SUBJECT: The Oxidation of Chromium(III) to Chromium(VI) in the Presence of Platinum Metals

TO: Distribution

FROM: N. E. Wisdom, R. S. Greeley, and J. C. Griess

SUMMARY

Ruthenium, either as soluble salts, powdered metal, or oxide, catalyzed the oxidation of Cr(III) to Cr(VI) in dilute oxygenated sulfuric acid solutions. Under the same conditions, in the absence of ruthenium Cr(VI) was not produced.

In a 2 M Al(NO₃)₃-1 M HNO₃ solution at the atmospheric boiling point, ruthenium and compounds of ruthenium, platinum, palladium, rhodium, and osmium very markedly increased the rate at which Cr(III) was oxidized to Cr(VI). Very low concentrations of ruthenium were capable of causing the oxidation to proceed at an appreciable rate.

In boiling 65% nitric acid, Cr(III) was oxidized to Cr(VI) if reduced oxides of nitrogen were removed from solution either in the presence or absence of ruthenium; without removal of the oxides of nitrogen, detectable quantities of Cr(VI) were not formed in either case.

Cr(VI) was not produced in boiling and aerated uranyl sulfate solutions containing ruthenium.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent branch, Legal and Information Control Department.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
The Oxidation of Chromium(III) to Chromium(VI) in the Presence of Platinum Metals

N. E. Wisdom,* R. S. Greeley, and J. C. Griess

INTRODUCTION

The ability of low concentrations of ruthenium to catalyze the oxidation of Cr(III) to Cr(VI) in either uranyl sulfate or sulfuric acid at high temperatures has been demonstrated on several occasions. Since Cr(VI) is a corrosion inhibitor in many environments, it was of interest to see if ruthenium or other platinum metals would catalyze the oxidation of Cr(III) to Cr(VI) in several different environments.

The environments investigated were oxygenated sulfuric acid at 250°C, a boiling solution containing 2 M Al(NO₃)₃ and 1 M HNO₃, boiling 65% HNO₃, and a boiling uranyl sulfate solution containing sulfuric acid and copper sulfate. The first environment was chosen because in the absence of ruthenium or other platinum metals Cr(III) is not oxidized to Cr(VI). In the second environment Cr(III) is oxidized to Cr(VI) at a very slow rate—only a few ppm Cr(VI) is formed after several thousand hours of boiling. Hence in this environment the effectiveness of the catalysts could be easily judged. In the absence of ruthenium, boiling 65% HNO₃ is capable of oxidizing Cr(III) to Cr(VI) if reduced oxides of nitrogen are removed, but if the oxides of nitrogen are retained in the acid, Cr(VI) is not formed. In boiling uranyl sulfate solutions Cr(III) is not oxidized to Cr(VI) in the absence of ruthenium.

The following sections describe the experiments that were conducted and the results that were obtained. The experiments were of an exploratory nature and no attempt was made to determine the kinetics of the reactions involved.

EXPERIMENTAL PROCEDURES AND RESULTS

Sulfuric Acid Tests. All tests were conducted at 250°C in quartz-lined autoclaves equipped with valves so that the autoclave could be pressurized with oxygen. A stock solution containing 1230 ppm Cr(III) (0.0118 M Cr₂SO₄) and 0.037 M H₂SO₄ (pH = 1.3) was prepared, and in each test 20 ml of this solution was added to an autoclave. The substance whose catalytic activity was to be tested was then added, and after closing the autoclave an oxygen pressure of 100 psi was applied. After 48 hr at 250°C, the autoclaves were cooled, opened, and the solution and any solids analyzed. Table 1 shows the catalysts that were tested and the concentrations in solution at the end of the tests.

*Summer participant.
Table 1. The Effect of Catalysts on the Oxidation of
Cr(III) to Cr(VI) in Sulfuric Acid

Conditions: Temperature, 250°C; initial Cr(III) concentration, 1230 ppm; sulfuric acid concentration,
0.037 M; oxygen pressure, 100 psi at 25°C; test time,
48 hr.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Cr Conc. at End of Test (ppm)</th>
<th>Catalyst Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td><L0 263</td>
<td>100 b</td>
</tr>
<tr>
<td>RuCl₃</td>
<td>10 <40</td>
<td>16 b 46</td>
</tr>
<tr>
<td>(RuNO)₂(SO₄)₃</td>
<td>54 63</td>
<td>15 b</td>
</tr>
<tr>
<td>Pwd Ru metal</td>
<td>486</td>
<td>c</td>
</tr>
<tr>
<td>Pwd Ru metal and RuO₂</td>
<td>133 486 d</td>
<td>16 d 22</td>
</tr>
<tr>
<td>RhCl₃</td>
<td><2 200 d</td>
<td>c b 16 b</td>
</tr>
<tr>
<td>PdCl₃</td>
<td><2 384</td>
<td>13 b</td>
</tr>
</tbody>
</table>

Refrers to concentration of metal ion.
Based on weight of material added.
Not determined.
Leak in autoclave caused concentration.

As observed in dynamic tests, Cr(III) was not oxidized by oxygen-containing sulfuric acid. However, with ruthenium in almost any form added to the solution, a significant amount of Cr(VI) was formed during the 2-day tests. The soluble ruthenium salts, ruthenium nitroso sulfate, and ruthenium chloride, were considerably more effective than either the metal or the mixture of the metal and dioxide. During the tests with rhodium chloride and palladium chloride the autoclaves leaked, and a substantial concentration of sulfuric acid and Cr(III) occurred. Both the concentration of the acid and the loss of oxygen as a result of the leak would tend to prevent the oxidation of Cr(III) and the fact that Cr(VI) was not formed should not be taken to mean that rhodium and palladium are catalytically inactive. It is possible that under the conditions that prevailed in the ruthenium tests some Cr(VI) might have been formed.

In all cases some solids were found in the quartz liners at the end of the tests. The solids were anhydrous chromic oxide containing low concentrations of the catalyst.
Tests. In this series of tests 500-ml aliquots of the 2 M Al(NO₃)₃-1 M HNO₃ solution containing at least 700 ppm Cr(III) (as chromic nitrate) and the catalyst were boiled in a flask containing a reflux condenser open to the air for several days with air bubbled through the solution. At the end of the test the solutions were analyzed. No stainless steel was present in the test vessel. The test conditions and results are given in Table 2.

Table 2. The Effect of Several Catalysts on the Oxidation of Cr(III) to Cr(VI) in 2 M Al(NO₃)₃-1 M HNO₃ Solution

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Time (days)</th>
<th>Chromium Concentration (ppm)</th>
<th>Catalyst Conc. (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cr(III) Initial</td>
<td>Cr(III) Final</td>
</tr>
<tr>
<td>None</td>
<td>12</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>RuCl₃</td>
<td>7</td>
<td>1140</td>
<td>1470</td>
</tr>
<tr>
<td>(RuNO)₂(SO₄)₃</td>
<td>7</td>
<td>1210</td>
<td>1240</td>
</tr>
<tr>
<td>Pd metal</td>
<td>7</td>
<td>1240</td>
<td>1460</td>
</tr>
<tr>
<td>PtCl₄</td>
<td>18</td>
<td>700</td>
<td>550</td>
</tr>
<tr>
<td>OsCl₄</td>
<td>18</td>
<td>700</td>
<td>570</td>
</tr>
<tr>
<td>RhCl₃</td>
<td>18</td>
<td>700</td>
<td>395</td>
</tr>
<tr>
<td>PdCl₂</td>
<td>18</td>
<td>700</td>
<td>310</td>
</tr>
</tbody>
</table>

a Refers to concentration of metallic ion.

b Not determined.

c Based on weight of material added.

All of the platinum metal compounds added to the 2 M Al(NO₃)₃-1 M HNO₃ solution were effective in causing the oxidation of some of the Cr(III) to Cr(VI). In this environment ruthenium metal was more effective than either ruthenium nitroso sulfate or ruthenium chloride. Osric acid produced the same amount of Cr(VI) as did the ruthenium metal, although the time of refluxing was about two and one-half times greater with the osmium than with ruthenium. Apparently most of the osmium tetroxide added to the solution was volatized during the test, since osmium was not detected in the solution at the end of the test. The chlorides of platinum, rhodium, and palladium were catalytically active in the solution, with platinum chloride being substantially less active than the other two.

In the 2 M Al(NO₃)₃-1 M HNO₃ system, Cr(III) and Cr(VI) are soluble and the only solids found in solution were small amounts of the platinum metals which were apparently formed from the salts. Why the sum of Cr(III) and
Cr(VI) at the end of the test did not equal the Cr(III) at the beginning of the test (except in the absence of a catalyst) is not known definitely, although it is probable that the low concentrations of platinum metals in solution interfered with the chemical analyses. That Cr(VI) did form in the presence of the platinum metals was evidenced by the fact that the solutions gradually changed from near colorless to an orange color as the tests progressed.

One of the flasks in which the ruthenium catalyst was used was cleaned with soap and water at the end of the test. Then a fresh portion of the test solution containing about 1200 ppm Cr(III) (but no ruthenium) was added, and the solution was refluxed. At the end of two days the solution contained 150 ppm Cr(VI). The flask was cleaned with sodium hypochlorite solution in which ruthenium and ruthenium dioxide are soluble. A trace of ruthenium was found in the cleaning solution even though no deposit had been visible before cleaning. After the hypochlorite cleaning, the flask was used for another fresh portion of solution with no ruthenium added; this solution was boiled for 12 days, at the end of which time only 1 ppm of Cr(VI) was found in the solution.

Tests in 65% HNO₃ and Boiling UO₂SO₄ Solutions. Only the effect of 100 ppm ruthenium as ruthenium trichloride was determined in boiling 65% HNO₃. In this case 300 ppm Cr(III) as chromic nitrate was added to the nitric acid. When the solution was aerated during boiling Cr(VI) was formed both in the presence and absence of ruthenium chloride. When the solution was not aerated and a closed system with a cold-finger condenser was used, no detectable amount of Cr(VI) was found in solution even with ruthenium present. The oxidation of Cr(III) to Cr(VI) leads to the formation of oxides of nitrogen which prevent further oxidation of Cr(III). If the oxide initially formed is allowed to escape from the boiling solution, Cr(VI) is readily formed even in the absence of ruthenium.

One test was also made in which 30 ppm ruthenium as ruthenium chloride was added to a solution containing 0.04 M UO₂SO₄, 0.025 M H₂SO₄, 0.01 M CuSO₄, and 500 ppm Cr(III) as chromic sulfate. The solution was boiled and aerated with oxygen for 15 days, during which time no Cr(VI) formed.

REFERENCES

2. J. L. English, private communication.
Distribution

1. HRP Director's Office
 Rm. 259, Bldg. 9201-1
2. J. M. Baker
3. S. E. Beall
4. A. M. Billings
5. E. G. Bohlmann
6. S. E. Bolt
7. J. R. Brown
8. W. D. Burch
9. R. H. Chapman
10. E. L. Compere
11. J. S. Culver
12. D. G. Davis
13. R. J. Davis
14. O. C. Dean
15. V. A. DeCarlo
16. D. M. Eissenberg
17. J. L. English
18. L. L. Fairchild
19. D. E. Ferguson
20. C. H. Gabbard
21. W. R. Gall
22. J. P. Gill
23. J. C. Griess
24. W. R. Grimes
25. P. A. Haas
26. P. H. Harley
27. P. N. Haubenreich
28. D. K. Haess
29. J. W. Hill
30. E. C. Hise
31. H. W. Hoffman
32. G. H. Jenks
33. P. R. Kasten
34. G. W. Keilholtz
35. M. J. Kelly
36. J. A. Lane
37. C. G. Lawson
38. R. A. Lorenz
39. M. I. Lundin
40. R. N. Lyon
41. W. L. Marshall
42. T. H. Mauney
43. J. F. McBride
44. H. F. McDuffie
45. R. E. Moore
46. R. L. Moore
47. C. S. Morgan
48. P. D. Neumann
49. L. P. Paraly, Jr.
50. F. N. Peebles
51. M. L. Picklesimer
52. J. L. Redford
53. S. A. Reed
54. L. Rice
55. D. M. Richardson
56. R. C. Robertson
57. H. C. Savage
58. D. Scott, Jr.
59. C. H. Seco
60. M. D. Silverman
61. M. J. Skinner
62. L. Spiwak
63. J. A. Swartout
64. A. Tabacda
65. D. G. Thomas
66. M. Tubias
67. W. E. Unger
68. G. M. Watson
69. A. M. Weinberg
70. J. F. Winesette
71. C. E. Winters
72-73. REED Library
74-75. Central Research Library
76-77. Document Reference Library
78-92. Laboratory Records
93. ORNL-RC
94. A. L. Benson, AEC, Oak Ridge
95. D. H. Groelsema, AEC, Washington
96-110. TISE-AEC