ORNL=-3460
UC-32 — Mathematics and Computers

TID-4500 (23rd ed.)

THE OAK RIDGE ALGOL COMPILER FOR THE
CONTROL DATA CORPORATION 1604

PRELIMINARY PROGRAMMER'S MANUAL

L. L. Bumgarner

OAK RIDGE NATIONAL LABORATORY
operated by

UNION CARBIDE CORPORATION
for the -
U.S. ATOMIC ENERGY COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Printed in USA. Price: $1.25 Available from the
§ Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.

LEGAL NOTICE ——’

This report was prepared as an account of Government sponsored work. Neither the United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy,
completeness, or usefulness of the information contained in this report, or that the use of
any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of
any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on behalf of the Commission’’ includes any employee or

contractor of the Commission, or employee of such contractor, to the extent that such employee

or contractor of the Commission, or employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his employment or contract with the Commission,

or his employment with such contractor.

ORNL-3460
Contract No. W-7405-eng-26

Mathematics Division

THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION

1604 — PRELIMINARY PROGRAMMER 'S MANUAL

L. L. Bumgarner

DATE ISSUED

JAN 30 1964

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
TUNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

THISPAGE
WAS INTENTIONALLY
LEFT BLANK

-

II.

IIT.

Iv.

Introduction .

iii

CONTENTS

Language Restrictions

Modes of Operation of the Compiler

Input-Output and Intermediate Tape

e s 00000 00

* e 2 s 00000 0 s e 00 e

Input-Output ..., i, cessessnsnss cens
| READ ceresesanaan ceee et seaeea
PAGE e e eseceb e Ceeeearsanns .
Lists and the List Declarationcc.0c... e eeeaas
PRINT e e eeas ces ceee et
WRITE tiivvrrevecssoenenonoonns Gt seasenenen . .
PUNCHcicevevennnns e aesenens e ..
Formats and the Format Declarationccc00c0c0... .
INPUT v ivrevenoensenvonoonnnns Ceerreressesensnesanann .
OUTPUT ettt T PR
Intermediate Tape Procedures N cesiscencas cecevaane
BINREAD ceeeaan e eceesesasssesesaranraannn
BINWRITE i et cseneasens

c e s s e s e 000 s 0

Tape-Checking Procedures

EOF

READERR

WRITERR ...

PRI

@ e o0 00000

s e 0 00 o o0 00 000000000
. . s 0000 000000000000 .
e e s 00000000000 .. ¢ o .

o e 000

P e oo

@000 000000000

e 0 s 0 8 s e s 000 e s 00000

@ 0 8 2 000 00 080008200000 e

s 0000 00

+ n

O VO N N U U

10
10
11

12

VII.

VIII.

iv

The External Declarationc0000

Standard Procedures ..ceeecececncccosncss

Error Checking and Diagnostics
Running Programseocceceoscoscsccs

ALGOL Control Systemc.000v0e

EOP Card T

Compile and Execute: ALGO ..i.vieeses

PROGRAM Card ...eeceiveeeccnscconsnns

Compile/Execute: ALDAP cetereaseanen

ALDAP Control Statement

® o 00000000000 se

® e 0 0 s 0000000000000

L A A I A R R A A I B R]

® o 06000 0000080000000

@0 e o0 e b0 0000000000

O s s 00000 s 00000000000

Job Deck: ALDAP Compilation/Execution ..ecevesveeseeen.

EXAMPLES evvevenevonnnenroronosanenns

APPENDICES
Adjuncts to Blgol 60 si.ieieceraoancns
Hardware Representationccocciv0e0v0e
Structure of'Procedure Calling Sequence
Internal Representation of Strings ...
Program Efficiency R LR
Controversialeeatufes of Algol 60 ...

Fortran Subprograms in an Algol Program

e 0 000 0000000000000

S e s 00000000000 een e

® ¢ 00 0000240000080 00000

€0 0 0000000000000 0000

® o0 0 0600000000000

16
16
17
19
20
20
21
22
22
22
23
25

30
32
35
37
38
4o
11

PV

L)

\
Sa

_THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION
1604 - PRELIMINARY PROGRAMMER'S MANUAL

L. L. Bumgarner

ABSTRACT

This document is a preliminary programmer's manual
for use of the Control Data 1604 Algol Compiler. The com-
piler was constructed by the Programming Research Group of
the Mathematics Division in cooperstion with Control Data
Corporation. A knowledge of Algol 60 is assumed. Included
are descriptions of input-output facilities and details for
operation under the monitor system.

I. Introduction

This document is to serve as a programmer's manual for the
Algol compiler constructed as a cooperative project by Control Déta
Corporation and the Mathematics Division of Oak Ridge National Laboratory.
The compiler is designed for the Control Data 1604 and 1604-A computers.
The document is preliminary in that the compiler 1is not thoroughly tested
and may undergo further development.

The reader is assumed to be familiar with Algol 60. The
defining descriptions are the two reports on Algol 60 available in the
following references:

1. P. Naur et al, "Report on the Algdrithmic Language Algol 60,"
Comm. Assoc. Comp. Mach., 3 (1960), No. 5, 299-31k.

2, P. Naur et al, "Revised Report on the Algorithmic Language
Algol 60," Comm. Assoc. Comp. Mach., 6 (1963), No. 1, 1-17.

The second report clears up certain ambiguities that appeared in the
first report. The reports are not easybreading for the novice. The
. e

following expositions are more readable:

/

1. Baumann, Bauver, Feliciano and Samelson, Introduction to
Algol, Prentice-Hall, Inc. (to be published in late 1963).

2. Bottenmbruch, H., "Structure and Use of Algol 60," Jour.
Assoc. Comp. Mach., 9 (1962), No. 2, 161-221, and ORNL-3148.

The Baumann publication also contains the revised Algol 60 report.
Throughout this document various examples of statements and
declarations appear without the semicolon which is always required for
separating them. This is to avoid the implication that the semicolon is
part of the statement or the declaration. In sentences, a comma or period “

may appear where a semicolon or other delimiter would be indicated in the

)

context of a program.
Word delimiters rendered in bold-face type in the Algol report

are herein indicated by underlining.

II. Language Restrictions

The compiler correctly handles programs written in Algol 60
subject to the following restrictions.

1. The use of an integer label as an actual parameter will

cause an incorrect program to be compiled.

2. A GO TO statement with an undefined switch designator as e

the designational expression will cause incarrect operation of the final
program.
3. Type restrictions:
(2) The exponentiation expression x | y will have type
real unless x is of type integer and y 15 a non-negative integer constant.
This differs slightly from the definition in the Algol report but will

generally cause no difficulty.

°;

N

[P

(b) In the construction
< if clause > < simple arithmetic expression >
else < arithmetic expression >
the arithmetic expressions must have the same type, or else an Incorrect
program will be compiled. For example, in the statement
x := if a < Db then z else w
z and w should both be declared real or both integer.
| (¢) In a procedure call (procedure‘statement or function
call) each actual pafameter having an arithmetic value must have the same
type as the corresponding formal parameter in the procedure declaration.
The type of the formal parameter is that designated in the specification
part if it appears there. AIf a formal parameter representing an arithmetic
quantity does not appear in the specification part, 1t is assumed to be
specified real.- Full use of specifications is desirable for descripfive
purposes and for optimization.
Caution. Restriction (c) is more likely to cauée errors than
the other restrictions.- It is very easy to write P(l,E) when the parameters
of P are specified Zggl, but incorrect coding will result. The call
P(1.0,2.0) works correctly. |

4. Standard procedure names (see section VI) used as parameters

in procedure calls will canse-an incorrect program to be compiled. A call,
therefore, such as
P(sin)
is incorrect. Note, however, that a call of the type
Q(sin(x))

causes no trouble. The case P(sin) can be programmed in another way.

Make the declaration

real procedure sin 1 (t); real t;

sin 1 := sin (t) .
The call
’ P(sin 1)
is then correct.

5. Arrays called by value are not handled. If an array

identifier appears in the value part, an incorrect program will be
compiled.

6. "Dynamic" own arrays are not handled. This means that all

own arrays are treated as having constant subscript bounds; this constitutes
one possible interpretation of the Aléol 60 report. An own -array may be
declared with variable subscript bounds, but only one allocation of

stérage will be made, and if the bounds change, this will be ignored.

7. Recursive procedures are not handled. This restriction

encompasses all cases of a function designator appearing in thé actual
parameter part of a call of the same function, unless that function is
a standard function. Thus f(f(x)) is not permitted in general, but

sin(sin(x)) is allowed.

ITI. Modes of Operation of the Compiler

)
There are two distinct modes of operation: ALGO and ALDAP.

ALGO is a compile~and-execute mode in which the two phases
cannot be separated. The Algol program is translated into a machine ‘
language program in core memory, and execution of the program immedi-

ately and automatically follows. There is no assembly program phase.

I

3]

»

e

5

ALDAP makes usé of the CODAP assembly program facilities.

It is possible to compile procedures separately and reference them from
an Algol program. The procedures ma& be written in Algol, CODAP or
Fortran. This provision is made possible with the aid of the external
declaration discussed in section V.

| The ALGO mode provides signifiéantly faster compilation than
the ALDAP mode for most programs. The target programs prbduced in the
two modes are essentially the same. In the ALGO mode, program checkout
may be done at the Algol language level. In the ALDAP mode, checkout
may also be done at the machine and assembly language levels, and

modifications may be made at these levels.

IV. Input-Output and Intermediate Tape

There are seven standard procedures for input-output, five
for intermediate tape, and three for checking tape conditiohs. Two

declarations, format and list, are additions to the language.

Input-Output

The input-output procedures are: READ, PAGE, PRINT, WRITE,

PUNCH, INPUT, and OUTPUT.

'READ

The READ procedure is used to input numbers and Boolean values.
A READ statement has the torm
READ (V1, V2, ..., Vn)
vhere n is any positive integer and each Vk is a variable. For example,
the statement

READ (X, Y, A[lj, B[1])

6

will input values into the four variables listed. For inputing values
into an array, a statement such as the following might be used:

for I := 1 step 1 until 100 do READ (A[I]) .

The READ prdcedure inputs numbers and truth values. A number
must be a legal Algol number (although an E may be substituted for the
sympol o). For input into a Boolean variable, the truth values true and
false are accepted; also, a non-negative number or a plﬁs sign is
interpreted as false and a negative number or a minus sign is interpreted
as Ezgg. A blank is read as zero.

With thg READ procedure, the type of a number on a data card
does not have to be the same as the type of the variable to which it is
assigned. Aﬁy necessary type conversions are done automatically. If
N is the next number in the data, the statement

READ (V)
is equivalent to the statement
V:i=N.

The data cards are free field. The number of values per card,

the length of numbers, and the pumber of spaces are arbitrary. A comma,

however, must follow each number, including the last one on the last

In reading a value into a subscripted variable, the current
value of the subscript expression is not affected by that READ statement.
For example, in the statement

READ (I, A[I])

the old value of I is used in A[I].

£

o

N

T

The READ procedure will input data from the standard input
medium only.
PAGE

The PAGE procedure'is used to cause a page ejection on the
standérd output medium. PAGE has no parameters. It is called by simply
writing '

PAGE .

Lists and the List Declaration

The input and outputAprocedures described in the rest of this
section, as well as fhe binary read and write procedures,.make use of
the concept of a list. A llgg(l) is a sequence of expressions. An
example is |

U + V, C[0], if B then X else Y .
It may be inconvenient in some cases to write down all of the

(1)

expressions explicitly. The loop expression may be used as a short-

hand device in a list. It is an Algol-like construction of which the

following is an example:

~

for I := 1 step 1 until 1000 do A[I] .

This is equivalent to the list

Af1], af2), ..., A[1000] .
The entity following da in A 1nop expression may itself be a list, but
this list must be enclosed in parentheses if it contains more than one
member.
The'loop expression

for I := 1 step 1 until 1000 do (A[I], B[I])

1 See Appendix A for syntactical definition.

is equivalent to the list
Af1], B[1], Aa[2], B[2], ..., A[1000], B[1000] .
The loop expression

" for I := 1 step 1 until 10 do (A[I], for J :=1

step 1 until 20 do B[I,J])

is equivalent to the list
A(1], B[1,1], B[1,2}, ..., B[1,20] ,

Al2], B[2,1], B[2,2], ..., B[2,20] ,

Al10}, B(10,1], B[10,2], ..., B[10,20]
A list may be given a name through a list declaration. A list
declaration has ghe form
list identifier := list .

Examples are:

list L := X, A + B

list M := for I := 1 step 1 until N do A[I]
A list identifier may itself appear in a list. One of the above examples
might be written with the aid of the following declaration:

list L := for J := 1 step 1 until 20 do B[I,J] .

e S -

The loop expression is then

for I := 1 step 1 until 10 do (A[I], L) .

A 1ist declaration obeys the same rules of syntax and scope as do other
declarations.

A list identifier may be used as an actual parameter of a
procedure call, with the requirement that the corresponding formal
parameter be specified list. However, an actual list may appear as a

parameter only in calls of the standard procedures, as described.

L)

Q

“®

‘¢

4

PRINT

The PRINT procedure is used to output numbers in a simple,
rigid manner. A PRINT statement has the form
PRINT (1ist) ,
whére list is described above. An example of a PRINT statement is
PRINT (A, if N = O then S else T) .

A PRINT statement always puts out at least one line printer
image. A line may contain up to 6 numbers, each of which is in scientific
notation with 10 decimal places; Each number is right-justified in a
field of 20 columns. (The format is 6E20.10.) The abbve PRINT state-
ment will output two numbers in the first forty spaces, and the rest
of the line will be blank. A PRINT statement such as

PRINT (for I := 1 step 1 until 10 do A[I]).

will output one line of 6 numbers followed by one line of 4 numbers.
Single spacing between lines is automatic.

The PRINT procedure always outputs on the standard output

- medium.

WRITE

The WRITE procedure is used to output strings. Examples of
WRITE statements are:
WRI'fE (‘TABLE’)
WRITE (if D < O then ‘TRUE’ else ‘FALSE’) .
Each parameter must be a string expression (see Appendix A for definition
of string expression). There may be any number of parameters, but each.
string will appear on a separate line. If a string is too long to go

on one line, it will be continued on the next line. A string should not

10

contain another string. Lines are single spaced. Each WRITE statement
causes at least one line printer image to be put out. |

The WRITE procedure always outputs on the standard output
medium.

PUNCH

The PUNCH procedure is used to output numbers on punched cards
in a form which can be input by the READ procedure. Each number punched
will be followed by a comma. Each card punched may contain up to four
numbers. Each number will be of type real, but since the READ procedure
makes any necessary type conversions this is unimportant. A PUNCH state-
ment has the same form as a PRINT statement. Each PUNCH statement causes
at least one card image to be put out.

The PUNCH procedure always outputs on the standard punch medium.

Formats and the Format Declaration

The two input and output procedures remaining to be described
make use of formats. The formats are exactly those used in Fortran, and
readers unfamiliar with Fortran will find it necessary to réfer to the
Control Data Fortran-62 Reference Manual for details on the use of formats.

A format is treated as a string. Formats will be written, for
example, as follows:

‘(6E20.10)’
‘(1H0, 9X, SHTABLE, I3)’ .

Note that the parentheses are part of the format, and both parentheses

and string quotes are required.

As will be indicated below, a format string may appear

explicitly in an INPUT or OUTPUT statement. If the same format string

o

11

is used more than once, however, it may be convenient to give it a name

through a format declaration. A format declaration has the form

format Identifier := ‘(Fortran format)’ .
Examples are:
format F := ‘ (6E20.10)’

format G := ‘ (1HO, 9X, SHTABLE, I3)’ .
A format declaration obeys the same rules of syntax and scope as do
other declarations.
Format identifiers may be used as parameters, and format is a
specifier.

INPUT

The INPUT procedure is used to input numbers and Hollerith -
information in accordance w;th Fortran-type formats. An INPUT statement.
has one of the forms

INPUT (M,F,1list)
INPUT (M,F)

where:

(1) M is the logical unit designation. M may be any arithmetic

expression. If it is nol Inlegral=valued, the action
M := entier (M + 0.5)
will take place. The standard input unit is 50.

(2) F is a format expression. It may be an actual format
string, a format identifier, a conditional format expression, or any
variable which contains the starting address of a format string.
Caution. In the case of a conditional format expression, format strings

and format identifiers should not be mixed. For example, (a) and (b)

12

below are permitted, but (c) will cause an incorrect program to be
compiled:
(a) if B then ' (E20.7)’ else ‘ (E20.6)’

(b) if B then F1 else F2

(c) if B then F1 else ‘(E20.6)’

(3) 1ist is as defined previously. Of course, for INPUT all
expressions must be variables.
The following are examples of an INPUT statement:

INPUT (50, ‘(4E20.8)’, N, for I := 1 step 1 until N do A[I]) .

INPUT (if A < B then M else N, F, X, Y, Z).

Each INPUT statement causes at least one card image to be read.

Note that the INPUT procedurevdoes not make type checks
between the data and the program variables. A floating point number,
for example, is stored as such regardless of the type of the varieble to
which it is assigned.
Caution. It is strongly recommendedvthat not both READ and INPUT be used
in the same program. Each buffers ahead one card image. Furthermore,
each INPUT statement causes at least one card image to be read while a
READ statement may not cause a new card image to be read. Mixing the
two statements will require quite careful use of blank cards in the data
to allow for the buffering.
OUTPUT

The OUTPUT procedure is used to output numbers and Hollerith
information in accordance with Fortran-type formats. An OUTPUT statement

has one of the forms

15

CUTPUT (M,F)
OUTPUT (M,F,list)
where M, F, and list are as indicated above. The following are examples
of OUTPUT statements:
OUTPUT (51, ‘(SHTABLE)’)

OUTPUT (51, ‘(1HO,9X,10E10.2)’, for I := 1 step 1 until 100 do A[I]) .

Each OUTPUT statement causes at least one line printer image
ﬁo be put out. The standard output unit is 51, and the standard punch
unit is 52.

Intermediate Tape Procedures

There are five standard procedures for mgking use of~maénetic
tape for auxiliary storage:

BINREAD, BINWRITE, ENDFILE, REWIND and BACKUP.
BINREAD .

A BINREAS]statement has the form

BINREAD (M, list)

where M and list are the same as for INPUT. Each BINREAD statement
causes the designated unit to move forward one logical record, reading
in binary format into the variablees of the list. If fewer variahles
" appear in the list than are on the record, only those values are read
and the tape moves on to the end of the record. If more variables
appear in the list than are on the record, this is treated as an error

and the pfbgram is terminated.

The following is an example of a BINREAD statement:

BINREAD (6,. for T := 1 step 1 until 1000 do A[I]) .

1k

BINWRITE
A BINWRITE statement has the form
BINWRITE (M, list) .
where M and list are the same as for OUTPUT. Each BINWRITE statement
causes the values of the list expressions to be written in one logical

record in binary format on the designated unit.

ENDFILE
An ENDFiLE statement has the form
ENDFILE (M)
where M is a unit designation as before. The statement causes an end-

of-file record to be written on the designated unit.

REWIND
A REWIND statement has the form
REWIND (M)
where M is a unit designation as before. The statement causes the

designated unit to be rewound to the load point.

BACKUP
A BACKUP statement has the form
BACKUP (M)
where M is a unit designation as before. The statement causes the desig-
nated unit to be backspaced one logical record of binafy information or

one physical record of BCD information.

Tape-Checking Procedures

The checking procedures are: EOF, READERR, and WRITERR. These

are Boolean procedures.

kA

)

15

EOF

An EOF call has the form

EOF (M)

wheré Mis a loéical unit designation as before. It yiel&s the value
true if the previous réad operation encounteréd an end-of-file or thé
previous write operation encountered an end-of-tape; otherwise it yields
the value false.

An example of the use of an EOF call is:

if EOF(6) then goto ALARM .

READERR
A READERR call has the form
READERR (M)
where M is a logical unit désignation as before. 1t yields the value
true if the previous read operation produced a parity error; otherwise
it yields the value false.

READERR should not be used for testing the operation of a READ

- statement. The READ procedure has its own facilities for checking,

making multiple attempts in case of errors, and terminating the program

if necessary.
WRITERR
A WRITERR call has the form
WRITERR (M)
where M is a logical unit designation as before. It yields the value

true if the previous write operation produced a parity error; otherwiée

. 1t yields the value false.

16

V. The External Declaration

An external declaration is required for each nonstandard

library procedure or procedure compiled separately from the calling

program, whether in Algol, Fortran or CODAP. Standard Algol procedures

are described in Section VI. Note that a CODAP subroutiné must. take

account of the special structure of the Algol calling sequence as

described in Appendix C or be treated as a Fortran subprogram. The use

of Fortran subprograms is described in Appendix G. -
The external declaration has one of the following forms:

external I1, ..., In

real external I1, ..., In
integer external I1, ..., In
Boolean external 11, ..., In

where each Tk is an identifier and n is any positive integer. A type
declarator preceding the declarator external signifies a function pro-
cedure having that type. Note that no information about parameters
appears in an external declaration. See Appendix A fér syntactical
definition.

In the ALGO mode, LIB cards must be included in the job deék
for nonstandard library routines, in addition to the external decla;

rations. Details are found in Section VIII.

VI. Standard Procedures

Certain procedures are used without being declared. These
include the standard functions listed in the Algol 60 report and the
input-output and intermediate tape procedures. The complete list is as

follows:

» B

17

-

ABS READ
SIGN PAGE
SQRT PRINT
SIN WRITE
oS PUNCH
‘ ARCTAN INPUT

LN OUTPUT
EXP BINREAD
ENTIER BINWRITE

‘ EOF ENDFILE
READERR REWIND
WRITERR BACKUP
FORTRANF FORTRAN
FTNF FIN

These procedures are global to the program. They behave as

though declared in a fictitious block surrounding the entire program.

VII. Error Checking and Diagnostics

In a complete compilation the compiler makes two passes on the
Algol source program. If errors which the compiler éannot correct are
detected in the first pass, then the second, or translation, pass will
not be made. The following types of errurs are detected:

1. oyntactical error

2., undeclared identifier

3. identifier declared twice in the same block head

‘3

18

4, misspelled delimiter (corrected in many cases)

5. missing escape symbol (corrected unless both are missing
for the same delimiter, in which case the delimiter is
treated as-an identifier).

The program listing and any diagnostics always appear on the
standard output medium. In the case of a syntactical error, a message
will appear in the program listing one or several lines below the error.
The location of the error in the program will be further pinpointed in
the line of symbols immediately below the error message. This line will
be a short portion of thg program with the last symbol in the line being

the one which indicates the error. For example, a declaration might be

out of place as follows:

X :=a + b ; 'INTEGER' K ;
*%%% TAST CHARACTER INDICATES SYNTACTICAL ERROR.
X := a + b; INTEGER

»
. . \

In some cases the line below the message may differ slightly from the
corresponding string of symbols above; for example, an identifier might
be rendered by Ident. It is possible for a single syntactical error to
cause more than one diagﬁostic.

A few syntactical errors are corrected by the compiler, and
a message is put out to this effect. An example is a semicolon
immediately preceding else.

According to the comment conventions of Algol, any string of

symbols following end and not containing end, else or a semicolon is.

19

treated as comment. As a result, the omission of one of these symbols
following end does not always cause &an error in compilation but will
cause a portion of the program to be skipped over by the compiler. Thus
for example, in

| «v. Xi=a +Dbend for i :=1step1 ...
the FOR statement will be skipped at least in part. The compiler will
put out a caution message in this and some other cases, but it will not
change the program.

If an identifier is not declared (or possibiy declared in the
wrong place), a message is put out below the program listing together
with the undeclared identifier. |

The compiler does not check the type of identifiers. Therefore,
such efrors as & Boolean variable in an arithmetic éxpreséion, or fhe
brackets of & subscripted variable replaéed by parentheses, are not

detected, and an incorfect program may be compiled.

VIII. Running Programs

The Algol program is punched on cards in the hardware represen-
tation described in Appendix B. The format is essentially free field:
spaces have no significance except within escape symbols and string

quotes. Only the first T2 columns,dhowever, are interpreted by the

compiler. The remaining columns may be used for identit'ication purposes.
Care must be taken when a string is continued onto the next card, sas

the continuation will begin in column 1. The program listing will have

the same format as the cards.

20

In the following discussion the symbol ¢ signifies the letter
O where necessary for emphasis, and the symbol A signifies a 7-9 punch
in card column 1.

ALGOL Control System

_The compilef operates under the ALGOL Control System. This
system is a subordinate control routine of the Master Control System of
the CO-OP Monitor Programming System. ALGOL 1s quite similar to the
subordinate control routine COOP.

ALGOL is called with an MCS (Master Control System) card having
ALGOL punched beginning in column 2. Other details of this card are
available in descriptions of the CO-OP Monitor. It should be noted in
selecting a standard recovery procedure that the concept of COMMON is
not used in Algol.

Following the MCS card will be a control card giving
instructions to the control routine ALGOL. It will name one of the
following routines: ALGO, ALDAP, EXECUTE, BINARY, FORTRAN, REWIND or
DEFINE. These will be discussed below.

EOP Card

The EOP (end-of -program) card has the characters 'EPP' punched
in columns 10-1k. |

In the ALGO mode, one EOP card must be used to terﬁinate the
program. |

In the ALDAP mode, one EOP card must be used to terminate each

Algol program or Algol procedure being compiled separately.

21

"Compile and Execute: ALGO

The ALGO mode of ruﬁning an Algol program is the simplest and
the fastest. It will be the more suitable for a large number of programs.
Unless the programmer has special reasons for using the ALDAP mode, the
ALGO mode is recommended.
The Algol program must be self-éontained except for standard
procedures and library procedures on the library-systems tépe. The job
deck must have the following cards in the sfecified order:
1. MCS control card.
The subordinate control routine name must be ALG¢L.

2. ALGOL control card.
This will appear as
DALGPH. or AALG¢,t. where t is an .integer specifying a time'
limit in minutes for compilation and execution. '
(The period is required on every control card.)

3. LIB cards.

If necessary. One LIB card is required for each non-
standard library procedure called in the program, namely
those declared external. The format of a LIB card is

as follows: the characters LIB punched in columns 10-12
and the name of a library entry point beginning in
column 20. There may be no more than 20 LIB cards.

4, PROGRAM card.

If desired. This may be used to identify the program.
Its format is described in the next paragraph.

5. Algol program deck.
6. EOP card.
T. Data.

If required.

22

PROGRAM Card

The PROGRAM card is optional. It is useful for identification
purposes, and in the ALDAP mode it serves to name the program entry
point.

The format of the card is free field. .The characters PR¢GRAM
must appear followed b& the program name, which must be alphanumeric.

Comgile/Execute: ALDAP

The ALDAP mode is used to compile an Algol program or pro-
cedure to a relocatéble binary or a CODAP format. Execution is
optional. For compilation only, the program deck may consist of any
mixture of Algol programs and procedures, any number of which may 5e
in CODAP. If execution is desired, part or all of the program deck
may have been previously compilgd, so that the deck may ha&e Algol,

CODAP and relocatable binary cards.

ALDAP Control Statement

The format of the ALDAP étatement is:
MALDAR,L,B,n.
where |
"L is & program listing key,
B is a punched card output key,
n is a logical unit number.
A period may terminate the statement at any point, with remaining fields
treated as zero. |
If the program listing key (L) is a 1, an assembled listing of
the CODAP object code will be produced on the standard output medium.

If the key is zero or blank, no such listing will be produced. A listing

25

of the Algol program-and any diagnostics will always be produced on the
st;ndard output medium.
" If the punched card output key (B) is a 1, a relocatable binary

deck will be produced on the standard punch medium. If the key is a 2,
a CODAP symbolic deck will be produced on the standard punch medium.
- If the key is a 3, both a symbolic deck and a relocatable binary deck
will be produéed on the standard punch medium, with the symbolic deck
appearing first. If the key is zero or blank, no deck will be produced.

The logical unit number (n) specifies the unit which is to be
the load-and-go tape if it is one of the integers 1-49 or 56. If n is
some other integer or blank, no load-and-go tape will be written. The
load-and-go tape is required when execution of the program is to follow.

Examples:
(a) MALDAP,1,1,56.
This statement will cause the Algol/CODAP deck to be compiled, an
assembled listing to bé produced on the standard output medium, a
relocatable binary deck to be produced on the standard punch medium,
and a load-and-go tape written on logical unit 56.
(b) ' MLDAP, L.
This statement will cause the Algol/CODAP deck to be.compiled, and an

assembled listing to be produced on the standard output medium.

Job Deck: ALDAP Compilation/Execution

For compilation only of an Algol/CODAP program deck, the

job deck should contain the following cards in the specified order:
1. -MCS control card.

With ALG¢L as the subordinate control routine name.

ol

2. ALGOL control card.
With the appropriate ALDAP control statement.

3. PROGRAM card.
If desired.

4, Program deck.
Any mixture of Algol and CODAP programs and pro-
cedures, with all their subroutines except the
standard procedures and those on the library-systems

tape. Each Algol program or procedure must be
terminated by an EOP card.

5. FINIS card.

This card contains the characters FINIS punched in
columns 10-14. It signals the end of all compilations.

For compilation and execution of an Algol/CODAP program deck,

a load-and-go tape must be requested in the ALDAP control statement. If
no relocatable binary cards follow the last subprogram to be compiled,
then the program deck must be terminated by an EOP card which is in
addition to the EOP card or END card (the latter for a CODAP
subprogram) which terminates fhe last program or procedure. The FINIS
card then follows this additional EOP card. An EOP card always causes
a TRA card image to be written on the load-and-go tape.

The control statements EXECUTE, BINARY, FORTRAN, REWIND and
DEFINE may be used as described in the "CO-OF Monitor Programmer's
Guide". BINARY is useful for loading a relocatable binary deck onto the
load~-and-go tape prior to compilation of an Algol calling program, where
the subprogram in relbcatable form might have the same name as a library
routing. If the Algol program preceded the relocatable deck, the library

routine would be fetched by the loader and an error indication given.

25

The CO-0P control statements LOAD and EXECUTER are not used

by ALGOL.

Examples
Each of the following examples describes a job deck which

illustrates a different way of compiling and executing the same Algol
program. The program calls a library procedure with entry point named
BESSEL, and the program'contains at least one other procedure. On the
MCS card only the first field is indicated, as the others may vary from

one installation to another.

Example 1
This job uses the ALGY mode.
MLGHL,
DALGP.
LIB BESSEL
PRPGRAM SAMPLE
Algol Program (with external declaration of BESSEL)
'"EgP! |

Data

-Examgle 2

This Jjob uses the ALDAY mode, compiling the entire program at
once. The ALDAP control statement calls for an assembled listing, a
binéry deck, and a load-and-go tape on logical unit 56. The execute

card gives a two minute time limit on the execution.

26

MALGPL,
MALDAP,1,1,56.
PRPGRAM SAMPLE
Algol Program (with external declaration of BESSEL)
'EGP"
'E@P"
FINIS
AEXECUTE, 2.
Data
Example 3
This Jjob consists siﬁply of the execution of the relocatable
program deck obtained in example 2,
MLGAL,
NEXECUTE, 2,
Relocatable Deck
Data
Example U4
This example is similar to example 2. Here the main program
and one of its procedures are to be compiled separately.
MALGPL,
MALDAP,1,1,56.
PRAGRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the
procedure being compiled separately)

1E¢Pl

a7

Algol Procedure
'EGP"
'EgP!
FINIS
AEXECUTE, 2.
Data
Examgle 5
In this example the procedure which was compiled separately
in example 4 is being compiled by itself, i.e., the calling program is
not in the deck at all. Of course there is no execution in this case.
Note that no load-and-go tape is requested and only one EOP card is
used. There cannot be a PROGRAM card.
CMALGPL,
MALDAP,1,1.
Algol Procedure
'EgP!
FINIS
Example 6
Here the procedure compiled by itself in example 5 appears in
the program deck in relocatable binary form, while the calling program
is in thg Algol language.
AALGPL,
MALDAP,1,1,56.
PRAGRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the
procedure in relocatable form)

28

'EGP!
FINIS
OEXECUTE, 2.
" Relocatable Deck

Data
The relocatable deck here must be terminated by two TRA cards. One of
£heseiis generated by the compiler.when it processes the EOP card which
must terminate the procedure for compilation; as in example 5. The
second TRA card can be obtained by using a second EOP card, as in
example 2. " Alternatively, the second TRA card can be added to the
relocatable deck before execution. Note that this second TRA card must
not be used when the relocatable deck is loaded by a BINARY control
statement. This is illustrated in the next example.

Example 7
In this case the previously compiled procedure has the same

name as a routine on the library-systems tape.
MLGPL,
ABINARY, 56.

Relocatable Deck (terminated by one TRA card)
AALDAP,1,1,56.

PRPAGRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the
procedure in relocatable form)

'E¢P'
'EQSP'

FINIS

29

AEXECUTE, 2.
Data
The logical unit number on the BINARY control statement must agree with

that which specifies the load-and-go tape in the ALDAP control statement.

30

APPENDIX A

Adjuncts to Algol 60

List Entities

The delimiter list is a declarator and a specifier.

< list identifier > ::= < identifier >

< loop expression > ::= < for clause > < arithmetic expression > l ¢

| < for clause > < loop expression > |

< for clause > (< list >)

< list element > ::= < arithmetic expression > | < loop expression > I
< list identifier >

< list > ::= < list element > | < list >, < list element >

< 1ist declaration > ::= list < list identifier > := < list >

Format Entities

The delimiter format is a declarator and a specifier.
< format identifier > ::= < identifier >
< simple format expression > ::= ‘(< Fortran format >l)’|
< format identifier >
< format expression > ::= < simple format expression > ‘
< if clause > < simple format expression >
else < format expression >

< format declaration > ::= format < format identifier > := < format expression °:

. For definition of Fortran format, see Control Data Fortran-62 Reference

Manual.

13

< string expression > :

31

String Expression

:= < string > | < if clause > < string >

else < string expression >

External Declaration

The delimiter external is a declarator.

< external identifier > :

< external list > ::= <

<

1= < identifier >
external identifier > ,

external identifier >, < external list >

< external declaration > ::= external < external list > l

< type > external < external list >

32

APPENDIX B
Hardware Representation

One keypunch character is reserved as an "escape symbol",
which we shall here suppose is the apostrophe. This symbol is used to
delineate word delimiters and truth values, which are written in btold-
face type in Algol‘reference languége and publication language and
indicated by underlining in this manual. The hardware representation
of a word delimiter such as begin is therefore 'BEGIN'. No distinction
is made between upper and lower case letters in the hardware language.

The transliteration rules for the non-word delimiters are
comprised in the following table. This assumes a 48 character hardware
set and 1is consistent with the usage in the ALCOR group. For some

basic symbols alternatives are tolerated, as indicated.

Reference Hardware Tolerated Hardware
< 'LS? 'LESS!
= Q! 'LSEQ', 'NOTGREATER',
'NOT GREATER'
= ,___'EQ' . 'EQUAL'
= o 'GREQ', 'NOTLESS',
'NOT LESS'
> 'GR' ' GREATER'
"NQ' 'NTEQ', 'NOTEQUAL',
'NOT EQUAL'
—1 'NOT!
A ' AND'

\/ 'OR'

35

Reference Hardware - Tolerated Hardware
D ' IMP! 'IMPLIES', 'IMPL'
= 'EQV! 4 'EQUIV!'
10 , ! '‘E', 'T!
X *
1 *% ' POWER'

+ // 'DIV'

.o
o
-

‘ " o 1

s 1 1y
In the case of the string quotes, the tolerated symbols are required for
the inner strings of a nest of strings.

Actually, the compiler can tolerate many other spellings of
word delimiters because of its facility for cérrecting misspellings.

The delimiter go to is accepted with or without the space
between the two words, but it is treated as a single delimiter: 'GOTO'
or 'GO TO',

The compiler can also accept a 6l character hardware represen-
tation: thé full set available on the line printer. In preparing
programs, overpunching is used on the 48 character keypunch in this case.
The table below indicates the keypunching rﬁles in use at Oak Ridge

National lLaboratory.

3h

Reference Hardware
< 1-8 punch
= 1-5 punch
= 1-9 punch
> 2-T punch
2-6 punch
N\ 3-T7 punch
V 2-4 punch
0 126 punch
) 2-5 punch

. | + 3~5 punch
2-8 punch

H 2-9 puqch

[3-6 punch

] 34 punch

The other basic symbols are either in the 48 character set or are
replaced by word delimiters as above. The symbol := is treated as two

symbols in the 64 character set, and = is punched as such. -

35

APPENDIX C
Structure of Procedure Calling Sequence

The following information is necessary for the user writing a
non-Algol procedure to be called from an Algol program. The calling
sequence differs from that found'in many other languages.

The first word of the nop-Algol procedure must have a simple
Jump instruction in its upper half, and the exit line is.proQided by a
Jump to this first word. The entry automatically causes the proper
return address to be placed in the address portion of the first half-
word.

Upon entry to the procedure, index register six contains an
address which is used to referénce each parametér. To establish linkage
with the first parameter, the instructioh

| LDA 6 0

is performed. This brings into the accumulator a word of one of the
following types:

1., SLJ O ENA V

2. SILJ ORIJL
In case (1), V is the address of the parameter. In case (2), L is the
starting address of a piece of coding for computing the address of the
parameter and leaving it in the accumulator (it the parameter is an
expression, the addrese in the accumulator will be that of a temporary
containing its value). Case (1) always holds if the parameter is a
simple variable, string, array identifier, switch identifier, or
procedﬁre identifier. In case (2) the same temporary will be used for

all the expressions.

36

Both cases can be provided for by setting aside two locations
for each parameter in the procedure body and plécing the instruction
SLJ *-1
in the upper half of each second location. Then after
LDA 6 0
mentioned above,
STA RES1 ,
where RES1 is the first reserved location for the first parameter, makes
the two locations into a closed subroutine. Aftef this, the instruction
RTJ RES1
causes the address of the first parameter to be placed in the accumilator
anytime it is performed. This accommodates expressions called by name.
In general, the Kth parameter is referenced as above, but
beginning with
IDA 6 (K - 1) .
This description does not apply to the standard procedures, each of

which has its own special calling sequence.

37

APPENDIX D
Internal Representation of Strings

The address representing a string is that of the first word of
string characters. BEach left string quote is represented internally by
the word

00 ... 03454 |
and each right string quote by

00 ... O5hTh .
The characters of the string which are not string quotes are packed in
BCD eight charaéters per word. These words are in the natural order,
the first immediately following the left string quote qnd the last
immediately followed by the right string quote. If the last word before
a right quote is not full, the rest of that word is filled out with

zeros (not BCD blanks).

38

APPENDIX E
Program Efficiency

The following information may be of interest to programmers
desiring an efficient program: |

1. The FOR statement is defined with more generality than
is useful in most programs. In particular, the
arithmetic expressions in the FOR clause are allowed
to change in value during execution of the FOR state-
ment. The compiler does not attempt to determine which
FOR statements make use of this flexibility and treats
all of them in the most general way. Therefore, in a
statement such as

for T :=1 step M + N until abs(A - B) do ... ,
the expression M + N is evaluated twice for each iteration,
and the expression abs(A - B) is evaluated once for each
iteration. If M, N, A, and B do not change in the loop,
this is unnecessary. Such inefficiency can be avoided
by programming in a slightly different way. The above
example can be written as follows:
T1 :=M+N; T2 := abs(A - B) ;

for T :=1 step Tl until T2 do

2. The concept of call by value is a device applied to pro-
cedures to eliminate unneeded flexibility in procedure
calls. If a parameter having a value is referenced more
than once in the procedure body and the flexibility of

call by name is not needed, then the program is more

39

efficient if the parameter is included in the value
paft of the procedure heading. If such a parameter
is referenced only once, it is more efficient if it
is not included in the value part.

Array identifiers which are parameters should be specified.

Lo

APPENDIX F

Controversial Features of Algol 60

A few features of the language have been subject to more than

one interpretation. Fortunately, the vast majority of programs will not

involve these ambiguities, but for the few that do it will be necessary

to know what decisions the compiler makes. This appendix indicates these

decisions for the more controversial areas.

1.

Side effects in function designators. The evaluation
of primaries in expressions is not strictly left to
right allowing for precedence rules. In particular,
the value of a variable in an expression is never
stored in a temporary simply to preserve its value
from change by the evaluation of a function desig-
nator in the expression. Otherwise, the evalﬁation
does proceed from left to right and according to
precedence ru;es, including the referencing of
formal parameters and the calculation of the address
of subscripted variables. All function designators
are evaluated Iin Boolean expressions.

Own variables and arrays in procedures. The own '
quantities local to the body of a procedure which is
called from more than one point in a program record
the history of the procedure as opposed to a history
of each point. of’ reference. In other words, only one

copy of the own quantities is preserved.

k1

APPENDIX G
Fortran Subprograms in an Algol Program

The standard ﬁrocedures FORTRAN, FORTRANF, FTN, and FTNF are
used to call compiled Fortran subroutines and functions from within an
Algol program. Each procedure has one parameter which is a call of the
desired Fortran subprogram. The Fortran subprogram must be declared
external as described in Section V.

The use of these procedures simply causes & Fortran calling
sequence to be generated by the compiler. Of course the subprogram
could be written in CODAP as well as Fortran, provided it is designed
to link through a Fortran-type calling sequence.

The procedﬁres are used as follows:

FORTRAN - generates a Fortran 62 calling sequence for a subroutine
FORTRANF- generates a Fortran 62 calling sequence for a function
FIN - generates a Fortran 63 calling sequence for a subroutine
FINF - generates a Fortran 63 calling sequence for a function
Each of these procedures is standard, i.e., avallable without declarafidn.

FORTRANF and FTNF are used in expressions.

Examples:
x := FTNF (ALPHA(T,A[0,0]))
FORTRAN (SUB(I + J)) .
The following restrictions must be observed: labels, procedures
with no parameters, standard procedure names, and array names cannot be
used as arguments of a call of a Fortran subprogram. However, in the

case of an array, the subscripted variable which is the first element of

- Lo

the array will satisfy a Fortran subroutine which has an array name as
a formal parameter. The name of the Fortran subprogram cannot be a

formal parameter. Literals must be enclosed in string quotes.

b3

Acknowledgment

The author was greatly assisted in the preparation of this
document by several persons who have contributed labors or advice to
the construction of the compiler. These include N. B. Alexander and
A. A. Grau, also K. A. Wolf of Control Data Corporétion, and especially

R. G. Stueland of Control Data Corporation.

THIS PAGE |
WAS INTENTIONALLY
-LEFT BLANK

45

. ORNL-3460
UC-32 — Mathematics and Computers
'TID-4500 (23rd ed.)

INTERNAL DISTRIBUTION

. Biology Library 67. H. W. Joy

1
2-4. Central Research Library 68. F. B. K. Kam
5. Reactor Division Library 69. George Kidd
6-7. ORNL — Y-12 Technical Library 70. L. J. King
Document Reference Section 71l. Ann Klein
8-27. Laboratory Records Department ‘ 72. K. A. Kraus
28. Laboratory Records, ORNL R.C. 73. C. E. Larson
29. R. K. Adams 74. M. E. LaVerne
30. Nancy Alexander , 75. Elmon Leach
31l. E. D. Arnold 76. R. P. Leinius
32. Don Arnurius 77-78. M. P. Lietzke
33. George J. Atta 79. Erlie McDaniel
34. Susie E. Atta 80. C. D. Martin
35. 8. J. Ball \ 8l. K. O. Martin
36. J. E. Bigelow ' 82. Betty F. Maskewitz
37. R. E. Biggers 83. R. P. Milford
38. Craig Brandon 84. F. L. Miller, Jr.
. 39. J. C. Bresee 85. R. V. Miskell
40-41. L. L. Bumgarner 86. S. E. Moore
42. W. R. Burrus 87. J. F. Murdock
43. H. P. Carter 88. C. W. Nestor, Jr.
44. Do K. Cavin 89. V. K. Pare
45, Arline Culkowski 90. Carl E. Parker
46. W. Davis, Jr. - 91. S. K. Penny
47. H. J. de Bruin 92. A. M. Perry
48. P. B. DelNee 93. D. C. Ramsey
49. A. C. Downing 9%. M. T. Robinson
50. L. C. Emerson 95. R. M. Rush
51. Margaret Emmett 96. Y. Shima
52. R. L. Ferguson 97. J. E. Simpkins
53. B« R. Tish Y8. M. J. Skinner
54. P. A. Haase ' 99. C. D. Scott
55. M. Feliciano 100. C. D. Susano
56. Barbara Ann Flores 101. J. A. Swartout
57. T. B. Fowler 102, M. E. Teagaric
58. R. E. Funderlic (K-25) : 103. D. K. Trubey
59. D. A. Gardiner 104. J. 8. Wateon
60. C. D. Griffles 105. A. M. Weinberg
6l. D. A. Griffin 106. M. E. Whatley
62. D. G. Gosslee 107. C. S. Williams
63. M. T. Harkrider 108. H. A. Wright
64. M. C. Hill) 109. Y-12 Central Files
65. A. S. Householder ' 110. J. H. Zeigler (K-25)
66. W. H. Jordan 111. H. Zeldes

112.
113.
114.
115.
116.

117.
118-728.

46

EXTERNAL DISTRIBUTION

T. H. Elrod, Control Data Corporation, Computer Division, 3330
Hillview Avenue, Palo Alto, California

A. A. Grau, Department of Mathematics, Northwestern University,
Evanston, Illinois

R. G. Stueland, Control Data Corporation, Computer Division,
3330 Hillview Avenue, Palo Alto, California

K. A. Wolf, Control Data Corporation, Programing Systems, 501
Park Avenue, Minneapolis 15, Minnesota

R. A. Zemlin, Control Data Corporation, Computer Division,
3330 Hillview -Avenue, Palo Alto, California

Research and Development Division, AEC, ORO

Given distribution as shown in TID-4500 (23rd ed.) under
Mathematics and Computers category (75 copies — OTS)

%0

