LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
STATEMENT OF PROBLEM

Compare the reactivities of the Bettis alloys with the 2.8% enriched uranium fuel.

SUMMARY OF RESULTS

The three alloys studied were:

U-15Nb-15Zr
U-12Nb-6Zr
U-6Nb-12Zr

where the numbers preceding the niobium and zirconium indicate weight percent in the alloy.

The enrichments \(\left(\frac{N_{25}}{N_{25} + N_{28}} \right) \) required for the uranium in these alloys to give the same reactivity as the 2.8% enriched fuel are:

U-15Nb-15Zr 6.7%
U-12Nb-6Zr 5.2%
U-6Nb-12Zr 3.8%

Table I gives the reactivity (compared to 2.8% enriched U) of these alloys with the uranium enrichments of 3, 7, and 11 percent.
III. METHODS USED

The calculations were made for an SRE wet lattice cell with only the uranium in the fuel being replaced by the alloys. Thus, it is not too far wrong to neglect the changes in age and thermal migration area. The comparison then reduces to a calculation of the infinite multiplication constant for each alloy. The comparisons were made with the SRE wet critical calculation.1

The infinite multiplication constant is given by

\[k_\infty = \gamma \in \rho \]

Since \(\in \) depends primarily (although not totally) on the geometry of the fuel element, and since this has not changed, it is not untoward to take \(\in \) the same as in the 2.8% enriched uranium fuel. \((\in = 1.045)\)

Thermal Cross Sections (Maxwell averaged at 180°C)

<table>
<thead>
<tr>
<th>Element</th>
<th>(\bar{\sigma}) (25)</th>
<th>(\bar{\sigma}) (28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium</td>
<td>469.8 barns</td>
<td>1.96 barns</td>
</tr>
<tr>
<td>Zirconium</td>
<td>0.128 barns</td>
<td></td>
</tr>
<tr>
<td>Niobium</td>
<td>0.784 barns</td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{\sigma} \] is given by

\[\gamma_{\text{alloy}} = \left(\frac{2 \cdot \bar{\sigma}_f (25) \cdot E}{\bar{A}_u} \right) \]

where

\[\gamma = 2.47 \]

\[E = \frac{N_{25}}{N_{28}} \]

\[623.3 \]
\[w's = \text{weight percent of the element in the alloy.} \]
\[A's = \text{atomic number of the element in the alloy.} \]
\[\bar{U}'s = \text{Maxwell averaged thermal cross sections.} \]

The values of Eta for the three alloys with enrichments of 3, 7, and 11% are given in Table 2.

Resonance Escape Probability

The SGR lattice code was used to calculate the resonance escape probability. The infinitely dilute resonance integrals, excluding \(1/v \) capture for Nb and Zr are 3.43 barns and 3.0 barns respectively. The resonance integral put into the code then was

\[N_{\text{alloy}} (\sigma_{\text{res}})_{\text{eff}} = N_{u} (\sigma_{u})_{\text{eff}} + N_{\text{Nb}} \sigma_{\text{Nb}} + N_{\text{Zr}} \sigma_{\text{Zr}} \]

Thermal Utilization

The thermal utilization is given by

\[f = \frac{\Sigma_{u} \bar{\Phi}_{u} V_{u}}{\Sigma_{1} \bar{\Phi}_{1} V_{1}} \]

where the top sum is just over the fuel and the sum in the denominator is for the whole cell.

The cross sections are easily calculated, and the volume fractions are the same as SRE. Thus, the only difficulty is in assigning the fluxes. The fluxes were taken as linear extrapolations of the SRE fluxes.

Recommendations

If these alloys are to be seriously considered, it is recommended that a much more careful study of the cell constants be made, especially for the thermal flux and the resonance integrals of Niobium and Zirconium.
Table 1

κ/k for Bettis Alloys Compared with SRE Wet Calculations

<table>
<thead>
<tr>
<th>Enrichment (%)</th>
<th>U-15Nb-15Zr</th>
<th>U-12Nb-6Zr</th>
<th>U-6Nb-12Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-16.8</td>
<td>-9.4</td>
<td>-2.5</td>
</tr>
<tr>
<td>7</td>
<td>+0.94</td>
<td>+5.2</td>
<td>+9.0</td>
</tr>
<tr>
<td>11</td>
<td>+9.3</td>
<td>+10.5</td>
<td>+13.5</td>
</tr>
</tbody>
</table>

Table 2

η for the Bettis Alloys

<table>
<thead>
<tr>
<th>Enrichment (%)</th>
<th>U-15Nb-15Zr</th>
<th>U-12Nb-6Zr</th>
<th>U-6Nb-12Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.470</td>
<td>1.621</td>
<td>1.728</td>
</tr>
<tr>
<td>7</td>
<td>1.730</td>
<td>1.813</td>
<td>1.868</td>
</tr>
<tr>
<td>11</td>
<td>1.865</td>
<td>1.920</td>
<td>1.957</td>
</tr>
</tbody>
</table>

IV. REFERENCES

1. Fillmore, F. L., "Two Group Neutron Physics Calculations for the Sodium Reactor Experiment"