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Abstract

A computational study of the interaction of a focused laser beam
with a dense, spherically symmetric plasma is undertaken. The plasma
is treated using linearized fluid equations for the electrons with the
jons assumed immobile; the electromagnetic field is determined from
steady state solutions to Maxwell's equations in spherical coordinates.
Energy dissipation in the plasma occurs as a result of inverse brems-
strahlung collisions and resonance absorption. The scattered field
distribution and the spatial variation of the fields and energy deposition
within the plasma are found for various laser-plasma configurations and
the applicability of the theory as a function of plasma temperature and

laser power is determined with a self-consistent analysis.
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I. INTRODUCTIOM

Tne heating of a dense plasma by a laser is now a well-known
proposal for the genegration of power through controlled thermonuclear
reactions. The efficiency and uniformity of the absorption of laser
1ight by the plasma is clearly a very impoi'tant aspect of this proposal
(NUCKOLLS, HOOD, THIESSEN, AND ZIMMERMAN (1972)}. Energy transfer from
a laser to an inhomogeneous plasma occurs as a result of Joule heating
in the underdense plasma atmosphere surroundinn the central core, by
means of inverse bremsstrahlung collisions. As the temperature of the
plasma rises, the frequency of the collisions decreases, however, and
the las:r light, which is reflected at the interior surface of the
plasma where the laser frequency is equal to the nlasma frequency (called
the critical surface}, deposits little energy by means of classical
collisions in a hot plasma. Substantial heating can still take place,
even in the absence of classical collisions, Ly means of various processes
which transfer energy from the electromagnetic waves to plasma waves,
which in turn, heat the plasma. One of these processes, called resonance
absorption, occurs in inhomogeneous plasmas when an electromagnetic
wave, polarized such that the electric field vector has & component in
the direction of the inhomogeniety, reaches the critica® surface, whers
strong coupling to plasma waves occurs. A significant fraction of the
electromagnetic energy can be converted to nlasma waves in the inter-
action, but in spherical plasmas the subsequent heating car be highly

nonuni form,



Resonance absorption, by virtus of its polarization dependence. is
correctly treated only by solving the full set of Ma.a4ell’s equations.
Previous studies have considered these solutions in Cartesian geometry,
where plane electromagnetic waves are incident onto infinite. inhomo-
geneous plasma slabs. However, the proposed laser fusion systems and
many fusion experiments are basically spherical in design, w'th small,
dense, spherical plasmas being irradiated by focused laser beams.

To study classical and resonance absorption in spherical geometry,
we derive the boundary conditions appropriate to a focused laser heam,
and for these boundary values, determine the steady state solutions to
Maxwell's equatinns in spherical coordinates using linearized fluid
equations to cescribe tne plasma. Although Lhe energy depositicn is
inherently a nonlinear process, both resonance and classical coilisijonal
absorption can be treated with linear equations using these approxi-
mations. The solutions we use require that the plasma remain spherically
symmetric and as a consequence, large asymmetric modifications of the
density gradient which result from asymmetric heating cannot be consid-
ered. Futhermore, as we employ a fluid model for the electrons, kinetic
theory effects in the heating of the plasma are not treated, and all ion
motion is ignored.

However, the effects of diffraction and 1ight polarization are
included and we can determina accurately both the resonance and classical
collisional absorption, and the scattered and refracted light for quite
arbitrary laser beams and arbitrary radial density prnfiles for a wide

range of plasma sizes and temperatures.



The remainder of this report is divided into three major sections,
followed by a summary and several appendices:

Chapter Il is concerned with free space solutions to Haxwell's
equations in the focal volume of an arbitrary lens system, by means of
which the boundary conditions needed to solve the plasma interaction
problem are found and are related to the incident beam and focusing
lens parameters.

In Chapter II1 we discuss the sclutions to Maxweli‘s equations in
a dense, spherically symmetric plasma, deriving the eguations and the
numerical schemes by whick we calculate the electromagnetic fields
inside and outside the plasma.

Chapter IV combines the results of the previous two chapters, and
discusses the scattering and absorption of laser beams.

We summarize the conciusions drawn from this study in Chapter V.

The appendices ara vsed to iltustrate in more detai’ mathematical
or numerical results vertaining to the techniques employed in the
anilysis which otherwise do not contribute to the major theme of the

report.



11. FOCUSED ELECTROMAGNETIC BEAMS IN SPHERICAL GEOMETRY
II. A. Introduction

The situation we are analyzing is this: a linearly polarized laser
beam propagates through an ideal, converging Tens, which converts the
plane phase fronts of the beam into spherically converging fronts whose
associated geometrical rays intersect, at the focus of the lens. We
are to determine the interaction of the focused laser 1ight with an
object in the focal volume. To accomplish this, we must find the
incident field on the surface of the object, and solve the boundary
value problem appropriate to that field. The problem addressed in this
chapter is the determination of the incident field in the focal volume
in the absence of a plasma; this result is then used as the incident
wave for the scattering problems discussed in subsequent chapters.

We do this in the following steps. First, because the equations
describing the interaction with the plasma are solved in Chapter III in
terms of potential functions, we must specify the boundary conditions in
terms of these functions, so we determine the relationships between the
incident potentials and the incident fields, which are also unknown at
this time. Next we relate the field distribution in the incident laser
beam to the field components in the focal volume of the lens. Finally
we specify the field distribution in the focal volume in a form from
vhich the potential functions needed for the plasma scattering calcu-

Tations can be extracted.



Qur technique for solving the wave eguation requires that the
incident wave be defined with respect to an origin at the center of
spherical symmeiry, that is, the center of the plasma and not the focus
of the lens. Therefore it will be necessary to transform the incident
wave from the natural coordinate system for the laser light (the phase
fronts are spherical with respect to the geometrical focus of the lens)
to arbitrary positions. For simplicity, we will consider only trans-
forms which retain axial symmetry, that is, we will consider only the
translation of the target away from or toward the laser along the

axis of the Taser.
I1. B. Debve Potential Functions

A vector theory of diffraction capable of describing the electro-
magnetic fields in the focal volume of a lens was first given by
Luneberg, see LUNEBERG (1966), p. 311, and was rederived in a form
suitable for the numerical evaluation of the focal volume fieids by
WOLF (1959), and RICHARDS and WOLF (1959) (henceforth referred to as
RW). The RW results express the Cartesian components of the electro-
magnetic field in the focal volume in terms of a surface integral over
the intersection of a focused beam and a sphere centered on the geomet-
rical focus of the lens. Anticipating the results of Chapter III,
we look for a method of expanding the focal volume fields in terms of
the solutions of the vector wave equation in free space and in

spherical coordinates (a product of the sphericai Bessel functions and



the spherical harmonics). The most straightforward means of making
this expansion does not use the RW results, but employs a derivation
similar to that of RW.

Our solutions of the electromagnetic diffraction problem are based
on the Mie theory of vactor diffraction and employ the Debye potential
functions. Details and references are given in BORN and WOLF (1975)
pp. 633647 (henceforth referred to as BW). We will apply the boundary
conditions appropriate to the laser and lens parameters using the method
developed by RW to the vector solutions of Mie theory.

From Mie theory it follows that the electromagnetic fields ir all
space can be determined from two potential functions, called x and ¢
(BW use notation g and mn where 1 = iky and m'[[ = ik}, which are

solutions to the scalar wave equations

2 2
Vx+kx=20 2.1.a
2 2

Vyp+kyp=0 2.1.b

The electromagnetic fields are given by

E o= 34 k2) 1 2.2.a

r o 7Kk ‘are X -E.
L1 2 1

Ee“Thr 305v X *sinode ¥ 2.2.b
.11 33,

By " TkF STnesor "X 30 V 2.2.c

L 2
Br—TE(B—rTi-k) ry 2.2.d



e 1 _8, 4.1 8 3.

Be=-smo3* Tkraoar'? 2.2.e
=3, L _1 3.3

By =36 * Tkrsmeapor "V 2.2.f

As solutions of the scalar Helmholtz equation which are regular

at the origin, x and ¥ can be expanded in the series:

x(r.8.9) =% Jy(kr)(a P, (cos 6)
2=0

L
+y (ag cos mp + bz sin m¢)P2(cos 8)] 2.3.a

m=1

¥(r,6,0) =22 dg(kr)c P, (cos ©)
=0

2
> (CT cosmd + dg sin m¢)FQ(cos 8)] 2.3.b
m=}

where jo(kr) is the spherical Bessel function and Pg(cos 8) is the
Legendre polynomial.

The coeficients in the expansions of the Debye potential functions
are determined by the boundary conditions, which are in turn, a func-

tion of the laser and Tens parameters.
II. €. Incident Potential Functions in Focal Volume

Consider the Taser-Tens-focal volume schematic in Figure I1.1



(we use largely the notation of RW and follow the line of their deriva-

tion closely).

[ and 90 are the electric and magnetic field vectors incident
onto the lens.

) and 94 are the electiic and magnetic field vectors in the
focal volume.

S and g, are vectors perpendicular to the rays AB and CO which
are in the plane of the rays and the axis of symmetry NO.

&, gy, e, is a Cartesian coordinate system situated on the lens
focus.

&s 8 By is a spherical coordinate system at the same focus.

For an electric field polarized in the x direction,

2.4.a

g, = alrle,

2.4.b

a(r)gy

éc'

where a(r) is an arbitrary profile chosen for the acident beam. At
this time we are restricting ourselves to axisymmetric incident laser
beams, by allowing for no azimuthal dependence of the 1ight.

We want to determine

& = a(0)lvye, + Geo + B %] 2.5.a

by =sxg 2.5.b

Because g, is perpendicular to s, a radial vector, y = 0. Two

additional factors affect & and 91. First, according to geometrical



optics, the angles between g and e, and g, and ;5 and the angles

between N and go and 9 and & must not be changed by the lens (RW,

p. 362).
Therefore
9 g =alr)g, - g 2.6.2
and (g_] xs) e & = a{r)} % 8 2.6.b
But g, = cos o] &, + sin ¢ g_y 2.6.c
s0 g * & =alr)cos ¢ 2.6.d
(g] X S) . & = a(r) sin ¢ 2.6.e
and 9 =-8 2.6.f
4 x8°-8 2.6.9
50 g = - a(r)Lcos ¢ &y tsing g¢] 2.6.h
by = - a(r)isin ¢ e, - cos ¢ g¢] 2.6.i

Secondly, the type of projection affects the amplitude of 8 and g]
because the incident rays are not necessarily uniformly spread over
the sphere in the focal volume.

We shall consider here the aplanatirc projection r = sin @, for
which the amplitude of a field component changes by the factor

/€05 @ when passing through the lens.
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Then, for an aplanatic lens

o= - /Cos 8 cos ¢ 2.7.a
B = - vcos 0 sin ¢ 2.7.b

and, making the change of argument, a(r) = a(r(6)) = a{e), we have

€ = - a(0) vcos @ [cos ¢ gy + sin ¢ g¢] 2.8.a
Qi = - a(e) vcos 0 [sin ¢ €y - €05 ¢ g¢] 2.8.b

Thus far we have determined the spherical componenis of the field
vectors on the surface of a sphere at a radius R in the focal volume.
In order to solve the focusing problem we myst determine the Debye
potential functions there.

From equation 2.2 we see that the Debye potentials are uniguely
determined by the radial components of g and 21, and from eguation 2.8
these appear to be identically zero! We have used geometrical optics
to this point, however, and have ignored the transverse variations in
the beam. In fact, the radial field components are not zero, and can

readily be obtained from Maxwell's equations:

r+ ¥ xE-= ik, 2.9.a

r - ¥ xB=-ikrE, 2.9.b

Then, using
S(e) = .'8) /cos @ 2.10



n

. - . 5(8) ; _ sin @ 3§ .
revxEg Siesin e [J - cos b+ SORESD 2.71.a
. s(e) - sin 8 as
L ¥xB  5fpces 6 (1 - cos 6 + oy 55) 2.11.b

Of course the radial components are smaller than the transverse
components by the factor kR,

Writing the expressions in the form:

reyx E‘inc = - sin ¢ W(o) 2.12.a

¥ x B = cos ¢ W(e) 2.12.b

{=

W(e) = gj%%_ncg_se [1-cosa+sine gg—zn(/co.c. 3 a(e))] 2.12.c
where we use the superscript inc to identify the fields as the incident
ones in the scattering problem.

Because these fields are purely incomiag with respect to the lens
focus, the potentials can be expanded as a series of incoming spherical

Hankel functions, hiz)(kr). Thus

X0 .0) = 3 nDr)Fp, tcos o)
£=0

2
+ 2(3? cos mp + 'B‘E sin m)P?(cos 9)] 2.13.a
m=1
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winc(r.0,¢) = 53 h(i)(kr)[gsz(cos 8)
=0

%
z: gm cos mp + am sin mo) P (cos )] 2.13.b

and at r = R, x and ¢ can be related tn Er and Br using eguations
2.2.a and 2.2.d.
Because x and y must remain finite at v = 0, the coeficients with

the tilde's can be simply related to those without, this being

24 = af 2.14
and similarly for coefficients b, ¢, and d. From equations 2.2, 2.9,
2.1 and 2.13,

inc _ 1 & or (Yo p ¢
£ T L 2{e+1) hy (kr)[az Py (cos 9)

[
> ('3",[' cos my + 't‘)",’l' sin mb) P'; {cos 6)] 2.15.a
m=1
inc
and E. " = - 1k‘ cos ¢ W(e) 2.15.b

BI"C - Tbmzl 1(241) 0 (kr) &, Py(cos 0)
! m
+5 (Eg cos mp + 3? sin m ¢} P, {cos 6)] 2.15.¢c
n=l



and inc _ 1 :
BF = '7??‘51" ] W(B) . 2.15.d

Then, expanding cos § W(6) and sin ¢ W(8) in a series of spherical

harmonics at r = R, and equating coefficients, we find

%‘; = E‘E =0 for all 2,m 2.16.a
3.;; - 321 =0 form =l 2.16.b
2 it
f W(e) P} (cos 6) sin o ds
ol _ a1 20+ o
ool 2.16.c
U TN TR RIS

Thus the problem is solved since W(8) is known (equation 2.12.c), and

X'II'IC and w'll’lc

are given in equation 2.13. In tne implementation of
this technique, this integral (2.16.c) is solved numerically for all
2's used in the series expansion of the Debye potential functions.

Axial symmetry of the beam leads to the vanishing of all coef-
ficients for which m #1, but it is mainly for convenience that we
consider such laser sources. The projection for arbitrary beams
involves the numerical svaluation of two dimensional integrals and
emax /2 times as many evaluations.

Modifications to include phase aberrations on the laser beam are
straightforward. a(e), as introduced in equation 2.4, is treated as a
complex number, and the prescribed deviation of the phase from some
reference ic carried through the calculations of S(8), W(0}, and the
coefficients EL and Hl (which are already, in general, complex}.

The expansion of the Debye potential about a shifted origin can

also be incorporated as an adjustment to ai8), as in Figure II,2.
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11. D. Power in Incident Beam

As a final step in the theoretical development of a vector dif-
fraction theory using Debye potentials, we will derive &n expression
for the Poynting's vector and power in the incident beah, in terms of
the expansion coefficients of x and y.

Poynting's vector for harmonic electromagnetic ficlds is given by

the expression:

5= 8n R, (F. x B ) 2.7

Using equations 2.2, the radial component of S i3

11 3 .3 3 1 w3
T2, W Y Tk asarae
n- e
1 33 o _ 3 3 .« 1 3 2 3 3
sTn o1ag 38 X ae‘“aox)';z‘“‘“‘sina(a“rm'star”w*
9 9 3 9
-W-aar)(-r)-——e—l"d}*)] 2.18

Then, substituting equations 2.13 and integrating over the sphere at

r=R
A= SR2p L =2 pl2) (2)*
./;595 gk Re[ikr oo GGrrhh
2

- n(22 (D)%)
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1
g. )?. (P] 2})

.,11. a JL

x(-/;“ de{sin e(dz
((Z: a; a h§2)*h£2) . k_;_z_{ai a_ rh(?) _ rh(z)*}}
n r

0 1 1
x(j; de{PJ‘ gi’h Py ;-;'l})] . 2.19

The second term, which results from coupline between terms in the x
and ¢ expansion, vanishes because of the integration over 8, and the

angular portion of the first tevm can be integrated, giving:
s -dh R R[5 2(1s1)? 2423 (i(rh (2)) (2
s = E 2241 kR \3rt e s
(2)3_¢ . (2)*
- n2 2] 2.20

For kR >> 1, the asyiptotic form of the spherical Hankel function

can be used, giving:

2 2
.da = CR Jﬁl-ﬂ) ' .
j;;_ dA 119 Duryyen a; ay 2.21.a
%
- CR2 E 22+] [ * 2.21.b
arkw)* 4 z(m)f L

where

I, =f w0} P {cos ) sin 0 do 2.21.c

0

from equation 2.16.c.
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Identifying the integrated Poynting vector with the power in the
beam, we can identify, by means of equation 2.2), tha % dependence of

tne power, i.e.,

P =:£:p2 - 2.22.a

2

2
R 28+1
p, = £ I, I,* 2.22.b
2 aqkr)® ey 4 R
The significance of this dependence is made clear in the following
chapters where the 2 dependence of the resonance absorption and scattering

is determined.
I1. E. Results

We will consider PE {Equation 2.22) as a function of the following
parameters:

(1) f# of the lens, where, from Figure I1.1.

1

f# = 77—
2 tan em

2.23.a
O is the value of 6 corresponding to r = To» when the incident electric
field amplitude is given by a(r) = eXp{-(rlro)"} 2.23.b
(2) p, target translation relative to the geometrical focus of
lens, p is positive in a direction toward the laser.
(3) w, number of waves of spherical aberration resuiting from
nonlinear effects in the laser. As a result of the nonlinear index of

refraction of the laser medium, the more intense center of the laser



beam has a slightly increased refractive index, as compared to the low
intensity edge of the beam, and as a consequence, the on-axis phase is
delayed relative to the edge {GLAZE, SPECK and HUNT (1975)}. w is the
number of wavelengths delay between the center and the edge of the

oeam. The phase variation across the beam is ¢ = w I(yv}/1(G), where
I(r} is the beam intensity profile. w is small early in the laser
pulse when the nonlinear effects are weak, but at the peak of an intense
laser pulse, w may be as large as two or three waves.

For the remainder of this report we will use N = 5 to define the
electric field in the laser beam. I(8) is plotted in Figure 11.3 for
f# 0.5, where 1 = a(p)a*(s).

In Figures I1.4 and II.5 we plot Pl versus £ for variations of p.

Notice that both positive and negative transiations have identical
multipole moments, and that thev are fairly flat over a width of 's
which becomes large as the translation is made large. Structure exists
on the spectral plots for p = 0, which is a result of the higher
harmonics of em. This structure quickly washes out when beam aber-
rations are included or when translation. away from 0 are made.

In Figure 11.6 we plot Pl versus £ for variations of f#. Here we
notice that the higher f#'s, which have the incident beam squeezed into
a narrower angular range, for p = 0, have a broader multipole spectrum.
On the other hand, for the higher f#'s a greater translation is required
to cause a shift in the multipole spectrum. This occurs because the
waist of a high f# beam is long and slender, and a large translation is

necessary to observe changes in its characteristics.



18

In Figures II.7 and I1.8 we plot Pz versus L for variations of w,
f# and p. Here we see that the effect of spherical phase aberrations
is to remove the symmetry of the translation about p = 0 and to generally

broaden the multipole spectrum.
II. F. Summary

We have developed an alternative method for calculating the
electromagnetic field in the focal volume of a converging lens using
the Debye potential functions, and we have derived the expressions
which relate the coefficients in the spherical harmonic expansion of
the Debye functions to the parameters of the laser and the focusing
lens. Computer implementation of this procedure provides a very fast
method for caiculating the vector fieids in the focal voiume of a
converging lens, although the main objective in its development is to
specify the boundary conditions needed in the plasma interaction problem,
which is to be discussed in the following two chapters. For simpliciiy
we have assumed that the laser beam is axisymmetric. Implicitly we
have made the Kirchhoff approximation in our boundary conditions at
the output of the lens, and we have ignored diffraction, scattering,
and absorption in the lens.

Numerical solution of some exact diffraction problems are given
in Appendix 1, as a means of verifying the computer solutions. In
Appendix 2 we compare vector diffraction calculations with those of

RICHARDS and WOLF (1959).
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Incident
laser
Tight

Optical
focusing
system

Figure I1.1 Coordinate systems and geometrical definitions
used in determining the effect of an optical
focusing system on the Taser beam.
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g

0
R — (-p)—=
Geometric Translated
focus origin

p is positive to the left, toward the laser.
Phase difference of wave with respect to origins
0 and 0* is A% = k{6 -p)~-kpcos 6

Figure 11,2 Effect of translation on the phase of a spheri-
cally converging wave.
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Figure I1.3 Incident beam angular intensity profile.
f# = 0.5.
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Figure 11.4 Myltipole spectra of a focused laser beam.
f# = 0.5, kp from 0 to 2 500.



23

L i
0 50 100 150 200

Figure 11.5 Muitipole spectra of a focused laser beam.
fé = 2.0, kp from 0 to : 1000
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0 50 100 150 200

Figure 11.6 Mu1t1pole spectra of a focused laser beam.
0, f# = 0.5 to 10.0
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Figure [I.7 Multipole spectra of a focused laser beam.
w=1.0, f# = 0.5, kp = -200 to 200
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Figure 11.8 Mu1t1pole spectra of a focused laser beam.
= 1.0, kp = 0, t# = 0.5 to 10.0



27

TI1. ELECTROMAGNETIC WAVES IN A DENSE, SPHERICALLY SYMMETRIC PLASMA

IIT. A. Introduction

The propagation of electromagnetic waves in & plasma has been
studied for many years in regards to wave propagation in the ionosphere,
and the books by BUDDEM {1961) and GINZBURG {1964) are but two among
many devoted exclusively to this subject. Here we study clectromagnetic
waves in an inhomogeneous spherical plasma with a density variation in
the radial direction., We will analyze the propagation of laser heams
focused onto this plasma, considerirg energy losses from the electro-
magnetic wave due to both Joule heating and resonance absorption, which
occurs when the electromagnetic waves directly couple to electron plasma
waves at the critical surface of the plasma (where the light frequency
and the plasma frequency are equal).

This problem was first investigated by DENISOV (1957) and more
recently, with various new censiderations, by PILIYA {(1966), FRIEDBERG,
MITCHELL, MORSE, and RUDSINSKI (1972), FORSELUND, KINDEL, LEE, LINDMAN,
and MORSE (1975) and DEGROOT and TULL (1975), GINZBURG (1964) also
covers the subject in considerable depth.

In these references resonance absorption is treated in Cartesian
geometry, and the electromagnetic waves and the plasma are planar and
infinite in extent. In an attempt to treat this problem in a geometry

more closely representative of laser fusion experiments and proposed
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laser fusion systems, we find solutions for spherical electromagnetic
waves in a spherically symetric plasma. Realistic models of laser
beams have been constructed from spherical waves in Chapter II, and
here we use similar multipole expansions to describe the fields within
the plasma, taking the free space solutions as boundary conditions.
With thls expansion inside the plasma the spherical harmonics continue
to describe the transverse variation of the fields, so the three
dimensional solutions are found by solving only a one dimensional
equation. This is possible, of course, only when the plasma is spheri-

cally symmetric.

111. B. Equations
The equations we solve are Maxwell's equations in steady state
combined with linearized fluid equations for the electrons in the

plasma. The full set of equations is:

By gy =

3t +Veny = 0 3.l.a
2 + + } + = enE 3.1

mn(a—t w + ve¥v) + Up = enE .1.b

gxg=128 3l

vap=Hj.+12% 3.4

VeE = 47 o, 3.1.e

3.1.f

(B
5

{eo
"

o
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J = ney 3.1.9
p = YOn 3.].’\
where n is the electron density

v is the electron velocity
m is the electron mass
vy is the ratio of specific heats
5 is the electron temperature
p is the electran pressure
J is the current density
e is the charge density
v is a phenomenological damping term, here modeled to
represent the inverse bremsstrahlung collision frequency, and we

have assumed the adiabatic pressure law for the electrons. Linearizing

by means of the substitution

- ~iwt
n=n,+ne 3.2.a
v = gqe'imt 3.2.b
E=E +Eelt 3.2.¢
- -iwt
B=8,+Be 3.2.d

we derive, for the first order quantities, the counled equations
VxE-= ik 3.3.a

Y xB =ojkeE + @ yn - ayn 3.3.b
¥xB £+, Ing - av
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9B=0 3.3.¢
V-E = 4men 3.3.d
where k = w/c 3.3.e
Sqdreve 1
a=i C Mo T3 oy 3.3.f
“o? 3.3
£ =l 3.9
w (1 + 1 v/w)
2
2 mnge 3.3.h

u)p = m
and we have dropped the subscript 1.

For a cold plasma, a =0, and the eguation for n decouples from
the equation for the electromagnetic fields. It is inconsistent.,
liowever, to use a finite v when T is taken to be zero, as the inverse
bremsstrahlung collision frequency is related to the temperature by the

well known expression (DAWSON, KAW, and GREEN (1967)):

Vo = 2.7 n_(r)/(n T3 3.4

eritica
where T is the electron temperature in 2V and Npitical is the electron
density at the critical surface. We will require that

|evn| /| keE|
be small in order to attribute validity to our solutions which neglect
the second and third terms on the right hand side of equation 3.3.b.
FORSELUNG et al (1975) have demonstrated that the tetal absorption by

the plasma is negligibly affected by including these terms, and GINZBURG
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(1964) shows how the plasma waves which result when these terms are
important act as an effective collision frequency insofar as they limit
the amplitude of the electrostatic wave at the critical surface. Llater
we shall use arguments based on this idea in defining the range of
validity of our solutions as a function of temperature.

The final set of equations to be solved is:

UXE = ikB 3.5.a
UXB = -ikef. 3.5.b
9B =0 3.5.¢
where € = 'I-mpzl[wz('l + iv/w)] 3.5.d
mpz - 4";oe2 3.5.e

111. C. Solutions in Spherical Coordinates

In spherical coordinates, these equations have been solved by WYATT
(1962) for plane wave scattering from diffuse sphere and ARNUSH (1964),
for scattering from plasmas in which the dielectric constant vanishes
at some point in the plasma. Although our approach closely parallels
that of Wyatt, the applications are closer to those of Arnush and, as
neither work treats explicitly our form ot the dielectric constant, e,
there is sufficient justification to re-derive the basic equations ta
be solved.

Consider first salutions for which E. = 0. Then
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(vxB),. =

and we can define a potential V such that

_ 1y
Be T r 0
B, = —t &
¢ r sin 0 3
ik = Lo
Then -1kBe =Y rE¢
=13
1kB¢ c ¥ S r'Ee
Choosing
_ 13
Ve
we have
= .
E¢ BET:)
[ .
8 ~ sin 8 3
_=1.3 2
By ~Jraras ™
B oasl 122

From equation 3.5.b

. kg
8, = Fgig (G5 50 0 Ey - 75)
or
B 3w
-ikB, = ¢ s1n T sin 6 ( sin 6 4 + s1n 8 =)

3.6

3.7.a

3.7.b

3.8.a

3.8.b

3.9

3.10.a

3.10.b

3.10.d

in
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ikeEy = 13, - ‘;-:-:—" 3.13.2
~fke€y = T5h g .:_&’BI -2 s, 3.13.0
s$0
~ikeE, = - 1 12 e, - ];?—:—" 3.14.a
~ikeEy = r—s—,!?-g gﬂ - ,%,:g;-g—,— rke 3.04.b
andg
kzreE¢ + —3—2-2— rip = ~ik :_:_r_ 3.15.a
ar
ik B 3.15.p

Wre, + Ly vty - ko
6 ,F €@ singag -

Finally, substituting for E , Eqs and 8 gives:

¢

2
3 2 31 31 (D e g3
-——[k rey + o ru:] = -a—e-[—-»——r S 6(89 sin 858

EL)
1
1 3y
tsine ‘—7)} 3.36.a
3
1 a2 3
Sin 6 W[k rey + ;—;; rw]
S 1 5 oo o3 1 3%
“Sin 8 756[" sin e(’a'f') $in B35 * oo ;';2‘)] 3.36.b



where we have used the fact that ¢ is spherically symmetric.

Therefore ¢ is a solution of:
2

B_Y’lll_ + kzrg\p +
ar

which can be written as

2+ keyp =0 .

Given ¢, all field components belonging to the mode Er =0

{transyerse electric) can be determined.

34

r sin 8'38

<Dl

3.17.b

Next we solve for fields belonging to the transverse magnetic

mode (Br = 0): here £ can be written in terms of a potential U such

that
13
b=v®
——
$ " r sin 6 3%
and
i = 13
1keE9 = wEr T B¢
g = 12
-1keE¢ = vy’ Be
Choosing
=2
Us=Fear "X

we have

3.18.a

3.18.b

3.19.a

3.19.b



_ D
B¢’ae

o1
B = sme 3
£ =13 3

From equation 3.5.b

~ikeE =___1___(a_ sin 8 B -B—Be-)
r r sin 636 ® b
=F'#?{%G—Si"e%+sile':_})-
But
ide::l” %F Ee'%‘—iz—r
SO
R N
TkBy rs:ne:—.:L+JF%F1]Kg_rrBe
and
'kz%‘%g_rE%F'”Br';La%

35

3.21.d

3.24.a

3.25.a
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. 3k
2 1813 =ik __ T
KBy - rarcor B " T sinG 3% 3.25.b
Therefore
3,2 13 13
"Xt rw e ™

_ 9 1 3 s ) 1 az
= ﬁ[‘T'—('a'e_ sin @ -5% tS5in o #)]3.263

] 9 1
s1n sing a¢(" trar e rx)

2
. _x 12
N 51n sin 6 3¢ 2 (ae sin 059 % ST ;;§)

er® sin @
3.26.b
Again we use the fact that ¢ is dependent of 6 and $, so that

2

3 193 2
oZ X7 Eap oy X koerx

Br
+ --l—-_(%§ sin @ %gx- + _,l__,E_EX) =0

2 .
r” sin © 3.27

which we can also write in the form

L | 2
VX -rarar Tt Kex = 0 3.28

These results are summarized in Table 3.1.

The equations for the potentials are solved as follows: the
angular derivatives in equations 3.17 and 3.27 have as eigenfunctions
the spherical harmonics. As a result, we can separate variables by

means of the substitutions:
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x(r,0.9) = > xl(r)[alPE(cos a)
=0
o m m _ . m -
Y (a; cos mp + b, sin m¢)P2(cos 8)] 3.29.a
m=1

plr,0,) i yl(r)[clpl(coso)
2=0

L
+ T (c'p" cos me + d': sin m¢)P'£'(cos 8)] 3.29.b
m=1

which requires that x, and y satisfy

2

d 1ded 2. _2(e) -

?rxg - 'F‘a}—'d—rrxl + k erl —;2— TXE =0 3.30.a
2

4oy, + e - M8y <0, 3.30.b
arl b re 3

In Chapter 11 we found that an axisymmetric laser beam had only m= ]

components in its Debye petential expansion, so that for a linearly

polarized incident beam, x and ¥ can be expanded in terms of the cos ¢
and sin ¢ functions only. Using this expansion, we find the results
summarized in Table 3.2.

There is a clase relationship between the Debys patential function
differential equations in spherical coordinates and the corresponding
field equations in Cartesian coordinates. Equation 3.30.a for the T™M

potential function Xy is identical to eguation (1) of DENISOV (1957),
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which describes the magnetic field normal to the plane of incidence for
a plane wave obliquely incident at an angle BO from normal onto an
inhomogenious slab plasma, if we replace rx, by Btransverse and

2 2

2(2+1)/ 2 by k¢ sin o _.

0
Similarly, equation 3.30.b corresponds to the electric field
equation for a plane wave polarized with its electric field normal to
the plane of incidence, as given by GINZBURG (1964), equation 16.8, if

ry, is replaced by Etransverse.

We interpret the spherical Debye potential equations as follows:
first, the electric fields resulting from the TE potential (y) have
no components in the radial direction, and therefore no plasma waves
can be generated by this wave in a spherically symmetric plasma. The
solution to the radial part of the TE potential equation has a cutoff

at the radius given by
Ke(r) = 2(e41)/r? 3.31

For ¢ increasing with r in the plasma, higher multipole fields are
cutoff and reflected at successively larger radii, and the fields
generated by these potentials, for equivalent source strength, are
successively weaker in the vicinity of the critical surface. The
incident and reflected waves then interfere to form standing waves, and
when the thickness of the atmosphere is small relative to the plasma
radius (so that 2(2+1)/ r2 changes little across the atmosphere)

these waves are identical to the standing waves found in Cartesian

coordinates (which for ¢ varying linearly with r gives the well known
Airy function solution (BUDDEN (1961) p. 283).
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On the other hand, the TM potential functions generate the radial
electric field which resonantly couples to plasma waves at the critical
surface, leading to energy loss from the electromagnetic wave. This
wave also has a cutoff outside the critical surface, but evanescent
waves tunnel through to the critical surface where their radial electric
fields generate the electron plasma waves.

Although the higher multipole fields are again reflected at
successively greater and greater radii, the radial electric field
carried by the g-th multipole is proportional to £{2+1). For small &
this factor more than compensates for the increased attenuation
resulting from the cutoff, and the radial field which exists at the
critical surface initially increases with &. Only for & of order krc
does the cutoff significantly affect the wave at the critical surface
(rc = radius of critical surface). Using the correspondence with
Cartesian coordinates, we take the formula of DENISOV(1958)-FRIEDBURG
(1972) to predict the multipole for which resonance absorption is
maximized. When the density gradient is linear and the target radius

is large compared to the atmospheric scale length, we have

r 2
_ c 4/3
Emax(Rmax +1) = 0.5 (Eﬁ) (kAR) 3.32

where AR is the atmospheric thickness. For examnle, with L 100um
and AR = 50um, the maximum resonance absorption occurs at & = §5;
changing AR to 5um gives maximum resonance absorption at £ = 140.

We will delay the discussion of specific examples, which will follow
a brief description of the numerical scheme employed to solve equations

3.30.
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I11. D. Numerica) Solutions

To determine the electromagnetic fields in all space, we must solve
equations 3.30.a and 3.30.b subject to the boundary conditions of Section
II. The fields, then, follow from the formulae of Tables 3.1 and 3.2.

Consider first equation 3.30.b which, for

W=y, 3.33.a

u = dw/dr 3.33.b

is written as
%:% + (K% - Q.Lﬁ_)_;l Yw=0 3.34
r

At the boundary of the plasma, r = R, the wave consists of an
incident (specified) wave and a scattered wave, which is purely outgoing.
Because the free space solutions to equation 3.30.b are spherical Bessel
functions, the outing wave must be a spherical Hankel function of the

first kind, hélJ s and from the Bessel function recursion relations, it

follows that, at r = R

1
Wk Pg-%(kR)) w
dr R hlls(kR)
R ()
. dwmc L h1-1(kR) inc
= ar + (R -k hi (kR)) w R 3.35

where the right hand side is a known quantity.
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The second boundary condition, based on the finiteness of the

solution at the ocrigin, is

w(r=0) = 0 . 3.36

Therefore, defining

v =Uu+ bw 3.37.a
b=2%_k hél%(KR) 3.37.b
R hE”(KR) o
and
¢ = k% - (a+1)/r? 3.37.c

we can write

v 3.38.a

n.ln.
=le
oo

=%u—

v 3.38.4

g2
<

= (b+f)

=
olo

subject to boundary conditions
v(0) = u(0) 3.38.¢
inc
wR) = P 4 e 3.38.d

We solve equations 3.38.a and 3.3B.b numerically starting at r = 0
with u = v = 1 (arbitrary)and integrate from r = 0 to r = R, at which

point the amplitude and phase of v is known by the second boundary
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condition. We then sweep back through the array of u and v values,

rescaling according to the known boundary conditions.

The quantity needed far the series expansion of the fields is

v

- u

Yy —pr— -

To solve equation 3.29.a, define:

WS Xy
Jldw

UsEdr
and v=eu+bw ,
so then

du_.c,_c

ar e Y

dv _ Cyliey, €

ar = b+ g egeu- gy
subject to

v(0) = «{(0) u(0)

inc :
v(R}) = g% + bw'"t

and the solution

proceeds as above.

3.39

3.40.a

3.40.b

3.40.c

3.41.a

3.41.b

3.41.c

3.41.d

Use of the variables chosen insures the continuity of the trans-

verse components of £ and B in all space.

However, as v/w approaches
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zero, the shell in which the resonantly driven fields are large becomes
very thin, and it is necessary to refine the radial grid coordinate.
Several solutions are considered in the appendix as a means of
verifying the technique:
(1) For ¢ approaching unity in all space, the solutions to both
equafions 3.30.a and 3.30.b are the spherical Bessel functions,
(JACKSON (1962),p.539), matching the amplitude and the phase of
the incident wave at r = R, In Appendix 3 we compare the
numerical solutions of equation 3.30 with the spherical Bessel
functions.
(2j For a linear gradient, it has been shown by BUDUEN (1961) p.283,
as well as may others, that the solutions to equation 3.30.b
are Airy functions under the conditions described earlier., We
compare our solutions with the Airy function solutions in
Appendix 4.

(3) FRIEDBURG et al {1972) numerically solved the Cartesian

~

equivalent of equation 3.30.a. Again we duplicate the pravi-
ously known solution as a means of verifying the techniques

used here. (Appendix 5)
II1. E. Results

We have found that the potential functions for the electromagnetic
fields in a plasma can be described as the series sum of the product of
an unknown radial function and a spherical harmonic function, the radial

function being the solution to equation 3.30. Eventually, in order to
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reconstruct the fields scattered by the plasma, we will combine the
incident wave multipole spectra, which are given in Chapter II, with the
fields given by these potential functions. First, however, we will
consider in more detail the properties of the radial functions X, and
Yy s as a function of the plasma parameters oo AR and v/w.

Throughout this report we will maintain as many parameters as
possible at or near the same numerical values. Our "standard" plasma
will have v = 100pum, AR = 50um and T = 850 eV(v/w = .001). For the
X and Yy plots we mainly use AR = 5um however, since fewer standing
waves exist in the plasma and the plots are conseauently easier to read.
We take the laser wavelength to be 1 um and the density gradient, linear.

In Figure II1.1 we plot [xllz and Iyll2 for £ = 1, 14C, 300, and
600 and re = 100pm, AR = 5um, and v/w =.001 (T = 850 eV). Even though
stron; resonance absorption is occurring at % = 140, little change is
seen in the plots of llez and ly1|2. It is the term 1 /e in the
equatiuns for E in Tables 3.1 and 3.2 which amplifies the effect of
resonance absorption. The effect of the plasma cutoff is easily
observed in the differences between £ = 140,300 and 600 plots.

By changing AR, the number of standing waves in the plasma changes,
and as AR becomes larger, the height and breadth of the wave nearest
the crit.cal surface increases, significantly increasing the energy
dissipation by classical collisions there. This swelling of the standing
waves near the critical surface is a very important factor in the overall

efficiency of absorption of a plasma.
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In Figure I11.2 we plot, on a differant scale, the standing waves
for re = 100, AR = 50, and v/w = 0.001 and £ = 1. (Note that the
radial scale is lengthened x10 from the previous plots). The amplitude
and width of the first standing wave away from the critical surface
have each more than doubled from the previous plot. The uneven appear-
ance of the envelope plot of this wave is a result of the coarse grid
spacing used in this calculation, and with better resolution, would
become smooth.

To observe the effect of temperature on the standing waves, we
plot for ¢ = 1 and re = 100pm, AR = 5um the waves for v/w = .0001, .01,
.05 and 0.1 (T = 4000,180,60 and 40 ev) in Figure III.3.

At high temperatures the collision frequency is small and Tittle
absorption occurs {since there is negligible resonance absorption for
2 =1). However for successively lower plasma temperatures, the effect
of the increasing inverse bremsstrahlung collision frequency can be
seen in the damping of these standing waves.

In Section II. B we derived an expression for the power in an
incident Tight beam in terms of the coefficients of its Debye potential
functions. From the values of x, and Yy, on the boundary of the plasma
we can define similar expansion coefficients for the outgoing (scattered)
waves and, since the rate of energy dissipation in the plasma must be
equal to the difference between the incoming and outgoing power, we
can use these coefficients to give us the £ dependence af the power
absorption. MWe could not, for instance, speak similerly of the g

dependence of the field strength, because of interference effects
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between the different multipoles. For the power, however, we showed
that the effect c¢f the integration over the transverse coordinates
enables us to identify the power associated with each multipole in
terms of the expansion coefficients of x and ¢y . When we do this for
the Xy and A terms separately, we see that the y mode loses energy
only to collisions, while for some ¢'s the x mode can loose up to 50%
of its power (for linear gradients) through coupling to plasma waves
(in our cold plasma model the plasma waves are themselves collisionly
damped) .

As mentioned earlier, the optimum ¢ for coupling is determined by
a tradeoff between the strength of the radial electric field driving
the plasma waves, which is increasing with &, and the increasing cutoff
radius, which as & increases causes higher attenuation of the field
between the cutoff and the critical surface.

In Figures I11.4 and I11.7 we plot the rate of energy dissipation
as a function of ¢ for tha y and { modes, for several values of v/u
and for AR = 5um and AR = 50um.

From this set of figures, several effects should be noted: first,
the resonance absorption can clearly be identified in the x plots and
the value of ¢ at which it is greatest is seen to vary with g exactly
as given in equation 3.32. Secondly, the dependence of classical
absorption on AR (because of swelling) also is clearly noted here, as
the large AR plasma absorbs energy classically far more efficiently
than the plasma with a smaller AR. Finally, at high g's we see the
effect of the plasma cutoff which prevents the wave from reaching the
critical surface, and causes the falloff in both resonance and classical

absorption.



II1. F. Summary

We have found solutions to Maxwell's equations for an arbitrary
spherical wave incident onto a spherically symmetric (radijally inhomo-
genious), overdense plasma. We calculate both resonant absorpfian and
classical absorptiqn via inverse bremsstrahlung. The plasma is described
by Tinearized fluid equations for the electrons and ions are assumed
fixed. The equations we solve are actually the cold plasma equations,
but temperature enters parametrically through the size of the inverse
bremmstrahlung collision.frequency. The fields are defined in terms of
the Debye potential functions, whose angular variation is given by the
spherical harmonics and whose radia) dependence is determined by numer-
ical solution of ordinary differential equations. We discuss the radial
dependence of the Debye functions which are analagous to the TE and TM
solutions in Cartesian geometry, and present results showing the

dependence on various plasma parameters.



TABLE 3.1

Solutions to Maxwell's Equations jn Spherically Symmetric Media

T.M. Contribution T.E. Contribution

1

1ker—'l—(ae s1ne—x+ 4)+ 0
13 3 1w
Tker 3F 3§ ' X + sTn e 8¢
1 1 d 2 Y
TKer Sn 6 3r 39 ' X + )
0 + -1 1
Kr sin e(ae sin s
13 1 a8 35
sin § 2 + TR A
X 1 1 3 3
3 * T smsorw Y
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1 3 LR _ﬂ 2
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TABLE 3.2

Solutions to Maxwell's Equations in Spherically Symmetric Media for Linearly Polarized Axisymmetric Light

T.M. Contribution T.E. Contribution
Er‘ = %((gll X, P cos ¢ + 0
E, - %EFg_ J(a1) 90 - plyLosé 's—i%_e vy Pl cos ¢
By = - T STog o™ Pl sin 6 N —yyfo(e1) ¢0 - P2y sin e
Br = 0 + ‘((“]) Pl sin ¢
S ' T Sy la(en) B - efy 8
B, = xa{s)) O - P2y 05t + TH ST Sty P} cos ¢

where P? is the Legendre polynomial

and

2
d 2 a(eHl .
i y£+[ke-—‘—2—)-r Jry, =0

6%
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IV. LASER LIGHT SCATTERING AND ABSORPTIGN

Iv. A. Introduction

Thus far we have studied separately new wethods for describing a
laser beam in terms of jts multipole moments about an arbitrary origin,
and for determining the electromagnetic fields in a spherically sym-
metric plasma by means of a partial wave expansion of the Debye
potential functions. In this chapter, these methods zre combined to
examine laser 1ight scattering and absorption by spherically symmeéric
plasmas, which will follow in three sections. First we will analyze
the distribution of Tight scattered by a spherically symmetric plasma
which is being illuminated by a single focused laser heam, and determine
the amount of Tight absorbed, and the amount emerging in the forward and
the backward directions, disregarding for the moment the spatial distri-
bution of the fields in the plasma. We will consider the effects of
(7) plasma translations relative to the beam focus, (2) the f# of the
focusing lens, (3) plasma atmosphuric scale length, (4) plasma temper-
ature and (5) spherical aberrations on the incident beam.

Next we will consider the spatial distribution of the fields
themselves within the plasma, and following directly from this, the
distribution of the energy deposition by the beam, as a function of
these parameters,

Finally we will estimate the limitations of the linearized, steady

state solutions by calculating the incident beam power for which the
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linearization and steady state assumptions break down. The equations
solved here are very good approximations to the full nonlinear set of
equations when the beam power is low, and we will determine the

approximate power levels at which the various nonlinear terms become

important.
IV. B. Total Absorption and Scattered Light Distribution

In Figure IV. 1 we again illustrate the geometrical definition of
p, the plasma translation. For positive p the laser is focused behind
the center of the plasma. Tne fraction of the incident power which is
absorbed, scattered (or propagates directly by the plasma) into the
forward hemisphere, and scattered into the backward hemisphere (to the
left) is plotted in Figure IV. 2 fo- a plasma with AR = 50um, r. = 100pm,
T = 850 eV and f# = 0.5. This plot and similar plots which follow
consist of two curves. The separation between the x-axis and the lower
curve is the fraction of the incident 1ight which is absorbed, for that
value of p. The second curve is a plot of the fraction of the incident
light beam which emerges in the forward direction, either by diffracting
around the plasma or by scattering in the forward direction, and is
measured from the top of the graph. The remaining 1ight, which is the
fraction of the incident beam which back scatters, is given by the
distance between these two curves.

For p near zero all the 1ight is either absorbed or backscattered,
and small translations to the left or to the right increase the total
absorption, because of resonance absorption. Once the incident light

multipole distribution is optimal for resonance absorption, further
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translations of the plasma then lead to a diminishing absorption,

as the incident power begins to appear in higher multipoles. Some of
the light which had been back scattered at the critical surface now
begins to scatter into the forward direction and ultimately large
fractions of the incident beam miss the plasma altogether,

Looking more closely at the plasma translations to the right
(p negative), we see that the absorption is symmetric with respect to

p = 0 (for non-aberrated beams), but that the surface of the plasma
which is ilTuminated by the laser is vastly different, with the laser
focused down to a very small area for p = -100um. This causes the
fraction of light forward and backscattered to be quite asymetrical
with respect to p = 0. Large negative translations also eventually
cause forward scattered iight, and Tight directly propagating into the
forward hemisphere.

Before analyzing the spatial resolution of the scattered light, we
will consider the effect of plasma temperature on the absorption and
scattering, in Figure IV. 3. At lower temperatures the absorption is
enhanced for all plasma positions, and resonance absorption is itself
decreased in absolute magnitude, because of attenuation of the incident
beam prior to reaching the critical surface. In Figure IV. 4 we plot
the same sequence for AR = Sym. The general characteristics of the
plot are the same but the overall absorption is considerably less as a
result of the diminished wave swelling between AR = 50um and AR = 5pm.

Increasing the f# of the focusing system has the predictable effect
of changing the translational scale, since the illuminated area on the

plasma surface changes more gradually with changes in p. Adding
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spherical aberrations to the beam also leads to understandable changes
in these plots. For badly aberrated beams, even p = 0 multipole

spectra of the incident beam will have power which is efficiently
resonantly absorbed, raising the overall absorption for small values of
p. For large spheres (compared to a wavelength) and large translations,
the overall effect of aberrations an the absorption is minor. These two
effects are illustrated in Figure IV.5.

We plot the forward and backscattered 1ight as functions of the
angles a and B, B being the vertical deflection from the axis of
symmetry, ranging from -n/2 to +1/2 and, o likewise, horizontally from
the axis of symmetry. A1l contour plots are symmetrical about the
o= 0 and B = 0 axes, and one can envision the plots as representing the
contours on the hemisphere to an abserver looking forward (or backward)
from the plasma center. Contour values are separated by 10% of their
peak value, and the linear plots to the right and above the contour maps
show the intensity on the axes @ = 0 and B = 0, respectively. In the
plots of scattered light given in Figures IV.6 through IV.14 we can
follow the effects of translation.

In Figure IV.6 through IV.11 we plot the backscattered light for
situations in which most of the incident 1ight has been intercepted by
the plasma and there is no forward scattered light. In Figure IV.6 the
light is focused to a small spot on the surface of the plasma, which is
essentially planar, and the reflected 1ight scatters backward into a
small angle. As the focus is moved to the right, we can observe how the
backscattered 1ight reflects into larger and larger angles, until in

Figure IV.11 some of the reflected 1ight is forward scattered (very near
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15/2). The effect of the resonance absorption can be seen as follows.
For p's for which resonance absorption cccurs, the vertically polarized
incident light in the horizontal plane is reflected but in the vertical
plane is partially absorbed (since the electric field has components
along a density gradient only in the verical direction). Therefore,
reflected 1ight contours in the vertical direction are depressed,
relative to the horizontal. We can see clearly the effect of resonance
absorption in Figures IV.6, and IV.9 through IV.12. In Figure IV.7 the
phase fronts of the incident light and the plasma surface coincide and
the resonance absorption is minimum. Hence the reflected light distri-
bution is symmetric with respect to the axis of the laser.

As we increase p the asymmetry resuiting from resonance absorption
is easily observed in the backscattered 1ight.

Looking at forward scattered light, we first see light in angles
near o = tw/2 and B =+ a/2. This derives from light which has been
reflected at the critical surface. As soon as the translations are
large enough that unreflected 1ight propagates directly into the forward
hemisphere, the diffracted fields caused by this light begin to dominate
the forward scattered field distribution. This problem, of the diffracted
fields due to a plane wave incident on an annular cpening, is discussed
in Appendix 1, and the resulting far field distribution is similar to the
Airy pattern caused by a circular hole. As p increases, the thickness of
the annular ring increases and the total power diffracted into the Airy
pattern increases accordingly. Forward scattered 1ight is plotted in
Figures IV.13 and IV.14 on a crude scale, with the details of the forward

scattered central spot plotted in Figure IV.15,
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Another important aspect of 1ight scattering in spherical plasmas
concerns the effects of refraction on the absorption of light, since
refraction in the plasma atmosphere causes the 1light rays to be bent
away from the critical surface, where they are most efficiently absorbed
(classically as well as by resonance absorption). The effects of wave
swelling on the absorption and the diffraction of 1ight itself both
make it difficult to evaluate the effects due to refraction, because
changes in the atmospheric scale length which affect the refractive
properties of the plasma have, through wave swelling, an even greater
effect on the absorption. Similarly, changes in the translation para-
meter, which affect refraction by adjusting the angle incident rays
make with the plasma surface, also cause changes in the diffraction of
light around the plasma, which obscure the refractive effects.

We can estimate refractive effects as follows:

From equation 3.30 , the T.E. waves (ignoring resonance absorption)

are cutoff at a radius given by
_ 2
r.(ro) = EO(EOH)/(kro) 41

which for a linearly varying ¢ gives
- 2 .
10(10+1) = (kro) (ro rc)/AR 4.2

We choose o with account for wave swelling, by estimating the
distance from the critical surface at which inverse bremsstrahlung
absorption becomes weak. Referring to Figures III, 1 and III. 2, and

using equation 4.2 to calculate Rn’ we find:
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AR (um) r, (estimated) fg
5 Y‘c + AR/3 350
50 Y‘c + AR/S 300

where 10 is the Towest multipole which does not penetrate the absorption
region. Thus, with this simplified analysis, we would predict that an
increase in the atmospheric scale length of 5um to 50um would cause an
increase in the refractive effects by about 15%. [In Figures IV.16 and
IV.17 we observe the effect of increasing the atmospheric scale length

on the forward scattered light. This we also compare with the geometric
optics solution, with no absorption. In both cases the forward scattered
tight is negligibly affected by the change in scale length, while, as a
resylt of wave swelling, the absorption is considerably changed.

It would perhaps be more meaningful to compare plasmas which have
the same mass, rather that identical critical radii, since then the
plasma with the longer scale length would have a smaller critical radius
and therefore intercept a smaller fraction of the light geometrically,
lowering its apparant efficiency for absorption. Such a comparison
requires a model for the density variation throughout the plasma and
we shall not go further than this.

Another way to address the problem of refraction is through the
angular deviation from normality of the rays at the plasma boundary.
Rays which deviate far from the normal will not reach the critical
surface and are not as strongly absorbed, and refraction effects further
bend the rays away from normality. MWe calculate the allowable deviation

as shown in Figure IV,18 , where from the previous analysis, we use
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for the impact parameter the factor ry, = QO/L. A1l rays which pass

within Ty of the plasma center are acceptable. This gives the following

results:
AR(ym}) Y
5 32°
50 19°

From this point of view, then, the refractive effects appear to be
significantly more important as the scale length increases. This is th-
case because, for the same Eo’ the plasma with a thicker atmosphere has
a more restrictive condition on By,

The somewhat arbitrary procedure in the choice of r, can be
significantly improved by the foellowing analysis: In Figure II1.5
and Figure I11.7 we plotted the absorption as a function of temperature
and multipole, for various plasma configurations. In these plots wave
swelling is fully considered, as these results follow from an analytic
integration of the Poynting vector over the surface of the plasma. We
define Qb as the multipole for which absorption is 50% of the ¢ = 1
absorption, for the ¢ mode. This insures that a minimum absorption is
attained for all light within a specified deviation from normality at
the plasma boundary (which is a function of temperature because the
value of the multipole zb is a function of temperature}. (For some data
in the following chart, Figures III.5 and IIl.? do not extend to
sufficiently large £, in which cases the raw data are not given. The

same is true for temperatures which do not appear in these figures.)
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RGm) TV g %
50 60 762 54°
50 180 606 4p°
50 840 367 23¢
50 4000 329 20°
5 60 440 42¢
5 180 346 32¢
5 840 312 28°
5 4000 308 28°

These results are basically the same as before, but the effect of
swelling is more accurately considered. The conclusions on the required
normality of incident light rays are in agreement with the commonly

stated criteria (NUCKOLLS (1974}, p. 412).
IV. €. Fields Inside the Plasma

We have described in the previous section the scattering and
absorption by a spherical plasma when illuminated by a focused laser
beam, Also of interest is the distribution of fields within the plasma,
which determines, among other things, the spatial distribution of the
energy dissipation in the plasma and the location and strength of
various nonlinear interactions.

Solutions of the radial wave equation for the Debye potentials were
given in Chapter III, where we derived the standing wave solutions
characteristic of the radial dependence, but the field distribution must
also include both the angular dependence of the spherical harmonics and
the effect of differentiating the potential functions, as given in Table

3.2,
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We will discuss here the variations of the electric field quantities
on spherical surfaces inside the plasma and the radial dependence of
the electric fields and the accompanying energy dissipation.

At Tow temperatures, the largest electric fields in the plasma are
transverse, occurring near the critical surface at the peak of the first

2 on the spherical

standing wave. In Figure IV.19 we plot contours of <E>
surface at this radius, for T = 60eV. Again, the plasma configuration
is re = 100um, AR = 5um and f# = 0.5. As in earlier contour plots, the
coordinates are of angle, and the linear plots to the right and above
describe the amplitude of the quantity along the corresponding axis.
As expected, the transverse fields retain the symmetry of the incident
beam. (The quantities <E¢> and <Ee> separately do not, however). As
the temperature is increased, the radial fields due to resonance
absorption become important. In Figure IV.20 we plot <Er> on the
critical surface, for T = 850eV. The resonance absorption peaks in
lobes to the north and south of the beam center, along the vertical
axis, and vanishes along the horizontal axis. (In Fiqure IV.20 notice
that the magnitude of the field on the horizontal axis is down by a
factor of 10]4.) In this case the transverse fields are approximately
equal in magnitude to the radial fields, as seen in Figure IV.21, a
plot of <E>2 on the critical surface. At still higher temperatures,
T = 1350eV, the radial fields become more dominant in the plots of
<E>Z, as in Figure IV.22.

We can also make contour plots of the cross section of the field
distribution, as in Appendix 2, but the scale of the radial variations

compared to the plasma size makes it difficult to read the details of
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any such plots. If we employ a very narrow incident beam the inter-
action with the plasma will occur on a small section of the plasma
surface, and we can then blow up a portion of the contour plot and see
the transverse and radial variations on the same scale. We do this by
calculating the interaction of an f#10.0 beam with a plasma whose
parameters are the same as above. In Figure IV.23 we show the region
of interaction of the beam on the scale of the entire plasma. In
Figure IV.24 are plotted contours of <E>2 for ¢= 0, (vertical plane)
for the region shown in the previous plot, and for a plasma temperature
of 60eV. For this and following plots, the contours are successively
diminished by 50% from the next higher contcur. In this manner,
contours many times smaller than the peak value can be plo*ted on a
single pass. Evident in Figure IV.24 are the standing waves, whose
peaks are smaller moving away from the critical surface {which is at
kp = 628.3). Also note the transverse behavior, which falls off on the
spherical surfaces moving away from the central axis. As we pointed
out, this result is for an f#10 focusing system; the effects for faster
focusing are similar but not so easily displayed to scale on a contour
plot. In this plot, the 1inear graph to the right plots <E>2 along the
axis y = 0, and the one on the top is of <E>2 along the outermost radial
used in the contour plot. Figure IV.25 is of <E>2 in the plane ¢ = n/2.
It is virtually identical to the previous plot, because at this temper-
ature all absorption is classical and polarization effects not
significant.

Now we consider T = 180eV, in Figures IV.26 and IV.27. The

decrease in collision frequency has sharpened the standing waves, and
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the effect of resonanca absorption on <E>2 is just beginning to be
seen. Notice that there is no effect an the axis of the beam, but
contours away from the axis are beginning to distort at the critical
surface. The plot along the radial {(at ky = 55.) also shows the
influence of the plasma waves, As expected, there is no effect at
¢ = /2.

Finally at T = 85QeV, in Figures V.28 and IV.29 , we see strong
resonance absorption fields at the critical surface both in the linear
plot along the outer radial and the heavy black line in the resonance
absorption region, representing the presence of a large number of
contour lines rising very steeply. Again, along the axis and at
¢ = n/2 no effects of resonance absorption are seen.

We can determine the energy deposition of the beam in the following
manner: the energy deposition at a point in the plasma is proportional
to v(r)<E>2 so on a sphere of constant radius, the variation of the
energy dissipated conforms to the plots of <E>2 already discussed.

These results showed how, for low temperatures, the energy deposition
has the symmetry of the incident beam, and as the temperatures increase,
asymmetrical absorption due to plasma waves (resonance absorption)
becomes dominant.

In the radial direction we can simply determine the rate of energy
dissipation inside a given radius by integrating the normal Paynting
vectar over the sphere described by that radius. These plots, of energy
deposition inside a specified radius, are shown for an atmospheric

thickness of 5um and kp of 0 and 100 in Figures IV.30 and IV.31.
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We see the effects of the standing waves in the added fraction of
absorption occurring as we advance across each successive wave. At
very high temperatures, virtually all the absorption is due to resonance
absorption, which occurs at the critical surface. This is observed in
Figure IV¥.30, which shows substantial resonance absorption in the near
step function rise of absorption at re-

As the temperature is lowered the absorption occurs further from
the critical surface and the resonance absorption is Towered in magni-
tude, because the wave is classically attenuated before it reaches the

critical surface.

IV. D. Self Consistent Analysis of Approximations

Thus far in Chapter IV we have tacitly assummed that our solutions
are valid for a wide range of input parameters. In fact, breakdown of
the cold plasma and linearizing approximations places limits on the
incident beam power and plasma temperatures for which the equations can
be used. In this section we will determine the beam power and temper-
ature for which the various aporoximations fail.

First, we consider in more detail the cold plasma approximation.

We have ignored terms of the order

IQEJVV-EI
pe= 4.3
KYE|

w

This term is largest at the critical surface where we can approxi-

mate
ITV-E| ~ [EI/(v/w 8R)? 4.4
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So we consider the quantity

p = Lo/ [(keR) 2 (v/w)’] 4.5
mc

Using equation 3.4 , and y = 1.

1/2
p = (ﬁﬁ)z(wezTﬂ K 2.6
where T is the plasma temperature in eV

Then, for p = 1

an

T W " 62.7 (kaR) 4.7

p

which is the temperature at which plasma wave effects are equivilent
to collisionai effects at the critical surface.
Returning to equation 4.5, we define an effective collision

frequency due to plasma waves,

v 1/3
T B .8
which is the same as GINZBURG (1964) p.227,

In the following plots of Power versus Temperature, we denate
results for T > pr with dashed lines.

Our analysis of the linearizing approximations proceeds as follows:

We choose a laser-lens-plasma configuration for analysis, and for
a specified temperature, calculate the fields inside the plasma. Then,
looking at the largest field amplitude, ﬁ]asma wave amplitude, and

radial gradient of <Er>2 we determine by scaling the incident beam
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power, the pawer for which the following conditions hold:

Por *Yor T Yt
Pot * Yot = Vtn
Phoim=ng

]

2
2, B0y
VE® ¢ V(Sn) = VnkT

Where Vor = cscillation velocity of electrons due to radial
electric ficld.

Yot = oscillation velocity of electrons due to transverse

electric fields

Vep = thermal velocity of electrons

t
The last condition above for PVE2 (as it turns out, the most
easily violated) is the situation in which self steepening of the
density gradient will occur (DEGROOT and TULL (1975)). Here the radial
component of the ponderamotive force due to the plasma wave is as large
as the force due to the pressure gradient, and being asymmetric,
steepens the density gradient more in some places than in others. The
subsequent breakdown of spherical symmetry invalidates our solutions.
This condition does not apply for times short compared to the time it
takes the ions to move, which is on the order of several hundred 1ight
periods, = 107125,
These four quantities are plotted as a function of temperature in

figures IV.32-35 for two atmgspheric thicknesses and for two trans-

lations. The transiations are chosen to minimize and maximize the
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effects of resonance absorption, to estahlish an upper and a lower
limit to the effect of the plasma waves.

For minimum resonance absorption, we consider the case in which
the beam focus and the plasma center coincide. The maximum resonance
absorption occurs for a translation slightly off center and we choose a
positive p, so that the maximum area is illuminated by the beam. Any
other plasma-laser positioning, which necessarily involves an inter-
imediate amount of power being resonantly absorbed, will produce fields
such that the Power versus Temperature curves lie roughly between the
two given here. {For the situation in which the laser is focused one
or two radii behind the center of the plasma, the incident power will
be spread over a larger area of the sphere, in which case these results
may be somewhat pessimistic. We cannot make that particular interesting
calculation because of computer storage limitations).

We also consider two geometries, Aﬁ = 50um and AR = 5um with
re ® 100pm. A1l results are for f# 0.5.

The results are in Figures 1V.32 through 1V.365.

At minimum resonance absorption, the transverse electron oscil-
lation velocity exceeds the electron thermal velocity at 10”-10]2
W for low plasma temperatures. As T increases, the thermal velocity
grows faster than the oscillation velocity but the electric field
gradients at the critical surface grow faster still. The weak
resonance absorption for the minimum resonance absorption calculation
is still ultimately responsible for the large field gradient which

limits these solutions, for T R300eV.
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When resonance absorption is5 maximized, PVEZ Timits the solutions
at all temperatures.

The linearization approximations given by Pﬁ and Por in no
instance 1imit our solutions.

In our solutions, for T>T_ , the amplitude of the plasma wave

pv
scales as (ﬁ)'], and the radial gradient of <Er>2 as (i)'3; in fact, these
numbers should be much smaller, when correctly treated without the cold
plasma approximation, because the effect of the temperature dependent
term is to limit the size of the electrostatic wave at the critical
surface. In Figure IV.36 we have plotted the power versus temperature
curve when the plasma wave effects are approximately included by using
va for v in calculating VEZ. As va increases with T, VEZ decreases
so the power required to self steepen increases. The difference between
this curve and the calculated and approximate results ignoring plasma
waves is large and any analysis in which the magnitude of the fields
or their derivatives near the critical surface is important should be
used with caution, In Chapter V we discuss methods for more accurately
considering the plasma wave effects.

We have also studied other f#'s and plasma sizes. The pondera-
motive force increases as the intensity which itself scales as rc‘2
(when we focus the laser beam such that a large surface area is being
irradiated). Therefore the self steepening force is decreased by 102
for a 1000 um radiuc plasma. The fields scale as I]/Z so for a 1000 um

plasma, P Pot’ and Pn increase a factor of 10. In this situation

or’
the linear theory is valid for present day laser fusion sources
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(m%lo‘z W)and for plasmas colder than 200-500 e¥. The effect of
changing f# is easily predictable since a larger f# increases the
intensity at the critical surface for the same amount of incident

power, and thereby lowers the threshold for the nonlinear effects.
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V. SUMMARY AND CONCLUSIONS

We have developed and implemented a practical methed ¥or c2lculating
the effects of the interaction between a focused laser beam and a dense,
spherically symmetric plasma. These calculations have been done for one
micron light and linear density profiles in the plasma, with variable
scale length, and for plasma radii of 100 micrometers. Data presented
here serve mainly to demonstrate the type of results available, without
addressing in detail any one specific problem in the laser-plasma
coupling. The solutions here are obtained by solving the complete set
of Maxwell's equations in steady state and therefore are an improvement
over ray tracing solutions, which fail to correctly treat polarization
effects, such as resonance absorption. Exitation of plasma waves by
the longitudinal fields in the focal volume which are a result of
vector diffraction (BOIVIN and WOLF (i965)) are also exactly treated.
This method cannot be thought of as a replacenent for ray trzce codes,
however, because it cannot be applied to plasmas, without spherical
symmetry. In this chapter we will discuss the applications which this
technique is suited to analyze, and discuss additional modifications
which could improve its usefulness as a taol in studying Taser-plasma
interactions.

Applications fall roughly into two categories and we can discuss
these in terms of Figures IV.32 through 1V.35. For low temperatures
and Tow incident beam power the equations solved here accurately

describe the physics of the interaction, limited only by the anset of
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hydrodynamic effects which alter the spherical symmetry. For these
pawer and temperature conditions, which basically insure that classical
absorption dominate in the energy loss to the beam, this technique can
be used to study details of the absorption such as tke effect of varying
density gradients and plasma sizes or to analyze alternate target
designs. The salutions become inaccurate because of deviations from
spherical symmetry which follow from hydrodynamic motion.

To attain tne high compression needed for efficient energy produc-
tion, laser fusion systems must employ multiple lasers or complex optics
to provide nearly uniform irradiation of the plasma. (NUCKOLLS, WOOD,
THIESSEN and ZIMMERMAN (1972)). To model this configuration, one could
couple one dimensional or multidimensional hydrcdynamic codes to these
electromagnetic solutions, because the plasma will remain spherically
symmetric even as it moves. Under these circumstances, the curve described
by PVEZ in Figures 1V.32 thiough IV.35 does not apply. and the power-
temperature regime for which the theory developed here applies is greatly
expanded. At higher temperatures, as resonance absorption beccmes impor-
tant, the spherical symmetry may be lost, but this can be monitered in
the calculations of the density profile.

The first category for applying the techniques is in the power-
temperature regime for which the physics is well approximated by the
equations we solve; the second is the regime for which these approxi-

mations begin ta break down. Here solutions given by the linearized

e
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steady state equations are useful as a means of estimating the nonlinear
terms to first order. Because the onset of the nonlinear effects occurs
at the temperature for which resonance absorption begins to dominate

the absorption, however, it is important that details of the plasma

wave be accurately calculated. In the method described in this report,
plasma wave amplitudes are inaccurate for T>pr, because we have dropped
the temperature dependent terms (except for the parameter u(T)) from
Equations 3.3. The plasma wave at the critical surface, without the
damping provi@ed by these terms, will continue to grow as the tempera-
ture is increased. The most simple improvement that can be made is to
modify the spatial dependence of the coilision frequency so that, at

the critical surface, the field components will be damped according

to va rather than v. This introduces an error, because only the
electrostatic fields should be damped with the higher value, but for
small v, the electromagnetic component of the field at L is small
compared to the electrostatic component anyway.

The ideal and most accurate . ~eatment is to solve Equations 3.3
without further approximation.

With these improvements, this technique {in some cases with
modifications to include pressure terms as well) can be used io analyze
the onset of nonlinear phenomena, such as spontaneous magnetic “ield
generation (THOMPSON, MAX and ESTABROOK (1975))and filamentation
(LANGDON and LASINSKI (1975)and VALEG and ESTABROOK (1975)) or hydro-
dynamic instabilities such as Rayleigh-Taylor (LINDL and MEAD (1975)).
(We have not attempted to provide an exhaustive bibliography on these

nonlinear effects in a laser irradiated plasma, and only mention
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recent work relating to laser fusion applications). In all cases the
influence of the incident electromagnetic field in either driving the
instabilities or in providing the perturbation to start them (through
nonuniform heating or nonunformities in the beam itself, such as hot
spots), can be analyzed.

In summary, we have described a technique by which the interaction
of a focused laser beam with a dense, spherically symmetric plasma can
be studied. We have analyzed the scattering and absorption of a laser
beam as the laser and plasma parameters are adjusted and as the plasma
is moved relative to the laser beam focus, and we have studied the
spatial variation of the absorption and the standing electromagnetic
waves. The limitations of the theory, as established by linearization
and other approximations, have been estimated in a self-consistent
fashion as a function of the plasma temperature and incident laser
beam power, and we identify improvements which, if implemented, extend
the range of validity of the solutions. Finally we discuss further
applications of the existing technique and potential applications for

modified versions which include hydrodynamic effects.
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APPENDIX I
Diffraction of Light by Circular and Annular Opanings

A standard probiem treated in nearly all textbooks on optics and
electromagnetic theory is the Fraunhofer diffraction cf plane electro-
magnetic waves by circular openings. With the procedure developed in
Chapter [T, we can numerically solve for the Fraunhofer diffraction
patterns of beams having axial symmetry, both circular and annular.

We will make comparisons with exact solutions using a slightly modified
version of the computer code used throughout this study, as a means

of verifying the validity of the multipole expansion technique and the
computer procedures implementing it.

The well known solution for the Fraunhofer diffraction pattern

of the circular opening is

5 (r)
1 2
1 AL

I(r) = [2

)

Where I is the beam intensity and J1 i5 a Bessel function of

order 1. The annular opening gives the result

23. (r) J
Hod o 1 A A 1(r ") )1? Al.2
0 (1-€%)

in which the area which is being illuminaved is specified by
a<r<a Al.3

and a is the outer radius of the hole.
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The circular hole is the special case £ = 0. (BORN and WOLF
(1975}, p. 417).

In Figure A1.1, we give results for comparison with those of
Born and Wolf, for e = 0., 0.5, and G.9, where we approximate. the
plane wave by taking N in equation 2.23.b to be 100. The annular
structure is obtained by subtracting a second beam with a smaller em

from the first prior to projection onto the spherical harmonics.



Intensity (normalized)

Figure Al.1
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Numerical solutions of the Fraunhofer diffraction
patterns of a plane wave normally incidant onto
circular and annular openings.
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AVPENDIX 1
Vector fields in the focal Volume of a Converging Lens

The vectoral nature of the diffraction cattern in the focal volume
of a converging lens has been analyzed in a series of papers by WOLF
(1959), RICHARDS and WOLF (1959), HOIVIN and WOLF {1965), and BOIVIN,
DO, and HOLF (1967). In these papers the diffracted fields are
determined for a variety of parameters by the numerical evaluation of
a one-dimensional integral for each point in the focal volume. We can
also calculate the diffracted fields by specifying a plasma target
with a negligible clectron density, in which case the fields are effec-
tivelv in free soace. The orocedyre for calculating the fields is
entirely different from that of Wolf, hut exactly the same as we use
when calculating the fields in the presence of a plasma, and conse-
auently, Wolf's results provide an excellent source for determininn
the accuracy of the implementation of the procedures descrited in
Chaoters Il and 11}, As Wolf uses a square radial beam profile, we
aporoximate the incident beam by using N = 100, in equation 2.23.b.

We give the result for <S>, the time average Poynting vector and

2. the electric energy density, in the olanes ¢ = 0., and

for <E=
¢ = 90° for an f# 0.5 focusing system, for comparison with results given
in BW and BDW, above.

Our plots differ slightly, as Wolf uses the transverse ( v =
kr sin omJ and longitudinal (u = kz sin2 qﬂ) scale factors, while our
coordinates are simply kr and k2. He have also compared peak and valley

values with some of Nolf's published results and find tke agreement to

be e:act.
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APPENDIX 111
Spherical Bessel Functions

We have described in Chapter II]l a method for solving the wave
ecuation in a spherically symmetric medium, which, for ¢ = 1, has exact
solutions consisting of the product of a spherical Bessel function and
a spherical harmonic function. In Appendix 2 we showed that the free
space solutions of the wave equation agreed with the RICHARDS and HOLF
(1959} theory, when sunmed over the incident multipole spectrum. He
will now look at the individual multipale solutions, to verify that in
free space the radial functions Xy and y, are spherical Bessel functions.
We use the same computational procedure when evaluating X, ard ¥, in
the plasma but here we take : to be unity. The quantities ixii2 and
]ylf2 are plotted tor 2 = 1, 2, and 3 in Figure A3.1, lxllz and |y£{2
are identical to 4 significant figures. Referring to ABRAMOWITZ and
STEGUN (1965), both |x,|% and ly, |2 are identical to 13412, which we
demonstrate explicitly by comparing the calculated zeroes with tabulated
values, in Table A3.1. The calculated zeroes are made to depart from
the correct values by enlarging the grid used in the calculations,

although reasonably accurate zeroes are determined even at 10 grid

points per free space wavelength.
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TABLE A 3.1
th s
x position of m—zero of g

x (micrometers)

exact 100 20 10 5
(grid points per free space wavelength)
71518 7152 7160 .91 .7328
1.2295 1.230 1.230 1.231 ~eme-
91728 9173 .9180 9188 wee--
1.4475 1.448 1.448 1.449 ceeeo
1.1122 1.112 i.112 1.114 -——
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APPENDIX IV

Airy Function Solutions

The radial component of the transverse electric mode satisfies

the equation

" ( )
Yy 2 2(841 =
drz + [k € - _r.z_._]ry =0

which for ¢ linearly dependent on r,

-r
rC

€

and using w = ry,

gives
dou , & 2(2+1) 4R
S+ aplrr, - 5 lw=0.
dr (kr)
Defining
k2,173 2(g+1) AR
p= (R e, -
(kr)
we have

A4t
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when

AR>r , R << kr. A4.7
N €

A4.6 has as solutions, the Airy functions
w=Ai (p) . As.8

Rather than compare our radial solutions with Airy functions, we
will compare our results with those calculated by WHITE and CHEN (1974),
p. 568, for the same parameters, in Figure A4.1.

Again we consider the effect of coarser grid spacing on the
solutions, looking at 100, 20,10, and 5 grid points per free space
wavelength, In this instance, the reduction of the number of grid
points does not greatly affect the solution because automatic regridding
is built into the computer procedure used in Chapter IIT, to insure
that accurate solutions of the TM equation are maintained when marching
through the singularity at the critical surface, and the identical grids

are used for the TE solution here.



129

W (dimensionless)
W (dimensionless)

-0.4 -0.8 0.8 0.4 0 -0.4 -0.8

x (um)

— 10—

=16 =5

= { %8 .

g 1 £ -

5 ] 5 s

o (%] -3
= =3

B 1E- -

=2 1= 1

= To= 2 'q
Lol 0

1] M ‘
0.8 0.4 0 -0.4 -0.8 0.8 0.4 0 -0.4 -0.8
x () x {pm)

Figure A4.1 Numerical solution for comparison with Airy
function. N_ is number of grid points per
freespace wavelength.
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APPENOIX V

Absorption With Linear Gradients

In Appendix IV we showed that for ¢ linearly dependent on the
radius, and when

re > &iﬁillﬁéﬂ A5.1
(kr)

the product of the radius by the r dependent component of the TE
potential function satisfied the Airy equation, an& we compared our
solutions with comparable results from WHITE and CHEN (1974). Similarly,
the r dependent component of the TM potential function satisfies the

same equation as the transverse magnetic wave in Cartesian geometry,

and we verify our computational procedure in this instance by calculating
the resonance absorption as a function of %, and making plots to compare
with the results of FORSELUND et al (1975). We find virtually exact

agreement (Figure A5.1) when the condition A5.1 is satisfied.
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Resonance absarption (% of total beam power)
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