
OR N L-3460
UC-32 - Mathematics and Computers

TID-4500 (23rd ed.)

U N I O N CARBIDE CORPORATION
for the .

U.S. ATOMIC ENERGY C O M M I S S I O N

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Contract No. W-7405-eng-26

. .
Mathematics Division

THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION

1604 - PRBLIMINARY PROGRAMMER 'S MANU&

L. L. Bumgarner

DATE ISSUED

JAN 3 0 1964

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee

operated by
IJJTSON C B I D E CORPORATION

for the
U.S. ATOMIC ENERGY COMMISSION

THIS PAGE

W A S INTENTIONALLY

LEFT BLANK

iii

CONTENTS

I . Introduction ... 1

I1 . Language Restrictions 2

I11 . Modes of Operation of the Compiler 4

IV . Input-Output and Intermediate Tape 5

Input-Output ... 5

READ ... 5

PAGE ... 7

Lists and the List Declaration 7

PRINT .. 9

WR1m .. g

PUNCH .. 10
Formats and the Format Declaration 10

... INPUT 11

OUTPUT .. 12
Intermediate Tape Procedures 13
BINREAD ... 13
BINWRITE .. 14
ENDF'ILE .. 14
REWIND ... 14
BACKUP ... 14

Tape-Checking Procedures 14

EOF .. 13
READERR .. 15
WRITERR .. 15

. V The External Declaration 16

VI . Standard Procedures 16

........................... 1 Error Checking and Diagnostics 17

VIII . Running Programs .. 19
ALGOL Control System 20

EOP Card .. 20
Compile and Execute: ALGO 21
PROGRAM Card ... 22

................................ ~om~ile/~xecute : ALDAP 22

ALDAP Control Statement 22
................. Job Deck : ALDAP ~om~ilation/~xecut ion 23

Examples ... 25

APPENDICES

A . Adjuncts to Algol 60 30

B . Hardware Representation 32

.................. C . Structure of Procedure Calling Sequence 35

D . Internal Representation of Strings 37
....................................... E . Program Efficiency 38

F . Controversial Features of Algol 60 40
G . Fortran Subprograms in an Algol Program 41

THE OAK RIDGE ALGOL CONPILER FOR THE CONTROL,DATA CORPORATION
1604 - PRELIMINARY PROGRAMMER'S MANUAL

L. L. Bumgarner

ABSTRACT

This document is a preliminary programmer's naanual
for use of the Control Data 1604 Algol Compiler. The com-
piler was constructed by the Programming Research Group of
the Mathematics Division in cooperation with Control Data
Corporation. A knowledge of Algol 60 is assumed. Included
are descriptions of input-output facilities and details for
operation under the monitor system.

I. Introduction

This document is to serve as a progrmer's manual for the

Algol compiler constructed as a cooperative project by Control Data

Corporation and the Elathenatics,Division of Oak Ridge National Laboratory.
'

The compiler is designed for the Control Data 1604 and 1604-A computers.

The document is preliminary in that the compiler is not thoroughly tested

and may undergo further development.

The reader is assumed to be familiar with Algol 60. The

defining descriptions are the two reports on Algol 60 available in the

following references:

1. P. Naur et al, "~eport on the Algorithmic Language Algol 60, "
Comm. Assoc. Comp. Mch., 3 (1960), No. 5, 299-314. -- - -

2. P. Naur et al,,"~evised Report on the Algorithmic Language
~lgol 60," Comm. ~ssoc. Comp. ~ach., 6 (1963), NO. 1, 1-17. - -

The second report clears up certain ambiguities that appeared in the

first report. The reports are not easy reading for the novice. The
/

following expositions are more readable:

1. Baumann, Bauer, Feliciano and Samelson, Introduction to
Algol, Prentice-Hall, Inc. (to be published in late 1s3).

2. Bottenbruch, H., "Structure and Use of Algol 60, l1 - Jour.
Assoc. Comp. kch., 9 (1962), No'. 2, 161-221, and ORNL-31-48. -

The Bauman. publication also contains the revised Algol 60 report.

Throughout this document various examples of statements and

declarations appear without the semicolon which is always required for

separating them. This is to avoid the implication that the semicolon is

part of the statement or the declaration. In sentences, a canrma or period

may appear where a semicolon or other delimiter would be indicated in the

context of a program.

Word delimiters rendered in bold-face type in the Algol report

are herein indicated by underlining.

11. Language Restrictions

The compiler correctly handles programs written in Algol 60

subject to the following restrictions.

1. The use of an integer label as an actual parameter will ---
cause an incorrect program to be compiled.

2. . A GO TO statement with an undefined switch designator as

the designational expression w i l l cause fncnrrect aperation of tho final

program.

3. Type restrictions:

(a) The exponentiation expression x T y will have type

real unless x is of type integer and y is a non-negative integer constant. -
This differs slightly from the definition in the A'lgol report but will

generally cause no difficulty.

(b) In the construction

< if clause > < simple arithmetic expression >

else < arithmetic expression > -
the arithmetic expressions must have the same type, or else an incorrect

program will be compiled. For example, in the statement

x := if a < b then z else w - -
z and w should both be declared - real or both integer.

(c) In a procedure call (procedure statement or function

call) each actual parameter having an arithmetic value must have the same

type as the corresponding formal parameter in the procedure declaration.

The type of the formal parameter is that designated in the specification

part if it appears there. If a formal parameter representing an arithmetic

quantity does not appear in the specification part, it is assumed to be

specified - real. Full use of specifications is desirable for descriptive

purposes and for optimization.

Caution. Restriction (c) is more likely to cause errors than

the other restrictions.. It is very easy to write ~ (1 ,2) when the parameters

of P are specified real, but incorrect coding will result. The call

~(1.0,2 .O) works correctly.

4. Standard procedure names (see section V I) -- used as parameters

in prooedure calls w i 1 . L cn.ilse.an tncorrect program to be compiled.' A call,

therefore, such as

 sin)

is incorrect. Note, however, that a call of the type

~(sin(x'))

causes no trouble. The case sin) can be programmed in another way.

Make the declaration

real procedure sin 1 (t); real t; - -
sin 1 := sin (t) .

The call

 sin 1)

is then correct.

5 . Arrays called & value are not handled. If an array

identifier appears in the value part, an incorrect program will be

compiled.

6 . "Dynamic" own arrays are not handled. This means that all -
own arrays are treated as having constant subscript bounds; this constitutes -
one possible interpretation of the Algol 60 report. An - own,array may be

declared with variable s~ihscript bounds, but only one allocation of

storage will be made, and if the bounds change, this will be ignored.

7. Recursive procedures are not handled. This restriction

encompasses all cases of a function designator appearing in the actual

parameter part of a call of the same function, unless that function is

a standard function. Thus f(f(x)) is not permitted in general, but

sin(sin(x)) is allowed.

111. Modes of Operation of the Compiler -- --
1

There are two distinct modes of operation: ALGO and ALDAP.

ALGO is a compile-and-execute mode in which the two phases

cannot be separated. The Algol program is translated into a machine

language program in core memory, and execution of the program immedi-

ately and automatically follows. There is no assembly program phase.

ALDAP makes use of t h e CODAP assembly program f a c i l i t i e s .

It is possible t o compile procedures separately and reference them from

an Algol program. The procedures may be wri t ten i n Algol, CODAP o r

Fortran. This provision i s made possible with the a i d of the external

declaration discuqsed i n sect ion V.

The ALGO mode provides s ign i f ican t ly f a s t e r compilation than

the ALDAP mode f o r most programs. The t a rge t programs produced i n the

two modes a r e e s sen t i a l l y the same. In t he ALCO mode, program checkout

may be done at the Algol language level . I n the ALDAP mode, checkout

may a l s o be done a t t he machine and assembly language leve ls , and

modifications may be made a t these leve ls .

I V . Input-Output - and Intermediate - Tape

There a re seven standard procedures f o r input.-output, f i v e

f o r intermediate tape, and three f o r checking tape conditions. Two

declarations, format and - l i s t , a r e addit ions t o the language.

Input -Output

The input-output procedures are : READ, PAGE, PRINT, WRITE,

PUNCH, INPUT, and OUTPUT.

READ -
The READ procedure i s used t o input numbers and Boolean values.

A KEAU statement has the t'orm

READ (~ 1 , V2, . . ., ~ n)

where n i s any posi t ive integer and each Vk i s a variable. For example,

t he statement

READ (x, Y, A[11, ~ [l])

w i l l input values in to the four variables l i s t ed . For inputing values

i n t o an .array, a statement such as the following might be used:

f o r I := 1 step 1 u n t i l 100 do READ (A[I]) . - -
The READ procedure inputs numbers and t r u t h values. A number

must be a lega l Algol number (although an E may be substi tuted f o r the

symbol For input in to a Boolean variable, the t ruth.values - t rue and

f a l s e a r e accepted; a lso, a non-negative number or a plus sign i s

interpreted as f a l se and a negative number or a minus sign i s interpreted

as t rue . A blank i s read as zero.

With the READ procedure, the type of a number on a data card

does not have t o be the same as the type of the variable t o which it i s

assigned. Any necessary type conversions a re done automatically. I f

N i s the next number i n the data, the statement

READ (v)

i s equivalent t o the statement

V : = N .

The data cards are free f i e l d . The number of values per card,

the length of numbers, and the number of spaces a re a rb i t ra ry . A comma,

however, must follow each number, includine the l a s t one on the l a s t ------
data card. --

I n reading a value in to a subscripted variable, the current

value of the subscript expression i s not affected by tha t READ statement.

For example, i n the statement

R.EAD (I, A[I])

t h e old value of I i s used i n A[I].

The READ procedure w i l l input data from the standard input

medium only.

PAGE -
The PAGE procedure i s used t o cause a page eject ion on the

standard output medium. PAGE has no parameters. It i s called by simply

writing

PAGE .
Lists and the L i s t Declaration ----

The input and output procedures described i n the r e s t of t h i s

section, as well as the binary read and write procedures, make use of

the concept of a l i s t . A - l ist ' ') i s a sequence of expressions. An

example i s

U + V, c[o], i f B then X e l se Y . - - -
It may be inconvenient i n some cases t o write down a l l of the

expression& expl ic i t ly . The loop expression'') may be used as a short-

hand device i n a l i s t . It i s an Algol-like construction of which the

following i s an example:

for I := 1 step 1 u n t i l 1000 do A[I] . - - -
This i s equivalent t o the l i s t

The entity following - d o i n FL lnnp expression may i tse l f be a l i s t , but

t h i s l i s t must be enclosed i n parentheses i f it contains more than one

member.

The loop expression

f o r I := 1 step 1 u n t i l 1000 (A[I], B[I]) -

See Appa~ldlx A fur syntact ical definit ion.

i s equivalent t o the l i s t

~ [l] , ~ [l] , ~ [2] , ' ~ [2] , . . . , ~[10001, B[10001

The l o ~ p expression

' f o r I := 1 step 1 u n t i l 10 do (A[I],, for J := 1 - - - -
s tep 1 u n t i l 20 do B[I,J]) -

i s equivalent t o the l i s t

~ [l] , B[1,1], B[1,21, ~ [1 , 2 0 1 ,
A[2], ~ [2 , 1] , B[2,2], . . , ~ [2 , 2 0 1 ,

~ [1 0] , ~ [1 0 , 1] , ~ [1 0 , 2] , . . ., ~ [1 0 , 2 0] .
A l i s t may be given a name through a l i s t declaration. A l i s t

declaration has the form

l i s t iden t i f i e r := l i s t . -
Examples are:

l i s t L := X, A + B -
l i s t M := f o r I := 1 step 1 u n t i l N do A[I] . - - - -

A l i s t i den t i f i e r may i t s e l f appear i n a l i s t . One of the above examples

might be written with the a i d of the following declaration:

l i s t L :- f o r J := 1 step 1 u n t i l 20 do 11[1,3'] . - - - - -

The loop expression i s then

f o r I := 1 step 1 u n t i l 10 do (A[I], L) . - -
A l i s t declaration obeys the same rules of syntax and scope as do other

declarations.

A l i s t iden t i f i e r may be used a s an actual parameter of a

procedure c a l l , with the requirement tha t the corresponding formal

parameter be specified l i s t . However, an ac tua l l i s t may appear as a

parameter only i n c a l l s of the standard procedures, as described.

PRINT

The PRINT procedure i s used t o output numbers i n a simple,

r i g i d manner. A PRINT statement has t he form

PRINT (l i s t) ,
where l i s t i s described above. An example of a PRINT statement i s

PRINT (A, i f N = 0 then S e l s e T) . - - -
A PRINT statement always puts out a t l e a s t one l i n e p r in t e r

image. A l i n e may contain up t o 6 numbers, each of which i s i n s c i e n t i f i c

notat ion with 10 decimal places. Each number i s r i g h t - j u s t i f i e d i n a

f i e l d of 20 columns. ('The format i s 6~20 .10 .) The above PRINT s t a t e -

ment w i l l output two numbers i n the f i r s t f o r t y spaces, and the r e s t

of the l i n e w i l l be blank. ' A PRINT statement such as

PRINT (f o r - I := 1 step 1 u n t i l 10 do A [I]) -
w i l l output one l i n e of 6 numbers followed by one l i n e of 4 numbers.

! Single spacing between l i n e s i s automatic.

The PRINT procedure always outputs on t he standard output

.- medium.

WRITE

Th.e WRITE procedure i s used t o output s t r ings . Examples of

WRITE statements are :

WRITE ('TABLE ')

WRITE (i f - D < 0 then 'TRUE' - e l s e 'FALSE') .
Each parameter must be a s t r i n g expression (see Appendix A f o r de f in i t i on

of s t r i n g expression.). There may be any number of parameters, but each

s t r i n g w i l l appear on a separate l i n e . I f a s t r i n g is too long t o go

on one l i ne , it w i l l be continued on the next l i ne . A string should not

contain another s t r ing . Lines a re single spaced. Each WRITE statement

causes a t l e a s t one l i n e pr in ter image t o be put out.

The WRITE procedure always outputs on the standard output

medium.

PUNCH

The PUNCH procedure i s used t o output numbers on punched cards

i n a form which can be input by the READ procedure. Each number punched

w i l l be followed by a comma. Each card punched may contain up t o four

numbers. Each number will. be of type rea l , but since the READ procedure

makes any necessary type conversions t h i s i s unimportant. A PUNCH s ta t e -

ment has the same form as a PRINT statement. Each PUNCH statement causes

a t l e a s t one card image t o be put out.

The PUNCH procedure always outputs on the standard punch medium.

Formats and the Format Declaration --
The two input and output procedures remaining t o be described

make use of formats. The formats a re exactly those used 'in Fortran, and

readers unfamiliar with Fortran w i l l f ind it necessary t o r e fe r t o the

Control Data ~ o r t r a n - 6 2 Reference Manual f o r de ta i l s on the use of formats.

A format i s t rea ted as a s t r ing . Formats w i l l be written, fo r

example, as follows:

' (6~20.10) '

'
(1 ~ 0 , gX, YTL'ABLE, 13)' .

Note ' that the parentheses a re par t of the format, and both parentheses -
and s t r i n g quotes a re required. - -

As w i l l be indicated below, a format s t r ing may appear

e x p l i c i t l y i n an INPUT o r OUTPUT statement. If the same format s t r ing

is used more than once, however, it may be convenient to give it a name

through a format declaration. A format declaration has the form

format Identifier : = ' (~ortran format) ' .
Examples are:

format F := '(6~20.10)'

format G := '(1~0, gX, SHTABLE, 13)' .
A format declaration obeys the same rules of syntax and scope as do

other declarations.

Format identifiers may be used as parameters, and format is a

specifier.

INPUT

The INPUT procedure is used to input numbers and Hollerith

information in accordance with Fortran-type formats. An INPUT statement

has one of the forms

INPUT (M,F, list)

where :

(1) M is the logical unit designation. M may be any arithmetic

expression. If it is uvL IliLegral-valued, the action

M := entier (M + 0.5)

will take place. The standard input unit is 50.

(2) F is a format expression. It may be an actual format

string, a format identifier, a conditional format expression, or any

variable which contains the starting address of a format string.

Caution. In the case of a conditional format expression, format strings

and format identifiers should not be mixed. For example, (a) and (b)

below a r e permitted, but (c) w i l l cause an incorrect program t o be

compiled:

(a) if B then ' (~ 2 0 . 7) ' e l s e ' (~ 2 0 . 6) ' - - -
(b) if B then F1 e l s e F2 - - -
(c) if B then F1 e l s e ' (~ 2 0 . 6) ' . - -

(3) l i s t i s a s defined previously. Of course, f o r INPUT a l l

expressions must be var iables .

The following a r e examples of an INPUT statement:

INPUT (50, ' (4~20 .8) ' , N, f o r I := 1 s tep 1 u n t i l N do A[I]) . - - -
INPUT (i f A < B then M e l s e N, F, X, Y, 2) . - - -

Each INPUT statement causes a t l e a s t one card image t o be read.

Note t h a t t he INPUT procedure does not make type checks

between the da ta and t h e program variables. A f l oa t i ng point number,

f o r example, i s s tored a s such regardless of the type of the var iable t o

which it i s assigned.

Caution. It is s t rongly recommended t h a t not both READ and INPl.PT be used

i n the same program. Each buffers ahead one card image. Furthermore,

each INPUT statement causes a t l e a s t one card image t o be read while a

READ statement may not cause a new card image t o be read. Mixing the

two statements w i l l require quite ca re fu l use of blank cards i n the data

t o allow f o r t he buffering.

OUTPUT

The OUTPUT procedure i s used t o output numbers and Hol ler i th

information i n accordance with Fortran-type formats. An OUTPUT statement

has one of the forms

OUTPUT list)

where M, F, and l i s t a re as indicated above. The following are examples

of OUTPUT statements:

OUTPUT (51, ' (5RTABLE) ')

OUTPUT (51, ' (1 ~ 0 , g ~ , 1 0 ~ 1 0 . 2) ' 7 - fo r I := 1 step 1 u n t i l 100 do A[I]) .
Each OUTPUT statement causes a t l e a s t one l ine pr in ter image

t o be put out. The standard output uni t i s 51, and the standard punch

uni t i s 52.

Intermediate Tape Procedures

There are f ive standard procedures f o r making use of'magnetic

tape f o r auxiliary storage:

BINREAD, BINWlIITE , EI?DFIL.E, REWIND and BACKUP.

RIPJREAD
'3

A BINREAD statement has the form

B I m A D (M, l i s t)

where M and l i s t a re the same as f o r INPUT. Each BINREAD statement

causes the designated Unit t o move forward one logical record, reading

in binary format i n to the variablec of the l i s t . I f fewer variables

appear i n the l i s t than are on the record, only those values a re read

and the tape moves on t b the end of the record. I f more variables

appear i n the l i s t than a re on the record, t h i s i s t rea ted as an er ror

and the program i s terminated.

The following i s an example of a BINREAD statement:

BINREAD (6,. f o r I : = 1 step 1 u n t i l 1000 do A[I]) . - -

BINWRTm

A BINWRITE statement has the form

BINWRITE (M, list) ,

where M and list are the same as for OUTPUT. Each BINWRITE statement

causes the values of the list expressions to be written in one logical

record in binary format on the designated unit.

An ENDFILE statement has the form

E m m (M)

where M is a unit designation as before. The statement causes an end-

of-file record to be written on the designated unit.

REWIND

A' REWIND statement has the form

where M is a unit designation as before. The statement causes the

designated unit to be rewound to the load point.

BACKUP

A BACKUP statement has the form

BACKUP (M)

where M is a unit designation as before. The statement causes the desig-

nated unit to be backspaced one logical record of binary information or

one physical record of BCD information.

Tape -Checking procedures

The checking procedures are: EOF, READERR, and WRITERR. These

are Boolean procedures.

EOF -
An EOF call has the form

EOF (M)

where M is a logical unit designation as before. It yields the value

true - if the previous read operation encountered an end-of-file or the
previous write operation encountered an end-of-tape; otherwise it yields

the value false.

An example of the use of an EOF call is:

if EOF(~) - then goto ALARM .

A READERR call has the form

where M is a logical unit designation as before. It yields the value

true if the previous read operation produced a parity error; otherwise -
it yields the value false.

KEADERR should not be used for testing the operation of a READ

statement. The READ procedure has its own facilities for checking,

making multiple attempts in case of errors, and terminating the program

if necessary.

A WRITEliR call has the form

where M is a logical unit desiea;ttlf.on as before. It yields the value

true if the previous write operation produced a parity error; otherwise
7

it yields the value false. -

V. The External Declaration -
An external declarat ion i s required f o r each nonstandard

l i b r a r y procedure o r procedure compiled separately from the ca l l i ng

program, whether i n Algol, Fortran o r CODAP. Standard Algol procedures

a r e described i n Section V I . Note t h a t a CODAP subroutine must.take

account of the spec ia l s t ruc ture of t h e Algol ca l l i ng sequence a s

described i n Appendix C o r be t r ea t ed a s a Fortran subprogram. The use

of Fortran subprograms i s described i n Appendix G.

The e,xternal declarat ion has one of the following forms:

ex te rna l 11, ..., In

r e a l external . 11, . . . , In, -
in teger external 11, ..., I n

Boolean external 11, ..., I n

where each Ik i s an i d e n t i f i e r and n i s any posi t ive integer . A type

dec la ra tor preceding the declarator external s i gn i f i e s a function pro-

cedure having t h a t type. Note t h a t no information about parameters

appears i n an external declaration. See Appendix A f o r syn tac t ica l

de f in i t i on .

I n t he ALGO mode, L I B cards must be included i n the job deck

f o r nonstandard l i b r a r y routines, i n addi t ion t o t he external decla-

ra t ions . Details a r e found i n Section VIII.

VI. Standard Procedures

Certain procedures a re used without being declared. These

include t h e standard functions l i s t e d i n t he Algol 60 report and the

input-output and intermediate tape procedures. The complete l i s t i s a s

follows :

ABS RE! AD

SIGN PAGE

SgRT

SIN

.cos

ARCTAN

LN

E XP

ENTIER

EOF

READERR

WRITERR

F'ORTRANF

r n F

PRINT

WRITE

PUNCH

I IWUT

OUTPUT

BINREAD

BINWRITE

ENDFILE

REWIND

EACXlTP

FORTRAN

m

These procedures a re global t o t he program. They behave a s

though. declared i n a f i c t i t i o u s block surrounding the e n t i r e program.

I . Er.lbor Checking - and Diwnostics

I n a complete compilation t he compiler makes two passes on the

Algol source program. I f e r ro r s which the compiler cannot correct a re

detected i n the f i r s t pass, then t he second, o r t rans la t ion , pass w i l l

not be made. The following types of errurs ai-e detected:

1. oyntact ical errm

2. undeclared i den t i f i e s

3. i d e n t i f i e r declared twice i n t he same block head

4. misspelled delimiter (corrected i n many cases)

5 . missing escape symbol (corrected unless both a re missing
f o r the same delimiter, i n which case the delimiter is
t rea ted a s . an iden t i f i e r) .

The program l i s t i n g and any diagnostics always appear on the

standard output medium. In the case of a syntact ical error , a message

w i l l appear i n the program l i s t i n g one or several l ines below the error .

The location of the e r ro r i n the program w i l l be fur ther pinpointed i n

the l i n e of symbols immediately below the error.message. This l i ne wil.1

be a short portion of the program with the l a s t symbol i n the l i n e being

the one which indicates the error . For example, a declaration might be

out of place as follows:

x := a + b ; 'INTEGER' K ;

**** LAST CHARACTER INDICATES SYNTACTICAL ERROR.

x := a + b; INTEGER

I n some cases the l i n e below the message may d i f f e r s l igh t ly from the

corresponding s t r ing of symbols above; f o r example, an iden t i f i e r might

be rendered by Ident. It i s possible f o r a single syntact ical e r ro r t o

cause more than one diagnostic.

A few syntact ical e r rors a re corrected by the compiler, and

a message is put out t o t h i s e f fec t . An example i s a semicolon

immediately preceding - e lse .

According t o the comment conventions of Algol, any s t r ing of

symbols 'following - end and not containing end e l se or a semicolon is
- J -

t rea ted as comment. A s a resu l t , the omission of one of these symbols

following - end does not always cause an e r ro r i n compilation but w i l l

cause a portion of the program t o be skipped over by the compiler. Thus

f o r example, in

... x .:= a + b end f o r i := .1 step 1 --
the FOR statement w i l l be skipped at l eas t i n part . The compiler w i l l

put out a caution message i n t h i s and some other cases, but it w i l l not

change the program.

I f an iden t i f i e r i s not declared (or possibly declared i n the

wrong lace), a message i s put out below the program l i s t i n g together

with the undeclared ident i f ie r .

The compiler does not check the type of ident i f ie rs . Therefore,

such errors a s a Boolean variable i n an arithmetic expression, or the

brackets of a subscripted vmiable replaied by parentheses, a re not

detected, and an incorrect program may be compiled.

VIII. Running Programs

The Algol program i s punched on cards i n the hardware represen-

t a t ion described i n Appendix B. The format i s essent ia l ly f r e e f i e l d :

spaces have no significance except within escape symbols and s t r ing

quotes. Only the f i r s t 72 columns, however, - a re interpreted 2 - the

compiler. m e remaining columns may be used f o r identit ' icatiori pmposes.

Care must be taken when a s t r ing i s continued onto the next card, a s

the continuation w i l l begin i n column 1. The program l i s t i n g w i l l have - - - -
the same format as the cards.

In th.e following discussion the symbol jd signifies the letter

0 where necessary for emphasis, and the symbol A signifies a 7-9 punch

in card column 1.

ALGOL Control System

, The compiler operates under the ALGOL Control System. This

system is a subordinate control routine of the Master Control System of

the CO-OP Monitor Programming System. ALGOL is quite similar to the

subordinate control routine COOP.

ALGOL is called with an MCS aster Control system) card having
ALGOL punched beginning in column 2. Other details of this card are

available in descriptions of the CO-OP Monitor. It should be noted in

selecting a standard recovery procedure that the concept of COMMON is

not used in Algol.

Following the MCS card will be a control card giving

instructions to the control routine ALGOL. It will name one of the

following routines: ALGO, ALDAP, EXECUTE, BINARY, FORTRAN, REWIND or

DEF'INE. These will be discussed below.

EOP Card --
The EOP (end-of-program) card has the characters !E@P' punched

In the ALGO mode, one EOP card must be used ta terminate the

program.

In the ALDAP mode, one EOP card must be used to terminate each

Algol program or Algol procedure being compiled separately.

Compile and Execute: ALGO - -
The ALGO mode of running an Algol program i s the simplest and

the f a s t e s t . It w i l l be the more su i tab le f o r a large number of programs.

Unless the programmer has spec ia l reasons f o r using t he ALDAP mode, the

ALGO mode i s recommended.

The Algol program must be self-contained except f o r standard

procedures and l i b r a r y procedures on the library-systems tape. The job

deck must have t he following cards i n the specif ied order:

1. MCS control card.

The subordinate control routine name must be AL@L.

2. ALGOL control card.

This w i l l appear a s

ML@. o r ~ A L @ , t . where t i s an . in teger specifying -a time

l i m i t i n minutes f o r conpilat ion and execution.

(The period i s required on every control card.)

3 . LIB cards.

I f necessary. One LIB card i s required f o r ea.ch non-
standard l i b r a r y procedure ca l led i n the program, namely
those declared external . The format of a L IB card i s
a s follows: the characters LIB punched i n columns 10-12
and the name of. a l i b r a r y en t ry point beginning i n
column 20. There may be no more than 20 LIB cards.

4. PROGRAM card.

I f desired. This may be used t o iden t i fy the program.
I ts format i s described i n the next paragraph.

5 . Algol program deck.

' 6. EOPcard.

7. Data.

If required.

PROGRAM Card -
The PROGRAM card i s optional. It i s useful f o r iden t i f i ca t ion

purposes, and i n t he ALDAP mode it serves t o name the program entry

point .

The format of t h e card i s f r e e f i e l d . The characters P R ~ G R A M

must appear followed by t h e program name, which must be alphanumeric.

~ o m ~ i l e / ~ x e c u t e : ALDAP

The ALDAP mode is used t o compile an Algol program o r pro-

cedure t o a re locatable binary o r a CODAP format. Execution is

opt ional . For compilation only, the program deck may consis t of any

mixture of Algol programs and procedures, any number of which may be

i n CODAP. If execution i s desired, pa r t o r a l l of the program deck
s >

may have been previously compiled, so t h a t the deck may have Algol,

CODAP and re locatable binary cards.

ALDAP Control Statement

The format of t he ALDAP statement i s :

where

' L i s a program l i s t i n g key,

B i s a punched card output key,

n i s a lvg ica l un i t number.

A period may terminate the statement a t any point , with remaining f i e l d s

t r e a t e d a s zero.

If t h e program l i s t i n g key (L) i s a 1, an assembled l i s t i n g of

t he CODAP object code w i l l be produced on the standard output medium.

I f t he key i s zero o r blank, no such l i s t i n g w i l l be produced. A l i s t i n g

of the Algol progrm-and any diagnostics w i l l always be produced on the

standard output medium.

I f the punched card output key (B) is a 1, a relocatable binary

deck w i l l be produced on the standard punch medium. I f the key i s a 2,

a CODAP symbolic deck w l l l be produced on the standard punch medium.

I f the key i s a 3 , both a symbolic deck and a relocatable binary deck

w i l l be produced on the standard punch medium, with the symbolic deck

appearfng f i r s t . I f the key i s zero or blank, no deck w i l l be produced.

The logical uni t number (n) specif ies the uni t which i s t o be

the load-and-go tape i f it i s one of the integers 1-49 or 56. If n i s

some other integer o r blank, no load-and-go tape w i l l be written. The

load-and-go tape i s required when execution of the program i s t o follow.

Examples :

(4 A A L D A P , ~ , ~ , ~ ~ .

This statement w i l l cause the A ~ ~ O ~ / C O D A P deck t o be compiled, an

assembled l i s t i n g t o be produced on the standard output medium, a

relocatable binary deck t o be produced on the standard punch medium,

and a load-and-go tape written on 1ogical .uni t 56.

This statement w i l l cause the A ~ ~ O ~ / C O D A P deck t o be compiled, and an

assembled l i s t i n g t o be produced on the standard output medium.

Job Deck: ALDAP ~ompilat ion/~xecut ion -- -
For compilation only of an A ~ ~ O ~ / C O D A P program deck, the

job deck should contain the following cards i n the specified order:

1. .MCS control card.

With AL@L a8 the subordinate control routine name.

2. ALGOL cont ro l card.

With t h e appropriate ALDAP control statement.

3 . PROGRAM card.

I f desi red.

4. Program deck.

Any mixture of Algol and CODAP programs and pro-
cedures, with a l l t h e i r subroutines except t he
standard procedures and those on the library-systems
tape. Each Algol program o r procedure must be - --
terminated by an EOP card. ---

5. FINIS card.

This card contains t he characters FINIS punched i n
columns 10-14. It s ignals t he end of a l l compilations.

For compilation - and execution of an A ~ ~ O ~ / C O D A P program deck,

a load-and-go tape must be requested i n the ALDAP control statement. I f

no re locatable binary cards follow the l a s t subprogram t o be compiled,

then the program deck must be terminated by an EOP card which i s i n

addi t ion t o t he EOP card o r END card (t he l a t t e r f o r a CODAP -
subprogram) which terminates the l a s t program o r procedure. The FINIS

card then follows t h i s add i t iona l EOP card. An EOP card always causes

a TRA card image t o . b e wr i t t en on the load-and-go tape.

The cont ro l statements EXECUTE, BINARY, FORTRAN, REWIND and

DEFINE may be used a s described i n t he "CO-OP Monitor Programmer's

~ u i d e " . BINARY i s useful f o r loading a re locatable binary deck onto the

load-and-go tape p r io r t o compilation of an Algol ca l l i ng program, where

t h e subprogram i n re locatable form might have the same name a s a l i b r a r y

rout ine . If t h e Algol program preceded the re locatable deck, t h e l i b r a r y

rout ine would be fetched by the loader and an e r r o r indicat ion given.

25

The CO-OP control statements LOAD and EXECUTER a r e not used

by ALGOL.

Examples

Each of t he following examples describes a job deck which

i l l u s t r a t e s a d i f f e r en t way of,compil ing and executing t he same Algol

program. The program c a l l s a l i b r a r y procedure with en t ry point named

BESSEL, and t he program contains at l e a s t one other procedure. On t he

MCS card only t he f i r s t f i e l d i s indicated, as t he others may vary from

one i n s t a l l a t i o n t o another.

Example 1

This Job uses t he AL@ mode.

~AL@L,
ML@.

LIB BESSEL

PR~GRAM SAMPLE

Algol Program (with ex te rna l dec la ra t ion of BESSEL)

E ~ P

This job uses t he ALUAJ? mode, compiling t he e n t i r e program at

once. The ALDAP con t ro l statement c a l l s f o r an assembled l i s t i n g , a

binary deck, and a load-and-go tape on l og i ca l u n i t 56. The execute

card gives a two minute time l i m i t on t he execution.

O A L ~ L ,
MLDAP,1,1,56.

PR~GRAM SAMPLE

Algol Program (with external declaration of BESSEL)

I E ~ P I

E ~ P

FINIS

~ X E C U T E ,2.

Data

Example 3

This job consis ts simply of the execution of the relocatable

program deck obtained i n example 2.

AALG@L,
mmcm, 2.

Relocatable Deck

Data

Example 4

This example i s similar t o example 2. Here the main program

and one of i t s procedures a re t o be compiled separately.

@AL@L,
D A L D A P , ~ , ~ , ~ ~ .

Algol Program (with external declaration of both BESSEL and the
procedure being compiled separately)

' E ~ P '

Algol Procedure

EJ~P '

' E ~ P

MNIS

CIEXECUTE ,2.

Data

I n t h i s example t he procedure which was compiled separately

i n example 4 i s being compiled by i t s e l f , i .e . , the ca l l i ng program i s

not i n the deck a t a l l . Of course there i s no execution i n t h i s case.

Note t h a t no load-and-go tape i s requested and only one EOP card i s

used. Thcrc cannot be a PROGRAM card.

AALUA!?, 1, 1.

Algol Procedure

FINIS

Example 6

Here the procedure compiled by i t s e l f i n example 5 .appears i n

t he program deck i n relocatable binary form, while t he ca l l i ng program

i s i n the Algol language.

Algol Program (with external declarat ion of both BESSEL and the
procedure i n re locatable form)

FINIS

~ X E C U T E ,2.

Relocatable Deck

Data

The relocatable deck here must be terminated by two TRA cards. One of

t h e s e ' i s generated by the compiler when it processes the EOP card which

must terminate the procedure fo r compilation, as i n example 5. The

second TRA card can be obtained by using a second EOP card, as i n

example 2. ' Alternatively, the second TRA card can be added t o the

relocatable deck before execution. Note tha t t h i s second TRA card must

not be used when the relocatable deck i s loaded by a BINARY control

statement. This i s i l l u s t r a t e d i n the next example.

Example 7

In t h i s case the previously compiled procedure has the same

name a s a routine on the library-systems tape.
I

ML@L,
@BINARY, 56.

Relocatable Deck (terminated by one TRA card)

Algol Program (with external declaration of both BESSEL and the
procedure i n relocatable forrr~)

'E~P'

FINIS

Data

The logical uni t number on the BINARY control statement must agree with

t h a t which specif ies the load-and-go tape i n the ALDAP control statement.

APPENDIX A

Adjuncts t o Algol 60

L i s t Ent i t ies -
The delimiter l i s t i s a declarator and a specif ier . -
< l i s t iden t i f i e r > ::= < i den t i f i e r >

< loop expression > ::= < f o r clause > < arithmetic expression > I 1

< f o r clause > < loop expression > I
< f o r clause > (< l i s t >)

< l i s t element > : := < arithmetic expression > (< loop expression > I
< l i s t i den t i f i e r >

< l i s t > : := < l i s t element > I < l i s t >, < l i s t element >

< l i s t declaration > ::= l i s t < l i s t iden t i f i e r > := < l i s t > -
Format Ent i t ies

The delimiter format i s a declarator and a specif ier .

< format iden t i f i e r > ::= < i den t i f i e r >
1 < simple format expression > : : = ' (< Fortran format >) ' I

< format iden t i f i e r >

< format expression > : := < simple format expression > I
< if clause > < simple format expression >

e l se < format expression > -
< format declaration > ::= format < format iden t i f i e r > := < f o m t expression

For def in i t ion of Fortran format, see Control Data ~or t r an -62 Reference
Manual.

Str ing Expression

< s t r ing expression > : := < s t r ing > I < if clause > < s t r ing >

e l se < s t r ing expression > -
External Declaration

The delimiter external is a declarator.

< external ident i f ie r > ::= < i den t i f i e r >

< external l i s t > : := < external i den t i f i e r > 1
< external i den t i f i e r >, < external l i s t >

< external declaration > : := external < external l i s t > I
< type > external < external l i s t >

32

APPENDIX I3

Hardware Representation

One keypunch character i s reserved a s an "escape symbol",

which we sha l l here suppose i s the apostrophe. This symbol i s used t o

del ineate word delimiters and t r u t h values, which are written i n bold-

face type i n Algol reference language and publication language and

indicated by underlining i n t h i s manual. The hardware representation

of a word delimiter such a s begin i s therefore 'BEGIN'. No d is t inc t ion

i s made between upper and lower case l e t t e r s i n the hardware language.

The t r ans l i t e ra t ion rules f o r the non-word delimiters are

comprised i n the following table. This assumes a 48 character hardware

s e t and i s consistent with the usage in the ALCOR group. For some

basic symbols a l te rna t ives a re tolerated, as indicated.

Reference Hardware Tolerated Hardware

< ' LS' 'LESS'

9 'm' 'LSEQ', 'NOTGREATER',

' NOT GREATER'

'EQ' ' EQUAL '

'G&' 'GFd3Q1, 'NOTLESS',

'NOT LESS'

' GR' ' GREATER '
' NQ' 'WIT&', 'NOTEQUAL',

'NOT EQUAL'

' NOT'

'AND'

' OR'

Reference Hardware oler rated Hardware

3 . 1 IM~' 'IMPLIES' , 'IMPL'
- - - 'EQV' ' EQUIV'

10
1 ' E ' , 'T'

X *

r ** , ' POWER'
- // ' D I V '

. - . - . - - - - .-, ..-
[(/

. I / >
6 11 ' ('
9 11 ' > '

I n the case of the s t r ing quotes, the tolerated symbols a re required f o r

the inner s t r ings of a nest of s t r ings.

Actually, the compiler can to lera te many other spellings of

word delimiters because of i t s f a c i l i t y f o r correcting misspellings.

The delimiter go t o i s accepted with or without the space

between the two words, but it i s t reated a s a single delimiter: 'GOTO'

or 'GO W ' ,

The compiler can a lso accept a 64 character hardware represen-

ta t ion: the f u l l s e t available on the l ine pr in ter . I n preparing

programs, overpunching i s used on the 48 character keypunch i n t h i s case.

The tab le below indicates the keypunching rules i n use a t Oak Ridge

National Laboratory.

Reference Hardware

< 1-8 punch

5 1-5 punch

> 2-7 punch

V 2-4 punch

10 1-6 punch

T 2-5 punch

Z 3-5 punch

2-8 punch

J 2-9 punch

[3-6 punch

1 3-4 punch

The other basic symbols a r e e i t h e r i n the 48 character s e t o r a r e

replaced by word de l imi te rs as above. The symbol := i s t r ea t ed a s two

symbols i n the 64 character s e t , and = i s punched a s such.

APPENDIX C

Structure of Procedure Calling Sequence

The following information is necessary for the user writing a

non-Algol procedure to be called from an Algol program. The calling

sequence differs from that found in many other languages.

The first word of the non-Algol procedure must have a simple

jump instruction in its upper half, and the exit line is provided by a

jump to this first word; The entry automatically causes the proper

return address to be placed in the address portion of the first half-

word.

Upon entry to the procedure, index register six contains an

address which is used to reference each parameter. To establish linkage
,

with the first parameter, the instruction

LDA 6 0

is performed. This brings into the accumulator a word of one of the

following types:

1. S U 0 ENA V

2 . SLJ 0 RTJ L

In case (I), V is the address of the parameter, In case (2), L is the

starting address of a piece of coding for computing the address of the

parameter and le~~ving it in the accumulator (if the parameter is an

expression, the addres~ in the accumulator will be that of a temporary

containing its value). Case (1) always holds if the parameter is a

simple variable, string, array identifier, switch identifier, or

procedure identifier. In case (2) the same temporary will be used for

all the expressions.

Both cases can be provided f o r by se t t ing aside two locations

f o r each parameter i n the procedure body and placing the instructidn

S U "-1

i n the upper half of each second location. Then a f t e r

LDA 6 0

mentioned above,

STA RESl ,
where RESl i s the f i r s t reserved location f o r the f i r s t parameter, makes

the two locations in to a closed subroutine. After th i s , the instruction

RTJ WS1

causes the address of the f i r s t parameter t o be placed i n the accumulator

anytime it i s performed. This accommodates expressions called by name.

I n general, the Kth parameter i s referenced a s above, but

beginning wi th

This description does not apply t o the standard procedures, each of

which has i t s own special ca l l ing sequence.

APPENDIX D

Internal Representation of Strings

The address representing a strfng is that of the first word of

string characters. Each left string quote is represented internally by

the word

00 . . . 03454 ,
and each right string quote by

00 . . . 05474 .
The characters of the string which are not string quotes are packed in

BCD eight characters per word. These words are in the natural order,

the first immediately following the left string quote and the last

immediately followed by the right string quote. If the last word before

a right quote is not full, the rest of that word is filled out with

zeros (not BCD blanks).

APPENDIX E

Program Efficiency

The following information may be of in t e res t t o programmers

desir ing an e f f i c i en t program:

1. The ' FY)R statement i s defined with more generali ty than

i s useful i n most programs. I n par t icular , the

arithmetic expressions i n the FOR clause a re allowed

t o change i n value during execution of the FOR s t a t e -

ment. The compiler does not attempt t o determine which

FOR statements make use of t h i s f l e x i b i l i t y and t r e a t s

a l l of them i n the most general way. Therefore, i n a

statement such as

f u r I := 1 s tep M + N u n t i l a b s (~ - B) do ... , - -
the expression M + N i s evaluated twice f o r each i te ra t ion ,

and the expression abs(A - B) i s evaluated once f o r each

i t e ra t ion . If M, N, A, and B do not change i n the loop,

t h i s i s unnecessary. Such inefficiency can be avoided

by programming i n a s l igh t ly d i f fe rent way. The above

example can be written as follows:

T1 := M + N ; T2 := abs(A - B) ;

f o r I := 1 step TI. un t i l T2 do - -
2. The concept of c a l l by value i s a device appl ied ' to pro-

cedures t o eliminate unneeded f l e x i b i l i t y i n procedure

c a l l s . I f 3, parameter having a value i s referenced Inore

than once i n the procedure body and the f l e x i b i l i t y of

c a l l by name i s not needed, then the program i s more

e f f i c i en t i f the parameter i s included i n the value

par t of the procedure heading. I f such a parameter

i s referenced only once, it i s more e f f i c i en t i f it

i s not included i n the value, par t .

3 . Array ident i f ie rs which a re parameters should be specified.

APPENDIX F

Controversial Features of Algol 60 .

A few features of.the language have been subject to more than

one interpretation. Fortunately, the vast majority of programs will not

involve these ambiguities, but for the few that do it will be necessary

to know what decisions the compiler makes. This appendix indicates these

decisions for the more controversial areas.

1. Side effects in function designators. The evaluation

. of primaries in expressions is not strictly left to

right allowing for precedence rules. In particular,

the value of a variable in an expression is never

stored in a temporary simply to preserve its value

from change by the evaluation of a function desig-

nator in the expression. Otherwise, the evaluation

does proceed from left to right and according to

precedence rules, including the referencing of

formal parameters and the calculation of the address

of subscripted variables. Al.1 function designators

are evaluated in Boolean expressions.

2. - Own variables and arrays in procedures. The own -
quantities local to the body of a procedure which is.

called from more than one point in a program record

the history of the procedure as opposed to a history

of each point.of,reference. In other words, only one

copy of the - own quantities is preserved.

4 1

APPENDIX G

Fortran Subprograms i n an Algol Program

The standard procedures FORTRAN, FORTRANF,'FTN, and FTNF a re

used t o c a l l compiled Fortran subroutines and f'unctions from within an

Algol program. Each procedure has one parameter which i s a c a l l of the

desired Fortran subprogram. The Fortran subprogram must be declared

external a s described i n Section V.

The use of these procedures simply causes a Fortran ca l l i ng

sequence t o be generated by the compiler. Of course the subprogram

could be wri t ten i n CODAP a s well as Fortran, provided it i s designed

t o l i n k through a Fortran-type ca l l i ng sequence.

The procedures a re used a s follows:

FORTRAN - generates a Fortran 62 ca l l i ng sequence f o r a subroutine

FORTRANF- generates a Fortran 62 ca l l i ng sequence f o r a function

P3CN - generates a Fortran 63 ca l l i ng sequence f o r a subroutine

FTNF - generates a Fortran 63 ca l l i ng sequence f o r a function

Each of these procedures i s standard, i . e . , avai lable without declaration.

FORTRANF and FTNF are used i n expressions.

Examples :

x := FTNF (ALPHA(T,A[O,O]))

FORTRAN (sUB(I + J)) .
The following r e s t r i c t i o n s must be observed: l abe l s , procedures

with no parameters, standard procedure names, and a r ray names cannot be

used a s arguments of a c a l l of a Fortran subprogram. However, i n the

case of an array, t he subscripted var iable which i s the f i r s t element of

t h e a r ray w i l l s a t i s f y a Fortran subroutine which has an a r ray name a s

a formal parameter. The name of the Fortran subprogram cannot be a

formal parameter. L i t e r a l s must be enclosed i n s t r i n g quotes.

Acknowledgment

The author was greatly assisted in the preparation of this

document by several persons who have contributed labors or advice to

the construction of the compiler. These include N. B. Alexander and

A. A. Grau, also K. A . Wolf of Control Data Corporation, and especially

R. G. Stueland of Control ,Data Corporation.

THIS PAGE

W A S INTENTIONALLY

LEFT BLANK

ORNL-3460
UC-32 - Mathematics and Computers

TID-4500 (23rd ed:)

INTERNAL DISTRIBUTION

1. Biology Library
2-4. Central Research Library

5. Reactor Division Library
6-7. ORNL - Y-12 Technical Library

Document Reference Section
8-27. Laboratory Records Department

28. Laboratory Records, ORNL R.C.
29. R. K. Adams
30. Nancy Alexander
31. E. D. Arnold
32. Don Arnurius '

33. George J. Atta
34. Susie E. Atta
35. S. J. Bal l \

36. J. E. Bigelow
37. R. E. Biggers
38. Craig Brandon

. 39. J. C. Bresee
40-41. L. L. Bumgarner

42. W. R. Burrus
43. H. P. Carter
44. D. K. Cavin
45. &line Culkowski
46. W. Davis, Jr. .
47. H. J. de Bruin
48. P. B. DeNee
49. A. C. ~ o w % i n ~
50. L. C . Bnerson
51. Margaret Emmett
52. R. L. Ferguson
53. E. R. Fish
54. P. A. Haas
55. M. Feliciano
56. Barbara Ann Flores
57. T. B. Fowler
5G. R. E. Funderlic (K-25)
59. D. A. Gardiner
60. C . D. GL-ifPies
61. D. A. Griff in
62. D. Q. Wsslee
63. M. T. Harkrider
64. M. C . H i l l
65. A. S. Householder

. 66. W. H. Jordan

67. H. W. Joy
68. F. B. K. Kam
69. George Kidd
70. L. J. King
71. Ann Klein
72. K. A. Kraus
73. C. E. Larson
74. Mi E. Laverne
75. Elmon Leach
76. R. P. Leinius

77-78. M. P. Lietzke
79. E r l i e McDaniel
80. C. D. Martin
81. K. 0. Martin
82. Betty F. Maskewitz
83. R. P. Milford
84. F. L. Miller, Jr.
85. R. V. Miskell
86. S. E. Moore
87. J. F. Murdock
88. C . W. Nestor, Jr.
89. V. K. Pare
90. Carl E. Parker
91. S. K. Penny
92. A. M. Perry
93. D. C . Ramsey
94. M. T. Robinson
95. R. M. Rush
96. Y. Shima
97. 'J. E. Simpkins
98. M. J. Skinner
99. C. U. Scott

100. C. D. Susano
101. J. A. Swartout
3-02, M. E. Tsagaric
103. D. K. Trubey
104. J. S. Watson '

105. A. M. Weinberg
106. M. E. Whatley
l U ' 7 . C . S. W i l l i a m s
108. H. A. Wright
109. Y-12 Central F i l e s
110. J. H. Zeigler (K-25)
111. H. Zeldes

EXTERNAL DISTRIBUTION

112. T. H. Elrod, Control Data Corporation, Computer Division, 3330
Hillview Avenue, Palo Alto, California

113. A. A. Grau, Department of Mathematics, Northwestern University,
Evanston, Illinois

114. R. G. Stueland, Control Data Corporation, Computer Division,
3330 Hillview Avenue, Palo Alto, California

115. K. A. Wolf, Control Data Corporation, Programing Systems, 501
Park Avenue, Minneapolis 15, Minnesota

116. R. A. Zemlin, Control Data Corporation, Computer Division,
3330 Hillview.Avenue, Palo Alto, California

117. Research and Development Division, AEC, OR0
118-728. Given distribution as .shown in TID-4500 (23rd ed.) under

Mathematics and Computers category (75 copies - OTS)

