re

(il>^+ilJ2)cy*2S^ndc^dc2 (15)

Jr  ̂ 4 ° ^  + / / / f  (ip^+ip^)a*^gdQdc^dc^ (16)

where and are the equ ilibrium  r a t e s .

I I I .  CALCULATIONS
^  (Y) ( i )

When i s  expanded in  Sonine polynom ials ( i . e . , \p -  E a , S ) ,
r y i» o   ̂ ^

the expansion c o e f f ic ie n ts  obtained by su b s titu tin g  in to  Eq. (11) a re

(see  I I )

n I  = n n (17)Y M  ̂ X Y Y Y n j

where

and

n n ^dc^ =» JG  (18a)
Y n i  Y Y Y ~Y j o o j '  Y
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(y )In terms o f the a^' , the fr a c t io n a l decrease in  the forward and reverse  

rates o f  reaction  ri| “ and , r e sp e c t iv e ly ,

are

n .  » -  2 : E (19)
 ̂ Y=1 i - 1   ̂  ̂ °

n » -  E E (20)r „ , , i  i  0Y“ 3 i= l

where a^^  ̂ = 0 by Eq. (1 4 ).

The cross sec tio n s  used in  I and II  [Eqs. (II44 ) , (II45 ) , and 151)]

are employed in  the present paper. From the form o f  Eqs. (1 7 ) , (1 8 ) ,

and (I I 3 8 ) , one observes th at the dependence o f the expansion c o e f f ic ie n ts  

(y )a . on n , d and the s t e r ic  fa c to r s  q_ and q for  the forward and reversei  Y YO f  r
rates o f  reaction  has a sim ple form. This dependence can be factored  out 

by d efin in g  a new s e t  o f  expansion c o e f f ic ie n t s  a^^^^

, ( 1 ) 1 ^2 . . .  ,2 (1) ,  (2) 1 ,2 . . .  ,2 V ,  (2)
®i " q .  1M^^^” 2 12^^®i ’ ^ i " q„  ̂ 2M̂  ̂  ̂ 1 12^ ^^i

-  f  “ i ' " '  -  r  i <v L > ^ < " 4 4 4 > i 4
(4)

(y )where from Eq. (17) the c o e f f ic ie n t s  depend on the component m asses,

the cross se c t io n  parameters in  p (2) and the number o f  terms reta in ed  in  

the expansion o f We can now w r ite  the fr a c t io n a l decrease in  the

reaction  rate in  the form

{ ”̂ 2 1̂ 2 ^  ̂ +{ ( n ^ d ^  ^

(21)
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\  ^̂  ^""444^' <22)

where

n ' ^ > - - “ a ''^ > a .<^>/a (y > 
l - I   ̂  ̂ °

The assumption that the d is tr ib u tio n  fu n ction  o f the heat bath p a r t ic le s  

i s  Maxwellian could be relaxed and the perturbation  o f the heat bath 

ca lcu la ted  w ith the formalism o f II  (see  Appendix). However, the concen

tra tio n  and e la s t i c  cross se c t io n  dependence i s  then more com plicated and. 

cannot be w ritten  down as given by Eqs. (21) and (2 2 ).

a , A pplications and R esu lts  

Since the dependence o f and on the concentration  and on the

hard-sphere diameters i s  knox-m, and s in c e  the convergence o f the expansion

o f ip has been demonstrated in  I and I I ,  we need only study the dependence

Cy) io f the q u a n tit ie s  p on the masses and on the cross ec tio n  parameters e*/kT

and 0. The nature o f  the so lu tio n s  o f Eq. (11) for  a p a r ticu la r  component 

y  i s  s u f f ic ie n t  for  an understanding o f  the p o ss ib le  e f f e c t s  in  the m u lti

component systems s in ce  the equations fo r  are not coupled.

In F ig . 1 , the e f f e c t  of changes in  the r a tio  o f  the heat bath p a r t ic le

(y )mass r e la t iv e  to the reactant mass M/m for  A=B on p i s  s tu d ied . The

dependence o f p^^  ̂ versus e*/kT shown in  F ig . la  can be compared w ith the
(

dependence o f  shown in  F ig . I l i a  fo r  the is o la te d  system reaction  

A+A'+products. The maximum in  p''"̂ ”' in  F ig . la  i s  seen to occur for  

sm aller e*/kT and there i s  no o s c i l la to r y  behavior in  the region  0$e*/kT<2. 

The e f f e c t  o f the reactant mass r a tio  i s  shown for  reaction s w ith a c tiv a tio n  

energy in  F ig . 2 and for reaction s w ithout a c tiv a tio n  energy in  F ig . 3.
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( y )
I t  i s  important to compare th e  dependence o f n versus 0 in  F ig . 3 w ith  

the  dependence o f  shown in  F ig . 115; the d ifferen ce  in  th e  r e su lts  

obtained for  0^g<2 are o f  primary in t e r e s t .

For the H2+C1«HC1+H reaction   ̂ and the h y p o th e tica l b im o lecu la r 

reaction  H2+l2=2HX (which i s  now known to a c tu a lly  in vo lve  I atoms rather  

than I 2  in  the forward r ea c tio n ^ ), the c o e f f ic ie n t s  and g iven  by 

Eqs. (21) and (22) are l i s t e d  in  Table 1. The c a lcu la tio n s  were carried  

out w ith the parameters used in  II  and the heat bath p ro p erties  chosen

to correspond to helium or argon as in  the experim ental in v e s t ig a t io n  o f  the

6H2 +CI Z  HCl+H reaction  by Westenberg and de Haas.

In I ,  prelim inary e s tim a te s  o f the forward rate  o f  the io n ic  recom

b in ation  reaction  h"̂ +H ■*”H2 in d ic a te d  that th e  nonequilibrium  correction  

can be large  and the Chapman-Enskog expansion o f the d is tr ib u tio n  fu nction  

may converge very slox#ly or not a t a l l .  Since the e a r l i e r  treatm ent

could not account for  the concentration  dependence o f p^, the nonequilibrium

e f f e c t s  have been r e in v e s t ig a te d .  With the cross s e c t io n  parameters o f I ,

P£ was c a lc u la te d  and the r e su lts  are shown in  Table 1.

IV. DISCUSSION

As in  our previous papers, we begin by in v e s t ig a t in g  system s for  

which nonequilibrium  e f f e c t s  do not occur. The rea ctio n  c o l l i s io n  fr e 

quencies =» G^/f^°^ga*dc^ for  which are obtained for  cross
(n)s e c t io n  a* that y ie ld  zero  fo r  in  Eq. (1 1 ). Thus, from Eq. (1 3 ),

and Sec. V o f I I ,  we have

(23)
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P e rtu rb a tio n s  o f  th e  d i s t r ib u t io n  fu n c tio n s  a re  determ ined  by the  d e p a r tu re  

o f from , where

. ( { 2 .  3 /2 )  i  ^  E 1 ^ — 1 ----- ^  (24)
^ ^ T \d t  2n^ ^ ^ 2  r (k +  3 /2 )

with (dT /dt)^°^ = (2T/3n . E quations (23) and (24) show th at onlyY K. Y X

when R^°  ̂ i s  independent o f which corresponds to uniform removal o f  

p a r t ic le s  by r ea c tio n , i s  there no perturbation  o f  the d is tr ib u tio n  func

tio n s . This i s  the case for  system s w ithout a c t iv a t io n  energy and 3® -1

as shown in  F ig . 3 [ ( n (3= ~ 1 )= 0 ], s in c e  -  0 , j ^ l  and R^°  ̂ = R^°  ̂ ,
3 "Y Y

independent o f  th e  o th e r  system  v a r ia b le s  (see  I I ) «

The dependence o f and on the cross s e c t io n  parameters
(y ) (y ) 4i s  through the Â  in t e g r a ls . Since Â  i s  prop ortion al to  (1 -  m /̂m )̂" ,̂

there i s  a dependence on the reactan t mass r a t io  in  the form of a power

s e r ie s  in  . There i s  an a d d itio n a l mass dependence o f th at a r ise s

from the dependence o f  on the r a t io  o f  the reactan t and heat

bath p a r t ic le s  mass r a tio  m /̂M. In F ig s . 2 and 3 , the decrease in

w ith in creasin g  (m2 ®l) i s  due p r im a r i ly  to the decrease in  the d ifferen ce

R^°^-R^°^ a r is in g  from the decreasing r e a c ta n t  mass r a t io  (m2 /m^) in  the

Aj^^ in t e g r a ls . S im ila r ly , the in crease  in  i s  due to the in crease

in  R2 °^-R 2 °^ a r is in g  from the in crea se  in  the A^^  ̂ in t e g r a l s ;  in  the

lim it  and approaches a f i n i t e  n on -zero  v a lu e . The

in crease  in  ri = n w ith an in c r e a se  in  M/m shown in  F ig . 1 [or
(y )

decrease in  M/m s in c e  p (m^“m2- l )  i s  in v a r ia n t  under the tran sform ation

M/nr*-m/M] i s  due to  the d ecrease in  the m atrix  elem ents { S S  ; i . e . ,•y '  *
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the momentum re la x a tio n  times are longer and there i s  a decreased coupling  

between the reactant and the heat bath.

Inspection  o f  the r e su lts  for  the H2+C1=HC1+H and the H2+I2- 2HI reac

tio n s l i s t e d  in  Table 1 in d ic a te s  th at they are in  q u a lita t iv e  agreement

(y )w ith the above ob serv a tio n s. The correction s n are la r g e s t  for  the 

l ig h te r  rea c tiv e  component and the dependence on the heat bath v a r ia b les  

i s  as given by Eqs. (21) and (22) and as shown in  F ig . 1. From the l i s t  

of rate  c o e f f ic ie n t s , i t  i s  c lea r  that even for  the extreme case n^/n^ -  0*1 

and for system s not too far  removed from chemical equilibrium  (G  ̂ = .1 ) ,  

and are s t i l l  sm all and represent l e s s  than a 1% decrease in  the eq u i

librium  r a te s . The d ev ia tion  o f (k^/k^) from (k^°^/k^°b: i s  a lso  very sm all. 

In p a r tic u la r , i f  we compare k^ ca lcu la ted  for  a large  excess  o f  H2  ( i . e .  ,

“ 1 , Ĝ  = 0) w ith k^ ca lcu la ted  for  a large  excess o f  HCl ( i . e . , -  1 ,

Ĝ  = 0) corresponding to  the con d ition s under which th ese ra tes were 

sep arately  measured,^ we fin d  that

k f /k r  “ k ^ °V k ^ °^ {(l -  .5 7 x l0 “\ j ^ ^ /n ^ ^ ) / ( l -  .9 5 x l0 " \^ ^ ^ /n ^ ^ )}

in  He and Ar, r e sp e c t iv e ly . Eve:, for an extreme choice o f  the concentra

tio n s , the d ev ia tion  o f  k^/k^ from k^°^/k^°^ i s  very sm a ll. However, i t  

must be emphasized that only the tr a n s la t io n a l degrees o f freedom have 

been taken in to  account. S in ce there I s  some th e o r e t ic a l evidence that 

v ib ra tio n a l energy may be very important in  H2 +CI -*■ HCl+H and re la ted  

r e a c t i o n s a  non-equilibrium  c a lcu la tio n  in c lu d in g  v ib ra tio n a l e f f e c t s  

i s  required for further a n a ly s is  of th is  c a se .
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For the h"*"+H -^products r e a c tio n , the e f f e c t s  are sm all fo r  very d ilu te  

system s. However, fo r  higher io n ic  co n cen tra tio n s, the non-equilibrium  

rates e f f e c t s  become la r g e . This su g g e s ts , as already suggested  in  I , that 

the Burnett term in  the expansion o f  the d is tr ib u tio n  fu n ction  can be 

s ig n if ic a n t .

Comparison o f  Isotherm al and I so la te d  R eactive System s. The d ifferen ce  

in  the r e su lts  obtained in  th is  paper and those found in  I I  fo r  the is o la te d  

r ea c tiv e  system  are dominated by the e f f e c t  on o f the fa c t  th at (dT/dt)

equals zero in  the former and not in  the la t t e r .  To i l lu s t r a t e  th is  p o in t, 

we consider the one-component r e a c tiv e  sys tem A+A-*products and employing 

the re la x a tio n  time approximation,^^ which assumes th at one can w rite

= tF^°^ (25)

With Eqs. (11) and (25) we fin d  that

2
n. “ 2t . >-<R^°^>^}/<R^°^> (26)isotherm al isotherm al

where n < ()> = /f ()dc and "^igo^hermal “ ’^A°  ̂}/<(F^°^)^>. Equation (26)
12i s  id e n t ic a l in  form to an exp ression  derived by Widom fo r  the correction  

to  the forward rate o f reaction  due to the perturbation  o f the v ib r a tio n a l  

d is tr ib u tio n  fu nction  of a system o f  diatom ics d i lu te ly  d isp ersed  in  a heat 

bath o f  atoms; though the in te r p r e ta tio n  o f the re la x a tio n  tim es i s  d i f f e r 

e n t . From Eq. (2 6 ) , = 0 for R^°  ̂ = constant which i s  in  agree

ment w ith  the r e su lts  d iscu ssed  e a r l ie r  in  th is  s e c t io n . The corresponding  

r e su lt  for the iso la te d  system w ith Eqs. (113) and 115) i s

'' iso la te d  '  -  |  (27)
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where i s  zero not only i f

i s  a constant but a lso  i f  R^°? i s  o f  the form R^°^~a+ -j b S ; (see  Eq. (158), 

Therefore “ 0 for  3= ±1 whereas ^i^sQ^herraal **  ̂ ©aly fo r  3“ -1 .

The above a n a ly sis  could be extended to  multicomponent system s 

though i t  becomes more com plicated. For the two component system  A+B-> 

products, the fundamental d iffe re n c e  between the is o la te d  and isotherm al 

systems i s  that in  the is o la te d  system  the two nonequi1ibriurn "systems"

A and B are coupled, in  some in s ta n c e s , predominantly through exchange

o f tr a n s la t io n a l energy and the nonequilibrium  e f f e c t s  are s e n s it iv e  to

(y )th is  coupling as expressed by the va lu es o f  the a^ c o e f f ic ie n t s  in  the

(y )Sonine expansions; when A->B, â '̂ -K). In the isotherm al system , the non

equilibrium  systems A and B are coupled to an equilibrium  heat bath and

the nonequilibrium  e f f e c t s  in  th is  case are due predominantly to energy

(y )exchange between the reactan ts and the heat bath . The a^' c o e f f ic ie n t s

(y )express th is  important in te r a c tio n  but in  th is  case for A->-B, a^  ̂ f̂ O.

The d if fe r e n t  r e su lts  o f 3=1 i s  now c le a r  s in ce  for  th is  case

Hf = a^^^A^^^/A^^^+a^ ^A^^Va^^  ̂ in  both system s and vanishes for  A=B in
(Y)the is o la te d  case s in ce  â  ̂ -> 0 and i s  non-zero in  the isotherm al case

s in ce

Since a l l  o f  the above fea tu res  a r is e  from the use o f  the Chapman- 

Enskog method o f so lu tio n  o f  the tran sport eq u a tio n s , i t  i s  o f  considerab le

in te r e s t  to in v e s t ig a te  these e f f e c t s  by an a lte r n a te  approach as a t e s t

13o f the Chapman-Enskog assum ptions. In a subsequent paper, the e x p l ic i t  

time-dependent so lu tio n s  o f  the l in e a r iz e d  transport equations are 

obtained and compared with th ese  r e s u l t s .
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APPENDIX

In th is  appendix we d iscu ss the c a lc u la tio n  o f  the correctio n  to the 

equilibrium  rate  o f  reaction  o f t i e  rea c tiv e  system A+A-*products, where A 

i s  d isp ersed  in  a gas o f  in e r t  atoms M not n e c e ssa r ily  in  large  e x c e s s .

The M-type p a r t ic le s  are not assumed to be d is tr ib u ted  according to a 

M axwell-Boltzmann d is tr ib u tio n  fu n ctio n . The main purpose o f the ca lcu la 

tio n  i s  to  obtain  an estim ate o f how sm all n̂ /n̂ ^̂  must be so th at the heat 

bath i s  e s s e n t ia l ly  unperturbed by the r ea c tio n . The Boltzmann equations  

for the two components are

9 f
= / / ( f ^ f ’-fj_f)ffj_3_gdOdc+//(f^f^-f^f2)aj^2S'^dc2 (Al)

3f

where 1 and 2 denote A and M, r e sp e c t iv e ly . With the formalism o f  I I ,  the  

Chapman-Enskog equations for  the perturbations and ^2

A , . 2A.
_o^

1̂

A 2A

n £ l ^  “ " n7  ̂ " 3n“ ^1 ‘̂̂ '̂1 ^^1 ^

n2l(4'2^ “ 3^r <A4)

( 2 )
I t  i s  su ff ic ie n t;  here to r e ta in  terins up to  in  the exp an sion s o f

S in ce we are priiriarily in te r e s te d  in  the co n cen tra tio n  dependence, the masses 

and hard-spharc difUiieters o£ the reaccan t and h ea t bath atoms are chosen equal 

Taking moments o f  Eqs. (A3) and (A4), \ve obtain  four eq u a tio n s, two o f  

which are the same, for the four expansion c o e f f ic ie n t s . With the a d d it io n a l
/ i s C 0

eq u ation  n , - - 0  and w ith  the homogeneous eq u ation  r e s u lt in g  from
( 2 )taking the moment o f  Eq. (,A/; , we obtain
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(A5,
1 ^

-  I  a ^ ^ \ l+ 5 ) } / (  ~  6+2) (A6)

where 6 '»n^/n2 . With Eqs. (A5) and (A6 ) and the remaining two moment equa

tion s , one fin d s that

a|^^ — 6  { 31Aj^+4A2 }/60  (1+6) ̂  (A7)

= - 6 { ( 3 0 6 + 1 6 ) A 2 + 4 A j^ } / 6 0 ( 1 + 6 ) ^  (A 8)

The correction  to the rate o f r ea c tio n  i s  then given  by

62^2

 “̂ T ~  {31A^+12A A +16A h + -------^ —  (A9)
30(1+6) A  ̂  ̂  ̂ (1+6) Ao o

In the l im it  ~̂*Q, the reactant i s  d i lu te ly  d isp ersed  in  a h eat bath and 
2 2Tif ""̂ 1^  6 (31A^+12Aj^A2+16A2) /3 0 Â  which i s  the r e s u lt  for  the isotherm al

system . The other l im it  6-x» corresponds to the is o la te d  system  and we
2

fin d  th at rî  k^Jk^. Since the expansions converge r a p id ly , these

r e su lts  are q u a lita t iv e ly  in  agreement w ith  those in  F ig s . la  and I l i a  

corresponding to the 6-K) and the 6->«> l im i t s , r e s p e c t iv e ly . The r e s u lt  

Eq. (A9) can be used to obtain  an estim ate  o f  the error introduced by 

assuming that the heat bath i s  unperturbed by rea c tio n ; i . e . ,  v a r ies  

lin e a r ly  w ith  6 . From the expansion o f rî  in  6 , the r a tio  o f  the 

c o e f f ic ie n t  o f 6 to the c o e f f ic ie n t  o f  6 i s  found to be
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A„ A-  ̂ A„ A- „

8{4+3 ( ~ )+ 4  (™ )^ }/{  31+12 (^ )+ 1 6  (-—) ̂  }
^1 ^1 ^1 ^1

For r e a c t io n s  w ith  a c t iv a t io n  e n e r g y , we f in d  th a t  <S m ust be l e s s  than

“210 in  ord er  th a t  an e r r o r  o f  o n ly  1-2% i s  in tr o d u c e d  by n e g le c t in g

th e  p e r tu r b a t io n  o f  th e  h e a t  b a th .

4 (1)The c a lc u la t io n s  by Pyun s e t  th e  â  ̂ e x p a n s io n  c o e f f i c i e n t s  eq u a l

to  zero  and h i s  r e s u l t  i s  ( in  our n o t a t io n )  r|- = 6{ (16+ 316)/(31 (1+6)^) }A?/A ,r  L o
2 2

w hich has th e  l i m i t s  O f 6 {16/"il)k^l and ^2^^o' agreem ent

betw een  the two m ethods fo r  th e  l i m i t  6->°° i s  due to  th e  f a c t  t h a t  th e  

a^^^ c o e f f i c i e n t s  v a n ish  in  t h i s  l i m i t  (pure A ) . H owever, i f  th e  two

m ethods w ere s e p a r a te ly  a p p lie d  to  th e  sy stem  A+B->products ( in  a h e a t  b a th  M)

Cy )th e r e  w ould n o t  be agreem ent s in c e  th e  a^ (y=A,B) c o e f f i c i e n t s  a re  non

zero  even  in  th e  l i m i t  T h is f a c t  has been  d is c u s s e d  in  I I  w here i t

(y )was shown th a t  th e  a^ (y~A,B) term s ( f o r  th e  i s o l a t e d  sy ste m  6 -^ )  depend 

on th e  mass d e n s ity  d i f f e r e n c e  P^“Pgs so  th a t  s i g n i f i c a n t  d i f f e r e n c e s  can 

r e s u l t  betw een th e  p r e s e n t  m odel (a^''^^^0) and c a lc u la t io n s  w ith
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FIGURE CAPTIONS

F ig. 1: V ariation o f ri versus e*/kX as a function  o f the mass r a tio

o f the heat bath p a r t ic le  and the reactan t m ass; M/m equal to 

(a) 1 .0  (b) 2 .0  (c) 4 .0  and (d) 8. 0;  m=m -̂m2 ; a l l  o th er unspec

i f i e d  q u a n tit ie s  are equal to  u n ity .

(y)F ig . 2: V ariation o f  0 versus e*/kT as a function  o f the mass ra tio

o f the rea c ta n ts ; m2 = l and m /̂m2  equal to (a) 1 .25  (b) 2 .0  and

(c) 4 . 0;  a l l  the o th er system v a r ia b les  a re  equal to 1;

„(2)  „ (1 ) ..............n ( l ) -n (2 ) n , —— n , q «ri tor  m̂ =m2 .
(y)Fig. 3: V ariation  o f q w ith  3 as a  fu n c tio n  of the mass r a t io  o f

the r ea c ta n ts ; m2 = l and ™ĵ /ni2  eq u al to  (a) 2 .0  and (b) 4 . 0 ;  a l l
(2 )the other system s v a r ia b le s  are equal to  1;  q ,

(1) . . . . . .  ^ (1)_^ (2) „
  q J q ~q tor  2 ’



Table 1. Nonequilibrium Effects in Some Gas Phase Reactions

Heat Bath T(°K) R ea ctio n N on eq u ilib r iu m  Rate C o e f f i c ie n t s

He 500 H^+Cl^HCl+H® Tif = (.79x l0~ \^ ^ +10" \g^ )G ^ /n ^ ^

Hr = ( .2 4 x l O ~ \ + .1 9 x l O ' \ ^ ^ ) G ^ / n ^ ^

Ar = ( .3 5 x 1 0  ^n^^+.57x10 )G ^/n^r

i,^ -  ( .1 4 x1 0 - \ + . 9 5 k1 0 - \^ P G _ ^ /„ ^ ^

He 4000 = ( .1 4 x 1 0  + .4 5 x 1 0  )G^/n^^

Ar = ( .5 8 x l0 ~ \^  + .1 4 x l0 ~ \ j  )Gf/n^r

«2 100 h’̂ +h" * 2 0 .49n^_  ̂ +  n^_)/ng

Ar Of = 251 (n̂ _̂  +

a,b See fo o tn o te s , Table 1X4.

The th e o r e tic a l ra te  constants o f  r e f .  S were f i t t e d  to the model r ea c tiv e  cross se c t io n  

o*( g)  « TTd̂ {1+ (2kT/]ig^) a} from 250*^K-8000°K; d„ and a(T ) were found to be equal to  23x10  ̂ cm
iv 8

and 73/T , r e s p e c t iv e ly ; d was assigned  the value o f 4x10 cm; see  footn ote  d o f Table XI in  I .
E


