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We investigate the mechanics of Si nanowires using first-principles theory and find that the
nanowires exhibit the same softening (decreased Young’s modulus) as the wire diameter is re-
duced regardless of the surface reconstruction or passivation. This invariance is contrary to the
expectation that the lower coordination of the bare surfaces affects the bond order and leads to
stiffer nanowires than the H-passivated nanowires. We rigorously connect electronic structures and
mechanical properties to show why the Young’s modulus is insensitive to the surface state.
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Nanoscale systems behave differently than their macro-
scopic counterparts in many aspects. One of these is that
mechanical properties are anomalous at the nanoscale,
a fact important in the design and development of
nano-electro-mechanical systems (NEMS). Semiconduc-
tor nanowires used as the active element in nanoscale
mechanical resonators can act as extremely sensitive
detectors,1–3 provided the mechanical behavior of the de-
vices is understood. The mere presence of surface affects
many properties of Si nanowires: the ground-state shape
changes,4 and even the band gap disappears5 in spite of
the inherent gap-opening due to quantum confinement.
Potentially small changes to the surface state of the res-
onator could alter its performance in unpredictable ways.
Here we show the mechanical properties of Si nanowires
are systematically size-dependent, but in a way that is
remarkably insensitive to the surface state.

Previously classical molecular dynamics (MD) simula-
tion has been used to study the mechanics of nanowires,
finding size-dependent properties linked to the behav-
ior of the surface material.6,7 The size dependence of
the Young’s modulus has also been related to contin-
uum properties such as surface stresses8 or surface elas-
tic constants.9,10 It must ultimately be related to prop-
erties of the electronic bonding, and some attempts have
been made to explain this in connection with a charge
redistribution on the surface,11 and empirical bond or-
der effects due to the reduced coordination of surface
atoms.11,12 Classical MD simulations of Si nanowires
show striking size-dependent mechanical effects, but the
specific mechanism and even the sign of the effect de-
pend on which interatomic potential is used. Tersoff po-
tentials, with strong bond-order effects, predict an in-
crease in the Young’s modulus (stiffening) of Si <001>
nanowires with bare reconstructed surfaces as the size is
decreased,13 whereas the Stillinger-Weber potential re-
sults in softening.10 Simulations of metallic nanowires
show a stiffening9,14 similar to the Tersoff prediction for
Si. Classical potentials are used widely, and yet it is an
open question as to what extent they can model the rel-
evant physics for the simulation of nanowire mechanics.

Here we study the mechanical properties of bare Si
nanowires and compare to the properties of hydrogen-
passivated Si nanowires, both calculated with Density
Functional Theory (DFT), to understand the effect of
the surface state on mechanical properties.10 High fidelity
calculations up to relatively large system sizes go well
beyond prior theoretical studies to determine the sys-
tematic variation of nanowire properties. We consider
<001> nanowires due to the relevance to NEMS. The
core is taken to be crystalline as found in experiment.15
The surface is taken to be faceted according to the Wulff
shape with two types of low energy facets: {100} and
{110}. Stable surface reconstructions are known for both
facets,16–20 and the (100)-p(2x2) and (110)-(1x1) recon-
structions have been chosen here. For the (110) facet, we
also consider the (110)-(1x2) pattern in a few cases for
comparison. This surface exhibits a band gap whereas
the (110)-(1x1) surface is metallic.20 For the (100) facet
a larger pattern, (100)-(4x2) with a missing dimer, is
known to be slightly more stable than, but comparable in
energy to, the (100)-p(2x2) reconstruction at zero tem-
perature. At room temperature, however, such a large
ordering may not be stable so that dimers would be the
dominant pattern on the (100) surface.17 The fully re-
laxed structures and the energetics have been obtained21

with the Vienna ab-initio simulation package (VASP)22
using the projector augmented-wave method23,24 within
the generalized gradient approximation.25

The longitudinal Young’s moduli of the Si 〈001〉
nanowires with bare and hydrogen-passivated surfaces10
are compared in Fig. 1. It is striking that the two data
sets completely overlap with the one exception of the
bare 1.13-nm wire. In both cases the Young’s modulus
decreases as the wire width is reduced. As we discuss in
detail below, other properties of the bare wires do not
show this smooth systematic size dependence, let alone
agreement with the H-passivated wire properties. Both
the band gap and the surface stress (and resulting eigen-
strain) vary considerably for the same wires showing the
smooth trend in the Young’s modulus. The insensitiv-
ity of the scaling curve to surface passivation and surface
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FIG. 1: Calculated Young’s modulus of Si<001> nanowires
as a function of wire width. The empirical values for bare
wires and the first principles values for H-passivated wires
from our previous work (Ref. 10) are shown for comparison.
The solid curve is a fit of all the first principles data except
the outlying bare 1.13-nm wire. The width of a wire is defined
as the square root of the cross-sectional area (Ref. 10).

stress is unexpected, and it suggests the absence of the
effect of bond order on the Young’s modulus. We are
motivated then to consider the origin of the mechanical
properties in the electronic structure of the wires, and
to consider the character of the bonding and the role of
bond order (BO) to explain this unconventional result.

The nature of the bonding can be investigated through
electron localization functions (ELFs) and bond order.
ELFs provide a means of chemical bond classifications
by a topological analysis based on the Pauli exclusion
principle.26,27 The ELF analysis in Fig. 2(a)–(b) clearly
shows two aspects of bonding. First, a bonding attractor,
appearing as spherical isosurfaces between pairs of neigh-
boring atoms, characterizes the localized shared-electron
interaction of the covalent bond. Second, a non-bonding
attractor, appearing as balloon-like isosurfaces at the sur-
face atoms, is formed by the less but still localized elec-
trons from a lone pair at the surface. The electrons from a
dangling bond, without noticeable charge redistribution
to neighboring bonds, remain where the missing bond
would have been. This is opposite to the case of metallic
surfaces in which charge redistribution induces a BO in-
crease for surface bonds, and hence, surface stiffening.11

In the absence of significant charge redistribution on
the Si nanowire surface, the bond order change at the
surface is not pronounced. Bond order is obtained from
the solution of the Schrödinger equation

Ĥ|ψn〉 = εn|ψn〉 , (1)

where |ψn〉 is an eigenstate (n-th band) of the Hamilto-
nian, and εn is the corresponding band energy. Using a
local orbital basis set, an eigenstate can be expanded as

|ψn〉 =
∑
i,α

C
(n)
iα |iα〉 , (2)

(a) (b)

(c) (d)

(e) (f)

FIG. 2: (Color online) Electronic-structure calculations of
Si<001> nanowires. (a)-(b) The electron localization func-
tion plots (ELF=0.90 isosurface) for the 1.45 and 1.87 nm
wires respectively, (c)-(d) the cross sections, and (e)-(f) the
side views for the same wires with the bond order (BO) in
color. The BOs are normalized by the bulk value.

where C(n)
iα is the contribution of orbital α at atomic site

i to the n-th band (eigenvectors). Then the bond order
between atoms i and j can be defined as28

Θij =
∑
α,β

θiα,jβθjβ,iα , (3)

θiα,jβ =
∑

n

C
(n)
iα C

(n)∗
jβ . (4)

Here in DFT, eigenvectors are replaced by the projection
of wavefunctions (planewaves) onto local orbitals:

C
(n)
iα = 〈iα|ψn〉 . (5)

In applying this analysis to the Si nanowires, we find
that many of the bonds to surface atoms have a bond or-
der comparable to that of a bulk bond. Only the bonds
in an environment far from the bulk diamond cubic struc-
ture show deviation from the bulk value. For example,
the 1.45-nm wire has surface atoms with the coordina-
tion of 2 (bonds colored red in Fig. 2(c) and (e)). One
of the bonds attached to these surface atoms shows a
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FIG. 3: (Color online) Scatter plot of bond order vs. bond
length for the bare Si <001> nanowires. The dashed lines
mark the bulk bond order and the bulk equilibrium bond
length. Substantially low BOs are found for the 1.31 and
1.87-nm wires, and high BOs for the 1.45 and 2.62-nm wires.

20% higher BO than the bulk value but the other bond
does not. The charge redistribution is apparent but not
symmetric: bond order is not simply equivalent to coor-
dination number. Another example is the bonds with a
substantially lower BO in the 1.87-nm wire (bonds col-
ored blue in Fig. 2(d) and (f)): these are some of the six
bonds connected to the same over-coordinated atom. In
addition, the backbonds under the surface experience a
bond-order drop due to the surface relaxation in which
the bonds typically lengthen. Such local-structure de-
pendence may be seen in the correlation between bond
order and length in Fig. 3.

This linear bond-order-bond-length relationship sup-
ports in part the conventional picture of the relationship
between bond order, length and strength.12 The longer
bonds have lower BO. It is unexpected, however, that the
BO never significantly exceeds the bulk value, instead of
approaching a value of 2 for undercoordinated atoms.
Another unexpected aspect of Fig. 3 is the ∼10% devia-
tion from the bulk bond order at equilibrium. This shift
may be related to quantum confinement for two reasons.
First, even the centermost atoms show a slight decrease
in bond order. Second, it is known that the electronic
structure of a nanostructure depends on thickness,29 and
even neighboring interior atoms have a different local
electronic structure.30 These differences in the local elec-
tronic structure of neighboring atoms affect bond order,
as seen in Eq. (3). However, the bond order shift is not
the primary source of softening. The average change is
only 5∼10% regardless of the wire size, whereas the soft-
ening is as large as 50% for the bare wires tested. The
small bond-order shift means no substantial deviation
from the bulk bond strength, and the size-dependence of
the Young’s modulus should not be any different for bare
and H-passivated wires, as evidenced in Fig. 1. There-
fore, the softening is considered to be weak in that there
is no other effects than the increased surface area to vol-
ume regardless of the surface condition, and it is propor-
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FIG. 4: Equilibrium elongation of the Si <001> nanowire as
a percent of the wire length at the bulk lattice constant. The
A/width curve is a fit to four data points from 1.49 nm and
larger H-passivated wires.

tional to the surface-to-volume ratio.10 As the surface
area to volume ratio increases, the population of interior
atoms relative to surface atoms, and hence “load-bearing
bonds”, is decreased giving the solid curve in Fig. 1.

It is instructive to consider other properties of the wires
as a whole beyond the Young’s modulus. We have seen
that the H-passivated nanowires are longer at equilib-
rium than would be predicted based on the bulk lattice
constant.10 The elongation increases as the wire width
is decreased due to compressive surface stress, following
different curves depending on the surface facet indices.
In contrast, the surface layer of bare wires experiences
tensile stress leading to the negative axial strains at equi-
librium shown in Fig. 4. The magnitude of the surface
stress for the bare wires varies substantially depending
on the structure of the relaxed, reconstructed surface, so
that the elongation shown in Fig. 4 is not a simple func-
tion of the wire width. The repulsive H-H interactions on
the {100} facets lead to the compressive stress of the H-
passivated surfaces;10 the reconstructed dimer patterns
on the {100} facets account in part for the tensile stress
of the bare surfaces, but the complexity in the surface
stress is not entirely understood from the current data.

Regarding the relationship between the chemical bond-
ing (covalent vs. metallic) and the Young’s modulus, we
do not observe any correlation between the two. The
band gap of the hydrogen-passivated wires is dominated
by wire size,30,31 but the band gap of the bare wires turns
out to be highly dependent on the surface structure, i.e.
the reconstructed patterns and edge shapes.5,20 In gen-
eral, all the bare wires tested here have a lower band gap
than the bulk limit, and any systematic size dependence
is not observed. It is remarkable then that the Young’s
moduli fall into a single curve regardless of the existence
or the magnitude of a band gap.

For the H-passivated nanowires it was possible to con-
struct a predictive model of the nanowire mechanics
based on bulk and slab calculations;10 we expect that
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a similar model would work for the bare wires, but the
form would need to be extended to include, on top of
the accurate surface states, quantum confinement effects
of one-dimensional structures,31 and the effects of wire
edge geometry5 and strain32,33 on the electronic struc-
ture. At this point, slab34 and semi-empirical35 calcu-
lations are informative, but not sufficient to accurately
predict the behavior of bare wires, so first-principles cal-
culations with explicit nanowire geometry are necessary.

In conclusion, we have studied the effect of surface
state on the mechanics of Si <001> nanowires. The
surface stress is strongly affected by surface state: the
eigenstrain (equilibrium elongation) asymptotically ap-
proaches zero for H-passivated nanowires, but for bare
nanowires up to 4 nm the eigenstrain is scattered with-
out such definitive trend. However, the softening of
the nanowires varies systematically in both cases, and
remarkably the Young’s modulus is the same down to
0.6 nm. This is striking not only because the Young’s
modulus of Si nanowires is insensitive to the surface
states, but because it is contrary to the conventional be-

lief that the sign of the surface moduli is determined by
the sign of surface stress. Large differences in the bond
order of bare and passivated wires were not observed, be-
cause the lone pair electrons remain along the dangling
bonds; indeed, this is why those dangling bonds that re-
main after the surface reconstruction are still highly re-
active. In both cases, the weak softening of the Young’s
modulus with decreasing size is not related to the bond
order, which differs somewhat, but results from the di-
minished load-bearing capacity of the bonds near the sur-
face. This geometrical effect gives a size-dependent soft-
ening that is invariant to changes in the surface state.
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